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A B S T R A C T   

This study presents a non-linear mixed effects model describing tumour necrosis factor alpha (TNFα) release after 
lipopolysaccharide (LPS) provocations in absence or presence of anti-inflammatory test compounds. Inter- 
occasion variability and the pharmacokinetics of two test compounds have been added to this second- 
generation model, and the goal is to produce a framework of how to model TNFα response in LPS challenge 
studies in vivo and demonstrate its general applicability regardless of occasion or type of test compound. Model 
improvements based on experimental data were successfully implemented and provided a robust model for TNFα 
response after LPS provocation, as well as reliable estimates of the median pharmacodynamic parameters. The 
two test compounds, Test Compound A and roflumilast, showed 81.1% and 74.9% partial reduction of TNFα 
response, respectively, and the potency of Test Compound A was estimated to 0.166 µmol/L. Comparing this 
study with previously published work reveals that our model leads to biologically reasonable output, handles 
complex data pooled from different studies, and highlights the importance of accurately distinguishing the 
stimulatory effect of LPS from the inhibitory effect of the test compound.   

1. Introduction 

Tumour necrosis factor alpha (TNFα) is a pro-inflammatory cytokine 
responsible for several immuno-responses and is involved in various 
signalling pathways in the body (Holbrook et al., 2019). Due to its role in 
the pathogenesis of several immune-mediated diseases, it is considered 
an important biomarker for target engagement in the treatment against 
immune-mediated diseases, such as rheumatoid arthritis and Crohn’s 
disease (Palladino et al., 2003). Although TNFα is one of the most 
studied pro-inflammatory cytokines (Tisoncik et al., 2012) there still 
exist a necessity of adding more information to the meta-analysis, for 
better understanding of TNFα disposition and for discrimination and 
ranking of test compounds in drug discovery. 

A problem with studying the response of TNFα to different in
terventions is that circulating TNFα is often undetectable in plasma in 
healthy organisms. To resolve this, pro-inflammatory challengers such 
as lipopolysaccharides (LPS) are used to induce cell activation and 
release of TNFα through proteolytic cleavage of a TNFα-precursor by 
TNFα converting enzyme TACE (Scheller et al., 2011). Exposure to LPS 

causes a rapid, transient and measurable release of TNFα in plasma, as 
well as a strong systemic inflammation response similar to that observed 
in sepsis (Brooks et al., 2020; Pfalzgraff and Weindl, 2019; van Lier et al., 
2019). Although a bolus dose of LPS may not accurately represent the 
prolonged exposure to, mostly unknown, exogenous or endogenous 
factors driving the chronic inflammatory observed in patients (Medz
hitov 2008), experimental administration of exogenous LPS to preclin
ical animals is frequently used to develop robust in vivo inflammation 
models for the identification of anti-inflammatory therapeutic drugs 
(Chakraborty et al., 2005; Gozzi et al., 1999; Shu et al., 2011; Wyska, 
2010; Xiang et al., 2018). In addition, LPS challenge models can bridge 
preclinical rodent models in early drug discovery to proof-of-concept 
and target engagement studies in clinical trials, see for example (Kwak 
et al., 2005; Schafer et al., 2012; Seehase et al., 2012; Gottlieb et al., 
2008). At each level in the drug development process, the LPS challenge 
data were critical for the definition of drug potency, efficacious con
centrations and pharmacological active doses. The LPS challenge model 
for TNFα release was therefore key for the overall research and devel
opment strategy. 
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Despite the frequent use, there are also some technical issues with 
LPS challenge studies. Comparison of large sets of compounds is 
confounded by high batch-to-batch and inter-study variability typically 
seen with LPS (Gozzi et al., 1999; Wang et al., 2007). In addition, since 
time-concentration data of LPS, multiple LPS dose levels, and baseline 
responses of TNFα are often lacking, it leads to uncertainties when dis
tinguishing the stimulatory and inhibitory relationship between LPS 
provocation and test compound intervention when studying TNFα 
response data. 

In the absence of measured LPS concentration data, the pharmaco
kinetic and pharmacodynamic modelling of the stimulatory effect of LPS 
can be described using a biophase model, which is used as a tool to 
understand the phenomena of LPS provocation despite the lack of in
formation. Many of the already existing models for studying pharma
codynamic effects in vivo simplifies the plasma TNFα production after 
LPS induction with discontinuous functions, using either two zero-order 
inputs (Chakraborty et al., 2005; Hu et al., 2019) or a zero-order TNFα 
synthesis rate together with a time-dependent first-order release rate 
(Gozzi et al., 1999; Shu et al., 2011; Wyska, 2010). Continuous models of 
TNFα production after LPS induction exist as well, such as a linearly 
stimulated turnover model connected to a series of transit compartments 
(Gabrielsson et al., 2015), but are not as frequently used. However, a 
common theme for all previous models is that the description of the 
stimulatory effect of LPS is kept simple, and only one dose of LPS is most 
commonly used throughout the study. In addition, although TNFα 
response data show high variability, only one of the models captures this 
using a non-linear mixed effects (NLME) approach (Hu et al., 2019). It is 
thus questionable how well the stimulatory effect of LPS in TNFα 
response data is characterized, which in turn questions the reliability of 
the estimated pharmacodynamic effect since this problem has not been 
addressed in previous models. 

The goal with this work is to produce a framework of how to model 
TNFα response in LPS challenge studies in vivo and demonstrate its 
general applicability regardless of occasion or type of test compound. 
With this framework we want to: 1) accurately distinguish the stimu
latory effect of LPS from the inhibitory effect of the test compound, to 
get robust and reliable estimates of the pharmacodynamic parameters, 
2) introduce a model structure that considers inter-occasion variability 
and allows for testing of multiple test compounds, and 3) fill the existing 
knowledge gaps concerning LPS challenge models from a biological 
perspective. To achieve this, we improved a previously published model 
by our group (Held et al., 2019), demonstrated the improved model’s 
general applicability, and validated the results by comparing them with 
previously published data. This second-generation model has been 
developed using TNFα response data consisting of multiple LPS chal
lenge doses from different studies, as well as data from two different test 
compounds. The simultaneous exploration of all available animal data 
to the maximum extent is in the spirit of the Three Rs (3Rs; Replacement, 
Reduction, and Refinement) as the guiding principle for more ethical use 
of animals in research testing (Russell and Burch, 1959). Lastly, NLME 
modelling has been used to capture the vast variability typically seen in 
TNFα response data. 

