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A B S T R A C T   

A significant proportion of motor vehicle crash fatalities are potentially preventable with 
improved acute care. By increasing the accuracy of triage more victims could be transported 
directly to the best suited care facility and be provided optimal care. We hypothesize that On 
Scene Injury Severity Prediction (OSISP) algorithms, developed utilizing machine learning 
methods, have potential to improve triage by complementing the field triage protocol. In this 
study, the accuracy of OSISP algorithms based on the “National Automotive Sampling System - 
Crashworthiness Data System” (NASS-CDS) of crashes involving adult occupants for calendar 
years 2010–2015 was evaluated. Severe injury was the dependent variable, defined as Injury 
Severity Score (ISS) > 15. The dataset contained 37873 subjects, whereof 21589 included injury 
data and were further analyzed. Selection of model predictors was based on potential for injury 
severity prediction and perceived feasibility of assessment by first responders. We excluded 
vehicle telemetry data due to the limited availability of these systems in the contemporary vehicle 
fleet, and because this data is not yet being utilized in prehospital care. The machine learning 
algorithms Logistic Regression, Ridge Regression, Bernoulli Naïve Bayes, Stochastic Gradient 
Descent and Artificial Neural Networks were evaluated. Best performance with small margin was 
achieved with Logistic Regression, achieving area under the receiver operator characteristic curve 
(AUC) of 0.86 (95% confidence interval 0.82–0.90), as estimated by 10-fold stratified cross- 
validation. Ejection, Entrapment, Belt use, Airbag deployment and Crash type were good pre
dictors. Using only a subset of the 5–7 best predictors approached the prediction accuracy ach
ieved when using the full set (14 predictors). A simplified benefit analysis indicated that 
nationwide implementation of OSISP in the US could bring improved care for 3100 severely 
injured patients, and reduce unnecessary use of trauma center resources for 94000 non-severely 
injured patients, every year.   
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1. Introduction 

Motor vehicle crashes (MVC) in US produce around 30000 fatalities and 4 million injured people every year, adding up to a societal 
economic burden of totally $240 billion or $800 per citizen (Blincoe et al., 2015). A significant proportion of the fatalities are 
potentially preventable (Ray et al., 2016; Berwick et al., 2016). Military trauma care has achieved remarkably high survival rates, 98%, 
for patients reaching a treatment facility (Berwick et al., 2016). If similar outcomes can be achieved in civilian care, up to 20% of 
trauma fatalities can be saved (Berwick et al., 2016). For a local sample in Miami–Dade (n = 98) it was concluded that over a third of 
MVC deaths were potentially preventable (Ray et al., 2016). Patients with severe injury have a higher probability of surviving if they 
are directly transported to a trauma center, to provide specialized care with minimal delay (Hu et al., 2017; Haas et al., 2010; 
MacKenzie et al., 2006; Candefjord et al., 2020). A key to provide adequate care to a larger proportion of patients is to attain a high 
triage accuracy (Ray et al., 2016; Sasser et al., 2012), so that the rate of appropriate decisions on where to transport the patient can be 
increased. 

In this study, we evaluate if methods employing machine learning and variables that can be assessed on the scene of accident has 
potential to amend field triage. First, we provide a literature review including a description of the field triage process and the chal
lenges of attaining a high triage accuracy. It also identifies previous studies that form the foundation for the present study. At the end of 
the introduction, we provide the aim of the current study. 

1.1. Literature review and study motivation 

The triage protocol is the most important decision support for identifying patients with severe injury, while using health care 
resources efficiently by recognizing patients not likely to be in need of specialized care. The current US guidelines for field triage of 
injured patients are based on four steps: 1) Vital signs, i.e. Glasgow Coma Scale, systolic blood pressure, and respiratory rate; 2) 
Anatomy of injury, e.g. penetrating injuries and flail chest; 3) Mechanisms of injury, e.g. falls from >20 feet and high-risk auto crash; 
and 4) Special considerations, e.g. older adults (aged > 55 years) (Sasser et al., 2012). The steps are assessed in sequential order, i.e. if 
any of the step 1 criteria indicate severe injury the decision scheme is completed with the recommendation to transport the patient to a 
trauma center, followed by steps 2–4 if no previous step signals severe injury. If any criteria in steps 1–3 is fulfilled the protocol 
recommends transport to a trauma center, and if step 4 is fulfilled transport to a trauma center should be considered. By employing four 
consecutive steps based on different risk factors the rate of undertriage can be decreased. 

Even though sophisticated guidelines for field triage have been developed, the rate of undertriage of US trauma patients in general, 
and MVC occupants in particular, is high. The American College of Surgeon’s Committee on Trauma (ACS-COT) (American College of 
Surgeons Committee on Trauma (ACS-COT), 2014) states that “an acceptable undertriage rate could be as high as 5%”, when under
triaged patients are defined as having an Injury Severity Score (ISS) of 16 or more who were taken to a non-trauma center. 
Furthermore, ACS-COT states that “most agree that an acceptable percentage of overtriage is in the range of 25% to 35%”. Xiang and 
colleagues (Xiang et al., 2014) showed that more than one third (34%) of patients with major trauma in the US emergency departments 
were undertriaged in 2010. Stitzel et al. (2016) showed, in a US population weighted sample of MVC based on the National Automotive 
Sampling System - Crashworthiness Data System (NASS-CDS) for years 2000–2011 (n = 9, 763, 984), that the rate of undertriage was 
20% with an overtriage of 54%. Note that using machine learning terminology, low undertriage corresponds to high sensitivity/true 
positive rate (low number of false negatives), and low overtriage corresponds to high specificity (low false positive rate). 

