
Alpha particle driven Alfvenic instabilities in ITER post-disruption plasmas

Downloaded from: https://research.chalmers.se, 2025-06-18 04:02 UTC

Citation for the original published paper (version of record):
Lier, A., Papp, G., Lauber, P. et al (2021). Alpha particle driven Alfvenic instabilities in ITER
post-disruption plasmas. Nuclear Fusion, 61(8). http://dx.doi.org/10.1088/1741-4326/ac054c

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



PAPER • OPEN ACCESS

Alpha particle driven Alfvénic instabilities in ITER post-disruption
plasmas
To cite this article: A. Lier et al 2021 Nucl. Fusion 61 086003

 

View the article online for updates and enhancements.

This content was downloaded from IP address 129.16.169.175 on 28/07/2021 at 13:40

https://doi.org/10.1088/1741-4326/ac054c
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv-kASBqUWlFLoWMkbvDYixvHxQCfOoxxJK3Y5nTveN_drxu1x152TllS-hJGvCoB2K6eJuFJz9Dn1dDvGf7hpdbmu5-Qz21i-AiBv_KblDmWdFPPUt31AAovLToGfkcJO4cpUdsl9o89xPGjD0oq2HtC5L9Om9Vr5TkzIt-oYnrHfgS4NMItj7HqsHuhPjIasdl8AUS_9eDK0CO0pddD1zmAej1sGRnbEyx-HtHovbxy7N63Qungscx80YSg1QRBM-pQDZl37lX2Enq4loynERgMxoYwlJtK4&sig=Cg0ArKJSzAk9sA__dBpX&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


International Atomic Energy Agency Nuclear Fusion

Nucl. Fusion 61 (2021) 086003 (15pp) https://doi.org/10.1088/1741-4326/ac054c

Alpha particle driven Alfvénic instabilities
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Abstract
Fusion-born alpha particles in ITER disruption simulations are investigated as a possible drive
of Alfvénic instabilities. The ability of these waves to expel runaway electron (RE) seed
particles is explored in the pursuit of a passive, inherent RE mitigation scenario. The
spatiotemporal evolution of the alpha particle distribution during the disruption is calculated
using the linearized Fokker–Planck solver CODION coupled to a fluid disruption simulation.
These simulations are done in the limit of no alpha particle transport during the thermal
quench, which can be seen as a most pessimistic situation where there is also no RE seed
transport. Under these assumptions, the radial anisotropy of the resulting alpha population
provides free energy to drive Alfvénic modes during the quench phase of the disruption. We
use the linear gyrokinetic magnetohydrodynamic code LIGKA to calculate the Alfvén
spectrum and find that the equilibrium is capable of sustaining a wide range of modes. The
self-consistent evolution of the mode amplitudes and the alpha distribution is calculated
utilizing the wave-particle interaction tool HAGIS. Intermediate mode number
(n = 7–15, 22–26) toroidal Alfvén eigenmodes are shown to saturate at an amplitude of up to
δB/B ≈ 0.1% in the spatial regimes crucial for RE seed formation. We find that the mode
amplitudes are predicted to be sufficiently large to permit the possibility of significant radial
transport of REs.

Keywords: runaway electrons, ITER disruption, alpha particle, Alfvénic instabilities

(Some figures may appear in colour only in the online journal)

1. Introduction

The subject of runaway electron (RE) mitigation is of crucial
importance to the success of reactor-relevant tokamaks such
as ITER [1–5]. Generation of REs is most concerning during
disruptions, as the avalanche mechanism [6, 7] is expected to
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convert a significant portion of the plasma current into run-
away current on a large tokamak [8–10]. A multi-megaampere
runaway beam has the potential to inflict significant damage
to plasma-facing components [11, 12]. This paper discusses a
phenomenon which could potentially act to passively mitigate
RE generation at ITER.

The interaction of runaways with plasma waves has been
investigated both in theory [13–20] and through observations
in multiple tokamaks [21–27]. Several tokamaks (such as DIII-
D or TEXTOR) have reported runaway suppression in cor-
relation with increased wave activity in the current quench
of the disruption or the plateau phase of the runaway beam.
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Wave activities in a tokamak plasma can lead to a variety of
instabilities with different effects on particle confinement to
which REs—due to their high velocity—can be extremely
susceptible to.

In fusion, the umbrella term ‘shear Alfvén wave’ collects
an important type of transverse, electromagnetic plasma waves
characterized by their low (Alfvénic) frequency range and
propagation along the magnetic field. Frequency gaps in the
continuum damping allow the existence of these Alfvén eigen-
modes (AEs). Those gaps can occur through an extremum in
the safety-profile (reversed shear AEs [28], global AEs [29]
and beta-induced AEs [30]) or through geometric coupling
of two poloidal harmonics (toridicity-induced AEs [31–33],
ellipticity-induced AEs [34]). Compressional AEs (CAEs, [35,
36]) are high frequency kinetic instabilities with both a perpen-
dicular and a parallel component.

Instabilities in the Alfvénic frequency range are routinely
driven in fusion plasmas by energetic ions. However, in the
case of such modes observed during the quench or post-
disruption, the source of the drive is less obvious. Former
analytical work on runaway ions [37] was inconclusive and
it was later deduced [38] that ion runaway formation even in
reactor-sized tokamaks is unlikely at disruption time scales.
Spontaneous ion acceleration caused by internal magnetic
reconnection events in the MAST tokamak were observed
[39]. Nevertheless, the experimental observation of these
modes necessitates a drive to exist. A recent publication [40]
identified REs as a possible drive for CAEs (or possibly GAEs)
on the DIII-D tokamak in the context of a massive gas injec-
tion triggered disruption and the consecutive suppression of a
runaway plateau formation.

For the ITER 15 MA scenario it is predicted [41, 42]
that marginally unstable modes can already be present in
the quiescent burning phase. Decisive for the presence of an
instability however is not only the mode drive but also the
strength of the competing damping. Energetic beam exper-
iments at the AUG tokamak revealed the importance of
the heavily temperature dependent Landau damping and its
role in allowing strongly unstable modes to exist in a cold
plasma [43–45].

In this paper we consider the active phase of ITER,
where suprathermal alpha particles born through the fusion
process in the burning plasma exist at significantly higher
energies than present day experiments. This work aims at a
scenario, where the post-thermal-quench healing of magnetic
surfaces is fast enough to keep both REs and alpha particles
confined. Good alpha particle confinement in the thermal
quench stage is a necessary condition for the scenario
described in the paper. This may not be universally true in all
disruptions. However, if the breakup of magnetic surfaces is
sufficiently strong for a sufficiently long time to cause signifi-
cant alpha particle losses, then the losses of seed REs—which
possess larger thermal speeds—will be even larger. Investi-
gating the possible suppression of runaways via alpha-driven
modes is interesting in scenarios where the runaways are
reasonably confined [46–48], and if runaways are confined
then alphas are likely confined as well. If there are some
runaways being generated, the runaway current can provide

the subsequent magnetic equilibrium to confine the alphas
post-quench.

We show that the alpha particle distribution remains suf-
ficiently energetic during the disruptions considered to drive
TAEs in the current quench, where the plasma temperature
(hence Landau damping) has dropped significantly. We also
show the presence of these modes to cause significant transport
to a runaway seed population. The main reason for energetic
alphas to exist in this stage of a discharge is that the alpha
suprathermal collision time is long compared to the thermal
quench time scale.