2. Materials and Methods 

The study presented here reuses data originally published by Held 
et al. (2019) and the additional data used in this work have been 
retrieved using the same methodology. The model derived in the course 
of his work, named second-generation model, focuses on the general fit 
to multiple data sets and represents the natural extension of our previ
ously published, first-generation model which captures specific trends in 
a limited data set. Therefore, the following sections present the 
description of the materials and methods developed for this specific 
study, while only an abbreviate summary is provided for our previously 
published data and first-generation model (for in-depth knowledge, see 
Held et al. (2019)). 

2.1. Chemicals 

Lipopolysaccharides (LPS) from Escherichia coli 0111:B4 was ob
tained from Sigma (Product number L4391) where the same batch, 
036M4070V, was used in all four studies. The two test compounds are 
Test Compound A and roflumilast, where Test Compound A was syn
thesized at Grünenthal, Aachen, Germany (batch purity of > 95%) while 
Roflumilast was supplied by Dart NeuroScience. Roflumilast is an 
already established active substance used for treatment against COPD 
and asthma (Li et al., 2018), and is rapidly metabolised by cytochrome 
P450 isoenzymes 3A4 and 1A2 to its active metabolite roflumilast 
N-oxide (Lipari et al. 2013). Test Compound A, roflumilast, and roflu
milast N-oxide are all selective inhibitors of phosphodiesterase 4 
(PDE4). However, roflumilast and roflumilast N-oxide do not discrimi
nate between the different PDE4 subtypes (Hatzelmann et al., 2010), 
while Test Compound A is more selective for the PDE4B subtype. Inhi
bition of PDE4 leads to accumulation of intracellular levels of cAMP, 
that in turn affects the regulation of pro- and anti-inflammatory syn
thesis of cytokines, and has been shown to reduce LPS induced TNFα 
release (Li et al., 2018). For a summary of the different physico-chemical 
properties of Test Compound A and roflumilast, see Table 1. 

2.2. Animals and design of in vivo studies 

The experiments were conducted in a total of 78 male Sprague- 
Dawley rats (210-260 g of body weight), all purchased from Vital 
River Laboratory Animals Co. LTD. All rats were housed in groups under 
12 h light/dark cycle with ad libitum access to food and water. During the 
study, animals were not fasted, but no food was provided prior to dosing 
until 3 h after drug dosing. The animals were handled in strict accor
dance with the Guide for the Care and Use of Laboratory Animals in an 
AAALAC-accredited facility, and all animal studies were approved by an 
established Institutional Animal Care and Use Committee (IACUC). 

The Sprague-Dawley rats were randomly divided into groups of six 
with increasing doses of LPS and test compound, respectively (Table 2). 
After visual inspection of the raw data, one animal from Study 2 was 
excluded due to an obvious deviating behaviour from the population, 
see Fig. S.1 and S.2 in Supplementary material. To retrieve the doses of 
LPS, Test Compound A and roflumilast, respectively, starting with LPS, it 
was dissolved in saline at 0, 0.0002, 0.0006, 0.002, 0.006 and 0.06 mg/ 
mL and the solutions of 5 mL/kg were injected via foot dorsal vein, to 
give intravenous doses of 0, 1, 3, 10, 30, and 300 µg/kg, respectively. 
Secondly, Test Compound A was suspended in 1% HPMC (5 mPa s, 
Colorcon) and 0.5% Tween 80 (Sigma) in water at concentrations of 0, 
0.06, 0.6, and 6 mg/mL and administered orally at a volume of 5 mg/ 
mL, resulting in doses of 0, 0.3, 3, and 30 mg/kg, respectively. Lastly, 
roflumilast was dissolved in 1% HPMC and 0.5% Tween 80 in water at 
concentrations of 0 and 2 mg/mL and administered orally at a volume of 
5 mg/mL, resulting in doses of 0 and 10 mg/kg. All animals were given 
either an intravenous dose of LPS or vehicle (saline), as well as either an 
oral dose of test compound or vehicle (1% HPMC and 0.5% Tween 80 in 
water). 

The experimental design of the four studies is further visualised 

Table 1 
Physico-chemical properties of Test Compound A and roflumilast  

Parameter Value, Test 
Compound A 

Value, roflumilast National Center for 
Biotechnology Information, 2021 

Molecular 
weight 

< 500 g/mol 403.2 g/mol 

LogP* < 2.5 4.6 
Polar surface 

area 
< 80 Å2 60.4 Å2 

Solubility 10 µmol/L at pH 
7.4 

Insoluble (1.29 – 1.39 µmol/L at 22◦C)  

* cLogP for Test Compound A and XLogP3-AA for roflumilast 
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(Fig. 1). The challenge experiments in Study 1.1 and 1.2 (Fig. 1A and B) 
were conducted to characterise the dose-response-time relationships of 
the TNFα release after LPS challenge. In addition, they served as vehicle 
groups for Study 3 and 2 (Fig. 1D and C), respectively, as the experi
ments in Study 1.1 and 3 were conducted on one occasion and Study 1.2 
and 2 on a different occasion, both as parts of one large drug discovery 
program. To consider the effect of inter-occasion variability, the same 
doses of LPS were used in both studies (3 and 30 µg/kg), which enabled a 

quantification of the difference in TNFα response between the occasions. 
The Test Compound A intervention (Fig. 1C) was conducted to charac
terise the inhibiting effect of the test compound for different doses. On 
the contrary, the roflumilast intervention was conducted as a positive 
control where strong inhibition is intended for the given oral dose, and is 
used to assess test validity (Fig. 1D). 

Test Compound A, roflumilast, and roflumilast N-oxide concentra
tions, as well as TNFα response, were measured and analysed by 
mathematical modelling. On the contrary, LPS exposure could not be 
measured but was instead represented using a biophase model in the 
mathematical framework. The test compounds were administered two 
hours before the LPS challenge, and blood samples were drawn for 
quantification of Test Compound A, roflumilast, roflumilast N-oxide and 
TNFα at 0 h (prior to dosing of test compound), at 1 and 2 h (prior to 
dosing of LPS) and at 2.5, 3, 3.5, 4, 5, and 6 h after LPS dosing. 

