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We give a proof of the Bourgain-Milman theorem using 
complex methods. The proof is inspired by Kuperberg’s, but 
considerably shorter.
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1. Introduction

If K is a convex body in Rn, its polar body is

K◦ = {ξ ∈ Rn;x · ξ ≤ 1, if x ∈ K}.

The Mahler volume of K is

M(K) = |K||K◦|,

where |K| is the Lebesgue volume of K.
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The Bourgain-Milman theorem ([4]) says that there is a universal constant, C, not 
depending on the dimension, such that

M(K) ≥ Cn/n!.

Mahler’s conjecture says that if K is symmetric (−K = K), C can be taken equal to 4, 
which is what you get when K is a cube.

There are by now several proofs of the Bourgain-Milman inequality, including [10] by 
Nazarov, [8], [9] by Kuperberg and [6], by Giannopoulos, Paouris and Vritsiou. All of 
these proofs are very interesting; Kuperberg’s gives the so far best known constant, C = π

in the symmetric case. In this note we will give a variant of Kuperberg’s proof which 
replaces his use of ‘Gauss linking integrals’ by a complex analytic argument from [2]. 
The main novelty here is the combination of the methods of [2] with Kuperberg’s ideas, 
but no knowledge of the results of [2] is necessary to read this paper. In a companion 
paper ([3]) we will also give some remarks and variations of Nazarov’s proof.

In the next section we give the proof of Kuperberg’s estimate, or actually a function 
version of his estimate, involving Legendre transforms of convex functions instead of 
polars of convex bodies (Theorem 2.1). The relation between the function version and 
estimates for the Mahler volume of convex bodies is discussed in Remark 3, section 2. 
The proof looks formally quite different from Kuperberg’s so in a last section we try to 
explain the points relating the two proofs.

Finally I would like to thank Bo’az Klartag and Yanir Rubinstein for very stimulat-
ing discussions on these matters and two anonymous referees for useful comments and 
corrections.

2. Kuperberg’s version of the Bourgain-Milman theorem

Let φ(x) be a strictly convex and smooth function on Rn. Its Legendre transform is

φ∗(ξ) = sup
x

ξ · x− φ(x).

For later use we remark that the supremum is attained when the gradient of the RHS 
vanishes, i.e. when

ξ = ∂φ/∂x.

Hence

φ∗(ξ) + φ(x) = ξ · x, (2.1)

when ξ = ∂φ/∂x. Our main result is as follows:



B. Berndtsson / Advances in Mathematics 388 (2021) 107927 3
Theorem 2.1. If φ is an even convex function on Rn, then
∫

Rn

e−φ

∫

Rn

e−φ∗ ≥ πn.

For the proof, we assume first that φ is smooth and strictly convex. That this is no 
serious restriction follows from Lemma 2.4 below. Let

Λ = {(x, y, ξ, η); ξ = ∂φ(x)/∂x, η = ∂φ(y)/∂y} ⊂ Rn
x ×Rn

y ×Rn
ξ ×Rn

η .

We now define a map π from Λ to Rn
t ×Rn

s by

t = x + y

2 , s = ξ − η

2 .

Lemma 2.2. If φ is smooth and strictly convex the map π is injective from Λ to R2n. 
It is surjective if φ grows faster than any linear function at infinity, i.e. if for any C, 
φ(x) ≥ C|x| for |x| large enough.

Proof. The statements mean that for any t, the map

(x, y) → ∂φ(x)/∂x− ∂φ(y)/∂y =: pt(x, y)

from {x + y = 2t} to Rn is injective and surjective respectively. Let Φ(x) := φ(x) +
φ(2t − x). Then pt(x, y) = ∂Φ(x)/∂x. Since Φ is smooth and strictly convex, this map 
is injective. For the second part we have that Φ grows faster than any linear function if 
φ does. Hence Φ(x) − x · s has a minimum for any s in Rn, and ∂Φ(x)/∂x = s there. 
Hence, pt is surjective then. �

We next pull back the Mahler integral
∫

Rn
t ×Rn

s

e−(φ(t)+φ∗(s))dtds

to Λ by π. To compute the pull-back we introduce complex notation, z = x +iy, ζ = ξ+iη, 
and the differential forms

ω = i

2
∑

dzj ∧ dζ̄j , Ω = ωn/n! = an( i2)ndz ∧ dζ̄,

where dz := dz1 ∧ ... ∧ dzn, and an = (−1)n(n−1)/2. Both forms ω and Ω are closed and, 
moreover, Ω remains closed after multiplication by any holomorphic function of z, ζ̄. This 
will play an important role in the sequel.

In the next lemma we identify the Lebesgue volume form dtds on Rn
t × Rn

s with the 
differential form dt ∧ ds := dt1 ∧ ... ∧ dtn ∧ ds1 ∧ ... ∧ dsn.
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Lemma 2.3.

