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1 Introduction

In a series of papers, over the years, we have studied gravity and Yang-Mills theories in a for-
malism we have named the lc2 formalism. In this framework, the (super)Poincaré algebra is
spanned on just the physical degrees of freedom and one of the light-cone directions is iden-
tified as the evolution (“time”) variable. By doing this, the conjugate light-cone momentum
is the Hamiltonian and can be read off by constructing the generators of the algebra order
by order in the coupling constant [1]. The formalism for gravity is set up on a Minkowski
background and the price to pay is that the Hamiltonian is an infinite series of terms
which after the four-point coupling becomes unmanageable. This means that we never
fully prove the symmetries we realize but in our experience, checking symmetries up to the
three-point coupling is sufficient to be convinced that the theory in question satisfies that
particular symmetry. (We do know them all to the four-point coupling order.) Since this
is a perturbative expansion in the gravity fields we can only trust it for weak enough fields.

In a fairly recent paper we showed that (within the limits alluded to above) the fa-
mous Ehlers symmetry [2, 3] can be shown to be an additional symmetry, even in the four-
dimensional theory. In this letter, we ask a different question. Can any of the Poincaré
generators be lifted to be local? We will find that the Hamiltonian can indeed be made
local and we can identify it with the Bondi-van der Burg-Metzner-Sachs (BMS) group
which is an infinite-dimensional enhancement of the Poincaré group. In the usual formula-
tion, this arises as the asymptotic symmetry group at null infinity for asymptotically flat
spacetimes [4–6]. There has been a renewed interest in the study of asymptotic symme-
tries following a recent body of work [7], wherein these symmetries have been connected to
soft theorems for gauge theories. Here we will show the symmetry as a symmetry in the
bulk avoiding the usual sensitivity to the boundary conditions and gauge choices imposed
on the fields. At spatial infinity, for instance, under the standard boundary conditions
in the Hamiltonian formulation of gravity, only the Poincaré algebra could be canonically
realized, not the BMS algebra [8]. In a recent work, however, the BMS group was recov-
ered at spatial infinity by suitably relaxing the boundary conditions, thereby, resolving a
longstanding disparity between the asymptotic structure at spatial and null infinity [9, 10].
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In the next section we will review shortly the formalism and in the following ones we
will show the invariance of the Hamiltonian under the extended symmetry and connect the
symmetry to the BMS one. In a subsequent paper we will discuss the problem in more
generality relating the symmetry to residual reparameterization invariance and investigate
if the symmetry can be further extended.

2 Light-cone gravity and Poincaré symmetry

With the metric (−,+,+,+), the light-cone coordinates are defined as

x± = 1√
2

(x0 ± x3) , x = 1√
2

(x1 + i x2 ) , x̄ = x∗ , (2.1)

with ∂±, ∂̄, ∂ being the corresponding derivatives.
The Poincaré algebra is spanned on the two physical degrees of freedom which we

call h(x) with helicity 2 and h̄(x) with helicity −2. We have chosen x+ as the evolution
parameter, “time” according to Dirac’s prescription [11]. One of the Poincaré generators,
the conjugate momentum P+, is the light-cone Hamiltonian. The light-cone Poincaré
generators split into two kinds: the kinematical ones (K) which do not involve the time
derivative ∂+ and the dynamical ones that involve time derivatives and hence get non-
linear contributions in the interacting theory [1]. Accordingly, we have the generators (the
missing indices refer to the transverse direction as in (2.1))

K : {P, P̄ , P−, J, J
+, J̄+, J+−} ,

D : {P+ ≡ H,J−, J̄−} . (2.2)

and the corresponding algebraic structure

[K,K ] = K , [K,D ] = D , [D,D ] = 0 . (2.3)

For completeness, we present the light-cone Poincaré algebra in the appendix. The canon-
ical generators of the light-cone Poincaré algebra for gravity in terms of the physical fields
h, h̄ can be found in [1].