The paper is structured as follows. In section 2 we model
the evolution of the main plasma parameter profiles during the
disruption using GO [10, 49, 50], which are also used to con-
struct the magnetic equilibrium. In section 3 we describe the
calculation of the spatiotemporal evolution of the alpha distri-
bution function using the CODION tool [38], and we show that
a substantial suprathermal alpha population exists in the cur-
rent quench. In section 4 we describe the LIGKA model [51]
used to identify the Alfvén spectrum and mode structures. As
evidenced by simulations carried out by the relativistic ver-
sion of HAGIS [52] introduced in section 5, the presence of
the alpha population drives these modes to amplitudes of up
to δB/B ≈ 0.1%. Finally, in section 6 we use HAGIS to deter-
mine the transport of seed runaways in the presence of these
modes, and show seed transport.

2. ITER natural disruption scenario

In this paper we consider unmitigated ITER disruptions, as
our aim is to investigate the possibility of inherent, ‘natural’
runaway suppression mechanisms. Furthermore, the lack of
mitigation significantly reduces the dimensionality of the
parameter space to be considered when selecting a disruption
scenario. Mitigated ITER disruptions [10] in a similar context
are left for a future study.

The pre-disruption scenario is that of the 15 MA induc-
tive burning plasma ‘scenario #2’ described by Polevoi et al
[53, 54], which has been extensively studied in the literature
[41, 42, 55–58]. High-current scenarios are also expected to
produce the largest and most energetic populations of REs
[59]. The plasma background consists of a 1:1 mixture of
deuterium and tritium. Main parameters of the pre-disruption
scenario are shown in table 1 and the temperature profiles in
figure 2(a).

In order to study the post-disruption evolution of runaways
and Alfvén waves, we need a disruption scenario and a mag-
netic equilibrium. As first step in constructing these, we use
the GO-code [10, 49, 50] to solve the 1D induction equation
and to obtain the time evolution of the induced electric field
E, the current density j for both the ohmic current and the
different runaway generation mechanisms. In this paper the
hot-tail [60], the Dreicer [61] and the avalanche [6] mecha-
nisms are considered. Since we are investigating a mechanism
that would act on runaway seed particles, we are focusing on
a scenario that is dominated by primary generation through
the hot-tail mechanism. For this reason runaway seed sources
coming from the active phase of ITER (i.e. tritium beta decay
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Table 1. The plasma parameters of the pre-disruption ITER
scenario.

Parameter name Notation Value

Major radius R0 6.195 m
Minor radius a 2 m
Magnetic field on axis B 5.26 T
Effective charge Zeff 1.0
Normalized flux ψ Ψ(r)/Ψ(a)
Normalized radius r/a r/a �

√
ψ ≡ s

Plasma current Ip 15 MA
Electron density ne(ψ) 1020 m−3

Ion density ni(ψ) 1020 m−3

Electron temperature on axis Tpre
0,e 24.7 keV

Ion temperature on axis Tpre
0,i 21.2 keV

q on axis q0 1.07
q on edge qa 3.67

and inverse Compton scattering [9, 10]) are not considered,
as they would contribute a comparatively small seed in the
selected scenario.

While GO is capable of self-consistent simulation of the
thermal collapse in disruptions, in order to reduce the dimen-
sionality of the parameter space and the necessary run times for
a parameter scan we are externally forcing a thermal quench:

T(r, t) = Tf + [T(r, 0) − Tf] exp {−tN} , (1)

where T f is the final temperature, tN = t/t0 where t = 0 marks
the instant of the thermal quench starting, t0 is the exponential
decay time and T(r, t) is the time evolving temperature profile,
equal for both electrons and ions. Since tN is also a temper-
ature axis for the background species, it becomes convenient
to normalize the time this way and will be used throughout
the sections to come. Within the GO framework we neglect
impurities and alphas for simplicity (which would only have
a secondary effect on the evolution through conductivity and
by slightly modifying the effective charge in the Dreicer and
avalanche sources). Since the thermal collapse is externally
forced, we also set all plasma species at the same temperature,
i.e. assuming fast equilibration between the electron and ion
thermal distributions.

Figure 1 depicts the GO-simulation output of a disruption
identified by T f = 3 eV and t0 = 0.7 ms. A significant frac-
tion of the current is converted to runaway through the hot-
tail mechanism and due to this, little flux is available for the
Dreicer mechanism. With the induced electric field setting in,
the avalanche effect multiplies this initial seed. Note that with
equation (1) and in a scanned range of t0 = 0.1–1 ms the hot-
tail current always generates around tN ≈ 5 and the electric
field is induced around tN ≈ 8. The induced electric field will
be discussed in more detail in section 3 in the context of its
influence on the alpha particle distribution.

3. Spatiotemporal evolution of the alpha particle
distribution

In this section we are going to discuss what happens with the
fusion-born alpha particle population in a disruption where a

significant runaway current is still providing confinement. This
question may also be important for the accurate calculation
of wall heat loads during the disruption, but in this paper we
are focusing on the drive to Alfvénic instabilities through fast
ion resonances. Since mode drive can manifest both through
momentum-space and real-space anisotropies, it is necessary
to calculate the 1D + 2V alpha particle distribution function
during the disruption.

The gyro-averaged kinetic equation for the alpha parti-
cles in a homogeneous plasma with a Fokker–Planck colli-
sion operator with the source term Sα for the fusion of alpha
particles is

∂ f α
∂t

+
eZα

mα
E

(
ξ
∂

∂v
+

1 − ξ2

v

∂

∂ξ

)
f α =

∑
s

Cα,s{ f α}+ Sα,

(2)
where f α is the alpha particle distribution function, e the ele-
mentary charge, Zα = 2 is the alpha particle charge number,
mα the alpha particle mass and Cα,s the linearized collision
operator describing collisions with species s. The particle pitch
ξ = v‖/v is defined with respect to the equilibrium magnetic
field lines.

Equation (2) is a reduction of the ion kinetic equation,
computing the time evolution of a distribution function in
velocity space (v, ξ) under the influence of electric field accel-
eration, the Lorentz force and an accumulation of small-angle
Coulomb collisions. Trading off spatial features such as neo-
classical particle transport is justified by the charged particle
motion in a tokamak being dominated by parallel dynamics
because of the preferred direction of the conductivity (σ‖ �
σ⊥). Perpendicular dynamics will be discussed later on. The
magnetic field strength does not enter as a quantity into the
equation, as at the energies investigated Bremsstrahlung and
synchrotron emission losses can be neglected for the alpha
particles.

As discussed earlier, we consider a 1:1 mixture of deu-
terium and tritium. The fusion process births alpha particles
isotropically, at an energy of Eα = 3.5 MeV. The empirically
derived reaction rate for deuterium and tritium is (NRL [62])

〈σv〉DT = 3.68 × 10−12T−2/3
i exp

{
−19.94T−1/3

i

}
cm−3 s−1,

where T i is the temperature of both deuterium and tritium
given in keV and must be below 25 keV for the formula to be
valid. The reaction rate for deuterium–deuterium fusion is not
included, as it is generally two orders of magnitude lower. With
equal D-T ion densities nD,T and temperatures T i, transforming
from the fusion reaction center-of-mass frame to the lab frame
results in the following energy dependence of the alpha particle
source [63]:

Sα = S0 exp

{
− 5

16

(
〈Eα〉 − Eα

)2

Ti〈Eα〉

}
. (3)

We solve the kinetic equation (2) numerically with the tool
CODION (COllisional Distribution of IONs) [38]. CODION
was originally developed to study highly energetic ion run-
away mechanisms [64] in fusion and astrophysical plasmas.
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Figure 1. GO-simulation of an unmitigated ITER disruption characterized by exponential temperature drop with an exponential decay time
t0 = 0.7 ms and a final temperature T f = 3 eV. (a) Plasma currents as a function of normalized time tN categorized by the three generation
mechanisms. (b) The spatiotemporal evolution of the induced electric field.