2.3. Bioanalytical methods 

TNFα concentrations in plasma were quantified using the rat TNFα 
Quantikine ELISA Kit (R&D Systems, SRTA00), while the test compound 
concentrations were quantified using LC-MS/MS analysis. The lower 
limit of quantification (LLOQ) was 12.5 ng/L for TNFα, 1 nM for Test 
Compound A and roflumilast N-oxide, and 0.1 nM for roflumilast. Lower 
values were reported as “LLOQ” and excluded from subsequent evalu
ation and parameter estimation. For in-depth information concerning 
the bioanalytical methods, see Held et al. (2019). 

2.4. Pharmacokinetic and pharmacodynamic models 

2.4.1. Exposure to Test compounds A, roflumilast and roflumilast N-oxide 
Test Compound A is modelled as a first-order loss from the gut into 

plasma, and the plasma exposure is given by first-order input and 
Michaelis-Menten elimination (Fig. 2A.1, Eq. (1) and (2) 

Table 2 
Overview of experimental design of the four studies  

Study Challenge 
compound 

Test 
compound 

Biomarker Designs 

1.1 LPS - TNFα Three challenge doses (3, 30 
and 300 µg/kg) and one 
vehicle group (0 µg/kg); 
lacks challenger time course 
(s); no test compound 
intervention 

1.2 LPS - TNFα Four challenge doses (1, 3, 
10 and 30 µg/kg) and one 
vehicle group (0 µg/kg); 
lacks challenger time course 
(s); no test compound 
intervention 

2 LPS A TNFα One LPS challenge dose (30 
µg/kg); lacks challenger 
time course(s); three test 
compound intervention 
doses (0.3, 3 and 30 mg/kg) 

3 LPS roflumilast TNFα Three LPS challenge doses 
(3, 30 and 300 µg/kg); lacks 
challenger time course(s); 
one test compound 
intervention dose (10 mg/ 
kg)  

Fig. 1. Schematic presentation of the four different study designs. (A, B) Description of the challenge experiments where three (3, 30, 300 μg/kg LPS) and four (1, 3, 
10, 30 μg/kg LPS) challenge doses were used, respectively. Vehicle controls were made for both studies (0 μg/kg LPS, not shown), and overlapping LPS doses between 
the studies (3, 30 μg/kg LPS) enabled quantification of inter-occasion variability. Study 1.1 and 1.2 served as test compound vehicle controls for Study 3 and 2, 
respectively. (C) Description of the test compound intervention using Test Compound A. Three oral doses were used (0.3, 3, 30. mg/kg Test Compound A) for a 
constant challenge dose (30 μg/kg LPS) and concentration-time data for Test Compound A is available. (D) Description of the positive control using roflumilast. One 
constant oral dose was used (10 mg/kg roflumilast) for varying challenge doses (3, 30 and 300 μg/kg LPS) and concentration-time data for roflumilast parent drug 
and its active metabolite roflumilast N-oxide are available. 

J. Larsson et al.                                                                                                                                                                                                                                 



European Journal of Pharmaceutical Sciences 165 (2021) 105937

4

dAab

dt
= − kaAab (1)  

Vp⋅
dCp

dt
= F⋅ka⋅Aab −

Vmax⋅Cp

Km + Cp
(2)  

where Aab and Cp denote amount in the gut and plasma concentration of 
Test Compound A, respectively. The parameter ka is the first-order ab
sorption rate constant, Vp is the volume of distribution, Vmax is the 
maximum rate of elimination, and Km is the Michaelis-Menten constant. 
Michaelis-Menten elimination was chosen since the exposure to test 
compound increased disproportionately with increasing doses (see 
Fig. S.1 in Supplementary material). F denotes the bioavailability and is 
set to unity due to lack of intravenous data (effectively this means that 
estimates of Vp potentially includes effects of non-unity bioavailability). 
The pharmacokinetic model for Test Compound A serves to drive the 
pharmacodynamics to get accurate estimates of Imax and IC50 from the 
TNFα response data. 

For roflumilast and its active metabolite roflumilast N-oxide, a sim
ple analytic equation for first-order extravascular input and output is 
used in both cases (Fig. 2A.2, Eq. (3) and (4)) 

Cr(t) = A
(
e− ka,r t − e− ke,r t) (3)  

Cm(t) = B
(
e− ka,mt − e− ke,mt) (4)  

where Cr and Cm denote roflumilast and roflumilast N-oxide exposure in 
plasma, respectively. The parameters A and B are concentration con
stants, ka,r is the first-order absorption rate constant, ka,m is the metab
olite formation rate constant, and ke,r and ke,m are the elimination rate 

constants, respectively. All simplifications are due to the study design of 
the positive control and the models are used to verify that the phar
macokinetics of roflumilast are independent of LPS dose (Table 2). For a 
more elaborate derivation of the pharmacokinetic models of roflumilast 
and roflumilast N-oxide, see Supplementary material. 

2.4.2. Turnover of TNFα response after LPS challenge 
The stimulatory effect on TNFα response by LPS is described in 

Fig. 2C and Eq. (5) and (6). A one-compartment disposition model of the 
LPS mixture with parallel first- and second-order loss of LPS is inferred 
from TNFα response-time data from the challenge experiments 

dALPS

dt
= − kLPS,1ALPS − kLPS,2A2

LPS (5)  

where ALPS denote LPS amount in the biophase, and kLPS,1 and kLPS,2 are 
the first-order and second-order elimination constants of LPS, 
respectively. 

