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1. Introduction
If K is a convex body in R, its polar body is
K°e={eR%x-£<1, ifze K}.

The Mahler volume of K is
M(K) = |K||K°|,

where |K| is the Lebesgue volume of K.
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The Bourgain-Milman theorem ([4]) says that there is a universal constant, C, not
depending on the dimension, such that

M(K) > C™/nl.

Mabhler’s conjecture says that if K is symmetric (—K = K), C can be taken equal to 4,
which is what you get when K is a cube.

There are by now several proofs of the Bourgain-Milman inequality, including [10] by
Nazarov, [8], [9] by Kuperberg and [6], by Giannopoulos, Paouris and Vritsiou. All of
these proofs are very interesting; Kuperberg’s gives the so far best known constant, C' = 7
in the symmetric case. In this note we will give a variant of Kuperberg’s proof which
replaces his use of ‘Gauss linking integrals’ by a complex analytic argument from [2].
The main novelty here is the combination of the methods of [2] with Kuperberg’s ideas,
but no knowledge of the results of [2] is necessary to read this paper. In a companion
paper ([3]) we will also give some remarks and variations of Nazarov’s proof.

In the next section we give the proof of Kuperberg’s estimate, or actually a function
version of his estimate, involving Legendre transforms of convex functions instead of
polars of convex bodies (Theorem 2.1). The relation between the function version and
estimates for the Mahler volume of convex bodies is discussed in Remark 3, section 2.
The proof looks formally quite different from Kuperberg’s so in a last section we try to
explain the points relating the two proofs.

Finally I would like to thank Bo’az Klartag and Yanir Rubinstein for very stimulat-
ing discussions on these matters and two anonymous referees for useful comments and
corrections.

2. Kuperberg’s version of the Bourgain-Milman theorem
Let ¢(z) be a strictly convex and smooth function on R™. Tts Legendre transform is
¢*(§) =sup& -z — ¢(x).

For later use we remark that the supremum is attained when the gradient of the RHS
vanishes, i.e. when

&= 0¢/0x.

Hence

9" () + o(z) =&, (2.1)

when & = 9¢/0x. Our main result is as follows:
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Theorem 2.1. If ¢ is an even convex function on R™, then
/e“ﬁ/e_‘b* > .
R~ R~

For the proof, we assume first that ¢ is smooth and strictly convex. That this is no
serious restriction follows from Lemma 2.4 below. Let

A ={(x,y,§,m); € = 0¢(x) /0, n = 0p(y) Oy} C Ry x Ry x RE x Ry
We now define a map 7 from A to R} x R7 by

T+y §—n

t= ,
2 2

Lemma 2.2. If ¢ is smooth and strictly convex the map 7 is injective from A to R?".
It is surjective if ¢ grows faster than any linear function at infinity, i.e. if for any C,
¢(x) > Clz| for |x| large enough.

Proof. The statements mean that for any ¢, the map

(x,y) = 06(x)/0x — 99(y) /0y =: pi(x,y)

from {z +y = 2t} to R™ is injective and surjective respectively. Let ®(z) := ¢(z) +
¢(2t — x). Then pi(x,y) = 0P(x)/0z. Since P is smooth and strictly convex, this map
is injective. For the second part we have that ® grows faster than any linear function if
¢ does. Hence ®(x) — = - s has a minimum for any s in R”, and 0®(z)/0x = s there.
Hence, p; is surjective then. O

We next pull back the Mahler integral

j/ o= (@040 () g s

Ry xRn

to A by 7. To compute the pull-back we introduce complex notation, z = x+iy, ( = £+in,
and the differential forms

i

i - n n ~
cu:§§:d4AdQ,Q:a;ﬁU:aM§)dzA%}

where dz := dz; A ... Ndz,, and a,, = (—1)”(”_1)/2. Both forms w and 2 are closed and,
moreover, §) remains closed after multiplication by any holomorphic function of z, ¢. This
will play an important role in the sequel.