π∗(dtds) = (−2)−nanΩ.

Proof. Let

τ :=
∑

dtj ∧ dsj .

Then dtds = anτ
n/n!. By the definition of π

π∗(τ) = 1
4
∑

(dxj ∧ dξj − dxj ∧ dηj + dyj ∧ dξj − dyj ∧ dηj).

On Λ, 
∑

ξjdxj = dφ(x). Taking the exterior derivative we find that 
∑

dxj ∧ dξj = 0 on 
Λ. In the same way, 

∑
dyj ∧ dηj = 0 on Λ. Hence

π∗(τ) = 1
4
∑

(−dxj ∧ dηj + dyj ∧ dξj).

On the other hand

ω = i

2
∑

(dxj ∧ dξj + dyj ∧ dηj + i(−dxj ∧ dηj + dyj ∧ dξj)).

As we have just seen the real part of the sum vanishes on Λ. Hence

ω = −1
2

∑
(−dxj ∧ dηj + dyj ∧ dξj) = (−2)π∗(τ).

Taking the nth exterior power of both sides and dividing by n! the lemma follows. �
As for the integrand in the Mahler integral we first note that by convexity, if (t, s) =

π(x, y, ξ, η),

φ(t) = φ((x + y)/2) ≤ (φ(x) + φ(y))/2.

Similarly

φ∗(s) = φ∗((ξ − η)/2) ≤ (φ∗(ξ) + φ∗(−η))/2 = (φ∗(ξ) + φ∗(η))/2,

where the assumption that φ, and therefore φ∗, is even is used in the last equality. 
Summing these two inequalities we get

φ(t) + φ∗(s) ≤ (1/2) (φ(x) + φ∗(ξ) + φ(y) + φ∗(η)) .

Invoking (2.1) we see that on Λ
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φ(t) + φ∗(s) ≤ (1/2)(x · ξ + y · η),

so

e−(1/2)(x·ξ+y·η) ≤ π∗(e−φ−φ∗
). (2.2)

We now combine (2.2) and Lemma 2.3 and get the following lower bound for the 
Mahler integral

2−n

∣∣∣∣∣∣
∫

Λ

e−(1/2)(z·ζ̄)Ω

∣∣∣∣∣∣ ≤ 2−n

∫

Λ

e−(1/2)(x·ξ+y·η)|Ω| ≤
∫

Rn
t ×Rn

s

e−(φ(t)+φ∗(s))dtds. (2.3)

The rest of the argument is basically that we deform Λ continuously to another ‘contour’. 
This should not change the integral

∫

Λ

e−(1/2)(z·ζ̄)Ω, (2.4)

since, as remarked above, the integrand is a closed form. The only slight complication 
here is that Λ is unbounded and we need to estimate the tails; one possible way to handle 
this is given below (there are many others).

Recall that Λ is given by the equations ξ = ∂φ(x)/∂x and η = ∂φ(y)/∂y. Now, say 
that we can deform Λ = Λφ to the manifold Λ0, defined by φ(x) = |x|2/2 without 
changing the integral (2.4). Then Λ0 is defined by ξ = x, η = y, so Λ0 is the diagonal in 
Cn

z ×Cn
ζ . Hence we see that the left hand side of (2.3) equals

2−n

∫

Cn

e−|z|2/2dm = 2−n(
∫

C

e−|z1|2/2)n = πn.

Accepting the deformation argument above this completes the proof of the theorem.
We now turn to the rigorous verification. We first give an elementary lemma that 

must be well known.

Lemma 2.4. Let φj be a sequence of convex functions decreasing to φ as j → ∞. Then 
the sequence φ∗

j increases to φ∗. Similarly, if φj increases to φ, then φ∗
j decreases to φ∗.

Proof. In the proof we will allow also convex functions that attain the value +∞, cf. 
[11]. Assume first that φj decreases. Take δ > 0. For x fixed such that φ(x) < ∞, take j
so large that φj(x) < φ(x) + δ. Then, for any ξ,

x · ξ − φ(x) ≤ x · ξ − φj(x) + δ ≤ φ∗
j (ξ) + δ ≤ limφ∗

j (ξ) + δ.
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Clearly this inequality holds also if φ(x) = ∞. Taking the supremum over all x we 
see that φ∗(ξ) ≤ limφ∗

j (ξ). This proves the first claim since the opposite inequality is 
evident.