The level of LPS in plasma triggers an intra-cellular signalling 
cascade leading to TNFα release, which is modelled by a series of 
transduction compartments triggered by a bounded signal, modelled as 
a saturable function of the level of LPS 

dS1

dt
= − ks⋅

(
ALPS

Km,LPS + ALPS
− S1

)

dS2

dt
= − ks⋅(S1 − S2)

dS3

dt
= − ks⋅(S2 − S3)

(6) 

Fig. 2. Schematic presentation of the pharmacokinetic and pharmacodynamic model. Solid arrows represent mass transfer and dashed arrows stand for controls 
(information flow). (A.1) Pharmacokinetic model of Test Compound A disposition after oral administration. Test Compound A undergoes linear absorption from gut 
to plasma and is eliminated from plasma through Michaelis Menten elimination. (A.2) Pharmacokinetic model of test compound disposition after oral administration 
for roflumilast and its active metabolite roflumilast N-oxide. The pharmacokinetics of roflumilast and roflumilast N-oxide are modelled independently using the 
analytic equation for first-order extravascular input and output. (B) Turnover model for the TNFα response. TNFα is divided into pools R and Rt. Here, kt and kout 
denote the first-order transfer constant between compartments and fractional turnover rate constant from the system, respectively. TNFα turnover is stimulated by 
LPS challenge from part C and inhibited by test compound pharmacokinetics from part A.1 or A.2. (C) Model of LPS challenge. A biophase ALPS describes LPS after 
intravenous administration with a mix of first-order and second-order elimination kinetics governed by kLPS,1 and kLPS,2. LPS non-linearly stimulates a signal chain (S1 
to S3) with half-maximal signal constant Km,LPS, and signal transduction constant ks. 
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where S1, S2, and S3 are unitless signalling entities and S3 acts on the 
build-up of TNFα response via stimulatory action. The parameter Km,LPS 
is a half-maximal signal constant and ks is a transduction constant 
inversely proportional to the delay time induced by the transduction 
compartments (Savic et al., 2007). LPS is assumed to be eliminated 
through a mix of first-order and second-order kinetics as the exploratory 
data analysis indicated that LPS elimination increased for increasing LPS 
doses. 

2.4.3. Turnover of TNFα response after LPS and test compounds 
The TNFα turnover R and the impact of both the LPS challenge and 

the test compound kinetics on the TNFα response is described in Fig. 2B 
and Eq. (7)-(10). The stimulatory action of LPS S(S3) on the TNFα release 
is described using a sigmoidal function 

S(S3) =
Smax⋅Sγ

3

SCγ
50 + Sγ

3
(7)  

where Smax is the maximum LPS stimulatory production rate of TNFα, 
SC50 is the concentration of S3 at 50% maximum stimulation, and γ the 
Hill coefficient. 

The inhibitory action I(Cp) of Test Compound A is described using an 
ordinary inhibitory Imax model 

I
(
Cp

)
= 1 −

Imax⋅Cp

IC50 + Cp
(8)  

where Imax is the maximum inhibitory effect (test compound efficacy) 
and IC50 the drug concentration resulting in 50% maximum inhibitory 
effect (test compound potency). 

The inhibitory action I(Cr + Cm) of roflumilast and roflumilast N- 
oxide is described using an ordinary inhibitory Imax model, which is 
assumed to operate in saturation during the course of the experiment 
(roflumilast and roflumilast N-oxide is assumed to be persistently higher 
than IC50): 

I(Cr + Cm) = 1 −
Imax ⋅ (Cr + Cm)

IC50 + (Cr + Cm)
≈ 1 − Imax,

Cr + Cm≫ IC50

(9) 

The simplified inhibitory action of roflumilast is required due to the 
study design of the positive control (Table 2), and the inhibiting prop
erties of roflumilast and roflumilast N-oxide are assumed to be similar 
(Hatzelmann et al., 2010). Eq. (7) and (8) or (9) will then enter Eq. (10), 
where TNFα release is either stimulated or simultaneously stimulated 
and inhibited: 

dR
dt

= S(S3)⋅I(Ci) − kout⋅R + kt⋅(Rt − R)

dRt

dt
= kt⋅(R − Rt)

(10) 

The dynamics of TNFα response is divided into a central pool R and a 
peripheral pool Rt governed by a first-order inter-compartmental rate 
constant kt, in order to capture the post-peak bi-phasic decline of the 
response. The irreversible loss of TNFα effect occurs from its central pool 
with fractional turnover rate constant kout. Due to the lack of TNFα 
baseline response, the zero-order constant for production of response, 
usually denoted kin, is replaced in this turnover model with the stimu
latory action of LPS S(S3), to ensure that the TNFα response is only non- 
zero in presence of LPS. The inhibiting mechanism described in Eq. (10) 
is assumed to be similar for all compounds, since Test Compound A, 
roflumilast, and roflumilast N-oxide are all selective inhibitors of PDE4. 

2.4.4. Data analysis 
To add the inter-individual variability, an NLME approach is used 

(Lindstrom and Bates, 1990). Inter-individual variability is given to the 

parameters that either have the largest impact on the model output or 
are of special interest from a model predictive perspective. Therefore, 
distributions are assigned to the following parameters: Vmax (Eq. (2)) 
normally distributed, ke,r, ke,m, kLPS,1, IC50 (Eq. (3)-(5), and (8)) 
log-normally distributed, and Imax (Eq. (9)) logit-normally distributed. 

To accurately distinguish the stimulatory effect of LPS from the 
inhibitory effect of the test compounds, parameter estimation is done 
sequentially. Firstly, the pharmacokinetic parameters of Test Compound 
A, roflumilast, and roflumilast N-oxide (ka, Vp, Vmax, Km, Eq. (1)-(2), and 
A, B, ka,r, ka,m, ke,r, ke,m, (Eq. (3)-(4)) are estimated using time- 
concentration data of the test compounds (Fig. 1C and D). Secondly, 
the parameters governing TNFα response after LPS provocation (kLPS,1, 
kLPS,2, Km,LPS, ks, Smax, SC50, γ, kout, kt, Eq. (5)-(7) and (10)) are estimated 
using data from Study 1.1 and 1.2 (Fig. 1A and B). Lastly, the parameters 
describing test compound potency and efficacy (Imax, IC50, Eq. (8)-(9)) 
are estimated using TNFα response data from Study 2 or 3 (Fig. 1C and 
D). In the last step, all other parameters are fixed to their previously 
estimated values, and the inter-individual variability for kLPS,1 is 
removed since it was shown to interfere (due to non-identifiability) with 
the estimation of the median pharmacodynamic parameters. 

