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Abstract

Superconducting circuits in the quantum regime represent a viable platform for mi-
crowave quantum optics, quantum simulations and quantum computing. In the last two
decades, a large effort brought this architecture from an academic curiosity to concrete
technology.

In this thesis, we study the effects of the environment on superconducting circuits. We
consider mainly two types of the environments. On one hand, we study the classical baths
inevitably coupled to the circuits, in particular the substrate where they are fabricated
and the highly attenuated coaxial lines used for controlling them, which are the main
sources for decoherence. On the other hand, we study structured electromagnetic
environments that shape the density of states for the circuits, modifying their energy
structure and their excitation properties.

Defects on the substrate mechanically and electrically coupled to superconducting
circuits, behave as a bath of two-level systems. We investigate the effects of the bath on
qubits fabricated on silicon. From a time trace with more than 2000 measurements of
T1 and T2 (every 3 min for 60 h), we statistically infer a Lorentzian resonance signature
of the bath. Moreover, measuring the residual population of the first excited state
of the qubit, and tuning the photonic population in the line, we assess the thermal
state of the bath, measuring a temperature of 42 mK. Furthermore, we investigate the
mechanical coupling of the bath, saturating its state, strongly pumping neighbouring
modes in a high finesse mechanical resonator. On a piezoelectric substrate, the travelling
phonons, carry an electric component together with a lattice deformation. Therefore,
superconducting circuits can be coupled to a phononic waveguide through which they
release part of their energy. We design, fabricate and measure superconducting resonators
on gallium arsenide, demonstrating the electromechanical coupling as the main source
of decoherence.

Concentrating on the effects of the photonic bath in the coaxial line, we design a qubit
with a very large coupling to this bath compared to the bath of two-level systems. In this
limit, the scattering of a coherent photon by the qubit linearly depends on the photonic
bath population. In this regime, the qubit can be used as a primary thermometer; we
measured the photon occupation of our input lines both at different temperatures and
injecting calibrated noise.

Finally, we implemented a slow-waveguide made of a linear chain of high impedance
resonators. The excitation of two transmon qubits coupled to the waveguide is dressed
with a photonic component, generating the hybrid excitation of an atom-photon bound
state. We spectroscopically investigated the first and second excitation subspaces of the
system, and we demonstrated full frequency and time domain control, of these bound
states.



These results may help to improve the performance of superconducting circuits and
their setups. Moreover, we hope that our experiments can provide tools for quantum
thermodynamics, quantum simulation and quantum computing.

Keywords: circuit QED, superconducting circuits, quantum thermodynamics, atom
photon bound state, surface acoustic wave, high impedance, two-level systems, TLS,
SAW

ii



List of publications

This thesis is based on the work contained in the following appended papers:

Paper A
J. J. Burnett, A. Bengtsson, M. Scigliuzzo, D. Niepce, M. Kudra, P. Delsing,
and J. Bylander, “Decoherence benchmarking of superconducting qubits”,
npj Quantum Information 5, 54 (2019)

Paper B
M. Scigliuzzo, L. E. Bruhat, A. Bengtsson, J. J. Burnett, A. F. Roudsari, and
P. Delsing, “Phononic loss in superconducting resonators on piezoelectric
substrates”, New Journal of Physics 22, 053027 (2020)

Paper C
G. Andersson, A. L. O. Bilobran, M. Scigliuzzo, M. M. de Lima, J. H. Cole,
and P. Delsing, “Acoustic spectral hole-burning in a two-level system
ensemble”, npj Quantum Information 7, 1–5 (2021)

Paper D
M. Scigliuzzo, A. Bengtsson, J.-C. Besse, A. Wallraff, P. Delsing, and S.
Gasparinetti, “Primary thermometry of propagating microwaves in the
quantum regime”, Physical Review X 10, 041054 (2020)

Paper E
M. Scigliuzzo, A. Bengtsson, J. Burnett, S. Gasparinetti, and P. Delsing,
“Measuring the temperature of a superconducting qubit and its surround-
ing two-level systems”, To be submitted (2021)

Paper F
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–Do you guys just put the word ”quantum” in front of everything?

Ant-Man and the Wasp, Marvel Studios (2018)

1
Circuit quantum electro- and

acousto-dynamics

In a bit more than a century, human kind went from ignoring the existence of quan-
tum systems to building and controlling an artificial molecule of 53 artificial atoms,
rearranging and exciting its energy levels, fast enough to use the molecule dynamics to
accomplish a calculation[1]. Physicist invented quantum mechanics at the beginning of
the 20th century, to have a theory that reproduces experimental observations regarding
light-matter interaction. In particular the electromagnetic spectrum of black body
radiation and the emission of the electrons from a metal irradiated with light. In these
cases, the systems are macroscopic and warm1, still the quantum nature of its constituent
qualitatively changes the behavior of the system.

