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ABSTRACT In this paper, we propose a coherent framework for multi-machine analysis, using a group
clustering model, which can be utilized for predictive maintenance (PdM). The framework benefits from the
repetitive structure posed by multiple machines and enables for assessment of health condition, degradation
modeling and comparison of machines. It is based on a hierarchical probabilistic model, denoted Gaussian
topic model (GTM), where cluster patterns are shared over machines and therefore it allows one to directly
obtain proportions of patterns over the machines. This is then used as a basis for cross comparison between
machines where identified similarities and differences can lead to important insights about their degradation
behaviors. The framework is based on aggregation of data over multiple streams by a predefined set of
features extracted over a time window. Moreover, the framework contains a clustering schema which takes
uncertainty of cluster assignments into account and where one can specify a desirable degree of reliability
of the assignments. By using a multi-machine simulation example, we highlight how the framework can
be utilized in order to obtain cluster patterns and inherent variations of such patterns over machines.
Furthermore, a comparative study with the commonly used Gaussian mixture model (GMM) demonstrates
that GTM is able to identify inherent patterns in the data while the GMM fails. Such result is a consequence
of the group level being modeled by the GTM while being absent in the GMM. Hence, the GTM are trained
with a view on the data that is not available to the GMM with the consequence that the GMM can miss
important, possibly even key cluster patterns. Therefore, we argue that more advanced cluster models, like
the GTM, can be key for interpreting and understanding degradation behavior across machines and ultimately
for obtaining more efficient and reliable PdM systems.

INDEX TERMS Exploratory data analysis, cluster analysis, Gaussian topic modeling, hierarchical modeling,

multi-machine analysis, multiple data streams, predictive maintenance.

I. INTRODUCTION

The importance of manufacturing maintenance is continu-
ously increasing in industry and academia due to the future
expectations on maintenance as a key enabler of industrial
digitalization. Increased levels of automation, sometimes
even referred to as “light-out factories”, can only be real-
ized with novel maintenance solutions. As a result, the aca-
demic field has recently increased its focus towards advanced
data analysis for predictive maintenance (PdM). Maintenance
experts in industry and academia have therefore conceptual-
ized smart maintenance in a digitalized manufacturing [9].
Smart maintenance highlights data-driven decision making as
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well as internal and external integration as important prin-
ciples to improve plant performance. This means sharing
and analyzing data from multiple machines to predict future
maintenance activities will be central in the development of
future solutions in maintenance. However, previous research
has identified challenges in developing effective and precise
algorithms for PdM, often due to the lack of high-quality
labeled data [58], i.e., the data has not been annotated with
true machine health condition or it has not contained exam-
ples of every possible fault type [23]. Correctly labeled data
might not be available in real world industrial environments
due to different reasons. As an example, for critical machines
in a manufacturing company, the first aim is not allowing
them to break down by carrying out periodic maintenance
intervals. This means that no actual break-down data exists
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and hence, it is difficult to define the often necessary thresh-
olds and tolerance limits for condition monitoring. There is
also no observations until the actual end of life which can
be used to identify fault patterns [36], [58]. On the other
hand, non-equipment-based measures such as product quality
can also be used for labeling, but it is difficult to ensure
that this type of information can be directly related to the
corresponding machine operations. Such situations can only
be managed through unsupervised machine learning methods
that explore hidden structures and patterns without any target
specifications [46]. Moreover, in reality, machines can gen-
erate highly heterogeneous data from multiple streams, e.g.
from sensors and other computer systems, which can include
a high degree of non-linearity due to the external influencing
factors and other sources of uncertainties. Therefore, it is not
easy to integrate all the information to provide data-driven
decision support for PAM and there is a need of methods and
algorithms that are able to transfer learned knowledge from
one machine to another similar machine [30], [35].

We present a framework that is able to capture several
of the above complexities and it allows one to perform
multi-machine analysis. The framework uses an unsupervised
hierarchical probabilistic model called Gaussian topic mod-
eling (GTM) [8], [53] for exploring cluster patterns across
multiple machines and where the extracted knowledge associ-
ated with identified clusters is used for machine health assess-
ment and degradation modeling. The framework builds upon
previous research [10] where one aggregates any number of
features over multiple streams in order to obtain a data point
that represents the state at that particular time. The main
contributions are summarized as follows:

« acoherent framework where similarities and differences
across machines can be utilized for learning and inter-
preting cluster patterns,

o a simulation procedure for exploring the above
framework,

« experiments that show the benefit of utilizing the frame-
work for exploring cluster patterns across machines.

The remainder of the paper is structured as follows.
Section II focuses on related literature of PAM. The pro-
posed framework for multi-machine analysis is described
with illustrative examples in Section III. Section IV presents
a multi-machine simulation; application of our framework
for discovering patterns across multiple machines; results
with exploration of shared clusters as well as results from a
comparison with another cluster model called Gaussian mix-
ture model (GMM). Section V discusses advantages of the
proposed framework in terms of the research gaps highlighted
in the introduction. Section VI concludes the paper with a
summary and future work.