Gravity in light-cone gauge. The Hamiltonian for gravity reads [1, 12]

H =
∫
d3x

{
∂h̄ ∂̄h + 2κ ∂2

−h̄

(
h
∂̄2

∂2
−
h − ∂̄

∂−
h
∂̄

∂−
h

)
+ c.c. + O(κ2)

}
. (2.4)

The inverse derivative 1
∂−

, defined by 1
∂−

(∂−h) = h, introduces a mild non-locality along
the light-cone which is easy to handle [13]. An alternative is to Fourier transform to
momentum space leading to a new kind of pole.

Given the following relation
δHh ≡ {h , H} , (2.5)
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where the r.h.s. is the Poisson bracket of the field with the Hamiltonian,1 we obtain

δHh = ∂∂̄

∂−
h + 2κ ∂−

(
h
∂̄2

∂2
−
h − ∂̄

∂−
h
∂̄

∂−
h

)

+ 2κ 1
∂3

−

(
∂2

∂2
−
h̄ ∂2

−h − 2 ∂

∂−
h̄ ∂−∂h + h̄ ∂2

−∂
2h

)
, (2.6)

with δH h̄ being the complex conjugate of the above expression.
Another interpretation of (2.6) is as a consequence of a shift in the time coordinate

x+ → x+ + a , (2.7)

with the infinitesimal constant, a not explicitly shown.

Extension of Poincare symmetry — step 1. It is natural to ask what happens if
this constant is replaced by a function of spacetime, i.e.

x+ → x+ + f(x, x̄, x+, x−) . (2.8)

Under this, the fields transform non-linearly as

δHfh = f(x, x̄, x+, x−)
{
∂∂̄

∂−
h + 2κ ∂−

(
h
∂̄2

∂2
−
h − ∂̄

∂−
h
∂̄

∂−
h

)
(2.9)

+ 2κ 1
∂3

−

(
∂2

∂2
−
h̄ ∂2

−h − 2 ∂

∂−
h̄ ∂−∂h + h̄ ∂2

−∂
2h

)
+ O(κ2)

}
,

with δHf h̄ given by the complex conjugate of the above expression.
It is now interesting to see under what circumstances, the transformation in (2.8)

represents a symmetry of the Hamiltonian. To this end, we compute

δHfH = δ
(0)
Hf
H(0) + δ

(κ)
Hf
H(0) + δ

(0)
Hf
H(κ) + O(κ2) . (2.10)

At order κ0, we have

δ
(0)
Hf
H(0) = − (∂−f) ∂∂̄

∂−
h̄
∂∂̄

∂−
h , (2.11)

which vanishes if ∂−f = 0. Thus, the invariance of the free Hamiltonian constrains the
parameter f to be f(x, x̄, x+).

1The fields h and h̄ satisfy the relations

{h(x), h̄(y)} = 1
∂−

δ(3)(x− y) , {h(x), h(y) } = { h̄(x), h̄(y) } = 0 .

– 3 –
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At the cubic order, we find

δ
(0)
Hf
H(κ) = 2κ 1

∂2
−

(h ∂2
−h̄)

(
∂̄2f

∂∂̄

∂−
h + 2 ∂̄f ∂∂̄

2

∂−
h

)
− 4κ ∂2

−h̄ ∂̄f
∂∂̄

∂2
−
h
∂̄

∂−
h

+ 2κ f ∂−∂̄∂h̄

(
h
∂̄2

∂2
−
h − ∂̄

∂−
h
∂̄

∂−
h

)
+ 2κ f ∂2

−h̄

(
∂∂̄

∂−
h

)
∂̄2

∂2
−
h

+ 2κ f 1
∂2

−
(h ∂2

−h̄) ∂∂̄
3

∂−
h − 4κ f ∂2

−h̄
∂∂̄2

∂2
−
h
∂̄

∂−
h . (2.12)

The second and third line, which involve terms with a free f , can be simplified further
to cancel exactly against δ(κ)

Hf
H(0). In so doing, we obtain terms involving ∂̄f and ∂̄2f which

cancel against the first line in (2.12). Therefore, the transformation in (2.9) represents a
symmetry of the light-cone Hamiltonian with the local parameter

f = f(x, x̄, x+) . (2.13)

It is straightforward to check the commutator of Hf with the other generators of the
Poincaré algebra. For instance, with the momentum P , one finds

[P , Hf ] = Hf̂ , with f̂ = ∂f , (2.14)

which reduces to the familiar case

[P , H ] = 0 , (2.15)

when f is a constant.