The criteria for high-risk auto crash in the field triage guidelines (Sasser et al., 2012) are: i) compartment intrusion measures; ii) 
passenger ejected from vehicle (partial or complete); iii) death in same passenger compartment; iv) vehicle telemetry data consistent 
with high risk of injury. Criteria iv is based on the development of Advanced Automatic Crash Notification (AACN) algorithms, which 
use vehicle sensor data such as ΔV (total change of velocity during crash), principal direction of impact force, belt status and airbag 
deployment to predict the probability of any MVC occupant being severely injured. AACN shows promise to improve triage for MVC 
(Augenstein et al., 2003; Champion et al., 2005; Kononen et al., 2011; Stitzel et al., 2016). The use of AACN in field triage protocols was 
acknowledged by the “Expert Panel of the National Center for Injury Prevention and Control, Centers for Disease Control and Pre
vention” in 2008 (National Center for Injury Prevention and Control, 2008). The panel recommended that for an estimated risk ≥20% 
of having a severe injury (defined as ISS > 15), the AACN provider should inform the Public Safety Answering Point (PSAP) that the 
occupant is at risk for a severe injury. 

Candefjord, Buendia and colleagues (Candefjord et al., 2015; Buendia et al., 2015) showed that so called On Scene Injury Severity 
Prediction (OSISP) algorithms, which are based on only crash characteristics that are feasible to assess on the scene of crash by first 
responders, achieved high accuracy for prediction of severe injury for MVC occupants in passenger cars (Buendia et al., 2015) and 
trucks (Candefjord et al., 2015). The OSISP concept has many similarities with AACN. The fundamental difference is that OSISP is 
designed to be implemented in a handheld device such as a tablet and information about the crash should be interpreted and input to 
the device by first responders (Olaetxea Azkarate-Askatsua, 2017), whereas AACN is integrated into the vehicle and retrieves data 
about the crash from the so called Event Data Recorder (Kononen et al., 2011). The AACN prediction can be executed directly following 
a crash, whereas the OSISP prediction is available after on scene assessment. AACN can utilize precise measurements of ΔV and 
principal direction of force (Kononen et al., 2011). OSISP, on the other hand, can employ some variables that can be assessed on scene 
but are typically not detected by vehicles, such as the sex and estimated age of the patient and whether the patient was ejected from or 
entrapped in the vehicle. The AACN and OSISP concepts are complementary, AACN can perform injury severity prediction at dispatch 
to aid planning the rescue and care operation and call adequate personnel and resources to the scene, while OSISP can be used on scene 
and incorporate data from on scene assessments, e.g. observations of the vehicle and patient. 
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Table 1 
Definitions, descriptions and statistics for the model variables. For each variable level the proportion (percentage) of the MVC occupants in the full 
dataset having that characteristic is shown (denoted PF = proportion full), together with the proportion that sustained severe injury (denoted PSI =
proportion severe injury). MD = missing data.  

Variable Definition Level (PF/PSI [%]) Description 

ISS Injury Severity Score ISS < 15 (94.3/ 
0.0) 

Whether the occupant was severely injured or not (dependent variable) 

ISS > 15 (5.7/ 
100.0) 

Sex Sex of occupant Male (50.4/6.7) Male or female occupant 
Female (48.6/4.9) 
MD (1.0/0.0) 

Elderly Victim over or under 55 
years old 

≤55 (77.3/5.5) Age 55 years old is used as threshold, following the triage protocol (Sasser et al., 2012) 
>55 (20.7/7.1) 
MD (2.0/0.2) 

PSL Posted speed limit (km/ 
h) 

15 ≤ x < 25 (0.4/ 
4.1) 

Maximum speed allowed where the crash occurred. The posted speed limits in mph were converted 
into km/h and grouped in intervals, to facilitate comparisons with international studies (Buendia 
et al., 2015; Candefjord et al., 2015). 25 ≤ x < 35 (0.3/ 

4.3) 
35 ≤ x < 45 (10.6/ 
3.1) 
45 ≤ x < 55 (12.8/ 
4.4) 
55 ≤ x < 65 (30.8/ 
5.2) 
65 ≤ x < 75 (16.5/ 
5.7) 
75 ≤ x < 85 (4.6/ 
6.0) 
85 ≤ x < 95 (10.9/ 
8.1) 
95 ≤ x < 105 (3.1/ 
11.7) 
105 ≤ x < 115 
(7.8/8.1) 
115 ≤ x < 125 
(0.9/15.5) 
MD (1.4/2.3) 

Belt Use Belt use Belted (83.4/3.8) Whether the occupant wore seat belt 
Unbelted (7.2/ 
26.0) 
Unknown (3.0/ 
2.5) 
MD (6.4/9.9) 

Vehicle Type of vehicle Car (60.8/6.3) Whether the occupant was in a car or a truck 
Truck (39.2/4.9) 

Airbag Airbag deployment Not deployed 
(41.7/3.3) 

Whether any airbag (if present) was deployed 

Deployed (38.0/ 
8.1) 
Not present (7.1/ 
7.6) 
MD (13.2/5.8) 

Location Location of crash Urban (67.0/6.0) Whether crash occurred in urban or rural environment. Cities and metropolitan areas are 
categorized as urban, other areas as rural. Rural (33.0/5.3) 

Position Seat position Front (93.2/5.7) Seat position of the injured occupant. Divided into front or back seat. 
Back (6.4/7.3) 
MD (0.4/2.5) 

WN Weekend night No (90.1/5.2) Whether crash occurred during a weekend night, defined as either Saturday or Sunday at 0:00–7:59 
a.m. Yes (9.1/10.9) 

MD (0.8/5.5) 
Crash Type of crash Single (24.9/12.0) Single vehicle crashes into stationary object or departs from the road 

Rear End (20.3/ 
2.5) 

Vehicle impacts another vehicle from behind 

Head On (4.4/ 
15.3) 

Head on collision between two vehicles 

Other (48.2/3.1) Other type of crash 
MD (2.1/4.8) 