Il. RELATED WORK

PdM has a high potential for improving productivity of
manufacturing companies where the vision is failure free
production with several expected effects such as: increased
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efficiency and reliability of operations as well as cost effec-
tiveness. According to the estimation of Daugherty et al. [2],
with the implementation of PdM, it is possible that com-
panies can save up to 12% over scheduled repairs, reduce
overall maintenance costs by up to 30% and eliminate asset
failures up to 70%. To reach this vision and the expected
effects, PAM has gained exponentially increasing attention
in the context of prognostic and health management (PHM)
and has been started to be adopted by many manufactur-
ing companies in industry. Beside potential effects in indus-
trial applications of PdM, it also holds a great interest in
academia with rapidly increasing journal and conference
contributions [13], [26]. In principle, PAM predicts faults
and failures by real-time evaluation of the system state in
production and thereby enables for efficient maintenance
operations [44]. This allows for more efficient maintenance
planing with reduced downtime and increased efficiency as a
result [40]. Literature shows that data-driven analytics can be
used to gain knowledge from data to facilitate maintenance
decision-making in industrial practice of PdM [34]. In this
context, there are different types of machine learning (ML)
techniques that have been used in various phases of PdM
implementation [19], [38]. Recent review studies performed
by Lee et al. [33] and Kim et al. [29], acknowledge that ML
approaches provide increasingly effective solutions in these
different phases of PdM, facilitated by the growing capabili-
ties of hardware, cloud-based solutions, and newly introduced
state-of-the-art algorithms based on different learning meth-
ods such as: supervised, unsupervised, semi-supervised, and
reinforcement learning [3].

Cluster analysis [27] is one of the most commonly used
unsupervised ML technique within exploratory data analy-
sis for identification of hidden patterns. By identifying the
cluster structure in the data and augmenting such structure
with domain knowledge and meta data, new information can
be gained which can further be used in a supervised setting
or anomaly detection for the purpose of early detection and
prediction of breakdown. In terms of machine knowledge
discovery, Diaz-Rozo et al. [17] proposed an unsupervised
approach for identifying multidimensional patterns of com-
ponents within a cyber-physical system (CPS) application.
In order to find the behavior patterns without any contex-
tual information like machine status or maintenance history,
different clustering algorithms such as k-means, hierarchi-
cal agglomerative and GMM were applied by using real
data acquired through an embedded electronic based CPS
device from a computer numeric control (CNC) machine
during high throughput machining operation. Then, these
algorithms were compared with each other in terms of their
contribution to the knowledge extraction about the compo-
nent performance. As a result, it has been demonstrated
that unsupervised ML algorithms embedded in CPS are the
key enablers for working towards highly accurate diagnosis
and prognosis tools. In another study proposed by the same
authors [18], they presented a new unsupervised learning
algorithm based on GMM called Gaussian-based dynamic
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probabilistic clustering that is capable of coping with data
streams and process dynamics. The algorithm was tested by
using synthetic data and streams from an industrial test bed.
Amruthnath and Gupta [3] proposed an unsupervised learn-
ing based approach for early fault detection in PdM. Both
GMM and k-means was tested by using real world vibration
data collected from an exhaust fan and it was found that
GMM is more capable of predicting fault states than k-means.
Yuan et al. [55] proposed a new unsupervised approach to
overcome challenges in feature extraction and segmentation
of high dimensional complex condition-based maintenance
(CBM) life cycle data. Within such context, they developed
two kinds of autoencoder models based on deep learning
and cluster analysis and tested them by using an experi-
mental bearing life cycle data set used for fault diagnosis in
PdM. Recently, Zschech et al. [58] proposed a data science
based approach including several analytical methods such as
agglomerative hierarchical clustering for unsupervised pat-
tern detection and a recurrent neural network for prognostic
model training. The developed approach was tested using real
world data in order to demonstrate its usability and practical
applicability in the context of building prognostic decision
models with missing labels. According to these studies, clus-
ter analysis provides high flexibility and effectiveness in PAM
applications for handling common challenges in real world
machine and process data such as high dimensionality and
lack of correct labeling of machine status or maintenance
history [16]. However, the domain is still quite challenging
as it requires rather complex analysis of multiple data streams
and their interrelation together with a model that enables for
interpretable and actionable patterns that can be used as a
decision support system for PAM in manufacturing [30].

Related to our point of foci, i.e., analysis of multiple
machines, there is a term ‘““fleet based PHM” where a fleet
is identified as a set of machines grouped with regards to
some characteristics, e.g., performing similar tasks, having
similar service times or similar performance and health con-
ditions [35], [52]. Fleet based approaches have several advan-
tages. First, it increases the amount of data available for
health assessment and remaining useful life calculation [52].
Second, based on similarities of machines, conditions and
situations within the fleet allow transfer of knowledge which
further improve algorithmic capabilities [51].

Third, this type of approach allows analysis in dynamic
operational conditions and detection of deviations on
machine behavior by comparisons, with the other machines
within the fleet, and offers high level of interpretability as
demonstrated in a recent study by Hendrickx et al. [23].
Several approaches for PHM of fleets have recently been
proposed in the literature [39]. These approaches are usu-
ally designed for specific fleet compositions and characteris-
tics [52]. For instance, Lapira [31] proposed a framework for
health monitoring and diagnosis of a fleet of wind turbines
using clustering. Similarly, Liu [37] proposed a CPS frame-
work for health management of wind turbines and demon-
strated the health assessment using fleet-based analytics.
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Peysson et al. [41] has recently presented a framework for
fleet-wide maintenance.