Extension of Poincare symmetry — step 2. Having made an extension to the
Poincare symmetry focusing on the time direction, we can now look for similar local ex-
tensions in the x and x̄ coordinates

x → x + Y (x) , ∂−Y = ∂Y = 0 , (2.16)
x̄ → x̄ + Y (x̄) , ∂−Y = ∂̄Y = 0 , (2.17)

under which the fields transform as

δY,Y h = Y (x) ∂̄h + Y (x̄) ∂h + (∂Y − ∂̄Y )h ,

δY,Y h̄ = Y (x) ∂̄h̄ + Y (x̄) ∂h̄ − (∂Y − ∂̄Y ) h̄ . (2.18)

The invariance of the Hamiltonian, however, further restricts the parameters to be

∂̄2Y = ∂2Y = 0. (2.19)

reducing them to Lorentz rotations. The above condition constrains Y and Y to be linear
in the coordinates, ruling out superrotations as an extension of the Poincaré algebra in the
bulk (unlike the case at null infinity [14]). In terms of the light-cone Poincaré algebra, the
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transformations in (2.18) account for the transformations generated by P, P̄ and J in the
appendix.

Nevertheless, it is more convenient to use the Y, Y notation for the Poincaré transfor-
mations in the transverse directions x and x̄ in order to demonstrate how the local trans-
formation in (2.9) satisfies non-trivial commutation relations with the ones given in (2.18).
This allows us to establish connections with the BMS symmetry.

3 Comparison with BMS symmetry

A particularly interesting choice of f involving the rotations Y and Y , which obey (2.19), is

f(x+, x, x̄) = T (x, x̄) + 1
2 x

+ (∂Y + ∂̄Y ) , (3.1)

which coincides with the BMS symmetry [14]. This choice of f follows from the light-
cone gauge conditions imposed on the metric.2 Since the light-cone system is a Carroll
hypersurface, the above relation can also be obtained from the conformal Carroll transfor-
mations [16] in the null time direction x+.

The field h transforms as

δY,Y ,f h = δY,Y h + δfh , (3.2)

where the explicit form can be read off from (2.9) and (2.18). One can choose the initial
surface to be x+ = 0 and evolve the algebra at later times using the dynamical generators,
in which case the function f = T in (3.1). Therefore, the BMS transformations in light-cone
gravity to order κ read

δY,Y ,T h = Y (x) ∂̄h+ Y (x̄) ∂h + (∂Y − ∂̄Y )h+ T
∂∂̄

∂−
h

− 2κT ∂−

(
h
∂̄2

∂2
−
h − ∂̄

∂−
h
∂̄

∂−
h

)
− 2κT 1

∂−

(
∂2

∂2
−
h̄ ∂2

−h

)

− 2κT ∂2

∂3
−

(h̄ ∂2
−h) + 4κT ∂

∂2
−

(
∂

∂−
h̄ ∂2

−h

)
, (3.3)

with the parameters Y , Y and T satisfying

∂Y = ∂−Y = 0 , ∂̄Y = ∂−Y = 0 , ∂−T = 0 , (3.4)
2The transformations (2.9) and (2.18) must respect the light-cone gauge conditions on the metric gµν

in order to ensure that no new degrees of freedom are introduced beyond the h and h̄. In the light-cone
gauge, three metric components are set equal to zero [15]

g−− = g−i = 0 , (i = 1, 2) ,

while the remaining components are parameterized as follows: g+− = −eφ, gij = eψγij , with φ, ψ real
and γij real, symmetric and unimodular. The fourth gauge choice is