It can be considered an extension of previously existing ana-
lytical models [39] for the cases of low electric field and
trace impurities. CODION uses a linearized collision opera-
tor, which is valid as long as the density of alpha particles is
sufficiently small compared to the background.

In order to compute the radial distribution, independent
CODION calculations are executed on a radial grid spanning
the plasma radius with 101 points. The initial steady-state
alpha distribution is established self-consistently by providing
the initial profiles of temperature T s(r) (see figure 2(a)) and
densities ns(r). We take the electron density as radially flat and
constant at a value of ne = 1020 m−3 and the 50:50 fuel ion
densities nD,T to fulfill quasi-neutrality. The alpha density nα

and pressure pα, which is necessary for later calculations, are
evaluated (assuming isotropy and applying gyro-averaging)
with the use of moments

pα(r, t) =
4πmα

3

∫
v4 f α(r, v, t)dv, (4)

nα(r, t) = 4π
∫

v2 f α(r, v, t)dv. (5)

Isotropy is assumed as the birth process is isotropic, and the
pre-disruptive electric field is small, therefore for the initial-
ization simulation set to zero. The integrals are computed with
the use of Simpson quadrature weights. For later use, we fur-
ther specify the energetic part of the alpha population by limit-
ing the lower bound of the integrals to vEP = 10

√
2T(r, t)/mα

and thus define energetic particle density nα,EP and ener-
getic particle pressure pα,EP. This definition is not suited for
pre-disruption analysis (as the cut-off velocity would be too
high), however, it is purposeful for our post-disruptive anal-
ysis. Starting with initially negligible alpha particle densities
nα (for numerical reasons) we simulate the fusion process
Sα (equation (3)) self-consistently until a desired nα(r = 0) =
0.01ne is reached. The alpha profile established by our sim-
ulation is shown in figure 2(a). We do not remove a fused
D/T atom from the ion density profile nor do we add the born
alpha particle to it, as it remains a minority species. Targeted
for ITER is an optimal 50:50 D:T mixture and the efficiency
of the pump-out of He-ash is not yet clear. Radial particle

transport is not captured by the code. However, since we con-
sider situations of good confinement in which the alpha par-
ticle loss time is approximately three orders of magnitude
higher than its slowing down time, this seems to be a good
approximation.

In velocity space, after sufficient simulation time, the alpha
particles form a slowing-down distribution [65]

f SD(v) =
C

v3
c + v3

erfc

(
v − vα
Δv

)
, (6)

where C is a constant proportional to Sα, erfc(x) is the com-
plementary error function, vα =

√
2Eα/mα is the birth veloc-

ity, vc is the crossover velocity and Δv is the velocity spread
of the fusion reactants at birth. In the absence of a parti-
cle sink, the alphas born at vα eventually thermalize into a
Maxwellian f M of background temperature (helium ash). The
total alpha distribution therefore consists of a slowing-down
part and a thermal Maxwellian f α = f M + f SD. Using this,
we fit the CODION simulated time-dependent distributions
and determine vc, Δv and C for further analytical process-
ing of the energetic tail (v > vEP), which we assume to be
the described fully by the slowing-down part f SD. In steady
state these coefficients can be determined through the given
plasma parameters.

In simulating the effect of the disruption, the initial steady-
state alpha particle distribution is subjected within CODION
to the time varying background profile of temperature as
described in section 2. Effects of the induced electric field
will be neglected since we only calculate f α up to tN = 6.
Including the electric field in this duration is more expensive
numerically, and only leads to a sub-1% change in the fast par-
ticle pressure. The high-energy alphas exist during the current
quench due to their relatively slow deceleration, rather than
due to electric field acceleration. For the disruption the fusion
source is disabled, conserving the total density and density pro-
files. Background populations are assumed to maintain thermal
equilibrium, while the collisional cooling of the alpha particles
is consistently calculated by CODION. The disrupting alpha
distribution function for the chosen example case T f = 3 eV
and t0 = 0.7 ms is shown in figure 2(b). The energetic tail
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Figure 2. (a) Pre-disruptive ion and electron temperature profiles and the alpha particle density nα established through numerical fusion in
CODION. (b) Time evolution of the alpha velocity distribution on-axis during a disruption defined by T f = 3 eV and t0 = 0.7 ms and as a
function of T(tN = t/t0). The alpha particles are born at vα ≈ 13 × 106 m s−1 with a spread Δv corresponding to the pre-disruptive electron
background temperature Tpre

0,e = 25 keV. The temperature dependent velocities vEP above which particles are considered energetic are
marked as a triangle of the corresponding color. Also included are the Alfvén velocities vA for the plasma composition chosen. Note that the
total density integral is conserved throughout the disruption as the fusion process comes to a hold and particle losses are ignored.

of alphas is largely conserved during simulation time, due to
the short background cooling time compared to the collision
time of the fast alphas. The analytically derived [66] slowing-
down time for an alpha particle colliding with the steady state
background on ITER is on the order of a second [67] and
drops to the order of milliseconds for T ≈ 1 keV. Additionally
marked in figure 2(b) are the velocities vEP above which the
particles are considered energetic and also the Alfvén velocity
vA = B/

√
μ0ρ, with the mass density ρ, the magnetic field

strength B and μ0 the permeability. Note how vEP(tN = 3)
separates the Maxwellian from the energetic tail, which we
assume to be fully described by f SD.

We conduct a scan over various disruption scenarios defined
by T f = [1–15] eV and t0 = [0.1–1] ms. The presence of an
energetic population we quantify as the ratio of energetic to
total pressure Π ≡ pα,EP/pα and indicate the ability to drive
modes via its gradient in real space. Figure 3(a) shows the
time-slices of (normalized) core pressures and uses color-
code for the energetic particle pressure gradient pα,EP,grad =
pα,EP(r/a = 0) − pα,EP(r/a = 0.6). The general behavior of
Πcore(t) and its gradient in this plot can be imagined as a wave
propagating towards higher t0 with the effect of lower T f forc-
ing earlier drops in pressure, as indicated by the time-slice for
t = 0.73 ms. The peak of this ‘wave’ gradually drops after
reaching up to 80% for the quickest thermal quench simulated
(note that the denominator in Π does not contain electron and
background ion pressure). Figure 3(b) depicts the t0 parame-
ter space for T f = 3 eV and the energetic pressure in the core
in absolute numbers. The general rise in pα,EP is due to the
definition of vEP ∝

√
T and what is considered by us to be

‘energetic’ in reference to the background (compare to vEP in
figure 2(b)). Its magnitude being a product of particle densi-
ties and energies serves as an indication to the remnant of the
tail throughout the disruption. The interesting result is found
in difference in rise (3 < tN) and the lack of difference in rise
(0 < tN < 3). First, pressure evolution shares nearly identi-
cal behavior for the scanned range and under the assumptions

made (exponential temperature decay, pure D-T composition,
instantly thermalizing background species). In the context of
equation (1) tN becomes a temperature axis of the background
species, thus a collision time-scale. Exemplary shown in figure
2(b) (for t0 = 0.7 ms) was the barely changing alpha distri-
bution until tN = 3. The qualitatively different evolution after-
wards suggests a deviation caused by a growing discrepancy of
elapsed time t = tNt0 to collisionality. As expected, the quicker
and more violent thermal quenches sustain a more significant
energetic alpha particle tail in reference to the background tem-
perature. This similarity for t < tN = 3 for the core pressure
hold qualitatively true up to a radial point of r/a ≈ 0.5 in our
simulations. In the outer half of the plasma the background
temperature to begin with is low enough to collisionally drag
the energetic tail early on.