Eject Ejection No (97.7/4.8) Whether occupant was ejected from the vehicle. The category ‘Yes’ includes both complete and 
partial ejection. Yes (1.7/58.4) 

MD (0.6/12.0) 

(continued on next page) 
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An advantage with OSISP compared to AACN is that applicability is not limited by the penetration rate of AACN systems in the 
contemporary vehicle fleet. This rate is limited by at least three important factors. First, The National Highway Traffic Safety 
Administration (NHTSA) predicted that only approximately 20% of the model year 2016 vehicle fleet are equipped with AACN (Lee 
et al., 2017). Second, functional AACN systems commonly require an active subscription based service, which may further reduce the 
proportion of vehicles for which AACN can be used (there exists no public data on rate of active subscriptions) (Lee et al., 2017). Third, 
to our knowledge there is no established standard for how AACN results are derived or presented to the PSAP, and few, if any, 
PSAPs/prehospital care systems have implemented routines for utilizing AACN data. OSISP can be used independently of vehicle 
telemetry data, and has potential to be used for most MVC. For most effective rescue and care and the widest coverage of MVC patients, 
AACN and OSISP could therefore be used in combination. 

1.2. Aim 

Current OSISP algorithms have been developed from the Swedish Traffic Accident Data Acquisition (STRADA) database using the 
method Logistic Regression (Candefjord et al., 2015; Buendia et al., 2015). The aim of this study is to develop an OSISP algorithm for 
MVC occupants in US based on NASS-CDS data, using several machine learning algorithms and compare their performance. A 
high-performing OSISP algorithm may be used to refine US field triage protocols, to improve the care for severely injured patients 
while decreasing unnecessary use of trauma center resources. 

2. Materials and methods 

2.1. Data selection 

The scope of this study was adult MVC occupants registered in the NASS-CDS database for calendar years 2010–2015 (Radja, 2016). 
NASS-CDS includes investigations of around 5000 crashes per year involving passenger cars, light trucks, vans, and utility vehicles. The 
rationale for selecting calendar years 2010–2015 was that in 2010 injury scores were updated according to the AIS 2005 standard, and 
2015 was the last full year available at the time the study commenced. 

From 2010–2015, 45075 MVC occupants sustaining injury were identified in NASS-CDS (four data sets were linked, i.e. Accident, 
Event, GV and OA, described in Radja (2016)). Out of these, 43712 were car or light truck occupants, whereof 37873 occupants were 
≥18 years old. Furthermore, 16284 occupants had no ISS data, leaving 21589 cases that were further analyzed. 

2.2. Model variables 

To classify occupants as being severely injured or not the ISS was used (Baker and O’Neill, 1976). ISS builds on classification of 
severity of each injury according to the Abbreviated Injury Scale (AIS) (Association for the Advancement of Automotive Medicine 
(AAAM), 2005). The threshold used to define severe injury was ISS >15, which is commonly recommended (Sasser et al., 2012). 

The dependent variable was whether the occupant sustained severe injury or not. The predictor variables were chosen based on 
experience about potential for injury severity prediction, gained from several literature sources (Buendia et al., 2015; Candefjord et al., 
2015; Stitzel et al., 2016; Kononen et al., 2011; Augenstein et al., 2003). Furthermore, a requirement for all selected predictors were 
that they were deemed to be feasible to assess at the scene of crash by first responders. We excluded vehicle telemetry data due to the 
limited availability in the contemporary vehicle fleet. All variables included in the model are detailed in Table 1. 

2.3. Data representation and handling missing data 

All of the variables in this study were categorical (Table 1). In order to achieve best performance for a machine learning task, the 
right choice of data representation technique is vital, especially for categorical data. Some machine learning algorithms, such as 

Table 1 (continued ) 

Variable Definition Level (PF/PSI [%]) Description 

Entrap Entrapment No (89.8/4.5) Whether occupant was entrapped in the vehicle 
Yes (2.0/46.3) 
MD (8.2/9.7) 

Rollover Rollover No (90.5/4.8) Whether the vehicle rolled over, defined as ≥ 1/2 turns 
Yes (8.6/14.2) 
MD (0.9/26.1) 

Light Light conditions Daylight (61.2/ 
4.1) 

Light conditions at the scene of crash  

Dark (9.2/11.0)  
Dark/Lighted 
(25.4/7.8) 
Dawn (1.5/9.6) 
Dusk (2.2/4.1) 
MD (0.4/4.3)  
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Support Vector Machines and Multi-layer Perceptron (Deep Learning), explicitly require all the input variables to be numerical (Hastie 
et al., 2009). There are plenty of techniques to transform categorical values to numerical data enabling one to use any algorithm for all 
types of data - numeric or categorical. Two widely used techniques are label encoding and one hot encoding, described in Brink et al. 
(2017, pp. 36–43). We found that one hot encoding consistently yielded improved performance over label encoding, and decided to use 
it for this study. 

Except the variables Vehicle and Location, all other variables exhibited missing values to varying extent (Table 1). We applied four 
different methods to handle missing data (Brink et al., 2017, pp. 36–43), creating one separate instance of the dataset per method. The 
methods were: remove cases with missing values (discarding 5394 cases that contained missing data), turn missing values into a new 
category level, imputing missing values using mode (most frequent value), and imputing missing values using conditional probability. 
While the first three methods are self explanatory, it is important to describe some details of the imputation using conditional 
probability. Assuming independence of the variables, the inherent information about probabilistic relationships between the predictor 
and target variables can be determined from the available complete data set (without missing values). Subsequently, these conditional 
probabilities can be utilized to impute the data for variables with missing values. Imputation via conditional probability will ensure 
that the missing value for a variable is filled with a value having the highest probability with respect to the target case, i.e., filling in a 
missing value with the most likely one determined by the similar cases but without missing value for that particular variable. Unlike 
the imputation using mode, imputation with conditional probabilities has the advantage of respecting the distribution of the variable 
and therefore should not introduce unexpected patterns in our data. 