φ = ψ

2 ,

fixing the time dependence of f in terms of Y, Y .
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and
∂̄2Y = ∂2Y = 0 . (3.5)

The commutator of these transformations is[
δ(Y1, Y 1, T1) , δ(Y2, Y 2, T2)

]
h = δ(Y12, Y 12, T12)h , (3.6)

where the new parameters are

Y12 ≡ Y2 ∂̄ Y1 − Y1 ∂̄ Y2 , (3.7)
Y 12 ≡ Y 2 ∂ Y 1 − Y 1 ∂ Y 2 , (3.8)

T12 ≡ [Y2 ∂̄ T1 + Y2 ∂ T1 + 1
2 T2(∂̄Y1 + ∂Y 1)] − (1↔ 2) . (3.9)

Thus, two such transformations close on themselves with the parameters satisfying (3.4)
and (3.5). This is the light-cone realization of the BMS algebra in four dimensions [14].

Following the BMS nomenclature, these “supertranslations” labeled by T (x, x̄) enhance
the dynamical part of the Poincaré algebra into an infinite-dimensional set, while the
kinematical part of the algebra remains unaltered

K → K ,

D → D(T ) . (3.10)

The BMS algebra in (3.6) can then also be written as

[K,K ] = K , [K,D(T ) ] = D(T ) , [D(T ),D(T ) ] = 0 . (3.11)

By restricting T to be linear in x or x̄ with the condition ∂2T = ∂̄2T = 0, the dynamical
part D(T ) reduces to D, which corresponds to the Poincaré subgroup of the BMS algebra.

Unlike in covariant formulations, where the four spacetime translations get enhanced
to angle-dependent supertranslations, in the light-cone formalism, the dynamical part of
the Poincaré algebra is enhanced to accommodate supertranslations, thereby, yielding the
BMS algebra in four dimensions. In both cases, however, the enhancement of the Poincaré
algebra to the infinite-dimensional BMS algebra involves only a single local parameter as
a consequence of Lorentz invariance.

We must emphasize though that the invariance of the Hamiltonian under the BMS
transformations is only strictly proven to order κ. However, we do not anticipate formal
difficulties in extending these results to higher orders, although the explicit calculations
can become extremely cumbersome.

Even though this analysis has been performed only up to first order in the coupling con-
stant, one can already draw parallels with existing BMS results for the full Einstein theory
at null and spatial infinity. The BMS analysis at spatial infinity involves some subtleties
that can be better understood in the linearized theory of gravity, for instance, the canonical
realization of boost generators [17]. In the same spirit, our perturbative approach in the

– 6 –
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light-cone formalism offers an unconventional insight into the structure of the BMS symme-
try. Another similarity with the spatial infinity analysis is that the invariance of the Hamil-
tonian reduces the parameters, Y and Y , to Lorentz rotations, thereby eliminating superro-
tations [14] from the theory. There are several ways to interpret the BMS symmetry in grav-
ity apart from the original work of [4–6] as the enhancement of the Poincaré algebra with
angle-dependent supertranslations. In [16], for instance, the BMS algebra was argued to be
the conformal extension of the Carroll algebra on null hypersurfaces. In light-cone gravity,
we present a new interpretation of the BMS symmetry as the local extension of the dynami-
cal part of the Poincaré algebra in Dirac’s front form analysis [11]. Light-cone gravity offers
a straightforward approach to study the BMS symmetry in a physical gauge, which might
help us better understand its connection with on-shell amplitudes and soft theorems [7, 18].