Within our paper, we prefer the use of the term “multi-
machine analysis™, rather than “fleet” since the latter term
inevitable leads one to think more large scale when it comes
to the number of machines whilst our framework can provide
significant insights with as little as two machines. In terms of
selecting the machines taking part in the analysis, we agree
with the characteristic that Wagner et al. [52] and Lee et al.
[35] list. As a further specification with respect to our frame-
work, the critical component within the machines should have
comparable physical properties and functions since the same
cluster patterns are shared over the machines.

In contrast to these previous studies, we deploy a topic
model [8], [53] specifically designed to handle group data
with shared patterns. Moreover, we integrate this model
with an extension to groups of a previous researched frame-
work [10] that are able to handle multiple streams. The result
is a coherent framework for multi-machine analysis using
multiple data streams and further contributes to the research
gap on how to efficiently model a set of machine character-
istics in terms of patterns over time in a variety of operation
conditions.

Ill. MULTI-MACHINE ANALYSIS

We first present an overview of our framework for
multi-machine analysis. Our main assumption is that we have
a set of machines that share some characteristics so that it
would be meaningful to have a common language in terms
of patterns across those machines. This would allow one to
explore the patterns and correlate them with the machines’
historical maintenance records, as well as other meta infor-
mation in order to understand their meaning in terms of
degradation [31, Section 2.2.3], as shown in Figure 1.

The main technique used for this purpose is unsupervised
learning through cluster analysis which can be defined as
grouping collection of data points based on some pattern
similarity [27]. In order to obtain such cluster patterns over
multiple streams within a machine, we first define a set of
features and perform a sliding window operation to extract
those features over all streams to obtain a joint feature vec-
tor [10], as shown in Figure 2. This allows us to describe
the current state of the machine for each point in time cor-
responding to the sliding window, as shown in Figure 3. This
approach is repeated for all machines which results in one set
of data points from all machines. We apply a group clustering
model [53] commonly referred to as topic modeling in the
case of text mining [8]. In this hierarchical model, the clusters
are shared at global level and the data residing within groups,
i.e., the different machines, can only be modeled through
these clusters although with different proportions. Hence,
certain machines might have a high percentage of a certain
cluster while another has a low percentage, as shown in
Figure 4. Now, since the data points are extracted using a
sliding window, we can color time segments of the streams of
each machine by the cluster identity for that specific period
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FIGURE 1. An illustration of the framework where clusters are utilized for exploration of machine

behavior.
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FIGURE 2. An illustration of the data extraction process of the framework.
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FIGURE 3. An illustration of clusters projected on the streams.

in time [10], [25] in order to be used for visual exploration
over time. It should be noted that a given cluster model can
be utilized in real-time scenarios for both prediction of class,
after labeling the clusters, as well as for anomaly detection,
as conceptualized in Figure 5.
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IV. ILLUSTRATIVE EXAMPLE

In this section, we provide an illustrative example of the
core of our framework by simulated data from multiple
machines and streams from those machines. We elaborate on
the simulation procedure and the framework including the
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FIGURE 4. An illustration of how shared clusters patterns can be compared across machines.

Predicted as “anomalous”

Non-degrading .

Degrading ./
qc%bcﬂ ;

Predicted as degrading

S~

FIGURE 5. A figure that illustrates how a cluster model can be utilized for prediction of the

cluster label as well as for anomaly detection.

clustering model. We provide details of the experiment, ana-
lyze the results and highlight possible interpretations. Lastly,
we perform a comparison with the GMM which is another
commonly used cluster model.

A. MULTI-MACHINE SIMULATION

In order to simulate data from multiple streams, we utilize
the skewed normal distribution [4] which takes parameters & -
location, w — scale, and « — slant.! The parameter « regulates
the skewness where « = O results in the standard normal
distribution, as shown in Figure 6. In order to simulate data
streams, we assume that each stream is defined by certain
basic patterns that repeat with some regularity over time. In
our case, we also assume that these patterns are defined in
terms of different parameter configurations:

T £[£ o, (1)
IThere is an additional parameter 7 in the R-package which regulate the
specific family of the skewed normal distributions that is being used. We here

leave that parameter by its default value, 0, to stay with the skewed normal
distribution instead of the extended skewed normal distribution.
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FIGURE 6. The figure depicts the skewed normal distribution for three
different levels of slant (skewness): [¢ = 0, 0 = 1, @ = 0] (solid line);
[6 =0,0 =1, a = 1] (dashed line); [¢ =0, © = 1, « = 4] (dotted line).

of the skewed normal distribution in order to simulate some
deviation from the normal assumption often made and which
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our clustering approach is based on (since we use Gaus-
sian mixture components). Moreover, since in our setting,
machines consist of m streams, we define a matrix of basic
patterns which capture the behavior for each stream in rela-
tion to the other streams, i.e., we assume correlation between
the streams:

A2Dy, ..., T )

The regularity of patterns is defined in terms of a Markov
chain p(A;|A;) between different patterns by drawing proba-
bility distributions for each stream in the following way:

» B 3

where 8; = B,Vi € {1, ..., h},i.e., h basic patterns, and 8 <
1, i.e., a symmetric “bowl”-shaped Dirichlet density over
the patterns emphasizing some stability when transitioning
from one pattern to another. Each pattern A; also has a certain
duration time which we simulate utilizing a Poisson distri-
bution Pois(A) by drawing the number of samples for which
the pattern is manifested.” Lastly, different type of noise may
distort the data. In order to reflect it in our simulation model,
we implement the concept of e-contamination [5]:

(&, o, o], €) £ (1 = ON([§, @, a]") + eN(p, 0), (4)

P(Ak|A;) ~ Dirichlet(B, . ..

where N is the skewed normal density, A/ is the normal
density and where:

w ~ Uniform(x; ¢1,¢Y), o ~ Uniform(x; %, n%), (5)

where Uniform(-) is the uniform distribution over the intervals
[-1, -¥]. The idea behind this type of contamination is to have
some distortion noise according to a degree specified by € (a
small continuous number).

Now, given the set of / basic patterns for the streams:

A2{AL, ... A, 6)

we can construct the following simulation configuration,
to be used in Algorithm 1, for obtaining multiple streams from
one machine:

[A B e ¢t b gt phT, )

Since we can generate data streams for a single machine,
we utilize this algorithm in order to generate a set of
machines, all of which are sharing patterns to different extent,
as depicted by 2.

B. GAUSSIAN TOPIC MODELING

By utilizing the algorithms in the previous section, we assume
that we have obtained streams of sensor measurements
xllzn, e, xi’fn, where x{:n £ xi, e, xfl, from each machine.
We then proceed by extracting features over a sample
point window of size w and extract u features fi.,(¥) £
fi®), ..., fu(X) over that window for each stream, yielding
joint aggregated feature vectors (in block matrix notation) of

2We will assume the same sampling frequency for all streams.
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the form [10], [25]:

i'_'k £ [fl:u (I:xlg:(k-i-w—l)]T) SRR £ ([xl?f(ker])]T) 1|T
@)

where k is the starting index for the window. Then, by letting
the window move over time and extract features, sets of data
vectors are generated. However, if one move the window
with only one step, many similar joint feature points may
be generated since then only one point within the window
has changed. In practice, one can therefore choose to let the
window “‘jump” a number of steps » [25], which yields points
of the form:

fé[ﬁlvfr+1’ﬁ2r+]a"'7l_%|_gjr+1] (9)

and since our simulation procedure, as defined by
Algorithm 2, ensures that each machine M, has the same
number of streams and samples within those streams, we can
obtain a collection/groups of data points, [F}.,]7 where v
is the number of machines under consideration. Given this
collection of data, we apply a GTM [8], [53], where each topic
is a multivariate Gaussian distribution. For clarity, we utilize
the term cluster instead of topic in the description below.
The generative structure of the model (for details, see further
Section IV-C) can then be described by:

1) Draw g clusters (topics) in terms of covariance matrices
Y., and means [i1.4 based on some appropriate prior
(further specified later in Section I'V-C).

2) Draw group cluster proportions 51;V (also further spec-
ified in Section IV-C).

3) For each machinei € {1,...,v}:

a) Draw a cluster ¢~ Categorical (éi)
b) Draw a vector F ~ Normal(ji., X.)
¢) Repeat from 3a

The key feature of this type of hierarchical model is that it
captures the most important patterns on a shared global level.
The aggregated data for each machine can only be modeled
through these shared clusters and, hence, one obtain a com-
mon terminology in terms of patterns across machines which
can be further used for exploration and interpretation using
some additional meta-information such as logs of machines
and historical maintenance reports. Combining such informa-
tion can yield significant insights in degrading performance
and breakdown behavior. We utilize the multivariate Gaussian
distribution as a representation for clusters due to the fact that
itis a well-known and an easy interpretable distribution which
has been found useful in clustering problems within manu-
facturing [3], [17]. It should be noted that we implicitly make
the assumption that clusters have multi-dimensional convex
elliptic shape by using multivariate Gaussian distributions
as cluster components. However, as we will highlight in the
next section, we will utilize probabilistic programming tech-
niques [12] where the model is specified through a program-
ming language separated from the training algorithm which
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Algorithm 1: Simulate Single Machine — Multiple Streams

Input : Simulation parameters [A, B, A, €, ¢, ¢¥, nT, n¥17, a transition matrix p(Ax|A;) and a number of samples n
Output: m data streams consisting of n points denoted by xllm, N
1i<0

2 Draw initial pattern A; ~ Uniform(A)
3 repeat

4 Draw pattern A;+1 ~ p(AxlAi), k € {1, ...,

h}, see Equation (3)

5 Draw duration of A;y; in terms of number of samples z;41 ~ Pois(A)

6 for j < 1 tomdo

7 sample x/ ) ~ T (A; 1(',)T,e,whereA- 1(Jj,)isthej: throw of A;1
p (Zk |Zk+1) (Z;::H Zk+Zi) ( i+1 {J ) i+14J J i+

8 end

9 i<—i+1
10 until Yz > n

m
11 For each stream xl:n’ ce XY,

1 m
12 return Xips o9 Xl

remove points with index above n (spill over)

Algorithm 2: Simulate Multiple Machines - Multiple Streams

input : Simulation parameters [A4, 8, A, €, ¢ T, ¢V, nt,

output: Collections of data Dy, ...,

1 Draw v transition matrices p., using Equation (3)

2 fori < 1tovdo

ni]T, and a number of samples n

D, corresponding to machines 1, ..., v

3 call Algorithm 1 with transition matrix p; and gather data into collection D;
4 end
5 return Dy, ..., D,

makes it possible to easily change the cluster/component
distribution according to the problem at hand.