Now assume that φj increases to φ. The φ∗
j decreases to a limit that can be written 

φ∗
∞ for some convex function φ∞. Taking Legendre transforms, we have by the first part 

that φj increases to φ∞. Hence, φ∞ = φ, which completes the proof. �
From the lemma we see, by monotone convergence, that if Theorem 2.1 holds for a 

monotone sequence of convex functions φj, then it holds for the limit function as well. To 
use this, we first note that the deformation argument above goes through if φ is smooth 
and φ(x) = |x|2/2 +C for |x| sufficiently large, since in that case we have good decay of 
the integrand at infinity. This is much like deforming the contour using Cauchy’s integral 
theorem in one complex variable and we next give the details of this argument.

Recall that for a smooth convex function φ on Rn

Λ = Λφ = {(x, y, ξ, η); ξ = ∂φ(x)/∂x, η = ∂φ(y)/∂y} ⊂ Rn
x ×Rn

y ×Rn
ξ ×Rn

η ,

and denote the integral
∫

Λφ

e−(1/2)(z·ζ̄)Ω =: Iφ.

Our claim is that if φ0 = |x|2/2 and φ1 = |x|2/2 + C for |x| > R, then Iφ0 = Iφ1 . We 
may assume that φ1(0) = 0.

Let, for 0 ≤ t ≤ 1, φt = tφ1 + (1 − t)φ0. Define, for z = x + iy ∈ Cn and 0 ≤ t ≤ 1, 
φt = tφ1 + (1 − t)φ0,

Ht(z) = (x, y, ∂φt(x)/∂x, ∂φt(y)/∂y).

Ht gives a homotopy between the ‘contours’ Λφ0 and Λφ1 . Put

α = e−(1/2)(z·ζ̄)Ω.

Then

Iφ0 − Iφ1 =
∫

Cn

H∗
0 (α) −

∫

Cn

H∗
1 (α).

Recall that on Λφt
,

|e−1/2(z·ζ̄)| = e−(1/2)(φt(x)+φt(y)+φ∗
t (ξ)+φ∗

t (η)) ≤ e−(1/2)(φt(x)+φt(y)),

since φ∗
t (ξ) ≥ −φt(0) = 0. If |z| > 2R and, say, |y| ≥ |x|, then |y| > R so φt(y) =

|y|2 + tC ≥ |z|2/2 + tC. Hence
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|e−1/2(z·ζ̄)| ≤ C1e
−|z|2/4

on Λφt
. Moreover, the second derivatives of φt are bounded, and the first derivatives are of 

at most linear growth. Hence the form H∗
t (α) has coefficients decaying superexponentially 

when z tends to infinity, both when we take t fixed and when we regard it as a form on 
Cn × [0, 1].

Let χr(z) = χ(|z|/r), where χ is compactly supported and equal to 1 for |z| < 1. 
Then, for large r,

∫

Cn

H∗
0 (α) −

∫

Cn

H∗
1 (α) =

∫

Cn

χrH
∗
0 (α) −

∫

Cn

χrH
∗
1 (α) + ε(r),

where ε(r) tends to zero as r tends to infinity. By Stokes’ theorem this equals, since α is 
closed,

∫

Cn×[0,1]

dχr ∧H∗(α) + ε(r).

When r tends to infinity, the integral tends to zero, so Iφ0 − Iφ1 = 0, which was the 
claim.

Hence Theorem 2.1 holds for smooth convex functions φ that equal |x|2 + C for |x|
sufficiently large. Next, this implies that it holds for all such convex functions, even if 
they are not smooth. To see this we just need to regularize φ by convolving with an 
approximate identity ε−nα(|x|/ε). This produces a sequence of smooth functions that 
decreases to φ as ε tends to zero (since φ is in particular subharmonic) and it does not 
destroy the property of being equal to |x|2 + C for |x| large. Hence Theorem 2.1 holds 
in the limit as well by the lemma.

From there it follows that the theorem holds if φ has at most linear growth, since φ
is then the decreasing limit of

φj(x) := max(φ(x), |x|2/2 − j),

and these functions equal |x|2/2 − j when |x| is large. Finally, an arbitrary φ is the 
increasing limit of functions of linear growth, e.g.

ψj(x) = sup
|ξ|<j

x · ξ − φ∗(ξ).

This proves Theorem 2.1 in general.

Remark 1. Note that on Λ, since ξ = ∂φ(x)/∂x and η = ∂φ(y)/∂y, the proof of 
Lemma 2.3 shows that

ω = 1 ∑
(φjk(x) + φjk(y))dxj ∧ dyk.
2
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Thus, if we parametrize Λ by (x, y), Ω becomes a mixed Monge-Ampere form of φ(x)
and φ(y), whereas (surprisingly!) if we parametrize by (t, s) it is, up to a constant, just 
the Lebesgue volume form dtds.