A unique result of our light-cone analysis is that the BMS algebra can be represented
on the two physical fields of graviton in the bulk, without any need for asymptotic limits,
suggesting that the BMS symmetry could be more than just an asymptotic symmetry. Our
scope is different from the BMS analyses relevant for black hole physics as we are mainly
interested in the implications the extended symmetry might have for the quantum theory
in a pertubative regime since the formalism is not suitable for studies with strong gravity
fields. We wish, for example, to utilize the knowledge of this new symmetry to better
understand the ultraviolet behaviour of the theory, classify counterterms, etc. in the regime
of linearized gravity. Light-cone gravity (formulated in the helicity basis) is closely related
to on-shell physics - MHV Lagrangians, double-copy relations, etc. [19–21]. Accordingly,
the light-cone formalism is well suited for examining the connections between these infinite-
dimensional symmetries and the perturbative S-matrix and scattering amplitudes. It will
also be interesting to look at the corresponding symmetry issues in maximal supergravity.

Acknowledgments
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of SM is partially supported by the ERC Advanced Grant “High-Spin-Grav”, by FNRS-
Belgium (conventions FRFC PDRT.1025.14 and IISN 4.4503.15), as well as by funds from
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A Light-cone Poincaré algebra in four dimensions

We define

J+ = J+1 + iJ+2
√

2
, J̄+ = J+1 − iJ+2

√
2

, J = J12 , H = P− . (A.1)
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The non-vanishing commutators of the Poincaré algebra are listed below.

[H,J+−] = −iH , [H,J+] = −iP , [H, J̄+] = −iP̄
[P+, J+−] = iP+ , [P+, J−] = −iP , [P+, J̄−] = −iP̄

[P, J̄−] = −iH , [P, J̄+] = −iP+ , [P, J ] = P

[P̄ , J−] = −iH , [P̄ , J+] = −iP+ , [P̄ , J ] = −P̄
[J−, J+−] = −iJ− , [J−, J̄+] = iJ+− + J , [J−, J ] = J−

[J̄−, J+−] = −iJ̄− , [J̄−, J+] = iJ+− − J , [J̄−, J ] = −J̄−

[J+−, J+] = −iJ+ , [J+−, J̄+] = −iJ̄+ ,

[J+, J ] = J+ , [J̄+, J ] = −J̄+ . (A.2)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] A.K.H. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrary spin,
Nucl. Phys. B 227 (1983) 31 [INSPIRE].

[2] S. Ananth, L. Brink and S. Majumdar, A hidden symmetry in quantum gravity, JHEP 11
(2018) 078 [arXiv:1808.02498] [INSPIRE].

[3] S. Majumdar, Ehlers symmetry in four dimensions, Phys. Rev. D 101 (2020) 024052
[arXiv:1904.08453] [INSPIRE].

[4] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general
relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962)
21 [INSPIRE].

[5] R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat
space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

[6] R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851
[INSPIRE].

[7] A. Strominger, Lectures on the infrared structure of gravity and gauge theory,
arXiv:1703.05448 [INSPIRE].

[8] T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of
general relativity, Annals Phys. 88 (1974) 286 [INSPIRE].

[9] M. Henneaux and C. Troessaert, BMS group at spatial infinity: the Hamiltonian (ADM)
approach, JHEP 03 (2018) 147 [arXiv:1801.03718] [INSPIRE].

[10] M. Henneaux and C. Troessaert, The asymptotic structure of gravity at spatial infinity in
four spacetime dimensions, arXiv:1904.04495 [INSPIRE].

[11] P.A.M. Dirac, Forms of relativistic dynamics, Rev. Mod. Phys. 21 (1949) 392 [INSPIRE].

[12] S. Ananth, L. Brink, R. Heise and H.G. Svendsen, The N = 8 supergravity Hamiltonian as a
quadratic form, Nucl. Phys. B 753 (2006) 195 [hep-th/0607019] [INSPIRE].