In the absence of a bump-on-tail drive (due to the electric
field not yet setting in) we evaluate the possibility of drive
through the pressure gradient of the alphas. For a preferably
general result we opt to evaluate the distributions and the pres-
sure they exert at tN = 3. Our definition of vEP, which separates
f M and f SD, makes sure that the energetic tail can optimally
be described by the slowing down distribution equation for
the time-point chosen. As is shown in figure 2(b) important
TAE resonance regions for energies above 100 keV [68] are
populated at this point in time.

Figure 4(a) shows the individual species’ pressures and
temperature profile at tN = 3 (for the selected case of
t0 = 0.7 ms and T f = 3 eV) and is going to be used to recon-
struct the equilibrium. The total pressure is determined as
ptot = pe + pD,T + pα, where electron pressure pe and deu-
terium/tritium pressure pD,T are calculated from the ideal gas
equation. Though the alpha particles are a minority species in
the plasma, they contribute significantly to the pressure and its
gradient due to their large kinetic energy. In initial steady state,
the alpha pressure contributed to≈10% of the total pressure on
axis. With the thermal background cooling rapidly its relative
relevance grows. It even briefly dominates in the core before

5
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Figure 3. (a) Scan over the t0 –T f parameter space showing time-slices of the fraction of energetic to total alpha particle pressure Πcore in the
core, as computed by the moments applied onto the CODION-simulated distribution functions. The colors show pα,EP,grad and the blue plane
marks the pressure level reached by the chosen disruption scenario (T f = 3 eV, t0 = 0.7 ms) after 2.1 ms. (b) Time-evolution of the
T f = 3 eV slice of the scan for various t0 in the core. The blue dotted line corresponds to the blue plane in the left figure. Due to the
temperature quench being described by equation (1), the x-axis can be interpreted as a background temperature.

vanishing together with the energetic pressure at t > 6tN (com-
pare to figure 3(b)). Note that the Alfvén mode drive we are
investigating in the following sections is determined by the
actual distribution functions f SD(r) and not simply by their
integral moments.

4. The Alfvén spectrum in the current quench

In order to determine the Alfvén spectrum, it is necessary to
reconstruct the equilibrium. The characteristic time point cho-
sen during the disruption is set at tN = 3. On the one hand there
is still a substantial population of alpha particles, on the other
hand the core background temperature has fallen to≈ 1232 eV,
which means that various mode damping mechanisms are also
lowered. The plasma equilibrium is constructed using the pres-
sure profiles (figure 4(a)) and the current density profiles from
GO (figure 4(b)) using the VMEC code [69]. As aforemen-
tioned, the pressure profiles are very similar for the various
disruption scenarios up to this time-point and since no run-
away current is generated yet (see section 2) the same holds
true for the current density profiles. The total time-window for
the mode-evolution is going to be 3tN < t < 6tN, during which
we will assume the plasma equilibrium to be constant. The low
post-disruption pressure has diminishing influence on shaping
the equilibrium and the current density profile is essentially
constant in this time-frame, since the current quench is just
about to begin (see figure 1(a)).

In order to evaluate the Alfvén spectrum, as well as the
frequency and mode structure of modes possibly supported
by this equilibrium, we employ the LIGKA code (LInear
GyroKinetic Alfvén physics) [51]. We carry out a scan for
the absolute scaling of the safety factor to account for devia-
tions in the scenario and the time evolution of the plasma cur-
rent, while maintaining the shape (determined by the plasma
background). Figure 5(a) shows the results of this scan and
reveals frequency gaps for TAEs of toroidal mode numbers
1 < n < 30. Due to the alpha particle orbit width in ITER
the toroidal mode numbers are high compared to present

day tokamaks. The solutions shown are from the even TAE
branch that have been found to be the most unstable AEs
in previous ITER analyses [41]. Also, beta-induced Alfvén
eigenmodes (BAEs) are found to be present in the steep pres-
sure region, however not further considered in this work.
TAEs and BAEs are often deemed dominant considering the
particle transport they cause due to their generally low fre-
quency hence higher (potential) particle displacement per
wave-particle energy transfer [70]. We chose the nominal value
of the core safety-factor to be q0 = 1.071 with the toroidal har-
monic ranges n = [7–15, 22–26] and respective poloidal har-
monics m =

[
{(n − 2) − (n + 4)}, {(n − 2) − (n + 6)}

]
as

justified by the core-localization. The center of the mode fre-
quency gap is located at ωTAE = vA/(4πqR) ∝ 1/(q

√
ne) and

varies mainly due to the q-profile, since the electron pro-
file is flat. The corresponding (normalized) radial structures
are shown in figures 5(b) and (c). Our modeling shows that
most of the modes possibly sustained by the post-disruption
equilibrium are core localized, which is beneficial for inter-
action with the mainly core localized RE seed. The Alfén
velocity vA has a value of vA � 7.3 × 106 m s−1 for the
plasma composition chosen. For TAEs the most fundamen-
tal resonances occur at v = vA and v = vA/3 [33], which is
still populated by the energetic alpha tail in velocity space
at tN < 6 (figure 2(b)).

5. Interaction of alpha particles and Alfvén waves

The time evolution of the modes and their saturation amplitude
is a critical question to determine their potency for runaway
transport. Earlier studies showed that a magnetic perturbation
with an amplitude of about δB/B ≈ 0.1% is sufficient to sup-
press runaway avalanche [71, 72], while more recent research
[73] decreases this threshold by about a factor of 2.

The interaction of the modes with the alpha particles (pro-
viding the drive) and the runaways is calculated using HAGIS
(Hamiltonian guiding center system) [42, 74, 75]. HAGIS is a
perturbative, non-linear wave-particle interaction model which
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Figure 4. (a) Pressures and temperature profiles 2.1 ms into the chosen disruption (t0 = 0.7 ms). Alpha pressures pα and pα,EP are
determined by velocity moments of the CODION simulated distribution functions, while the electron (pe) and ion (pD,T) pressures are
computed using the ideal gas law at respective temperatures, which evolved with equation (1). (b) Current density j, integrated current I and
the safety factor profile q at tN = 3 as calculated by GO. At this point in time, the current is still dominated by the ohmic contribution as
runaway electrons are yet to be generated (see figure 1(a)).