2.4. Machine learning algorithms 

In this study we view machine learning as a broad concept, including traditional mathematical/statistical models that can be used 
for binary classification. Logistic Regression is a method that is commonly used in studies of MVC, see e.g. (Harrell, 2001; Schiff et al., 
2008; Augenstein et al., 2003; Kononen et al., 2011; Candefjord et al., 2015; Buendia et al., 2015). We performed a literature study of 
similar problem domains and identified some natural competitors to Logistic Regression. We also diversified our search and tried 
several linear and non-linear machine learning methods. In an initial round of tests, we included Decision Trees, Random Forest, Linear 
Discriminant Analysis and Support Vector Machines (Hastie et al., 2009). The initial tests demonstrated subpar performance of these 
algorithms, therefore they were excluded from this study. We finally concluded with a set of four different algorithms that were 
deemed to have high potential: Ridge Regression, Stochastic Gradient Descent, Bernoulli Naïve Bayes, and Artificial Neural Networks. 
Every model was compared to the established Logistic Regression algorithm with respect to the performance metrics defined in Section 
2.5. 

Python (version 3.5) was used as base for all data analysis, with the data science libraries Pandas (version 0.22.0) and Scikit-learn 
(version 0.19.0) (Pedregosa et al., 2011), using the default settings for classifiers. For Artificial Neural Networks, TensorFlow (version 
1.0.0) (Abadi et al., 2016) was used. Output results were adapted so that all classifiers could be easily compared. 

2.4.1. Logistic regression 
Studies of MVC have commonly focused on risk factors and the potential of individual predictor variables for injury severity 

prediction (Schiff et al., 2008; Kononen et al., 2011; Candefjord et al., 2015; Buendia et al., 2015). This objective is well met by Logistic 
Regression, which describes the probabilistic relationships between the dependent variable and the individual predictor variables. Let 
P denote the probability of severe injury. Y is the dependent variable. We choose Y = 0 for non-severe injury and Y = 1 for severe 
injury. The model can be defined using the form in Equation (1), 

ln
(

P(Y = 1)
1 − P(Y = 1)

)

= β0 +
∑n

k=1
βkXk (1)  

where the left hand side of Equation (1) is referred to as the logit transformation. The fraction P(Y=1)
1− P(Y=1) is called the odds ratio (OR) for the 

event Y = 1. The logit transformation enables estimating the logged odds of the event Y = 1. The OR for the kth predictor variable Xk is 
given by the coefficient eβk and represents the constant effect of the predictor Xk on the likelihood that Y = 1 will occur. This is exactly 
what we aim to measure in MVC analysis, i.e. quantifying the isolated effect of each X on Y with a single metric. Another advantage is 
that Logistic Regression does not require a linear relationship between the dependent variable and the predictors, since it applies a non- 
linear log transformation to the predicted OR (it does not mean that the model is non-linear, the transformation is applied on the 
output). 

Results of Logistic Regression modeling were expressed as adjusted OR, with corresponding 95% confidence intervals (CI) and 
levels of statistical significance (p-values). The overall low proportion of severe injury in this study (<6%) suggested that OR is a 
reasonable approximation of the relative risk. To report the required results, we implemented a wrapper class that encapsulated the 
default Logistic Regression from Scikit-learn and added the functionality to compute the aforementioned quantities. 

2.4.2. Ridge regression 
The performance of Logistic Regression depends on two key assumptions. First, there are no outliers (misclassified instances) in the 

dataset. Second, there does not exist any high correlations among the predictor variables (multicollinearity). A closer analysis of the 
dataset in the present study revealed that there exist cases with the same set of predictor variable values having different dependent 
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variable outcome. This is expected in an MVC dataset, because similar conditions does not necessarily end with similar injury outcome. 
However, these outliers can unduly influence the results of the analysis and lead to incorrect inferences. 

Ridge Regression uses a regularization approach that constrains/regularizes or shrinks the coefficients of the ordinary least squares 
regression model. It discourages learning a complex model by allowing misclassification of extreme outliers and thereby improves 
generalizability. Ridge Regression also solves the multicollinearity problem through a shrinkage parameter controlling penalty on 
model coefficients. The learner identifies coefficients that are close to zero, and does not aim to fit every training data point. The 
coefficient estimates produced by this method are also known as the L2 norm. For detailed mathematical formulation and practical 
implementation of Ridge Regression please refer to Hastie et al. (2009, pp. 59–65), Müller and Guido (2016, pp. 51–57) and Tattar 
(2017, pp. 312–318). 

2.4.3. Stochastic gradient descent 
Maximum likelihood estimation is used by several machine learning methods, including Logistic Regression, to estimate the model 

coefficients (βk) (Equation (1)). A minimization algorithm such as Gradient Descent (GD) optimization is usually employed for this 
purpose. An alternative approach is to replace GD with its counterpart called Stochastic Gradient Descent (SGD). In GD optimization 
the cost gradient is computed from the complete training set, which can become time consuming for large datasets. In SGD, the 
gradient is computed for one or a batch of training data points at a time until it converges. The term “stochastic” comes from the fact 
that the gradient based on randomly selected training samples is a “stochastic approximation” of the “true” cost gradient. 

Besides being faster than GD, SGD is superior for datasets with redundant samples (all variable levels equal), which applied to the 
dataset in the present study. This observation formed the rationale to include a variant of Logistic Regression with SGD based training. 
We used a regularization approach called “Elasticnet”, which is a convex combination of the L1 and L2 norms, which is available in 
Scikit-learn and well explained in the documentation. 