The studies were conducted at two different occasions as parts of one 
large drug discovery program, and since a notable difference in TNFα 
response was observed between the two occasions an inter-occasion 
variability is implemented. The chosen approach is based on Laporte-
Simitsidis et al. (2000): The parameter with the largest impact on the 
discrepancy between the studies is estimated according to Eq. (11) 

kLPS,2 = kLPS + δ⋅Ioccasion,

Ioccasion =

{
1, if individual belong to Study 1.2 or 2
0, if individual belong to Study 1.1 or 3

(11)  

where kLPS and δ are estimated using TNFα response data from Study 1.1 
and 1.2 (Fig. 1A and B), and used when estimating the pharmacody
namic effect of Test Compound A from Study 2 (Fig. 1C) and roflumilast 
from Study 3 (Fig. 1D), respectively. 

The observation error for the Test Compound A measurements is 
modelled with an additive error model on log-scale, and for the roflu
milast and roflumilast N-oxide measurements a proportional error 
model is used. The observation error for the TNFα response concentra
tions is modelled with a proportional error model as well. These choices 
of error models are based on the wide ranges of both test compound and 
TNFα response concentrations, as well as on a systematic model evalu
ation using different error models. All modelling and parameter esti
mation is done using Wolfram Mathematica 12 and NLMEModeling – an 
NLME modelling package developed by Fraunhofer-Chalmers Centre 
(Leander et al. 2020). 

3. Results 

3.1. Experimental data and explorative data analysis 

Our second-generation model (Fig. 2) captures the inter-individual 
variability, inter-occasion variability, and the general trends observed 
in data (Fig. 3, notice the twice as large concentration range for Study 
1.1). Although the number of Sprague-Dawley rats in each group is 
relatively small, a large variety in especially TNFα response is observed, 
supporting the use of the NLME modelling framework. Detailed infor
mation of each data diagram can be found in the Supplementary 
material. 

The area under TNFα response curves (AUCTNFα) were used to assess 
the net effect of LPS provocation or test compound treatment from an 
exploratory data analysis perspective, which is commonly done for 
TNFα response in LPS challenge studies (Chakraborty et al., 2005; Gozzi 
et al., 1999; Held et al., 2019; Hu et al., 2019; Wang et al., 2007). The 
AUCTNFα were calculated for all individuals in Fig. 3 (bottom row) and 
are summarised in boxplots (Fig. 4). In addition, a Mann-Whitney U test 
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Fig. 3. Summary of the available data from the four different studies (notice the twice as large concentration range for Study 1.1). (A, B) TNFα response data after 
three (3, 30, 300 μg/kg LPS) and four (1, 3, 10, 30 μg/kg LPS) challenge doses, respectively (no test compound dosing). (C) TNFα response and time-concentration 
data of Test Compound A. Three oral doses were used (0.3, 3, 30. mg/kg Test Compound A) for a constant challenge dose (30 μg/kg LPS). (D) TNFα response and 
time-concentration data of roflumilast. One constant oral dose was used (10 mg/kg roflumilast) for varying challenge doses (3, 30 and 300 μg/kg LPS). For more 
information concerning the study design, see section 2.2. 

Fig. 4. Area under the TNFα response curves (AUCTNFα), summarised in boxplots for each dose group, versus either increasing LPS challenge doses or oral doses of 
test compound for the different studies. (A) Increasing LPS challenge doses (3, 30 and 300 μg/kg LPS, Study 1.1). (B) Increasing LPS challenge doses (1, 3, 10 and 30 
μg/kg LPS, Study 1.2) where the common LPS doses with Study 1.1 are significantly different from each other (p-value < 0.05). (C) Constant oral dose of test 
compound (10 mg/kg, roflumilast) and increasing LPS challenge doses (3, 30 and 300 μg/kg, Study 3), all significantly different from the corresponding controls in 
Study 1.1 (p-value < 0.01). (D) Increasing oral doses of test compound (0.3, 3 and 30 mg/kg, Test Compound A) and a fixed LPS challenge dose (30 μg/kg, Study 2), 
either not significant, significant, or very significant relative control (30 μg/kg LPS dose Study 1.2, p-value < 0.05 or < 0.01, respectively). 
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was performed to investigate significant difference between drug 
intervention and control as well as significant difference in response 
between occasions for common LPS doses (see Table 2) (van Eijk et al., 
2014). Significance is denoted with a * or + (p-value < 0.05) and ** 
(p-value < 0.01), respectively. The trends between boxplots indicate a 
necessity of inter-occasion variability and supports the suggested stim
ulatory and inhibitory action of LPS and test compounds, respectively. 
Starting with Study 1.1 (Fig. 4A), the range in AUCTNFα is considerably 
larger than the others, and there exists a saturating trend in the boxplots 
for LPS doses above 30 μg/kg which have been discussed previously 
(Held et al., 2019). For Study 1.2 (Fig. 4B) the trend is linear as satu
ration has not been reached for LPS doses up to 30 μg/kg, and a sig
nificant difference in response between Study 1.1 and 1.2 is prominent. 
For Study 3 where roflumilast is present (Fig. 4C), the AUCTNFα are much 
smaller compared to Study 1.1 where test compound is absent, sug
gesting that maximal inhibition is reached using 10 mg/kg roflumilast 
thus validating the positive control. Lastly, for Study 2 where Test 
Compound A is present (Fig. 4D, note the different horizontal axes), a 
non-linear trend in the AUCTNFα for increasing test compound doses is 
seen, which was captured using an ordinary inhibitory Imax model. In 
summary, there exist a saturated LPS response, a significant 
inter-occasion variability, a maximal inhibition with roflumilast, and a 
non-linear saturated response by Test Compound A, properties captured 
by the model through Eq. (7), (8), (9), and (11), respectively. 

3.2. Model regression and parameter analysis 

3.2.1. Turnover of TNFα response after LPS challenge 
The mathematical model for TNFα response after LPS challenge 

captures the response for all LPS doses independent of study. The model 
predictions from both Study 1.1 and 1.2 show good individual fits as 
well as a successful implementation of inter-occasion variability (Fig. 5). 
Final parameter estimates (presented in Eq. (5), (6), and (7)) are pre
sented in Table 3, and for the model predictions for all LPS challenge 
doses see Fig. S.8 in Supplementary material. 