Figure 5. (a) Scan over q0 of the possible TAEs tN = 3 into the chosen ITER disruption (T f = 3 eV, t0 = 0.7 ms) as allowed by the current
density and pressure profiles. Depicted by color are TAEs of toroidal mode number 1 < n < 30. The blue dotted line represents the q0-value
chosen for further analysis. Rhs: real part of the normalized mode structure of (b) n = m, m + 1 and (c) n = m + 1, m + 2 coupled TAEs as
computed by LIGKA for the post-disruptive ITER plasma (tN = 3). Mode frequencies ωTAE(kHz) are provided in the legend.

allows the modes to evolve in the presence of EPs, and the EPs
to redistribute in phase space due to the interaction with the
modes self-consistently.

The equations of motions in HAGIS are written in
Boozer coordinates, thus we assume for the radial coordi-
nates to be related to the normalized poloidal flux ψ1/2 ≡
s ≈ r/a when transferring the distributions between codes.

Calculations are supplied with the equilibrium, fast alpha pop-
ulation and the mode structures introduced in the previous
sections. HAGIS uses a δ f formalism, which allows us to omit
the Maxwellian bulk and use the energetic part of the distribu-
tion f SD for analysis. The numerically calculated distributions
for t0 = 0.7 ms, T f = 3 eV, tN = 3 are fitted with the formula
shown in equation (6) to facilitate implementing the CODION

7
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Figure 6. Evolution of mode amplitudes δB/B as caused by resonant interaction with the energetic alpha particle population f SD, 3tN into
an ITER disruption in (a) single mode and (b) multi mode simulation. All available poloidal modes are included. Horizontal lines in (b)
mark tN = 6 for t0 = [0.5, 0.7, 0.9] from which we extract the individual mode amplitudes for further use.

distributions into HAGIS. The alpha particles are represented
by N = 106 markers in phase space, which are initialized
isotropically in pitch with velocities and positions in the toka-
mak according to f SD(r, tN = 3). Movement along the plasma
equilibrium is dictated by their resonant interaction with the
calculated modes. The interaction redistributes the particles
and transfers energy to the modes, evolving their amplitude.
The individual mode growth rates are competing against vari-
ous damping mechanisms. LIGKA readily provides the damp-
ing rates caused by the ion/electron Landau mechanism and
radiative damping and are of the order of γ/ωTAE ≈ 0.1%.
This damping is typically 10 times smaller than reported for
TAEs in the pre-disruption phase [41]. The reason is the Lan-
dau damping vanishing exponentially as the ion temperature
drops to ≈1 keV [44].

As the temperature drops further, collisional damping by
trapped electrons becomes increasingly important. We use
equation (2) from Gorelenkov and Sharapov [76] to esti-
mate the collisional damping rate for our disrupting plasma.
Damping will be given in

[
γ/ω

]
= [s−1/s−1]. With the elec-

tron–electron collision rate νe(T ) and the plasma beta βe(T )
its value

γe

ωTAE
= −2.1βe

(
νe

ωTAE

)1/2
[

ln 8

(
2rωTAE

Rνe

)1/2
]

reaches 1.2% at T = 60 eV for the n = 8 mode calcu-
lated and only varies slightly for the other modes calcu-
lated. Hence we neglect it for t < 6tN � 64 eV. Using the
resistive MHD code CASTOR (Complex Alfvén Spectrum
of TORoidal plasmas) [77] we also calculate fluid damping.
Up to a resistivity of � 0.56 × 10−4 Ωm which corresponds
to � 6 eV background temperature, the damping is below
1%, hence will also not be included in our mode evolution
simulations.

Because the HAGIS model does not include collisional
cooling of the driving alpha particles, its driving force only
changes due to the redistribution of particles as dictated by
their interaction with the modes. The loss of drive due to the

thermal quenching however is captured by the CODION sim-
ulations. As indicated by figures 2(b) and 3(b), the loss of res-
onance with the Alfén velocity (first harmonic) occurs around
tN = 6. As this is also the time-point up to which we calculated
the collisional damping to be negligible, we restrict the win-
dow of mode evolution to 3tN < t < 6tN. Considering the fact
that the dominating (ion Landau) damping mechanism drops
exponentially with the temperature, it can be assumed that the
mode excitation actually begins earlier than in our computa-
tions. Every initial mode amplitude in our simulation is set to
δB/B = 10−10, though previous studies [41, 42] have shown
TAEs to be only marginally stable in ITER steady state with
amplitudes of the order of δB/B = 10−5 to 10−4. On the other
hand, the HAGIS code is known to overestimate the saturation
amplitude due to lack of zonal-flow physics [68], these how-
ever are typically only relevant at perturbation magnitudes well
above the ones discussed in this work.

Figure 6(a) shows single mode and figure 6(b) multi mode
results. Both are qualitatively different because in multi-mode
the energy transfer to waves and the subsequent redistribu-
tion of particles may push the modes through multiple res-
onance regions, as seen by the non-monotonic behavior. In
single mode this redistribution may lead to a loss in drive
and the damping taking over. The multi-mode simulation is
the more realistic one, its linear growth rate of the most pro-
nounced modes n = 23, 24, 25, 26 (in this time window) satu-
rates at δB/B ≈ 0.05% after roughly 2 ms, a timescale which is
sufficiently short even during a current quench. The effective
growth rate in the linear phase for those modes is ≈14%. A
saturation of the n = 8, 22 modes is observed approximately
2.5 ms into the simulation. The slowing-down distributions
are isotropic in pitch and monotonically decreasing in velocity
space, hence the mode drive comes mainly from gradients in
real-space and is saturated by its flattening. In appendix A we
conduct the multi mode evolution with alpha particle densities
increased to 130% and 200%, resulting in a growth rate in the
linear phase of respectively 33% and 100%, indicating a high
sensitivity. The saturated amplitude however is not strongly
affected.
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Table 2. HAGIS simulation results: respectively maximum and average (〈·〉) mode amplitudes δB/B at tN = 6
(figure 6(b)) and maximum individual (max) and maximum ensemble-averaged (〈·〉) RE toroidal momentum
changes ΔPϕ/Pϕ (figure 7) caused by said modes after additional 2tN to an initial seed of REs. Additional
simulations are run with mode amplitudes of the t0 = 0.9 ms case multiplied by 1.3 and 2 (figure A2).

t0 max
(
δB/B

)
(%) 〈δB/B〉 (%) max

(
ΔOϕ/Pϕ

)
(%) 〈ΔPϕ/Pϕ〉 (%)

0.5 0.006 0.002 3 1
0.7 0.056 0.027 11 8
0.9 0.083 0.042 18 10
0.9 0.083 × 1.3 0.042 × 1.3 39 13
0.9 0.083 × 2.0 0.042 × 2.0 48 25

Figure 7. Ensemble-averaged relative change (color) in canonical toroidal momentum Pϕ of the runaway electron test particles as caused by
the Alfvén modes (a): t0 = 0.7 ms, (b): t0 = 0.9 ms, table 2). The vertical and horizontal axis represents different initial particle energies
and pitches. The radii of the circles represent the radial position of the RE particle in a poloidal cross section of the plasma in the range
r/a = [0.05–0.45] in steps of 0.1, and bound by a gray circle at r/a = 0.55.

We want to look at the situation at tN = 6 into the disrup-
tion, since this is right before the avalanching begins (figure
1(a)) and the energetic particle pressure decays due to col-
lisional cooling (figure 3(b)). Depending on the disruption
scenario chosen, the amplitudes reached vary, as depicted in
figure 6(b). The maximum amplitude as well as the root mean
square of all mode amplitudes is made note of in table 2. In the
next section we simulate the interaction of said modes at their
respective amplitudes at 6tN for t0 = [0.5, 0.7, 0.9] with a seed
of REs.