Refining experimental techniques and inventing new technologies, allowed to exam-
ine smaller and smaller systems, and, at the same time, colder and colder. More formally,
reducing the dimensions of the system, decreases its degrees of freedom, while cooling it
down limits the external thermal energy and make it possible to reach the ground state
of the system. This control led us to unravel the intrinsic quantum mechanical behavior
on a single atom scale. But also to discover new effects unexplained by classical physics.
For example, certain materials, below a critical temperature, Tc, retain only a single
degree of freedom, even for a macroscopic ensemble2. Besides the scientific progress, this
knowledge boosted a new technological era (usually referred as first quantum revolution)

1Large and small do not have a defined meaning, if not taken with a reference. In this thesis macroscopic
means a system with many (� 1) free degrees of freedom. The same is true for hot and cold: they will be used
with the reference of a single quantum of energy at the frequency of interest.

2H. K. Onnes noticed the resistance drop of quicksilver while cooling it down in liquid helium. Remarkably,
he continued to decrease the temperature, observing the helium stop boiling, discovering two examples of this
phenomenon, superconductivity and superfluidity in the same day in the same experiment [2]
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CHAPTER 1. CIRCUIT QUANTUM ELECTRO- AND ACOUSTO-DYNAMICS

with the invention tools and devices (for example lasers and transistors) that strongly
shaped our society.

A new avenue was opened when we learned how to manipulate individual quantum
systems. Initially, the effort in quantum optics concentrated on the light-matter interac-
tion of single natural atoms and visible light, achieving exceptional results. Scientists
discovered that confining an atom or light between two mirrors, drastically changes the
light-matter interaction [3, 4]. This is an example of the effects of the (electromagnetic)
environment on the atom: the confinement amplifies the zero-point fluctuations at the
cavity resonant frequency, while it attenuates the possible relaxation into forbidden
modes. Remarkably, with the invention of artificial superconducting atoms, researchers
are able to reproduce this experiment in a different energy regime [5]. In this new
field, named circuit quantum electro-dynamic, or cQED for short, the atomic transition
frequencies and the interaction strengths can be engineered to cover a large portion of
the microwave spectrum. Even the atoms dimensions can span the range from deep
sub-wavelength to many wavelengths, simply by design choice.

This thesis, entitled ”Effects of the environment on quantum systems”, enters at this
point of the story. The title is easily explained in the scope of cQED: the quantum systems
consist of superconductive circuits, cooled down at their quantum-mechanical ground
state. They are implemented with transmon qubits, with fermionic degrees of freedom,
σ̂i , and/or linear and nonlinear resonators, with bosonic degrees of freedom, b̂. We call
environment all the remaining degrees of freedom that have any sort of interaction (i.e.
can exchange energy, affect the energy levels) with the system, but are not of particular
interest. As clear from this definition, the separation between environment and quantum
system is arbitrary, and mainly rely on the focus to some degrees of freedom instead of
others. In the thesis, we mainly study two effects of the environment on the quantum
system:

• the coupling of the a resonator mode or a qubit with a very large number of degrees
of freedom (a bath) that produces an effective drive due to its noise spectral density
(chapter 2);

• the coupling of multiple qubits with a nontrivial density of states, that effectively
modify transition frequencies and relaxation rates (chapter 3);

This chapter contains an overview of the different systems that have been studied in
the thesis, their properties and the general use in cQED.

1.1 Introduction and motivation

Circuit QED focuses on light-matter interaction in the microwave regime, replacing
natural atoms with superconducting circuits operating in the microwave regime3. These
circuits are man-made macroscopic objects composed of many particles and coupled to

3The most used frequencies range from 1 to 10 GHz, corresponding to wavelength from 30 to 3 cm in
vacuum. Moreover the circuits are usually realized with standard lithography process. Therefore, very
fortunately, this field can use many instruments developed for telecommunications and many techniques used
for semiconductor processing
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1.1. INTRODUCTION AND MOTIVATION

many different baths (photons through driving lines, phonons mechanically coupled to
the sample box where they are placed, defects on the substrate where they are fabricated).
In order to have a system with only few controllable degrees of freedom, we need to get
rid of the unwanted and be able to control and read-out their state at any time. In circuit
QED we satisfy all these requirements:

• using superconductors we can choose to keep only the degrees of freedom we
design in the system;

• using a dilution refrigerator and highly attenuated input lines, we isolate these
degrees of freedom from the baths;

• by engineering the circuit levels structure, we make these degrees of freedom more
resilient to the environment fluctuations.