3.2.2. Turnover of TNFα response after LPS and test compound exposure 
The mathematical models for TNFα response after LPS and test 

compound exposure suggests that the lowest dose of Test Compound A 
has low effect on TNFα response (Fig. 6), and that the simplified model 
for roflumilast sufficiently represent the positive control data (Fig. 7). 
Starting with Test Compound A, the predicted pharmacokinetic model 
(Fig. 6A, C, and E) and pharmacodynamic effect (Fig. 6B, D, and F) is 
shown on both population and individual level (black and grey solid 
lines, respectively), and the estimated potency is illustrated as a hori
zontal red dashed line. The population prediction of the TNFα response 
accurately captures the median behaviour of each dose group, while the 

accuracy of the individual model predictions varies. The parameter es
timates for the pharmacokinetic model of Test Compound A and its 
inhibitory effect on the TNFα response (presented in Eq. (1), (2), and (8)) 
can be found in Table 4 and 5. 

For roflumilast and its active metabolite, the predicted pharmaco
kinetic model verifies that the pharmacokinetics of roflumilast are in
dependent of LPS dose (Fig. 7A, C, and E). In addition, the population 
prediction of the TNFα response (Fig. 7B, D and F, black solid lines) 
captures the median behaviour for the lowest and highest LPS dose, and 
the accuracy of the individual model predictions varies (Fig. 7B, D and F, 
grey solid lines). The parameter estimate for the pharmacodynamic 
model (presented in Eq. (9)) can be found in Table 5 and the estimates of 
the pharmacokinetic parameters can be found in Supplementary 
material. 

3.2.3. Contribution to biological meta-analysis 
To validate the findings and confirm our contribution to the meta- 

analysis from a biological perspective, the results are summarised and 
compared with previously published results. As a confirmation of the 
biological plausibility of the parameter estimates, a summary of esti
mated TNFα elimination rates from the literature has been compiled 
(Table 6). Compared with the fractional turnover rate constant (i.e., the 
elimination rate from the TNFα pool) estimated in this work (half-life 
8.00min, see Table 3), our estimate corresponds well to literature data 
and is reasonable from a biological perspective. 

To further validate successful contribution to the meta-analysis of 
TNFα response after LPS provocation, the second-generation model 
developed in this study is compared with our previously published first- 
generation model (Fig. 8) (Held et al., 2019). The second-generation 
model both validates previous findings concerning properties of LPS 

Fig. 5. Observed (dots) and model predicted (solid lines) TNFα response for both Study 1.1 (blue dots, grey lines) and 1.2 (red dots, black lines) respectively. (A) 3 
μg/kg LPS. (B) 30 μg/kg LPS. For all model predicted TNFα responses from Study 1.1 and 1.2, see Fig. S.8 in Supplementary material. 

Table 3 
Final estimates of the parameters governing the turnover of TNFα response after 
LPS challenge and their coefficients of variation (CV), inter-individual vari
ability (IIV), IIV CV, and half-lives.  

Parameter Units Estimate CV 
[%] 

IIV 
[%] 

IIV CV 
[%] 

Half-life 
[min] 

kLPS,1 1/h 7.12 28.3 18.1 25.3 5.84 
kLPS µg/kg/ 

h 
0.567 49.2 - - - 

δ µg/kg/ 
h 

2.02 29.0 - - - 

Km,LPS µg/kg 0.147 34.9 - - - 
ks 1/h 3.17 7.82 - - 13.1 
Smax µg/L/h 400 14.0 - - - 
SC50 - 0.320 17.9 - - - 
γ - 4.65 5.28 - - - 
kout 1/h 5.20 9.66 - - 8.00 
kt 1/h 0.453 9.91 - - 91.9  
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provocation and TNFα release as well as adds further information to the 
meta-analysis, thus improving the model from both a mathematical and 
biological perspective. 

4. Discussion 

In this work we developed a second-generation TNFα turnover model 
based on TNFα response data using multiple LPS challenge doses and 
two different test compounds. The model is proposed to work as a 
framework enabling modelling of TNFα response in LPS challenge 
studies in vivo, demonstrating a general applicability regardless of 
occasion, study design, or type of test compound. 

4.1. Data and model analysis 

The boxplots representing the AUCTNFα showed a significant inter- 

occasion variability between the challenge experiments, as well as sig
nificant drug effect relative control for Test Compound A doses above 3 
mg/kg, and for roflumilast for all LPS doses (Fig. 4). All mentioned 
trends were expected before conducting the experiments and validated 
through statistical testing, verifying that six animals per study was a 
sufficient sample size. A high inter-individual and inter-occasion vari
ability with LPS is apparent for all studies, which was expected even 
though the extrinsic variability was minimized when conducting the 
experiments (see section 2.2). This variability is very well described in 
the literature and is known to cause major problems when running ex
periments over long periods, as is often the case in large drug discovery 
programs (Gozzi et al., 1999; Wang et al., 2007). However, although a 
large variation was expected the source of variation remains unknown. 
Most probably it’s caused by poorly defined LPS, latent infections of 
animals, and/or differences in biological responsiveness of animals, 
since LPS are heterogeneous components of the cell wall of 

Fig. 6. (A, C, E) Observed (green dots) and model-predicted (solid lines) concentration-time data of Test Compound A of all subjects in Study 2. The grey lines 
correspond to the individual predictions, the black line the population prediction, and the red dashed line the model-predicted in vivo potency of Test Compound A. 
(B, D, F) Observed (green dots) and model-predicted (solid lines) concentration-time data of TNFα of all subjects in Study 2. The grey lines correspond to the in
dividual predictions and the black line the population prediction. TNFα response was observed after a fixed LPS challenge of 30 μg/kg. Test compound doses were 0.3 
mg/kg (panel A, B), 3 mg/kg (panel C, D), and 30 mg/kg (panel E, F). For visualisation of the control group (0 mg/kg Test Compound A, 30 μg/kg LPS), see Fig. 5B or 
Fig. S.8 in Supplementary material. 
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Gram-negative bacteria that cannot be quantified by standard bio
analytical methods such as LC-MS/MS (Hurley 1995; Rojo et al., 2007). 
Therefore, in the absence of a possibility for a bioanalytical LPS quan
tification, the LPS provocation was chosen to be described using a bio
phase model with inter-individual variability on the LPS elimination, 
which is the common approach when studying LPS challenge studies 
through modelling (Chakraborty et al., 2005; Hu et al., 2019; Gozzi et al., 