6. Transport of runaway electrons

In order to model the interaction of relativistic electrons with
Alfvén waves, the HAGIS model had to be extended [22]. The
derivation of the relativistic equations of motion in Boozer
coordinates is provided in appendix B. As the runaways are not
expected to have a back-reaction to the wave evolution (due to
the lack of suitable resonances) the calculations are run in a
‘passive’ mode, where only the effect of the presence of the
Alfvén modes is evaluated on the RE test particles. The mode
evolution is disabled and the amplitudes are set to their respec-
tive values at ultimately tN = 6 into the disruption (figure 6(b),
table 2).

In order to extract the interaction Green functions, 10 000
test particles are launched on a phase space grid in energy,
pitch and radial position. The radial region of interest is
restricted to r/a = [0.05–0.45] and the energies are selected
on a logarithmic grid ranging from 10 keV to 30 MeV. For
each value of energy, pitch and radial position a total of
25 electrons are distributed evenly on the flux surface with
uniform random distribution. With 5 radial positions, each
phase space point is therefore represented by 125 electrons for
statistical averaging.

We use the canonical toroidal momentum Pϕ (equation
(B.2)) to quantify the displacement of the test particle orbits.
The canonical toroidal momentum is a function of both paral-
lel kinetic momentum and poloidal flux surface, i.e. a change
in Pϕ in a sense represents the contribution to the change in
the current profile of the given sub-relativistic test particle.
Changes to Pϕ are dominated by radial transport caused by
magnetic perturbation of the modes when no resonant pro-
cesses are happening. Those are unlikely given that the elec-
tron gyro-frequency on axis is � 150 GHz and the parallel
velocity of the lowest energy electron approximates to v‖ �
6 × 107 m s−1 � 8vA (for purely parallel motion).

In figure 7(a) we show the results of the passive simula-
tion for the amplitudes extracted for the chosen t0 = 0.7 ms
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case after 2tN integration time corresponding to 125 poloidal
turns of each runaway particle. Each circle represents a radial
starting position and its color shows the overall change in
Pϕ, ensemble-averaged over the 25 REs that started on this
flux surface. We observe minor changes of few % to Pϕ

in few selected phase-space positions. However, when we
take the mode amplitudes reached further into the thermal
quench (figure 6(b) 2.7 ms, corresponding to ultimately 6tN for
t0 = 0.9 ms), this picture changes significantly (figure 7(b)).
As expected from the mode structures, the inner- and outer-
most particles initiated are not affected by the TAEs, however,
the change is up to 10% for REs localized in between. The
effect is stronger for higher particle pitches but applies for a
wide range in the phase space.

Average/maximum values for the change in Pϕ are collected
in table 2 for those simulations, including a reference run for
the t0 = 0.5 ms case. In addition, as a sensitivity scan we car-
ried out simulations with 130% and 200% individual mode
amplitude of the t0 = 0.9 ms case (figure A2, table 2). This ful-
fills the purpose of both a numerical sensitivity scan as well as
it considers the experimental possibility of external amplitude
amplification. At twice the amplitudes (max(δB/B) ≈ 0.17%)
the average displacement on a flux surface is found to be as
high as 25% for various points in initial phase space, including
the most dangerous MeV REs.

These simulations do not evaluate the RE dynamics, but
serve as an indication to the possibility to transport runaways
via alpha particle driven modes. Recent studies [73] suggest
that the perturbation amplitudes and particle displacement
caused by the modes discussed in this paper can lead to run-
away avalanche mitigation (or even suppression). If the core
transport is enhanced by for example alpha-driven modes, run-
aways are more easily transported to the edge, where other
methods, such as resonant magnetic perturbations [58, 72]
could further aid the removal of runaways.

7. Summary and outlook

In this paper we simulate unmitigated disruptions in burning
ITER plasmas and we show that alpha particles remain suf-
ficiently energetic during the current quench to drive Alfvén
modes sustained by the current quench equilibrium. In turn
these modes can enhance the transport of the RE seed prior
to the onset of significant induced electric field, preceding the
runaway avalanche.

The disruptions considered are characterized by an expo-
nential temperature decay time t0 = [0–1] ms, and we have
conducted a parameter scan for the final temperature and speed
of the thermal quench using the GO code. The output of these
simulations was used in the Fokker–Planck solver CODION
to track the collisional cooling of the alpha particle distribu-
tion. We find that the energetic tail is sustained into the cur-
rent quench. Throughout the parameter range, the evolution
of the simulated core fast particle pressure shows a general
similarity up to tN ≡ t/t0 = 3. The simulated current and pres-
sure profiles are used as input to construct equilibria using
the VMEC code. The Alfvén continuum of these equilibria

is analyzed using LIGKA, showing the possible existence of
core-localized TAEs.

Using HAIGS we have calculated the growth and satura-
tion amplitudes of these TAEs, driven by the energetic alpha
particles. The modes reach a saturation level of up to δB/B ≈
0.1% for cases of t0 > 0.7 ms. RE test particles were used in
the HAGIS simulations to analyze the impact of these TAEs
on runaway transport. The onset and saturation of the modes
occurs before the rise of the electric field induced in the cur-
rent quench, before the start of significant runaway avalanche.
We show that the REs can be subjected to significant dis-
placement due to the presence of the TAEs, which may con-
tribute to a reduction of the RE avalanche. The parameter and
sensitivity scans indicate that slower thermal quenches are
beneficial from the perspective of the studied phenomenon,
and that there is a high sensitivity of runaway transport to
mode amplitude.

All of our simulations have considered good confine-
ment of alpha particles after the thermal quench. We argue
that this is a conservative estimate, i.e. when the breakup
of magnetic surfaces is bad enough to lead to alpha parti-
cle losses, the REs—which have higher thermal speeds—are
likely to get lost as well. A rising runaway current in the
current quench may in fact contribute to alpha particle con-
finement and in turn the drive of TAEs. This paper analyses
the ‘worst case scenario’ of unmitigated disruptions. Future
studies will have to be conducted to evaluate the possibility
of alpha particle drive of Alfvénic instabilities in ITER dis-
ruptions mitigated by e.g. shattered pellet injection or other
means.

In conclusion, natural disruptions in D-T ITER plasmas
may be able to provide a natural mechanism that contributes
to runaway avalanche suppression. Following this proof-of-
principle paper, further studies are necessary to identify the
optimal disruption scenario which maximizes runaway trans-
port, and the self-consistent evaluation of runaway dynamics
will also be necessary.
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Appendix A. Mode amplitude sensitivity scan

Figure A1 presents a sensitivity scan of the multi mode ampli-
tude growth caused by the energetic alpha particle popula-
tion as computed by HAGIS. While the original alpha particle
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Figure A1. Multi mode amplitude evolution of available TAEs (including poloidal harmonics) during an ITER disruption as caused by an
energetic alpha particle population. Its originally calculated density 3tN into the disruption is increased to (a) 130% and (b) 200% to
establish a sensitivity estimation of figure 6(b).

density causes a growth rate of (at max) 14% in the lin-
ear phase, this growth rate increases to 33% (a) and 100%
(b) for respectively 130% and 200% original density values.
Though saturated earlier, the amplitudes reached after the lin-
ear phase are approximately the same. HAGIS is valid up
to δB/B ≈ 1%.