C. EXPERIMENT DESIGN
The simulation procedure is instantiated by defining the con-
figuration parameters according to:

0O 1 O 2 1 2
AL 0O 1 0,12 2 4 1,
0O 1 0 2 1 -
-1 3 =2
-1 2 =2 (10)
—1 1 -2
(B, A, €] £0.1,50,0.01] (11)
[t 12 -1,1] (12)
', ' 2, 2] (13)

Then, we select five machines to simulate by using
Algorithm 2, each of them contains three data streams with
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1000 samples per data stream. For simplicity, we choose to
extract two basic features, namely the mean and standard
deviation [25], over a window of size w = 10, and a jump
between windows of » = 5. The resulting streams for each
machine is depicted in Figure 7.

In order to implement® the GTM found in Section IV-B,
we utilize probabilistic programming through Stan [12] with
the No U-turn sampler (NUTS) for Hamiltonian Monte Carlo
(HMC) [24]. We base the GTM code/model on the latent
Dirichlet allocation implementation, found in Section 9.5 of
the Stan users’ guide [47] where the discrete cluster belong-
ing variables have been averaged out and the components in
our case are multivariate Gaussian distributions.

There is a general problem of training for mixture models
due to non-identifiable and label switching issues [6]. Hence
one cannot easily perform posterior analysis without resort-
ing to some additional post processing [21, Section 22.3].
Furthermore, the clustering problem itself is multimodal

3Code: http://urn.kb.se/resolve ?urn=urn:nbn:se:his:diva-19969
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FIGURE 7. Simulated streams for machines 1 — 5.

which is a challenge for Markov chain Monte carlo (MCMC)
in general since the chain might only explore the surroundings
of a single mode dependent on initial conditions and priors.
However, for our purpose of exploratory data analysis, we can
take a pragmatic view on these issues and therefore, even
though only one mode of posterior has been explored, it is
acceptable as long as the clustering provides a useful view
on the data and is somewhat stable between different runs.
This is similar to the implicit view within the topic modeling
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community as well, since one there often resorts to MCMC
by Gibbs sampling [8] which is likely to only explore a single
mode [7].

The data is standardized and then, after some experimenta-
tion with respect to stability of clustering results, we obtained
the following priors (see further Section IV-B):

i {l) ~ Normal(0,1), [e{l,...,uxm}
¥, £ diag(k;) Q diag(k;)
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FIGURE 8. Clusters within machines 1 — 5 visualized in pairwise feature space, where fll denotes the feature, and i € {1, 2)
correspond to the mean and standard deviation and j € (1, 2, 3} to the streams.
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figure, we observe that pattern 1, 2, 3, in Figure 9a, match cluster 2, 3, 1, in Figure 9b.

Q; ~ LKJCorr(1)
ki {l) ~ Cauchy(l), 1€f{l,...,
0; ~ Dirichlet(B1, . .., By),

wherei € {1,...,q},j € {1,...,v}, [ is the identity matrix,
ki () denote the [ : th row of vector Ki; fli:g, Z1:g» Qg
have dimensions in agreement with the number of features
and streams, i.e., u X m, corresponding to F and 6 have
a dimension in correspondence to the number of clusters ¢
where By = 1, Vk € {1,..., g}. LKJCorr is a prior distri-
bution for a correlation matrix, see further [47]. Regarding
the standard multivariate normal prior for ﬁl:q, it is rather
informative in the sense that the cluster centers should be near
the neighborhood of zero in all dimensions, however, more
weakly informative priors resulted in less stability in clusters
over different runs.

The label switching issue is something that needs to be
handled in order to obtain useful clustering results. There are
several different methods of different complexities to handle
this issue [28], [42], [45], [57]. We take a simple approach for
this issue by inspiration from the label allocation approach,
see further Zhu and Fan [57], together with a greedy algo-
rithm for the final cluster assignments and leave evaluation
of different approaches for future work when applying our
method to a real world scenario. Now, for each sample from
HMC/NUTS: ,&Lq, X1, él;v, the probability for a feature
vector F; belonging to a specific cluster j has the following
appearance:

pei = jliirg, Tig, O1v) X Ouiy () N (Filiij, ),

where w(i) and a)g) denotes the machine identity of F and
F respectively; 0, {j) denotes component j of Ow(l) and
N (-]-) is the normal density function. Given this we can
proceed by formulating Algorithm 3 which simply assigns
the component (cluster) with the maximum probability to

u X m}
(14)

s)
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the data point. 4 By running this algorithm on all samples:
'U“l.q’ 9; 4 1 € {1,..., s} obtained from HMC/NUTS,