1999; Shu et al., 2011; Wyska, 2010; Gabrielsson et al., 2015). 
The non-linear decreasing trend with respect to increased dose of 

Test Compound A suggests an ordinary inhibitory Imax model (Eq. (8)), 
which has been shown to represent data well (Fig. 6B, D and F). In 
addition, comparing Study 1.2 and 2 (Fig. 4B, rightmost boxplot, and 
4D, leftmost boxplot) the lowest oral dose of Test Compound A has no 
significant effect on reducing TNFα response. This has also been 

Fig. 7. (A, C, E) Observed (purple dots) and model-predicted (solid lines) concentration-time data of roflumilast and the active metabolite of all subjects in Study 3. 
The grey lines correspond to the individual predictions, the black line the population prediction. (B, D, F) Observed (purple dots) and model-predicted (solid lines) 
concentration-time data of TNFα of all subjects in Study 3. The grey lines correspond to the individual predictions and the black line the population prediction. TNFα 
response was observed after varying LPS challenges of 3 μg/kg (panel A, B), 30 μg/kg (panel C, D) and 300 μg/kg (panel E, F). Test compound dose were 10 mg/kg. 
For visualisation of the control groups (0 mg/kg roflumilast, 3, 30, 300 μg/kg LPS), see Fig. S.8 in Supplementary material. 

Table 4 
Final estimates of the pharmacokinetic parameters of Test Compound A and 
their coefficient of variation (CV), inter-individual variability (IIV), and IIV CV.  

Parameter Units Estimate CV [%] IIV [%] IIV CV [%] 

ka 1/h 1.72 12.1 - - 
Vp L/kg 3.40 3.99 - - 
Vmax µmol/h/kg 32.1 16.7 11.3 52.4 
Km µmol/L 18.1 19.2 - -  

Table 5 
Final estimates of the potency and efficacy of Test Compound A, and efficacy of 
roflumilast and roflumilast N-oxide, together with their coefficient of variation 
(CV), inter-individual variability (IIV), and IIV CV.  

Parameter Units Estimate CV [%] IIV [%] IIV CV [%] 

Imax - 0.811 3.46 - - 
IC50 µmol/L 0.166 28.2 308 71.3 
Imax - 0.749 19.7 21.0 46.8  
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captured by the model, as the estimated potency is larger than the 
maximal test compound concentration (IC50 = 0.166 μmol/L, Fig. 6A 
and Table 5). For the positive control using roflumilast, the inhibition 
was effectively operating at its maximal effect for the complete duration 
of the experiment. This is validated statistically comparing the AUCTNFα 
from Study 1.1 and 3 (Fig. 4A and C), and captured in the model using a 
reduced inhibitory Imax model (Eq. (9)). However, Eq. (9) does not 
explain the displacement of the AUCTNFα for the medium LPS dose 
(Fig. 4C). Our model assumes that the test compounds inhibit the 
maximum stimulatory effect of LPS by a factor (1 + Imax) (see Eq. (10)), 
but Fig. 4D indicates that roflumilast affects the apparent affinity of LPS 
stimulation as well. The consequence of not capturing the apparent ef
fect on affinity is seen in Fig. 7D, where a systematic overprediction of 
response is visible. It could be due to intrinsic variation in biological 
response as described above, but that hypothesis does not support the 
systematic lower response. A second hypothesis therefore is that the 
interplay between stimulation and inhibition of TNFα response is more 
complex than currently described, see for example Earp et al. (2004). 
However, since this is only seen in a small fraction of the whole data set 
it is difficult to draw any conclusions, but it would be interesting to 
investigate this complex interplay in future studies. For further 

information concerning the model selection process based on data 
analysis, see Supplementary material and Held et al. (2019). 

The exploratory data analysis presented in Fig. 4 has supported the 
model selection process which has led to successful fit to data and reli
able parameter estimates (Fig. 5, 6, and 7). The stimulatory effect of LPS 
in TNFα response data is well characterized independent of study (Fig. 5, 
Table 3, and Fig. S.7 in Supplementary material) and the pharmacoki
netics of Test Compound A is well estimated (Fig. 6A, C and E, and 
Table 4), both on population and individual level. The largest un
certainties in parameter estimates for these models concern the pa
rameters governing the LPS provocation or the inter-individual 
variability (Table 3 and 4). This is expected as measurements of LPS 
concentrations are lacking and the pharmacokinetics are studied under a 
relative short time period (Fig. 3). For roflumilast and roflumilast N- 
oxide, on the other hand, improvements to the pharmacokinetic models 
could be made but due to their limited purpose the models were decided 
to be satisfactory (Fig. 7A, C and E, and Supplementary material). 

Concerning the inhibitory effect, good population estimates of 
pharmacodynamic parameters were retrieved after removing the source 
of variability from LPS stimulation during the estimation (Fig. 6B, D, and 
F, and Fig. 7B, D and F). The variability was removed since the stimu
latory and inhibitory effects otherwise became indistinguishable, lead
ing to questionable estimates of the pharmacodynamic parameters. The 
drawback with deliberately removing the known variation in LPS 
exposure is that the observation error becomes overestimated, in turn 
leading to less accurate individual predictions. This is especially prom
inent for the TNFα response using the largest oral dose of Test Com
pound A, where the test compound concentrations are well above the 
potency and thus gets unaffected by any variation in IC50 (Fig. 6F). 
However, although the observation error and inter-individual variability 
becomes less accurate using this approach (see Table 5), it has led to 
more robust estimates of the median pharmacodynamic effect which 
was one of the goals with this framework. 

Using this framework, IC50 and Imax for Test Compound A are esti
mated to 0.166 μmol/L and 0.811, respectively, and Imax for roflumilast 
is estimated to 0.749 (Table 5). These results show that our framework 
can retrieve pharmacodynamic estimates from data with different study 
designs, allowing a comparison of inhibitory effect between new test 
compounds (whose pharmacodynamic effects are not yet established) 
and positive controls. On top of that, by constructing a framework using 
NLME modelling and allowing pooling of data from different studies, 
including the positive control, the experimental data in this work have 
been used to its fully potential. The approach described in this manu
script has maximized the information with fewer animals and avoided 
unnecessary repetition of experiments by simultaneous exploration of 
all available animal data, thus fulfilling two of the three 3Rs (Reduction 
and Replacement) (Russell and Burch, 1959). 