In figure A2 a scan is conducted where we take the respec-
tive t0 = 0.9 ms mode amplitudes at (a) 130% and (b) 200%
(see table 2). This serves both as a sensitivity scan and a means
to explore the influence of additional external amplitude ampli-
fication. We observe a significant increase of runaway dis-
placement as the TAE amplitude is raised, which suggests that
a disruption scenario can be optimized to maximize runaway
seed transport.

Appendix B. Relativistic equations of motion for
runaway electrons in HAGIS

In this appendix, we derive the relativistic equations of motion
for REs in HAGIS. The numerical implementation has been
verified [22] through extensive comparisons with the ANTS
code [58, 72, 78, 79] by tracking the same test particle ensem-
bles in the same background equilibria. The following is
a relativistic extension to the derivations in the PhD the-
sis of Pinches [80]. The constants used are e for the elec-
tric charge, c for the speed of light, m for the particle mass.
The relativistic guiding-centre Lagrangian reads (in CGS
units) [81]

L (x, ẋ, t) =
[e

c
A (x, t) +

p‖
B

B (x, t)
]
· ẋ +

mc
e
μϑ̇− Hgc

with the relativistic guiding-centre Hamiltonian

Hgc = γmc2 + eφ(x, t)

and the relativistic factor

γ =

√
1 +

2
mc2

μB +
p2
‖

m2c2
.

A and φ are the vector and electric potential, respectively, x is
the guiding-centre position, ϑ is the gyroangle, B the magnetic
field strength, and the parallel momentum p‖ and the magnetic
moment μ are defined as follows:

p‖ = mγv · b,

μ = mγ2 v2
⊥

2B

where b is the unit vector along the magnetic field and v is the
particle velocity vector. In Boozer coordinates, the magnetic
field can be represented as

B = I(ψp)∇θ + g(ψp)∇ϕ+ δ(ψp, θ)∇ψp,

and the vector potential as

A = ψt∇θ − ψp∇ϕ.

ψt and ψp are the toroidal and poloidal fluxes, I and g are
the toroidal and poloidal currents, δ the radial covariant com-
ponent of B, and θ and ϕ the poloidal and toroidal angles,
respectively. Using Boozer coordinates for the guiding-centre
Lagrangian, we find

L =
(e

c
A +

p‖
B

B
)
· ẋ +

mc
e
μϑ̇− Hgc

=
(e

c

(
ψt∇θ − ψp∇ϕ

)
+

p‖
B

(
δ∇ψp + I∇θ + g∇ϕ

))
· ẋ

+
mc
e
μϑ̇− Hgc

=

(
e
c
ψt +

p‖I

B

)
θ̇ +

( p‖
B

g − e
c
ψp

)
ϕ̇+

p‖
B
δψ̇p

+
mc
e
μϑ̇− Hgc.

In order to achieve the natural Lagrangian form and read the
canonical momenta straight away, we have to reabsorb ψ̇p.
This is done using the same argumentation as on p 47/48
of Pinches PhD thesis [80] for the derivation for the non-
relativistic equations: we transform the guiding center velocity
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Figure A2. Ensemble-averaged relative change (color) in canonical toroidal momentum Pϕ of the runaway electron test particles as caused
by amplified (a): max(δB/B) = 0.108% and 〈δB/B〉 = 0.54%, (b): max(δB/B) = 0.166% and 〈δB/B〉 = 0.84%) Alfvén modes (table 2,
case t0 = 0.9 ms, amplified). The vertical and horizontal axis represents different particle energies and pitches. The radii of the circles
represent the radial position of the RE particle in a poloidal cross section of the plasma in the range r/a = [0.05–0.45] in steps of 0.1, and
bound by a gray circle at r/a = 0.55. Note the difference in the maximum for the color scale.

ẋ → ẋ + w with

w = −

(
p‖
B δ + e

c Ãψp

)
ψ̇p

e
c A · B +

p‖
B B2

B.

We now add perturbations to both potentials of the form

A(x, t) = Ãψp∇ψp + Ãθ∇θ + Ãϕ∇ϕ and

φ̃ = φ̃(x, t),

and are now able to express the canonical momenta for the set
of canonical variables (θ,ϕ,ϑ) as

Pθ =
p‖
B

I +
e
c
ψt +

e
c

Ãθ (B.1)

Pϕ =
p‖
B

g − e
c
ψp +

e
c

Ãϕ (B.2)

Pϑ =
mc
e
μ.

B.1. Equations of motion

Combining canonical momenta (B.1) and (B.2) yields

g
(

Pθ −
e
c
ψt −

e
c

Ãθ

)
= I

(
Pϕ +

e
c
ψp −

e
c

Ãϕ

)
.

We differentiate with respect to θ,ϕ, Pθ and Pϕ and using
q = ∂ψt/∂ψp to obtain

d
dθ

: g′ ∂ψp

∂θ

p‖I

B
+ g

(
−q

e
c
− e

c

(
∂Ãθ

∂θ
+ Ã′

θ

∂ψp

∂θ

))

− I′
∂ψp

∂θ

p‖g

B
− I

(
e
c
− e

c

(
∂Ãϕ

∂θ
+ Ã′

ϕ

∂ψp

∂θ

))
= 0

⇔ ∂ψp

∂θ
=

1
Dr

(
I
∂Ãϕ

∂θ
− g

∂Ãθ

∂θ

)

,
where

Dr =
c
e

p‖
B

(I′g − Ig′) + I + qg + gÃ′
θ − IÃ′

ϕ.

Analogously,

∂ψp

∂ϕ
=

1
Dr

(
I
∂Ãϕ

∂ϕ
− g

∂Ãθ

∂ϕ

)
.

Thus the next differentiation becomes

d
dPθ

: g′ ∂ψp

∂Pθ

p‖I

B
+ g

(
1 − e

c
q
∂ψp

∂Pθ
− e

c
Ã′
θ

∂ψp

∂Pθ

− I′
∂ψp

∂Pθ

p‖g

B
− I

(
e
c
− e

c
Ã′
ϕ

∂ψp

∂Pθ

))
= 0

⇔ ∂ψp

∂Pθ
=

c
e

g
Dr

and
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∂ψp

∂Pϕ
= −c

e
I

Dr

when performing the same operation with d/dPϕ. Differentia-
tion of p‖/B with respect to θ,ϕ, Pθ and Pϕ yields

d
dθ

: 0 =
∂

∂θ

( p‖
B

)
I +

p‖
B

I′
∂ψp

∂θ
+

e
c

q
∂ψp

∂θ

+
e
c

(
∂Ãθ

∂θ
+ Ã′

θ

∂ψp

∂θ

)

⇔ ∂

∂θ

( p‖
B

)
= − 1

IDr

(( p‖
B

I′ +
e
c

q +
e
c

Ã′
θ

)

×
(

I
∂Ãϕ

∂θ
− g

∂Ãθ

∂θ

)
+

e
c
∂Ãθ

∂θ
Dr

)

= − 1
Dr

(
∂Ãϕ

∂θ

( p‖
B

I′ +
e
c

q +
e
c

Ã′
θ

)

+
∂Ãθ

∂θ

(
− p‖

B
g′ +

e
c
− e

c
Ã′
ϕ

))

⇔ ∂

∂θ

( p‖
B

)
=

1
Dr

×
(
∂Ãθ

∂θ

( p‖
B

g′ − e
c
+

e
c

Ã′
ϕ

)

− ∂Ãϕ

∂θ

( p‖
B

I′ +
e
c

q +
e
c

Ã′
θ

))
.