In the next lemma we identify the Lebesgue volume form dtds on R} x R? with the
differential form dt A ds := dt1 A ... Adt, Ndsy N ... Ndsy,.
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Lemma 2.3.
7w (dtds) = (—2) " a, .
Proof. Let
T = Zdtj Nds;.
Then dtds = a, 7" /n!. By the definition of ©
(1) = i > (dxj A de; — daj Adny + dy; A dE; — dy; Adn).

On A, ) ¢;dxj = dp(x). Taking the exterior derivative we find that > dz; Ad&; =0 on
A. In the same way, Y dy; A dn; =0 on A. Hence

N 1
() = 1 Z(—dxj A dn; + dy; N dE;).
On the other hand
w= % > (dwj A dej + dy; Adng +i(—day Adng + dy; AdE;)).

As we have just seen the real part of the sum vanishes on A. Hence

w— _71 > (=daj Adn + dy; A dEy) = (=2)7" (7).

Taking the n'” exterior power of both sides and dividing by n! the lemma follows. O

As for the integrand in the Mahler integral we first note that by convexity, if (¢, s) =
Tr(x7 y’ 57 77)7

o(t) = ¢((z +y)/2) < (¢(z) + d(y))/2.
Similarly
¢"(s) = ¢"((§ = m)/2) < (¢"(§) + ¢"(=m))/2 = (¢7(&) + &7 (n))/2,

where the assumption that ¢, and therefore ¢*, is even is used in the last equality.
Summing these two inequalities we get

o(t) + 6% (s) < (1/2) (¢(x) + ¢"(£) + o(y) + ¢"(n)) -

Invoking (2.1) we see that on A
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o(t) + 67 (s) < (1/2)(x-E+y-m),

e~ (1/2)(z-&+ym) < w*(e‘¢_¢*). (2.2)

We now combine (2.2) and Lemma 2.3 and get the following lower bound for the
Mahler integral

9 /e—a/z)(z-og gg—n/e—(1/2)(w-€+y'7l)|9|S / e~ OO+ Dgrds  (2.3)
A A R xR7

The rest of the argument is basically that we deform A continuously to another ‘contour’.
This should not change the integral

/e—a/z)(zf)Q (2.4)
A

since, as remarked above, the integrand is a closed form. The only slight complication
here is that A is unbounded and we need to estimate the tails; one possible way to handle
this is given below (there are many others).

Recall that A is given by the equations £ = d¢(x)/dx and n = 9¢(y)/dy. Now, say
that we can deform A = A, to the manifold A, defined by ¢(z) = |z|*>/2 without
changing the integral (2.4). Then A is defined by £ = x,7 = y, so A is the diagonal in
C% x C¢. Hence we see that the left hand side of (2.3) equals

9—n / e—\z\z/Qdm — 2—n(/ €—|Z1|2/2)n S
Cn C
Accepting the deformation argument above this completes the proof of the theorem.

We now turn to the rigorous verification. We first give an elementary lemma that
must be well known.

Lemma 2.4. Let ¢; be a sequence of convex functions decreasing to ¢ as j — oco. Then
the sequence ¢7 increases to ¢*. Similarly, if ¢; increases to ¢, then ¢ decreases to ¢*.

Proof. In the proof we will allow also convex functions that attain the value 4o0, cf.

[11]. Assume first that ¢; decreases. Take 6 > 0. For z fixed such that ¢(z) < oo, take j
so large that ¢;(x) < ¢(x) + d. Then, for any ¢,

- §—¢(x) <z §—di(x) +6 < ¢j(§) + 6 < limpf(€) + 0.
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Clearly this inequality holds also if ¢(x) = oo. Taking the supremum over all z we
see that ¢*(£) < lim ¢7 (). This proves the first claim since the opposite inequality is
evident.