we get s dlfferent clusterings which we gather in a s x f cluster
matrix C where ¢ is the number of points to label. This matrix
will then be the input to Algorithm 4 which will create a
final clustering given a certain threshold § that determines the
level of acceptable uncertainty regarding the clustering. Such
technique is inspired by previous research [50] where multi-
ple labels have been assigned to cluster points but where we
here omit such a multi-assignment and instead declare points
that do not reach the threshold limit as uncertain with respect
to cluster identity. The algorithm proceeds by first counting
the number of times any two given points have ended up
in the same cluster and then, given a random permutation,
cluster points will be assigned to the same cluster if two points
have at least appeared in the same cluster over the samples
with a probability at least as high as §. Points that are not
assigned to any clusters (in the algorithm assigned to —1) will
then be treated as uncertain with regards to cluster belonging.
Lastly, as a final step, the clusters will be ordered according
to size and then the g largest of these will be assigned to a
final cluster label while the remaining points will be assigned
to —1 as an indication that there exists some uncertainty
regarding those points.

In general, there is an issue in selecting the number of
clusters, however, in this illustrative example, for simplicity,
we use a simple procedure by a pairs plot where one can see
nuances of three clusters and some intermediate points that
needs to be modeled by some auxiliary cluster, yielding a
total of four clusters in the model, i.e., ¢ = 4, and we also
set the threshold to § = 0.7 and save further exploration of
the impact of this threshold to future research.

4This algorithm as well as Algorithm 4 have more efficient implementa-
tions but we omit such details here for clarity.
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FIGURE 10. Streams for machines 1 — 5 colored by cluster identity.

D. RESULTS

The resulting clusters for each individual machine as well as
for all machines together can be seen in Figure 8. We observe
that for some machines, a majority of the points have been
assigned to a single cluster while others to a larger extent,
contain two or more clusters. Due to the nature of data prepro-
cessing by a sliding window, there also exists an intermediate

VOLUME 9, 2021

cluster in between the main clusters. The relation between
the proportion of the patterns in the data, as defined by A in
Equation (10), and the proportions of identified clusters by
Algorithm 3 and 4 are shown in Figure 9. We observe that
the GTM model / algorithms well identify the proportion of
patterns that are evident in each machine (the orange cluster is
the intermediate cluster which can in in principle be ignored).
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where f/ denotes the feature, and i € 1,2 corresponds to the mean and standard deviation and j € {1, 2, 3} to the
streams.
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FIGURE 12. Results of GMM and GTM clustering on the scenario defined by Equation (16).

Since we also utilize a sliding window, we can color each
sliding window part of the streams by their cluster belongings
as illustrated in Figure 10 [10], [25]. However, due to the size
of the windows w = 10 and we have data points for each
jump of r = 5, the windows are overlapping which means
that individual points might belong to two different clusters.
We here choose to color the streams by window indices:
1, 1 +w, 1 4 2w, etc. corresponding to mutually exclusive
windows.

E. EXPLORATION AND INTERPRETATION

Running the GTM over aggregated streams within mul-
tiple machines is the first step of the exploration phase.
By using additional information such as logs, maintenance
reports and meta-information one can correlate patterns
within the machines with their degradation behaviors. More-
over, by using multi-machine analysis, there can be a possi-
bility to compare gained information from a certain machine
pattern found in the reports with the identified patterns across
several machines. In this context, the identified cluster pat-
terns becomes a unified language for the set of machines
which enables one to project ““degradation hypotheses” from
one machine to another.

As an example, considering Figure 10, if one can iden-
tify a certain degradation behavior in the reports for
machine 3, one can hypothesize that this behavior is related
to the green cluster pattern and hence, from that perspective
one can further analyze the degradation behavior of primarily
machine 2, since a large proportion of that cluster appears
there, then secondly one can further analyze machine 4 and 1,
since those machines also contain some small proportion of
the cluster. This is a good example where one single machine
guides further analysis towards certain other machines with
similar behavior in terms of cluster patterns. There might also
be cluster patterns that jointly are the cause for degradation
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behavior. For instance if machine 4 is the main concern when
it comes to degradation, then the continuous interchange
between the blue, green and red clusters would be the main
subject for further exploration.

Depending on the application scenario, the clusters can be
interpreted in different ways. As an example in multi-tooling
machines, the cluster patterns can capture different modes
of operation, e.g., in terms of vibration. In older machines,
where the current operation mode cannot be extracted easily
from the control units of the machines, this presents a way
of obtaining such information and subsequently allows for
analysis of the machines’ operation mode. In other cases,
the cluster patterns can capture the different variations that
might occur to different extent within a certain mode of
operation and degradation state. Based on such clusters and
previous knowledge of machine degradation, one can identify
future system degradation states, e.g., healthy, warning, and
faulty. Capturing those cluster patterns and explore to what
extent they appear in different machines with different degra-
dation states then becomes the point of foci.

F. COMPARISON WITH GAUSSIAN MIXTURE MODEL

Since the GTM is designed to find clusters on a group level,
one can obtain cluster information which might not be so
easily captured by other clustering methods that do not take
individual groups into account. The reason for this is that cer-
tain clusters might appear more clearly on certain machines
which then helps the model to identify these clusters. This can
be illustrated by another simulation scenario, using the same
pre-processing as before, where the clusters are not equally
well separated, defined by Equation 16.