Analogously

∂

∂ϕ

( p‖
B

)
=

1
Dr

(
∂Ãθ

∂ϕ

( p‖
B

g′ − e
c
+

e
c

Ã′
ϕ

)

− ∂Ãϕ

∂ϕ

( p‖
B

I′ +
e
c

q +
e
c

Ã′
θ

))
.

d
dPθ

: 1 =
∂

∂Pθ

( p‖
B

)
I +

p‖
B

I′
∂ψp

∂Pθ
+

e
c

q
∂ψp

∂Pθ
+

e
c

Ã′
θ

∂ψp

∂Pθ

⇔ ∂

∂Pθ

( p‖
B

)
=

1
IDr

(
Dr −

( p‖
B

I′ +
e
c

q +
e
c

Ã′
θ

) c
e

g
)

=
1

Dr

(
1 − Ã′

ϕ − c
e

p‖
B

g′
)

and
∂

∂Pϕ

( p‖
B

)
=

1
Dr

(
q + Ã′

θ +
c
e

p‖
B

I′
)
.

Combining above expressions for the equations of motion

∂H
∂Pθ

= θ̇ =
∂H
∂ψp

∂ψp

∂Pθ
+

∂H

∂
(

p‖
B

) ∂
(

p‖
B

)
∂Pθ

∂H
∂ψp

=
B′

γ

(
μ+

B
m

( p‖
B

)2
)
+ eφ′

∂H

∂
(

p‖
B

) =
B2

γm
p‖
B

yields

⇔ θ̇ =
1

Dr

[(
B′

γ

(
μ+

B
m

( p‖
B

)2
)
+ eφ′

)
c
e

g

+
B2

γm

p‖
B

(
1 − Ã′

ϕ − c
e

p‖
B

g′
)]

ϕ̇ =
1

Dr

[
−
(

B′

γ

(
μ+

B
m

( p‖
B

)2
)
+ eφ′

)
c
e

I

+
B2

γm

p‖
B

(
q + Ã′

θ +
c
e

p‖
B

I′
)]

Ṗθ = − 1
γ

(
μ+

B
m

( p‖
B

)2
)

∂B
∂θ

− e
∂φ

∂θ

− 1
Dr

(
B′

γ

(
μ+

B
m

( p‖
B

)2
+ eφ′

)(
I
∂Ã′

ϕ

∂θ
− g

∂Ãθ

∂θ

)

− 1
Dr

B2

γm

p‖
B

(( p‖
B

g′ − e
c
+

e
c

Ã′
ϕ

) ∂Ãθ

∂θ

−
( p‖

B
I′ +

e
c

q +
e
c

Ã′
θ

) ∂Ã′
ϕ

∂θ

))

Ṗϕ = − 1
γ

(
μ+

B
m

( p‖
B

)2
)

∂B
∂ϕ

− e
∂φ

∂ϕ

− 1
Dr

(
B′

γ

(
μ+

B
m

( p‖
B

)2
+ eφ′

)(
I
∂Ãϕ

∂ϕ
− g

Ãθ

∂ϕ

)

− 1
Dr

B2

γm

p‖
B

(( p‖
B

g′ − e
c
+

e
c

Ã′
ϕ

) ∂Ãθ

∂ϕ

−
( p‖

B
I′ +

e
c

q +
e
c

Ã′
θ

) ∂Ãϕ

∂ϕ

))
.

Furthermore the change in poloidal flux can now be written
as

ψ̇p =
∂ψp

∂θ
θ̇ +

∂ψp

∂ϕ
ϕ̇+

∂ψp

∂Pθ
Ṗθ +

∂ψp

∂Pϕ
Ṗϕ

=
1

Dr

[(
I
∂Ãϕ

∂θ
− g

∂Ãθ

∂θ

)
θ̇ +

(
I
∂Ãϕ

∂ϕ
− g

∂Ãθ

∂ϕ

)
ϕ̇

+
c
e

gṖθ −
c
e

IṖϕ

]

and the change in parallel momentum as

˙( p‖
B

)
=

1
Dr

[(( p‖
B

g′ − e
c
+

e
c

Ã′
ϕ

) ∂Ãθ

∂θ

−
( p‖

B
I′ +

e
c

q +
e
c

Ã′
θ

) ∂Ãϕ

∂θ

)
θ̇

+
(

1 − Ã′
ϕ − c

e
p‖
B

g′
)

Ṗθ
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+

(( p‖
B

g′ − e
c
+

e
c

Ã′
ϕ

) ∂Ãθ

∂ϕ

−
( p‖

B
I′ +

e
c

q +
e
c

Ã′
θ

) ∂Ãϕ

∂θ

)
ϕ̇

+
(

q + Ã′
θ +

c
e

p‖
B

I′
)

Ṗϕ

]
.

Setting a constraint to the perturbation of the vector poten-
tial

Ã = α̃(x, t)B,

one finds that

α̃(δ∇ψp + I∇θ + g∇ϕ)
!
= Ãψp∇ψp + Ãθ∇θ + Ãϕ∇ϕ

⇒ Ãψp = δα̃,

Ãθ = Iα̃,

Ãϕ = gα̃.

Using these expressions in the equations of motion and trans-
ferring to SI units

c → 1
√
μ0ε0

, e → e
√
μ0ε0

,

E →
√

4πε0E, B →
√

4π
μ0

B,

we get the following final expressions for the equations of
motion:

θ̇ =
1

Dr

[(
B′

γ

(
μ+

B
m

( p‖
B

)2
)
+ eφ′

)
g
e

+
B2

γm

p‖
B

(
1 − g′

( p‖
eB

+ α̃
)
− α̃′g

)]

ϕ̇ =
1

Dr

[
−
(

B′

γ

(
μ+

B
m

( p‖
B

)2
)
+ eφ′

)
I
e

+
B2

γm

p‖
B

(
q + I′

( p‖
eB

+ α̃
)
+ α̃′I

)]

ψ̇p =
1

Dr

[
− 1
γe

(
μ+

B
m

( p‖
B

)2
)(

g
∂B
∂θ

− I
∂B
∂ϕ

)

−
(

g
∂φ

∂θ
− I

∂φ

∂ϕ

)
+

B2

γm

p‖
B

(
g
∂α̃

∂θ
− I

∂α̃

∂ϕ

)]

˙( p‖
B

)
=

1
Dr

[(
I
∂α̃

∂ϕ
− g

∂α̃

∂θ

)(
B′

γ

(
μ+

B
m

( p‖
B

)2
)
+ eφ′

)

− 1
γ

(
μ+

B
m

( p‖
B

)2
)((

1 − g′α̃− gα̃′ − p‖
eB

g′
) ∂B
∂θ

+
(

q + I′α̃+ Iα̃′ +
p‖
eB

I′
) ∂B
∂ϕ

)

− e

((
1 − g′α̃− gα̃′ −

p‖
eB

g′
) ∂φ

∂θ

+
(

q + I′α̃+ Iα̃′ +
p‖
eB

I′
) ∂B
∂ϕ

)]

,

where

Dr =
p‖
eB

(
I′g − Ig′)+ I + qg + gI′α̃− Ig′α̃.
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