– 8 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(83)90140-2
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB227%2C31%22
https://doi.org/10.1007/JHEP11(2018)078
https://doi.org/10.1007/JHEP11(2018)078
https://arxiv.org/abs/1808.02498
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.02498
https://doi.org/10.1103/PhysRevD.101.024052
https://arxiv.org/abs/1904.08453
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.08453
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0161
https://inspirehep.net/search?p=find+J%20%22Proc.Roy.Soc.Lond.%2CA269%2C21%22
https://doi.org/10.1098/rspa.1962.0206
https://inspirehep.net/search?p=find+J%20%22Proc.Roy.Soc.Lond.%2CA270%2C103%22
https://doi.org/10.1103/PhysRev.128.2851
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C128%2C2851%22
https://arxiv.org/abs/1703.05448
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.05448
https://doi.org/10.1016/0003-4916(74)90404-7
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C88%2C286%22
https://doi.org/10.1007/JHEP03(2018)147
https://arxiv.org/abs/1801.03718
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.03718
https://arxiv.org/abs/1904.04495
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.04495
https://doi.org/10.1103/RevModPhys.21.392
https://inspirehep.net/search?p=find+J%20%22Rev.Mod.Phys.%2C21%2C392%22
https://doi.org/10.1016/j.nuclphysb.2006.07.014
https://arxiv.org/abs/hep-th/0607019
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0607019


J
H
E
P
0
7
(
2
0
2
1
)
1
2
9

[13] S. Mandelstam, Light cone superspace and the ultraviolet finiteness of the N = 4 model,
Nucl. Phys. B 213 (1983) 149 [INSPIRE].

[14] G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at
null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].

[15] J. Scherk and J.H. Schwarz, Gravitation in the light-cone gauge, Gen. Rel. Grav. 6 (1975)
537 [INSPIRE].

[16] C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups and BMS symmetry,
Class. Quant. Grav. 31 (2014) 092001 [arXiv:1402.5894] [INSPIRE].

[17] O. Fuentealba, M. Henneaux, S. Majumdar, J. Matulich and C. Troessaert, Asymptotic
structure of the Pauli-Fierz theory in four spacetime dimensions, Class. Quant. Grav. 37
(2020) 235011 [arXiv:2007.12721] [INSPIRE].

[18] L. Donnay, A. Puhm and A. Strominger, Conformally soft photons and gravitons, JHEP 01
(2019) 184 [arXiv:1810.05219] [INSPIRE].

[19] A. Gorsky and A. Rosly, From Yang-Mills Lagrangian to MHV diagrams, JHEP 01 (2006)
101 [hep-th/0510111] [INSPIRE].

[20] P. Mansfield, The Lagrangian origin of MHV rules, JHEP 03 (2006) 037 [hep-th/0511264]
[INSPIRE].

[21] S. Ananth and S. Theisen, KLT relations from the Einstein-Hilbert Lagrangian, Phys. Lett. B
652 (2007) 128 [arXiv:0706.1778] [INSPIRE].

– 9 –

https://doi.org/10.1016/0550-3213(83)90179-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB213%2C149%22
https://doi.org/10.1103/PhysRevLett.105.111103
https://arxiv.org/abs/0909.2617
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0909.2617
https://doi.org/10.1007/BF00761962
https://doi.org/10.1007/BF00761962
https://inspirehep.net/search?p=find+doi%20%2210.1007%2FBF00761962%22
https://doi.org/10.1088/0264-9381/31/9/092001
https://arxiv.org/abs/1402.5894
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.5894
https://doi.org/10.1088/1361-6382/abbe6e
https://doi.org/10.1088/1361-6382/abbe6e
https://arxiv.org/abs/2007.12721
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.12721
https://doi.org/10.1007/JHEP01(2019)184
https://doi.org/10.1007/JHEP01(2019)184
https://arxiv.org/abs/1810.05219
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.05219
https://doi.org/10.1088/1126-6708/2006/01/101
https://doi.org/10.1088/1126-6708/2006/01/101
https://arxiv.org/abs/hep-th/0510111
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0510111
https://doi.org/10.1088/1126-6708/2006/03/037
https://arxiv.org/abs/hep-th/0511264
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0511264
https://doi.org/10.1016/j.physletb.2007.07.003
https://doi.org/10.1016/j.physletb.2007.07.003
https://arxiv.org/abs/0706.1778
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0706.1778

	Introduction
	Light-cone gravity and Poincaré symmetry
	Comparison with BMS symmetry
	Light-cone Poincaré algebra in four dimensions