0 1 1 0 1 -1 0 1 0

A2o 1 1f,]0 1 =1],/0 1 0

0 1 1 0 1 -1 0 1 0
(16)
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Algorithm 3: Single Sample Clustering

Input : A sample ﬁlzq, X1 élzv, at x (u x m) matrix [Fl;v]T (block format) and rows I:”l.T 2 1F0E 6)

Output: Cluster labels ¢y, € {1, ...

1 Declare label vector ¢;, Vi e {1, ..., 1t}
2 Declare temporary unnormalized probability pffmp
3 Declare maximum unnormalized probability p/'™*

4 fori < 1totdo

, q}, corresponding to F 1T:z

5 i <0

6 forj < 1togdo

7 PP 5w(i) (Y N(F, i|iij, Zj) as defined in Equation (15)

8 ifpffmp > pi** then > Update cluster belonging
9 ci < J

0 s i

11 end

12 end

13 end

-
£

returnc; € {1,...,q}, ie{l,... t}

> return cluster assignments

An example of simulated data from this scenario where
the clustering results differ between the GTM and the GMM
is shown in Figure 11. From Figure 11b, nuances of clus-
ters appear since one can observe some separations between
groups of points. This is information that will be beneficial
for the GTM during training since it has a group level. On the
other hand, the GMM, which is not taking individual groups
into account, will be trained with a view on data from all
machines, shown in Figure 11f, where the previously men-
tioned nuances of clusters are not at all evident. A simple
experiment on this data, running the GTM and GMM 30
times with the same parameters as priors set according to
Equation (14), where the GMM implementation is based on
the previously described GTM implementation but without
the group level and where the number of clusters is set
to 3 and threshold set to § = 0.7, results in that the GTM
captures the clusters, with some variations, in all of the
cases, while the GMM captures all the clusters in only 8
of the cases. The result of the first run of the experiment is
shown in Figure 12. As it is seen, the red and green cluster
in Figure 12a are consistent with the previously mentioned
nuances of clusters from Figure 11b and 11d. In 22 cases,
the GMM only correctly identified one of the cluster, shown
in green in Figure 12b, i.e., it failed to separate the actual two
clusters that resides within the red cluster area in Figure 12b.
This is due to that the model is performing clustering on all
data points without the group level, as shown in Figure 11f,
where the clusters are not as clearly separated. It should also
be noted that other choices of priors can yield different results
that might help identifying the cluster for the case of GMM
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also, however, the point we want to make here, given that
the priors are exactly the same for the GMM and GTM in
this case, is that the hierarchical structure, taking groups into
account, is an advantage of the GTM which could decide
whether or not certain clusters are identified.

To summarize, due to the fact that the GMM does not
model group information and hence does not consider or
strive at being a good fit to data within individual groups;
it can lose information for identifying clusters and can there-
fore lose track of possibly key cluster patterns. It should be
noted that training a cluster model with obtained stability
between clustering results is a difficult task due to the mul-
timodality of such problems. Hence, different initialization
can yield convergence to different modes unless there are
indications of clusters as is the case on the group level in our
example.

V. DISCUSSION

By using a framework where cluster patterns are identified
across machines, such as we propose, one increases the like-
lihood of taking full benefits of any limited fault event data
associated to any of the involved machines. As an example,
if certain patterns appear to be rather unique for a subset
of machines which have had several faulty conditions, one
may use the model to observe any tendency of such patterns
in the other machines and act accordingly. In such cases,
any contextual information, e.g., in terms of more in-depth
knowledge of behavior for certain machines, can also play a
crucial role for understanding how the identified patterns can
be projected and used for the other machines.
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Algorithm 4: 5-Clustering

Input : A s x ¢ clustering matrix C = [[c] .17, ..., [c},1717 and a probability thresholds

Output: A clustering ¢, with labels in {1, ..., g}

1 Initialize count[i,j] <— Ofori,je {1,...,1}
2 Initialize ¢; < 0,Vie {1,...,t}

3 fori < 1tosdo

4 for j < 1tot do

5 fork < 1tordo

6 if C (i,j) = C (i, k) then

7 count[j, k] < count[j, k] + 1
8 end

9 end

10 end

11 end

12 Draw random permutation w : {1, ...,t} — {1,...,¢}

13 curr <1

14 fori < 1tordo

> number of times points are in the same cluster

> 0 means not yet assigned

> start counting

> iterate and assign all points above the threshold

15 if ¢;;) = 0 then

16 Cr(i) < curr

17 forj < 1tor do

18 if ¢; = 0 then

19 p < count[n (i), jl/s

20 if p > § then

21 Cj < curr > assign cluster label
22 end

23 end

24 end

25 curr < curr + 1

26 end

27 end

28 Construct cluster partitions C; L24(i:¢=jie(l,... t}},wherej € {C1,}

29 Construct ordering W : {¢.;} — {¢1.} so that |C\y(,')| > |Cq;(/')| iffi <j

30 Relabel ¢; < jfori e Cy(j wherej e {1,...,q}

31 Relabel ¢; <— Ofori € Cy(jy whereje {g+1,...,[{cr.} |}

32 return ¢p.