1.1.1 Superconductivity and Josephson effect

The electrons in a metal in a superconducting state exhibit an effective phonon-mediated
coupling, and consequently form bound states of electrons pairs (Cooper pairs). All
the Cooper pairs condense to the ground state and become the effective current carrier
[6]. This state can be described by a complex wavefunction ψs =

√
nse

iθ , where ns is
the Cooper pair density while θ is the phase of the superconducting condensate. There
are mainly two reasons to chose superconductors: firstly, the superconductors have
very low resistance at the microwave frequencies compared with normal metals4 (and
none with direct currents! [7]), making the restive losses effectively negligible compared
to the intrinsic loss due to defects of impurities in the substrate [8]. Secondly, and
most importantly, the presence of the Josephson effect that describes the Cooper pair
tunneling between two superconductors [9]. Exploiting this effect we can realize a
nonlinear inductor, the Josephson Junction (JJ), that effectively lets the circuits access
the quantum regime. In fact, a purely linear component driven with coherent signals,
can be completely described classically [10].

When two superconductors are separated by a thin tunnel or oxide barrier, compared
with the coherence length of the superconducting state5, Cooper pairs can tunnel between
the two electrodes without any voltage across them. Josephson discovered that this is
true up to a critical current, Ic, and that the tunneling current, IJ directly relates to the
phase difference of the two superconductors φ = θ1 −θ2, Eq. (1.1). If φ is not constant in
time, a voltage, V , proportional to the phase derivative is built up across the junction,
Eq. (1.2).

IJ = Ic sinφ, (1.1)

∂tφ =
2e
~

V . (1.2)

4Even below the transition temperature Tc , there is a nonzero components of unbound Cooper pair, quasi
particles, responsible for this effect and for the kinetic inductance.

5The coherence length is the exponential decay constant of φs outside the superconductor. For example in
aluminum is 1.6µm [6].
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Figure 1.1: Atom Force Microscopy (AFM) micrographs of a Josephson Junction (JJ). (a)
Hight detected for a 1.1× 1.1µm2 scan of an aluminum JJ on gallium arsenide. (b) Three
dimensional rendering of a the data in (a) with a longitudinal cut in correspondence of
the white dashed line in (a). A cartoon of the aluminum oxide layer is depicted in black.
The phase φ refers to the phase difference between the two superconductor electrodes. (c)
AFM oscillation phase for the same range of data shown in (a). Phase changes highlight
mechanical properties changes, that are due to different materials, most likely resist
residues. Notice how this information is completely invisible to the hight sensor in (a), or
to Scan Electron microscopy in Fig. 1.2.

In this thesis, we realize JJs by evaporating a layer of aluminum, letting an oxide
layer (∼ 2 nm) grow in an oxygen atmosphere and completing the sandwich with an
additional layer of aluminum, as shown in Fig. 1.1. The junctions fabricated for the
devices in this thesis have a square form factor and dimensions ranging from 100× 100
to 350 × 350 nm2, yielding critical currents between 30 and 300 nA. As we show in
Paper I, the JJs have a critical current scattering, σIc ≈ 3%, from the design target. This
is one important difference between quantum optics implemented in cQED compared to
natural quantum systems: while natural atoms are completely identical6, the quantum
systems we fabricate are not exactly identical and their properties may even change with
time.

Substituting Eq. (1.2) in the time derivative of Eq. (1.1),

∂tIJ =
2e
~

Ic

√
1−

(
IJ
Ic

)2

V , (1.3)

and considering the analog voltage drop V = L∂tI across an inductance L, we conclude
that a JJ behaves as an inductance:

L =
~

2eIc

1√
1−

( IJ
Ic

)2

IJ�Ic≈ LJ

1 +
1
2

(
IJ
Ic

)2 . (1.4)

where LJ = ~/2eIc. This Josephson inductance is not constant, but increases with the
current circulating through it. Therefore the Josephson inductance can be both nonlinear

6This is a direct consequence of quantum field theory: elementary particles are an excitation of their field
counterpart, so they all are exactly the same, as in cQED all photons in a linear resonator are exactly the same.
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1.1. INTRODUCTION AND MOTIVATION

(a) (b)

500 nm
2 μm

Φ

≡

GaAsAl

Al

Figure 1.2: Superconducting QUantum Interference Device (SQUID). (a) Scanning
electron microscopy micrograph of an aluminum SQUID (colors) on gallium arsenide
(grey). Two junctions in parallel shunts two superconductors electrodes (blue and red).
In the zoom one of the two Josephson junctions. (b) A SQUID behaves as a Josephson
junction with a tunable critical current, depending on the external magnetic flux in the
SQUID loop.

and parametric. The values of LJ for the junctions fabricated in our experiment goes
from 1 nH (for 300× 300 nm2) to 10 nH (for 100× 100 nm2).