Improvements for future studies would be, firstly, to include the 
variability from the LPS stimulation without it interfering with the 
estimation of the pharmacodynamic effect, for more efficient use of the 
information provided by the NLME modelling framework. Secondly, 
although the model has been tested on a large data set with similar 
characteristics as those found in literature (Chakraborty et al., 2005; 
Gozzi et al., 1999; Hu et al., 2019; Wang et al., 2007; Wyska, 2010), the 
model could benefit from being further validated and tested on more 
TNFα response data. Both to validate that our data analysis well repre
sents the characteristics seen in TNFα response data, and that our pro
posed framework also works on new data in an even more general 
setting. 

4.2. Contribution to biological meta-analysis 

The comparison with previously published work shows that our 
findings are supported from a biological meta-analysis perspective, and 
concrete improvements of the modelling framework have been pre
sented. Furthermore, our compilation of published half-lives of TNFα 

Table 6 
TNFα elimination rate estimates from literature, both for different test subjects 
as well as from both in vivo and in vitro studies.  

Species Estimate [1/ 
h] 

CV 
[%] 

t1/2 

[min] 
Source 

Mouse (in 
vivo) 

- - 6* Beutler et al., 1985 
- - 18.6* Dai et al., 2013 
- 16.7 12* Shibata et al., 2004 
- 23 34* Ma et al., 2015 
- 17.85 2.8* Tsutsumi et al., 1996 
0.504 21 82.5 Gozzi et al., 1999 
1.65 24.4 25.2 Wyska, 2010 
4.51 - 9.22 Chakraborty et al., 2005 

Rat (in vivo) 5.65 30 7.36 Held et al., 2019 
Human (in 

vivo) 
- - 11-17 Moritz et al., 1989 
- - 15-30 Saks and Rosenblum, 

1992 
1.82 6.48 22.8 Shu et al., 2011 

Mouse (in 
vitro) 

0.0463 32 898 Xiang et al., 2018  

* Only half-life reported 

Fig. 8. Schematic illustration of model improvement between the different 
turnover model generations for both LPS (A) and TNFα (B). 
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shows that our estimate of the fractional turnover rate constant kout gives 
a plausible estimate of TNFα half-life in rodents (8.00 min, Table 3), 
with the reservation that the published half-lives range from 2.8 min to 
82.5 min (Table 6). 

To further emphasize the biological relevance, our comparison with 
previous work (Held et al., 2019) provides a representative overview of 
what has been achieved with this framework from a meta-analysis 
perspective (Fig. 8). Starting with LPS (Fig. 8A), we have validated 
previous findings as well as added inter-occasion variability and a mix of 
first-order and second-order elimination kinetics to the model. The in
clusion of inter-occasion variability led to, amongst others, a new esti
mate of the IC50 of Test Compound A seven times larger than the 
previous estimate (0.166 μmol/L versus 23 nmol/L), highlighting how 
inter-occasion variability in LPS response can strongly affect drug 
related parameters if not corrected as done in this work (Held et al., 
2019). The mix of first-order and second-order elimination kinetics is 
based on a finding during the model construction that LPS elimination 
increased for increasing LPS doses. Three hypotheses for this behaviour 
are that 1) intravenous injection of endotoxins mimics effects seen in 
sepsis and rapidly removing LPS from the blood circulation would pre
vent septic shock (Buttenschoen et al., 2010), 2) the fact that a large 
amount of LPS is cleared by the liver within ten minutes (Kitchens et al., 
2001), and that 3) the size of LPS aggregates influences the uptake of LPS 
by various tissues (Merck, 2021; Munford et al., 1982) and under the 
assumption that the percentage of large aggregates should be indepen
dent of LPS dose, the amount of large LPS aggregates should increase for 
increasing doses. However, it is difficult to distinguish between these 
hypotheses as LPS sensing and signalling is an extensive regulatory 
network (Buttenschoen et al., 2010; Kitchens et al., 2001; Munford, 
2005), and since measurements of LPS are lacking. 

Focusing on our contributions to the TNFα meta-analysis (Fig. 8B), 
we have validated previously found characteristics as well as added new 
information concerning occasion-dependent peak shifts, flexible 
handling of different study designs, and multiple in vivo test compound 
interventions. Focusing on multiple in vivo test compound interventions, 
we have shown that the framework can handle positive controls. How
ever, since the maximum inhibition is rapidly reached and persistently 
kept throughout the duration of the observations for the given oral dose, 
the pharmacokinetic models for roflumilast and roflumilast N-oxide are 
technically never used in an exposure dependent (time-varying) way to 
drive the pharmacodynamics (see Eq. (9)). To improve validation of the 
model structure allowing for testing of multiple test compounds and 
comparison of pharmacodynamic effects, the model should be tested on 
data where the pharmacokinetic model drives the pharmacodynamics in 
a time-varying way. Nevertheless, although some questions are left 
unanswered the proposed framework has given good insights in un
derstanding and analysing TNFα response after LPS challenge in vivo, 
both from a mathematical and biological perspective. 

5. Conclusions 

The goal of this study was to produce a framework of how to model 
TNFα response in LPS challenge studies in vivo and demonstrate its 
general applicability regardless of occasion or type of test compound. 
We tested this framework on multiple data sets, in absence or presence 
of test compounds, and improved our second-generation TNFα turnover 
model accordingly. From this, accurate model predictions of TNFα 
response after LPS provocation were retrieved, both on population and 
individual level, as well as reliable median estimates of the pharmaco
dynamic effect of both Test Compound A and roflumilast. In addition, 
the results were compared with previous publications and from a bio
logical perspective determined how we, through our work, could 
contribute to the meta-analysis concerning LPS challenge studies. Im
provements would be to: 1) Implement inter-individual variability from 
LPS stimulation for TNFα response in presence of test compound, as well 
as tolerance against LPS, 2) test the framework on more TNFα response 

data using different LPS doses to further validate the chosen biophase 
model for LPS and reproducibility of results, and 3) test the framework 
on TNFα response using other test compounds where the pharmacody
namics are dependent of the pharmacokinetics in a time-varying way. 
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