2.4.4. Bernoulli Naïve Bayes 
Usually, Naïve Bayes based algorithms are designed for text classification (McCallum and Nigam, 1998). However, Bernoulli Naïve 

Bayes is a variant where each feature is assumed to be a binary variable (Manning et al., 2008), and therefore appears as a strong 
candidate classifier to be considered for evaluation on the MVC dataset. The default implementation of Bernoulli Naïve Bayes provided 
in Scikit-learn was used. 

2.4.5. Artificial Neural Networks 
Artificial Neural Networks (ANN) is a mathematical formulation of a biological brain. Like the brain, an ANN model consists of 

several neurons interconnected over different layers (Haykin, 2009). This interconnected structure models and stores the information 
about the complex relationships between the predictor and target variables. The experience learned from the training data is stored as 
weights and biases for each individual neuron. The ANN model emulates a non-linear function between the input predictor variables 
and the output target variable as 

y = F(U;w), (2)  

where F is the non-linear function estimation, U is the set of input predictor variables and y is the target variable. The weights w for the 
ANN model are decided based on an optimization algorithm, which minimizes the error between the estimated and the actual target 
variable during the training process. 

Consider a training set (U(i), d(i))Ni=1 with N sample points. F(U(i); w) is emulated by the ANN model, d(i) is the desired value of the 
output corresponding to the inputs U(i), and the matrix w is a weight matrix. The network training is achieved by minimizing the loss 
function ℰ defined as 

ℰ :=
1
N

∑N

i=1
[d(i) − F(U(i);w)]2 (3) 

In this study the ANN models used had one hidden layer with 20 neurons, and the training was achieved by the Levenberg- 
Marquardt training algorithm (Marquardt, 1963; Levenberg, 1944). 

2.5. Performance estimates 

The area under the receiver operator characteristic (ROC) curve (AUC) was used to measure the performance of the model. The 
ROC shows the power in terms of sensitivity and specificity for prediction of severe injury for different cutoff values of P(Y = 1) 
(probability of sustaining severe injury). The cutoff value determines the trade-off between sensitivity and specificity; increasing the 
sensitivity (identifying more MVC occupants with severe injury) is at the cost of decreasing the specificity (more false positives). Use of 
the OSISP algorithm in the field will require finding a suitable value for this cutoff. This is best determined by the management for 
health care trauma systems and is outside the scope of this study. 

A 10-fold stratified cross validation (SCV) procedure was performed to estimate the performance of the OSISP algorithm for unseen 
data, in terms of ROC and AUC. The dataset was divided into ten randomized folds with approximately equal number of MVC oc
cupants and similar distributions of severe/non-severe injury. One fold at a time was left out, a classification model was derived on 
data from the remaining nine folds. The model was then validated by classifying the observations in the left out fold. This procedure 
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was repeated for all folds, i.e. performed ten times. Mean and 95% CI (±2 standard deviations from mean, assuming normal distri
bution) for the classification performance were calculated from the ten scores. 

2.6. Feature ranking and variable subset performance 

An advantage of machine learning is that it allows to determine which features are important and which can be considered 
redundant or unneeded. The outcome is a subset of relevant features. This process is often referred to as feature selection. An important 
goal in feature selection is feature ranking. When developing an OSISP model, it is valuable to know the ranking of the predictor 
variables (features) with respect to their importance in determining injury severity. 

There are numerous approaches available for feature ranking. However, selection of a suitable method requires deep knowledge of 
the problem domain. In this study, our goal was to acquire ranking of the features for each machine learning algorithm. This requires 
the algorithm to inherently assign scores to the features. The coefficients in Logistic Regression (and its two variants), can serve for this 
purpose. 

We followed the widely used recursive feature elimination (Guyon et al., 2002) approach to carry out the feature ranking. It starts 
with the full set of features and recursively removes the least significant feature(s), building a new model for each step. The process 
continues recursively on smaller subsets of features, until a desired number is reached. In our case, a regression model was trained on 
the full set of predictor variables, and their importance was determined through the regression coefficients. Then, by recursively 
eliminating the most redundant feature, the recursion stopped when only one feature was left (i.e. all were ranked). The algorithm’s 
classification performance in terms of AUC was evaluated as a function of increasing number of features, in the order of their ranking 
from best to worst. It demonstrated which and how many features that were needed to approach the performance for the full feature 
set. 

3. Results 

3.1. Classification performance for all methods 

Table 2 shows the classification performance in terms of AUC evaluated by 10-fold SCV for the top performing classifiers and 
imputation methods. The highest accuracy obtained was AUC = 0.86 (95% CI 0.82–0.90) by Logistic Regression. Consistently under all 
four approaches of handling missing data, both Logistic Regression and Ridge Regression achieved high accuracy. Logistic Regression, 
with marginally better 95% CI values, was the top performing classifier. SGD performed almost on par with the best classifiers, whereas 
Bernoulli Naïve Bayes and ANN showed slightly lower accuracy. The four methods of handling missing data produced relatively similar 
results, with Conditional Probabilities and New Category yielding best performance. In Section 3.2, we show more detailed results for 
the top performing method Logistic Regression. 

3.2. Detailed results for proposed OSISP algorithm 

The ROC curve for the top performing classifier Logistic Regression (Table 2), implemented with Conditional Probabilities 
imputation and evaluated by 10-fold SCV, is shown in Fig. 1. Examples of undertriage and overtriage rates, based on the recom
mendations by ACS-COT and adding overtriage at 1% undertriage, is shown in Table 4. The Logistic Regression model is detailed in 
Table 3, presenting the levels of statistical significance (p-values), OR and 95% CI for each variable. 

The classification performance as a function of number of predictor variables, derived using the feature ranking procedure, is 
shown in Fig. 2. In order of importance, Ejection, Entrapment, Belt use, Airbag deployment and Crash type were the five strongest 
predictors, and together yielded an AUC approaching the full feature set (Fig. 2). The classification accuracy improvement leveled off 
after adding around five to seven of the variables with highest prediction power, using more variables generated relatively small 
improvements. 