Now assume that ¢; increases to ¢. The ¢} decreases to a limit that can be written
@5, for some convex function ¢... Taking Legendre transforms, we have by the first part
that ¢; increases to ¢oo. Hence, ¢ = ¢, which completes the proof. O

From the lemma we see, by monotone convergence, that if Theorem 2.1 holds for a
monotone sequence of convex functions ¢;, then it holds for the limit function as well. To
use this, we first note that the deformation argument above goes through if ¢ is smooth
and ¢(z) = |z|>/2 + C for |z| sufficiently large, since in that case we have good decay of
the integrand at infinity. This is much like deforming the contour using Cauchy’s integral
theorem in one complex variable and we next give the details of this argument.

Recall that for a smooth convex function ¢ on R"

A=Ay ={(z,y,&n); € = 0¢(x)/0x,n = 0¢(y)/0y} C Ry x Ry x RY x R,
and denote the integral
/641/2)@,@9 i,
Ay

Our claim is that if ¢g = |z|?/2 and ¢1 = |z|?>/2 + C for |z| > R, then I, = I5,. We
may assume that ¢1(0) = 0.

Let, for 0 <t <1, ¢ =ty + (1 — t)¢p. Define, for z =z +iy € C* and 0 < ¢t < 1,
¢y =11 + (1 = t)o,

H, gives a homotopy between the ‘contours’ Ay, and Ay, . Put
a=e /=N

Then

Ty — Iy = /Hz:(a)f /Hr<a>.
Cn Cn
Recall that on Ag,,
‘6—1/2(2'f)| _ e—(1/2)(¢z(ﬂf)+¢t(y)+¢f(5)-&-«75:(?7)) < e—(1/2)(¢f,(w)+¢t(y))7

since §§(6) > ~44(0) = 0. If |z] > 2R and, say, [y| > |z, then |y] > R so éu(y) =
ly|? + tC > |2]?/2 + tC. Hence
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= 2
=120 < 0y e=I2I*/4

on Ay, . Moreover, the second derivatives of ¢, are bounded, and the first derivatives are of
at most linear growth. Hence the form H;(«) has coefficients decaying superexponentially
when z tends to infinity, both when we take t fixed and when we regard it as a form on
C" x [0,1].

Let x.(z) = x(|z|/7), where x is compactly supported and equal to 1 for |z| < 1.
Then, for large r,

[ s~ [ @) = [ - [ i)+,
Cn Cn Cn

(Cn

where €(r) tends to zero as r tends to infinity. By Stokes’ theorem this equals, since « is
closed,

dxr N H (a) + €(r).
crx[0,1]

When r tends to infinity, the integral tends to zero, so Iy, — I, = 0, which was the
claim.

Hence Theorem 2.1 holds for smooth convex functions ¢ that equal |z|> + C for |z|
sufficiently large. Next, this implies that it holds for all such convex functions, even if
they are not smooth. To see this we just need to regularize ¢ by convolving with an
approximate identity e "«(|z|/€). This produces a sequence of smooth functions that
decreases to ¢ as € tends to zero (since ¢ is in particular subharmonic) and it does not
destroy the property of being equal to |z|?> + C for |z| large. Hence Theorem 2.1 holds
in the limit as well by the lemma.

From there it follows that the theorem holds if ¢ has at most linear growth, since ¢
is then the decreasing limit of

¢;(w) = max(¢(x), |2|*/2 - j),

and these functions equal |z|?/2 — j when |z| is large. Finally, an arbitrary ¢ is the
increasing limit of functions of linear growth, e.g.

Pj(z) = sup z- & — ¢ (§).

1€1<d

This proves Theorem 2.1 in general.

Remark 1. Note that on A, since & = 9¢(x)/0x and n = 0¢(y)/dy, the proof of
Lemma 2.3 shows that

w= 5 S (56(w) + 3u(0)da; A dy.
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Thus, if we parametrize A by (z,y), 2 becomes a mixed Monge-Ampere form of ¢(z)
and ¢(y), whereas (surprisingly!) if we parametrize by (¢, s) it is, up to a constant, just
the Lebesgue volume form dtds.