The proof of the lemma actually shows something stronger than this, namely that 
π∗(τ) = (−1/2)ω on Λ. Hence Λ is Lagrangian for the imaginary part of ω, symplectic 
for the real part, and (t, s) are Darboux coordinates for Re (ω). (Meaning that (t, s)
reduces the symplectic form Re (ω) to the standard symplectic form on R2n.)

Remark 2. If we make the change of variables

z′ = (1 − i)
2 z, ζ ′ = (1 + i)

2 ζ,

the form ω transforms to −(i/2)ω, so essentially we switch the real and imaginary parts. 
Moreover, in these coordinates, the map π simply becomes

t = x′ = Re z′, s = ξ′ = Re ζ ′.

Remark 3. It is easy to see that Kuperberg’s theorem follows from Theorem 2.1, by 
applying the theorem to a 1-homogeneous function φ; see e.g. [3] for details of this 
argument. The converse direction seems to be a bit more involved. Using partly ideas 
from [1], it was proved by Fradelezi and Meyer, [5] that if Mahler’s conjecture does hold, 
i.e. if

M(K) ≥ 4n/n!

for any symmetric convex body, then Theorem 2.1 follows, with πn replaced by 4n. It 
is however crucial for their argument that one has precisely the constant 4n here. On 
the other hand, using the Bourgain-Milman inequality, it was proved by Klartag and 
Milman, [7], that, unconditionally, Theorem 2.1 holds with πn replaced by cn for some
universal constant c.

3. Comparison with Kuperberg’s proof

Kuperberg considers a convex body K, symmetric around the origin, which can be 
assumed to be strictly convex and smoothly bounded. He then defines

K+ := {(x, ξ) ∈ ∂K × ∂K◦;x · ξ = 1}.

When K is strictly convex and smoothly bounded, there is for each x in the boundary 
of K a unique ξ = ξ(x) in the boundary of K◦ such that x · ξ(x) = 1, so K+ is the graph 
of this map. (Hence, in particular, K+ is a smooth manifold.) Concretely, if μ is the 
Minkowski functional of K; ξ(x) = ∂μ/∂x (as follows e.g. from Euler’s formula applied 
to the 1-homogeneous function μ).



B. Berndtsson / Advances in Mathematics 388 (2021) 107927 9
In general, if λ is an n-dimensional submanifold of Rn ×Rn, one defines its ‘directed 
volume’ in the following way. Parametrize λ by a map F : U → Rn ×Rn, where U is an 
open subset of Rn. Write

�F =
n∑
1

Fjej +
n∑
1

Fj+nfj ,

where ej is a basis for the first copy of Rn, and fj is a basis for the second copy. Then 
the directed volume of λ is

�V (λ) =
∫

U

(d�F )n/n!.

This is an n-vector in 
∧n(Rn ⊕ Rn), and the usual change of variables formula shows 

that it does not depend on the choice of F . Since the integrand is exact, the directed 
volume depends only on the boundary of λ. The directed volume of the boundary is 
finally defined as the directed volume of λ. The main object of Kuperberg’s argument is 
the directed volume of K+. To compute it, we may choose λ to be any manifold of the 
form

λ = {(x, ξ);x ∈ K; ξ = ∂φ(x)/∂x},

where φ is any convex function equal to μ near the boundary of K.
Let now

K− := {(y,−η); (y, η) ∈ K+}

and form

V := �V (K+) ∧ �V (K−).

This is an element in the top exterior product of Rn ⊕Rn so we may consider it as a 
scalar (after dividing by e ∧ f).

Kuperberg’s proof now consists of two parts: First, he proves in [8] that V equals the 
volume of a subset of the convex hull of the product of K+ and K−. Since this set is 
included in K×K◦, it follows that V is bounded from above by the Mahler volume of K. 
The second part is to prove that V is greater than πn/n!. This is (roughly) Kuperberg’s 
‘bottle-neck conjecture’, proved in the later paper [9].

The link between this proof and the one we have given in the previous section is 
that, with Λ = λ × λ (which is a manifold of the type we considered in the proof of 
Theorem 2.1),

V =
∫

θ

Λ
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where θ is a certain differential form of degree 2n. The main observation is that on Λ, θ
equals the differential form that appeared in the previous section and could be viewed 
either as π∗(dtds) or 2−nΩ restricted to ΛK . (This gives a third interesting interpretation 
of the restriction of Ω to Λ; cf. the remark after Lemma 2.3.) This claim follows from a 
direct computation that we omit. Therefore

V = 2−n

∫

Λ

Ω. (3.1)

This observation was a main motivation for our proof, since it shows that it must 
be possible to bound the integral of Ω from above by the Mahler volume, by the first 
part of Kuperberg’s proof. Finally, Kuperberg’s convex hull of K+×K− was part of the 
inspiration to consider the map (x, y, ξ, η) → ((x + y)/2, (ξ − η)/2) in our proof.
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