Table 2 
AUC values for the different classifiers and imputation methods. CP = Conditional Probabilities.  

Model Imputation methods AUC [95% CI] 

CP New Category Removed Mode 

Logistic Regression 0.86 [0.82, 0.90] 0.86 [0.82, 0.90] 0.85 [0.82, 0.89] 0.84 [0.79, 0.89] 
Ridge Regression 0.86 [0.81, 0.90] 0.86 [0.82, 0.89] 0.85 [0.82, 0.89] 0.84 [0.81, 0.87] 
Stochastic Gradient Descent 0.85 [0.82, 0.88] 0.85 [0.82, 0.88] 0.84 [0.80, 0.88] 0.83 [0.78, 0.88] 
Bernoulli Naïve Bayes 0.84 [0.80, 0.87] 0.83 [0.80, 0.86] 0.82 [0.80, 0.84] 0.82 [0.79, 0.84] 
Artificial Neural Networks 0.78 [0.55, 1.02] 0.83 [0.80, 0.87] 0.78 [0.59, 0.96] 0.82 [0.76, 0.87]  
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Fig. 1. The ROC curve and AUC value for the Logistic Regression classifier. The shaded area shows one standard deviation from the mean.  

Table 3 
Detailed results for the Logistic Regression classifier. The variable level used as reference is shown within parenthesis. The asterisks following 
variable levels indicate level of statistical significance: *, ** and *** denote p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001, respectively.  

Variable β p-value OR (eβ) [95% CI] 

Sex (Male): Female − 0.049 0.48 0.95 [0.83, 1.09] 
Elderly (≤55): >55 *** 0.80 <10− 4 2.22 [1.90, 2.60] 
PSL (15 ≤ x < 25) 

25 ≤ x < 35 − 0.065 0.94 0.94 [0.16, 5.35] 
35 ≤ x < 45 − 0.073 0.91 0.93 [0.26, 3.28] 
45 ≤ x < 55 0.29 0.65 1.34 [0.38, 4.67] 
55 ≤ x < 65 0.50 0.43 1.65 [0.48, 5.72] 
65 ≤ x < 75 0.64 0.32 1.89 [0.54, 6.57] 
75 ≤ x < 85 0.59 0.36 1.81 [0.51, 6.46] 
85 ≤ x < 95 0.80 0.21 2.24 [0.64, 7.79] 
95 ≤ x < 105 1.26 0.051 3.53 [0.99, 12.57] 
105 ≤ x < 115 0.79 0.21 2.21 [0.63, 7.77] 
115 ≤ x < 125 1.22 0.074 3.40 [0.89, 13.00] 

Belt Use (Yes) 
Unbelted*** 1.33 <10− 4 3.79 [3.19, 4.50] 
Unknown** − 0.71 0.0092 0.49 [0.29, 0.84] 

Vehicle (Truck): Car*** 0.40 <10− 4 1.49 [1.29, 1.72] 
Airbag (Not deployed) 

Deployed*** 1.27 <10− 4 3.58 [3.06, 4.17] 
Not available*** 1.21 3.90 × 10− 4 3.56 [1.72, 6.55] 

Location (Urban): Rural*** − 0.30 1.50 × 10− 4 0.74 [0.63, 0.86] 
Seat Position (Back): Front 0.58 0.10 1.78 [0.89, 3.58] 
WN (No): Yes 0.10 0.32 1.11 [0.91, 1.35] 
Crash (Rear End) 

Single*** 1.16 <10− 4 3.20 [2.53, 4.04] 
Head On*** 1.41 <10− 4 4.09 [3.05, 5.49] 
Other* 0.30 0.015 1.35 [1.06, 1.71] 

Eject (No): Yes*** 2.40 <10− 4 10.98 [8.32, 14.50] 
Entrap (No): Yes*** 2.54 <10− 4 12.62 [10.02, 15.92] 
Rollover (No): Yes 0.18 0.078 1.20 [0.98, 1.47] 
Light (Daylight) 

Dark** 0.27 0.0096 1.32 [1.07, 1.62] 
Dark/Lighted*** 0.37 <10− 4 1.45 [1.23, 1.71] 
Dawn* 0.48 0.034 1.61 [1.04, 2.50] 
Dusk − 0.25 0.35 0.78 [0.46, 1.31] 

Intercept (β0)*** − 6.32 <10− 4 –  
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4. Discussion 

4.1. Significance of findings 

The main finding is that an OSISP algorithm is capable of predicting severe injury in a US population of MVC occupants with an 
AUC of 0.86 (95% CI 0.82–0.90, Table 2), based only on variables deemed to be feasible to assess on the scene of crash by first re
sponders. Only a subset of the 5–7 strongest predictors is needed to attain good performance (Fig. 2). The study shows that similar 
classification performance is achieved by several machine learning methods, and that the traditional method Logistic Regression 
appears to be a good choice for developing injury severity prediction algorithms (Table 2). 

To put these findings into perspective, the proposed OSISP algorithm outperforms triage accuracy reported for field triage pro
tocols, and performs on par with the best AACN algorithms. Rehn et al. (2012) reported an undertriage of 19.1% at an overtriage of 
71.6% in their study on 1812 patients admitted to a primary trauma center, whereof 768 had major trauma (New Injury Severity Score 
over 15), after introducing a new two-tiered trauma team activation protocol. As previously mentioned, Stitzel et al. (2016) showed 
that undertriage was 20% with an overtriage of 54% for NASS-CDS data for years 2000–2011, and Xiang et al. (2014) demonstrated 
undertriage of 34% in US emergency departments. In contrast, the OSISP algorithm achieves undertriage of 5% at overtriage of 59% 
(Fig. 1, Table 4), indicating that the method could be used to improve performance of field triage for US MVC occupants. 