The proof of the lemma actually shows something stronger than this, namely that
7*(1) = (—1/2)w on A. Hence A is Lagrangian for the imaginary part of w, symplectic
for the real part, and (¢,s) are Darboux coordinates for Re (w). (Meaning that (¢, s)
reduces the symplectic form Re (w) to the standard symplectic form on R?".)

Remark 2. If we make the change of variables

the form w transforms to —(i/2)w, so essentially we switch the real and imaginary parts.
Moreover, in these coordinates, the map m simply becomes

t=a' =Rez, s=¢ =Re(.

Remark 3. It is easy to see that Kuperberg’s theorem follows from Theorem 2.1, by
applying the theorem to a 1-homogeneous function ¢; see e.g. [3] for details of this
argument. The converse direction seems to be a bit more involved. Using partly ideas
from [1], it was proved by Fradelezi and Meyer, [5] that if Mahler’s conjecture does hold,
ie. if

M(K) > 4" /n!

for any symmetric convex body, then Theorem 2.1 follows, with 7™ replaced by 4". It
is however crucial for their argument that one has precisely the constant 4™ here. On
the other hand, using the Bourgain-Milman inequality, it was proved by Klartag and
Milman, [7], that, unconditionally, Theorem 2.1 holds with 7™ replaced by ¢ for some
universal constant c.

3. Comparison with Kuperberg’s proof

Kuperberg considers a convex body K, symmetric around the origin, which can be
assumed to be strictly convex and smoothly bounded. He then defines

Kt :={(z,6) € 0K x 0K x - & =1}.

When K is strictly convex and smoothly bounded, there is for each x in the boundary
of K a unique £ = £(z) in the boundary of K° such that z-£(z) =1, so KT is the graph
of this map. (Hence, in particular, K is a smooth manifold.) Concretely, if u is the
Minkowski functional of K; {(z) = Ou/0zx (as follows e.g. from Euler’s formula applied
to the 1-homogeneous function ).
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In general, if A is an n-dimensional submanifold of R™ x R™, one defines its ‘directed
volume’ in the following way. Parametrize A by a map F : U — R™ x R™, where U is an
open subset of R™. Write

F_: = ZFjej + ZFj+"fj’
1 1

where e; is a basis for the first copy of R", and f; is a basis for the second copy. Then
the directed volume of X is

V) = [ (dF)"/nl.

=]

This is an n-vector in A" (R™ @ R™), and the usual change of variables formula shows
that it does not depend on the choice of F'. Since the integrand is exact, the directed
volume depends only on the boundary of A. The directed volume of the boundary is
finally defined as the directed volume of A. The main object of Kuperberg’s argument is
the directed volume of K. To compute it, we may choose \ to be any manifold of the
form

A=A{(z,8);z € K; { = 0¢(x)/0x},

where ¢ is any convex function equal to p near the boundary of K.
Let now

K= :={(y,—m); (y,n) € K*}
and form
Vi=V(KY)AV(K).

This is an element in the top exterior product of R™ ® R™ so we may consider it as a
scalar (after dividing by e A f).

Kuperberg’s proof now consists of two parts: First, he proves in [8] that V equals the
volume of a subset of the convex hull of the product of KT and K~. Since this set is
included in K x K°, it follows that V' is bounded from above by the Mahler volume of K.
The second part is to prove that V' is greater than 7™ /n!. This is (roughly) Kuperberg’s
‘bottle-neck conjecture’; proved in the later paper [9].

The link between this proof and the one we have given in the previous section is
that, with A = A x A (which is a manifold of the type we considered in the proof of

Theorem 2.1),
V= / b
A
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where 6 is a certain differential form of degree 2n. The main observation is that on A, 0
equals the differential form that appeared in the previous section and could be viewed
either as 7*(dtds) or 27" restricted to Ax. (This gives a third interesting interpretation
of the restriction of Q to A; cf. the remark after Lemma 2.3.) This claim follows from a
direct computation that we omit. Therefore

- 2-"/9. (3.1)

This observation was a main motivation for our proof, since it shows that it must
be possible to bound the integral of 2 from above by the Mahler volume, by the first
part of Kuperberg’s proof. Finally, Kuperberg’s convex hull of K+ x K~ was part of the
inspiration to consider the map (z,y,&,1n) = ((x +v)/2, (€ —n)/2) in our proof.