> decreasing order

> the g largest clusters will be returned

> uncertain (unassigned) points

> return a g-clustering

The parameters involved in the framework, in particular
window and jump size as well as the number of clusters,
need to be adjusted to the problem characteristic at hand.
As an example, if degradation is expected to appear over
several weeks one may aggregate data over days, i.e. a win-
dow size corresponding to a day and set the jump size
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to non-overlapping windows. A smaller jump size can be
also set in order to obtain overlapping windows which will
increase the smoothness of extracted features. This can be
beneficial for visual exploration of cluster results. However,
in case of massive data, the window and jump size can be
used as a way of reducing the number of extracted feature
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data points. This can be particular useful in our case where
MCMC is used since such approaches are computationally
demanding [11]. Also for larger data sets, the §-algorithm
may need further adaptions in order to decrease computa-
tional complexity. For adjustment of parameters as well as
different additions of extracted features, partly determining
the dimension, we propose that one uses visual exploration to
learn about the effect on the results both in terms of patterns
captured as well as with respect to interpretation of those
patterns.

Besides being able to capture different patterns over mul-
tiple streams and machines, the framework can also be uti-
lized to capture normal operations of machines and be used
as an anomaly detector [15], [53]. In contrast to clustering
models that do not account for the group level information,
the framework can also capture anomalies in terms of pattern
proportions, i.e., not only deviations from the patterns but
also how much of those patterns within machines change.
This might reveal significant insights into degradation
behavior.

However, as previously noted [18], degradation over time
is likely to smoothly change previously identified patterns.
Therefore, another important part of the clustering problem in
an online setting is to let the model self-learn and self-adapt
to normal tolerable changes over time without raising an
anomaly alarm. This is commonly referred to as concept
drift [20] in the machine learning community, i.e., the process
itself is not stable over time which means that learned models
trained on data in the beginning and end of the process are
different to some extent. By using Bayesian theory [22], this
can be handled by setting the posterior to the prior and retrain
with a certain period [1]. By doing this, the model drifts
“along” with the degradation behavior, i.e., the changes of
patterns over time, without raising unnecessary alarms. These
changes of the model might also provide in itself valuable
information in terms of machine degradation behavior, since
one can then capture how much the model has changed over
time and store this information as historical records of drifting
behavior. For example, if a certain pattern is highly evident
in the start of the analysis, but then at some point starts to
change over time, one might correlate such information with
other meta information regarding the machine and learn the
cause of such behavior.

Lastly, more advanced models, which also have the ability
to self-adapt to the number of clusters [48], [49], can allow
one to explore machine behavior in terms of splitting and
merging of cluster patterns over time, denoted as evolutionary
clustering [14], [54], [56]. Such splitting and merging behav-
ior might further be matched with other meta information in
order to understand why they occur and what they mean in
terms of degradation behavior.

VI. CONCLUSION

We have presented a coherent framework which is able
to capture information, at different levels, from the repet-
itive structure that multiple machines constitutes. The
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framework is based on a hierarchical probabilistic model,
denoted GTM [53], where shared cluster patterns are captured
at the top level and then used at different proportions for
modeling the data, within the machines, on a group level.
In order to obtain single data points over time from each
machine, we aggregate a number features over all the data
streams for a specific time window [10], [25]. The frame-
work uses a clustering schema, through Algorithm 1 and 4,
which takes uncertainty into account and where a threshold
regulates a desirable degree of reliability of assignment to
clusters. We have illustrated our framework through synthetic
data by simulating multiple machines/streams and where we
performed modeling through probabilistic programming in
Stan [12]. We showed that the model can capture different
patterns and proportions of those patterns well across sev-
eral machines and we highlighted potentially utilization as
information gain through association with additional meta
information and comparison of the patterns across machines.
Moreover, we also performed an experiment that highlights
the benefit of the GTM through capturing the group level
information to identify clusters. In contrast, the commonly
used GMM operates on all data, i.e., does not take individual
groups into account, and hence only aims to be a good fit of
all data without the group perspective. As it has been seen
from the experiment, this can result in the GMM is not able
to identify clusters at the group level, and can thereby miss
capturing key patterns in the data which might be crucial for
the understanding of machine’s degradation behavior. As a
conclusion, it is important to highlight that such a framework
contributes to fill the gap in data driven based PdM applica-
tion in real word industrial environments since it deals with
the challenge of lack of labeled data coming from multiple
streams across multiple machines.

For our future work, we will apply our framework on real-
world manufacturing case studies. One issue that one needs
to handle is the big data aspect [43]. Currently, statistical
machine learning in the form of Bayesian inference [22] do
not enjoy the same scalability as for instance deep learning
methods [32] where it is usually easy to parallelize. How-
ever, recently proposed methods [11] suggest that there are
opportunities to scale down the data size significantly and still
obtain useful results. Such methods might provide the ideal
complement to probabilistic programming tools such as Stan
[47] and would then enable for a fast modeling and training
loop, i.e., “small data” for efficient and effective exploratory
multi-machine analysis.
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