We chose to highlight the results for the Logistic Regression classifier. It showed the highest performance; however, the 95% 
confidence intervals overlapped with the other classifiers (Table 2) so there is no evidence that Logistic Regression is likely to have the 
best performance on a prospective dataset. However, Logistic Regression has some important advantages for an OSISP model 
compared to most machine learning models. The model is explainable and the result is easier to interpret than models such as ANN that 
does not provide model coefficients or OR for the predictor variables. This could be an advantage when introducing the model in a 
prehospital setting, the prehospital staff can relate their experience to how the mathematical model works. Logistic Regression is also 
less complex than advanced mathematical models underlying many other classifiers, and can potentially be less prone to overfitting 
than more complex models, especially when regularization techniques are employed. Due to these advantages and the results from the 
current study we therefore suggest to use Logistic Regression as the basis for OSISP. However, it should still be benchmarked against 
other machine learning methods in future studies, since it may still be outperformed by other classifiers, especially on larger and more 
intricate datasets where more complex models may enhance performance. Furthermore, new methods may be needed to handle the 
problem with unobserved heterogeneity in the MVC data, which will limit the performance of injury severity prediction. 

Compared to previous studies on OSISP using data from Sweden (Buendia et al., 2015; Candefjord et al., 2015), the algorithms 

Table 4 
Examples of undertriage (sensitivity or true positive rate) 
and overtriage ([1 - specificity] or false positive rate) for 
the Logistic Regression classifier.  

Undertriage (%) Overtriage (%) 

1 83 
5 59 
13 35 
20 25  

Fig. 2. The classification performance in terms of AUC for the Logistic Regression classifier evaluated as a function of number of predictor variables, 
input subsequently in the order of individual prediction power. 
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developed in the current study perform better. A plausible explanation is that the two strongest predictors in the current model, Eject 
and Entrap (Fig. 2), were not used in the earlier studies because this data is not available in the national Swedish MVC dataset (Buendia 
et al., 2015). The model developed in the present study includes both occupants in light trucks and cars, which should simplify field use 
compared to the earlier models that were separate for trucks (Candefjord et al., 2015) and passenger cars (Buendia et al., 2015). 

The trends for the odds ratios for the different variables included in the study (Table 3) largely follow the trends reported in the 
literature (Candefjord et al., 2015; Buendia et al., 2015; Sasser et al., 2012). A surprising finding in the present study was that crashes 
in rural environment were less dangerous than urban crashes (odds ratio 0.74, p < 0.05). The finding that Logistic Regression slightly 
outperformed other machine learning methods is in agreement with the study by Kusano and Gabler (2014). They evaluated different 
injury risk classifiers for developing AACN, including Logistic Regression, Random Forest, AdaBoost, Naïve Bayes, Support Vector 
Machine, and classification k-nearest neighbors. They used a NASS-CDS dataset aggregating years 2002–2011 to include 16398 ve
hicles involved in non-rollover collisions. The best models used Logistic Regression and yielded AUC of 0.86–0.89, where the highest 
accuracy was obtained for models including age and sex as predictors but this only contributed to a small improvement (past AACN 
models have been criticized for relying on age and sex) (Kusano and Gabler, 2014). 

Compared to AACN algorithms, Stitzel et al. (2016) demonstrated that their Occupant Transportation Decision Algorithm (OTDA) 
achieves < 50% overtriage and <5% undertriage in side impacts and 6–16% undertriage in other types of crashes. They showed that 
this is an improvement in terms of lowered undertriage compared to the algorithms URGENCY and On Star (Stitzel et al., 2016), 
developed and evaluated in previous works (Augenstein et al, 2002, 2003; Bahouth et al., 2004; Rauscher et al., 2009; Kononen et al., 
2011). The OSISP algorithm performs on par with the OTDA algorithm, showing an undertriage of approximately 7% at 50% 
overtriage (Fig. 1, OSISP is a single model for all crash types). OSISP attains high accuracy without utilizing vehicle telemetry data. In 
the future, an effective way of assuring most effective rescue and improving field triage could be to use AACN in conjunction with 
OSISP. For supporting dispatch planning of rescue missions, an algorithm based on vehicle telemetry data alone could be used, such as 
the OTDA (Stitzel et al., 2016). For supporting transport destination decisions OSISP could be used at the scene of crash, as additional 
important information then can be recognized, such as occupant being entrapped or ejected. Currently, vehicle telemetry data is not 
available for most crashes. OSISP can be used for all crashes and is straightforward to implement in a handheld device to be used at the 
scene of crash (Olaetxea Azkarate-Askatsua, 2017), and thus has high potential for improving field triage in the near future. In the long 
term, models like OTDA and OSISP could also be combined into a set of algorithms utilizing the most predictive data momentarily 
available in a continuum from awareness of accident to the MVC patient is delivered to the appropriate hospital, to provide a dynamic 
injury severity prediction to support decisions from dispatch to field triage. 

We can perform a simplified benefit analysis following the work by Stitzel et al. (2016, p. 1217 and Table 5) on a 
population-weighted sample of NASS-CDS data. If we choose a threshold for the OSISP algorithm such that undertriage equals 5%, as 
deemed acceptable by ACS-COT (American College of Surgeons Committee on Trauma (ACS-COT), 2014), the cost is an overtriage of 
59% (Table 4). Assuming that the classification accuracy would be similar for the whole US population, we expect an improvement of 
undertriage from 20% to 5%, with some increase in overtriage (59% versus 54%). This would translate to approximately 4600 more 
patients with severe injury being correctly triaged and receiving more appropriate care every year, if OSISP is implemented nation
wide. If lowering overtriage with help of OSISP would be prioritized by the emergency medical services we could set a threshold 
producing undertriage of e.g. 10%, i.e. halving the rate of undertriage compared to current outcomes, which would yield an overtriage 
of 42%. This translates to more appropriate care for approximately 3100 severely injured patients, while reducing unnecessary use of 
trauma center resources for 94000 patients, every year. 