References

[1] S. Artstein, B. Klartag, V. Milman, The Santal6 point of a function, and a functional form of the
Santalé inequality, Mathematika 51 (1-2) (2004) 33-48.

[2] B. Berndtsson, An inequality for Fourier-Laplace transforms and the existence of exponential frames
in Fock space, J. Funct. Anal. 149 (1997) 83-101.

(3] B. Berndtsson, Bergman kernels for Paley-Wiener spaces and Nazarov’s proof of the Bourgain-
Milman theorem, Preprint.

[4] J. Bourgain, V. Milman, New volume ratio properties for convex symmetric bodies in R™, Invent.
Math. 88 (1987) 319-340.

[5] M. Fradelezi, M. Meyer, Some functional inverse Santalé inequalities, Adv. Math. 218 (2008)
1430-1452.

[6] A. Giannopoulos, G. Paouris, B-H. Vritsiou, The isotropic position and the reverse Santal6 inequal-
ity, Isr. J. Math. 203 (2014) 1-22.

[7] B. Klartag, V. Milman, Geometry of log-concave functions and measures, Geom. Dedic. 112 (2005)
169-182.

[8] G. Kuperberg, The bottle-neck conjecture, Geom. Topol. 3 (1999) 119-135.

[9] G. Kuperberg, From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal. 18 (2008)
870-892.

[10] F. Nazarov, The Hérmander proof of the Bourgain-Milman theorem, in: B. Klartag, S. Mendelson,
V. Milman (Eds.), Geometric Aspects of Functional Analysis, in: Lecture Notes in Mathematics,
vol. 2050, Springer, 2012.

[11] R.T. Rockafellar, Convex Analysis, Princeton Mathematical Series, vol. 28, Princeton University
Press, Princeton, NJ, 1970.


http://refhub.elsevier.com/S0001-8708(21)00366-2/bib785BBA0DB5E129DBD155B39B9C22C689s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bib785BBA0DB5E129DBD155B39B9C22C689s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bib9D5ED678FE57BCCA610140957AFAB571s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bib9D5ED678FE57BCCA610140957AFAB571s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bib7021EE28C44D8308421A9673ABF3DB58s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bib7021EE28C44D8308421A9673ABF3DB58s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bibEEC6D9FE8953AADE8E838C65341D4BD6s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bibEEC6D9FE8953AADE8E838C65341D4BD6s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bib5690F72CBE49724B357FB466F4CEA066s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bib5690F72CBE49724B357FB466F4CEA066s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bibE4DC33AB568958AFE7D7AF9C1309AC9Bs1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bibE4DC33AB568958AFE7D7AF9C1309AC9Bs1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bib804916726E28270F2AC703319A64C643s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bib25CD95B580CB0122320C5D7D1A19AFCBs1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bib25CD95B580CB0122320C5D7D1A19AFCBs1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bibF40F79230AE5E0B0FCDFDB9E5DA77D80s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bibF40F79230AE5E0B0FCDFDB9E5DA77D80s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bibF40F79230AE5E0B0FCDFDB9E5DA77D80s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bib65F1A04798DA22A41B1022E11C2CCD22s1
http://refhub.elsevier.com/S0001-8708(21)00366-2/bib65F1A04798DA22A41B1022E11C2CCD22s1

	Complex integrals and Kuperberg’s proof of the Bourgain-Milman theorem
	1 Introduction
	2 Kuperberg’s version of the Bourgain-Milman theorem
	3 Comparison with Kuperberg’s proof
	References