4.2. Influence of variable encoding and data imputation 

This study followed a rigorous protocol to assess the effects of different variable encoding and data imputation methods. Adapting 
some predetermined variable encoding and imputation method would have been simpler; however, such an approach is only viable if it 
is supported by the literature from similar studies. To our knowledge, no previous studies predicting the effect of different data 
representation and imputation methods on the accuracy of machine learning for an MVC dataset exist. In this study, we adapted two 
methods for encoding data and four ways to handle missing data. Independent of the imputation method and the type of learning 
algorithm, dummy variable encoding consistently produced better results than label encoding. For handling missing data, the Con
ditional Probabilities and New Category imputation methods produced the highest AUC scores (Table 2). However, the influence of 
different imputation methods was relatively small, which indicates that the classification performance is stable. 

4.3. Limitations of the study 

The size of the dataset in this study (n = 21589 occupants) is of the same order of magnitude as several similar studies (Candefjord 
et al., 2015; Kusano and Gabler, 2014; Kononen et al., 2011). However, it is smaller than the study by (Stitzel et al., 2016) (n = 115159 
occupants). Unfortunately, ISS data was not available for a large proportion of the compiled NASS-CDS cases (approximately 43%), 
which had to be excluded. OSISP models can potentially achieve higher accuracy for larger datasets in future studies. 

This study did not employ weighting factors provided by NHTSA to account for the NASS-CDS sampling system (Radja, 2016). 
NASS-CDS samples events that are harmful (property damage and/or injury), and at least one vehicle needs to be towed away. The 
system samples a small proportion of all crashes based on a design where the country is divided into 1195 geographic areas, which are 
further divided into police jurisdictions. Within each jurisdiction, every week crashes are selected for investigation using a strategy 
that increases the probability that high severity crashes are included. The weighting factors can be used to derive estimates 
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representative of the entire country, and assign less weight to more severe crashes (Radja, 2016). Since OSISP is mainly aimed to be 
used by prehospital personnel to complement the triage protocol (Buendia et al., 2015), we reasoned that it is likely that the crashes 
those teams will experience are more severe than most crashes in NASS-CDS, and that adjusting the NASS-CDS sample may make the 
dataset less representative for an OSISP model. Furthermore, crashes with no ISS data were excluded, and the lack of that information 
may not occur completely at random. There is potential bias in our models due to that the data sample may not accurately represent the 
patient population seen by prehospital personnel prospectively. 

It is clear from Table 2 that all the algorithms selected for this study consistently showed good performance, except ANN. When 
performing the 10-fold SCV using ANN, we observed that individual AUC scores of some of the folds were as low as 0.5, i.e. no better 
than random. Thus, the average of ten folds dropped to 0.78 in two out of the four results reported for ANN in Table 2. There is never a 
guarantee that ANN learning will not get stuck in a local optimum, which is the most plausible explanation of the behavior of ANN in 
this study. Another possible reason is that we have used only one hidden layer, there may be need for a more complex network ar
chitecture to overcome this problem. On the other hand, one important aspect is that ANN often requires huge datasets to outperform 
traditional machine learning methods. 

4.4. Future work 

Both of the variants of Logistic Regression considered in this study, namely SGD and Ridge Regression, make use of regularization 
to avoid overfitting. Logistic Regression showed marginally better results than its counterparts with regularization. This affirms that 
the performance scores for Logistic Regression are realistic and not an outcome of overfitting. Thus, selecting Logistic Regression as the 
OSISP algorithm is well justified in our scenario. However, the importance of Ridge Regression and SGD cannot be completely 
overlooked, since the differences in performance (AUC scores) are not statistically significant. An OSISP algorithm based on Ridge 
Regression or SGD is expected to deliver results comparable to those of Logistic Regression, or even better if the data available for 
model construction is noisy. Therefore, designing future models using new data consisting of more variables for the problem addressed 
in this study, all three versions of regression presented here should be considered for developing the OSISP model. ANN may have 
larger potential to improve its performance using larger and more diverse datasets, as compared to other machine learning methods. In 
the future, an OSISP algorithm could potentially also incorporate vehicle telemetry data and additional information from the scene of 
crash. Such rich information, with potentially complex patterns distinguishing severe injury, could lend itself well to the power of 
ANN. Therefore, we encourage the continued use of ANN for injury severity prediction. 

To prove the potential benefits of OSISP for the US population, we recommend to perform a prospective clinical study in collab
oration with emergency medical services. Ideally, such a study would benchmark the accuracy of the field triage protocol in use against 
the performance of the OSISP algorithm, with aim to validate the findings in the present retrospective study. The OSISP algorithm can 
be implemented in a smartphone or tablet for quick and easy recording of the included variables. A first version of a suggested design 
for a smartphone app has been presented in Olaetxea Azkarate-Askatsua (2017). The implementation should preferably be designed in 
close collaboration with medical responders. 

OSISP has so far only been developed for MVC involving cars and trucks. Future studies could address models for other road users, 
such as motorcyclists, cyclists and pedestrians. 

5. Conclusion 

An OSISP algorithm for use in the US by first responders to predict the probability of MVC occupants being severely injured was 
developed, based on evaluations of several machine learning algorithms. The selected algorithm used Logistic Regression and showed 
high classification accuracy for differentiating severe and non-severe injury, and needed only a subset of the 5–7 strongest predictors to 
achieve good performance. Regression models appear to be well suited for MVC injury severity prediction. This study indicates that a 
simple to use OSISP tool for first responders could be utilized to improve field triage accuracy in the US, to improve care for thousands 
of severely injured patients every year, while reducing unnecessary use of trauma center resources for non-severely injured patients. 
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