Remarkably, when two identical JJs with critical currents Ic, shunt two superconduct-
ing electrodes, as shown in Fig. 1.2, they behave as a single junction with an effective
critical current ISQUID. Moreover, an external magnetic flux Φ that threads the SQUID
loop, induces a supercurrent in the loop7 and modulates the effective critical current,

ISQUID = 2Ic

∣∣∣∣∣∣cos
(
πΦ
Φ0

)∣∣∣∣∣∣ , (1.5)

where Φ0 = h/2e = 2.068 · 10−15 Wb is a magnetic flux quantum.
The area of the squid loops fabricated in this thesis (see Fig. 1.2) is on the order of

50µm2, so we inject a flux quantum with magnetic field of 0.5 Gauss, usually generated
with a fluxline or a superconducting coil. The fact that this field is the same of the Earth’s
magnetic field shows how sensitive the SQUIDs are, and how important it is to have the
proper magnetic shielding around the sample (see appendix A).

1.1.2 From classical to quantum microwave circuits

A JJ is a perfect candidate for building a quantum system. In fact, considering two
isolated electrodes the total number of Cooper pairs, given by the sum of the ones in
each lead, Ncp =Ncp1 +Ncp2, is constant. We then keep a single degree of freedom, given
by the excess Cooper pairs nex = (Ncp2 −Ncp1)/2, that arises when a tunneling event
happens.

7The time necessary to build up the currents is much faster than our instruments, so in this thesis we will
consider this change as instantaneous.
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CHAPTER 1. CIRCUIT QUANTUM ELECTRO- AND ACOUSTO-DYNAMICS

Experimentally we need to answer if, in this circuits, a ”macroscopic variables obey
quantum mechanics”. Martinis, Devoret and Clarke positively replied to this question
[11], directly exciting and measuring the levels decay rate in a current bias JJ, and starting
de facto circuit QED. More than a decade later, Devoret’s group exploited the capacitance
of a SQUID, as a box where the excess Cooper pairs were stored, obtaining a resonant
circuit with transitions in the microwave regime, named Cooper pair box [12]. In the
following few years, Nakamura et al. [13] drove oscillations in this quantum circuit while
the Cooper pair box relaxation time was measured by Schoelkopf’s group [14].

In order to perform these seminal experiments, the circuits are brought to their
ground state by passive cooling in a cryostat. This is still true for the experiments shown
in this thesis. Whatever small residual coupling with the environment, results in a
finite life-time of the excited states. We exploit this feature cooling our samples in a
dilution refrigerator. This cryostat is a commercially available (although quite expensive)
machine composed of 5 stages with decreasingly lower temperatures. The last stage
presents a phonon temperature TMC = 10 mK. For a circuit in the microwave regime
with a characteristic frequency, ω, the circuit excitation energy is much larger than the
thermal fluctuations ~ω� kBTMC. For a more detailed description, read Appendix A.
Surprisingly, if we are not concerned about optimizing the quantum system controls, its
lifetime, its energy levels, etc. all we need to do to make a circuit behave according to
quantum mechanics is to fabricate a weak link and cool it down.

Finally, comparing the physical extension of the JJ to the wavelength, λ, of the
electromagnetic wave used, we are in the deep sub-wavelength regime. In other words
we can treat it as a lumped element in the circuit. This condition is usual for quantum
optics with natural atoms; nevertheless, in cQED it is possible to design distributed
components that span over many λ. On top of that, as far the elementary excitation in the
system, ~ω, obeys quantum mechanics, we do not have to be constrained to microwave
photons. For example, we can study circuit quantum acoustodynamics (cQAD) with
experiments involving propagating and stationary phonons, intrinsically reducing the
wavelength by five orders of magnitude [15].

1.2 Sub-wavelength (lumped) oscillators

Many of the following results (for example the ones involving harmonic oscillators) can
be obtained from a semiclassical or completely classical approach. The importance of
deploying a full quantum mechanical description relies on mainly two aspects:

• having a comprehensive and single theory is easier to work with in the long run,

• the familiar behavior of semiclassical system can help to bridge some of the diffi-
culties when there is no analogy in classical physics.

1.2.1 LC resonator

Before describing quantitatively a Cooper-pair box, it is instructive to write the Hamil-
tonian for an isolated LC circuit. This is not just a mere exercise, because many of the

8



1.2. SUB-WAVELENGTH (LUMPED) OSCILLATORS

systems we studied in this thesis can be approximated with this circuit. Moreover, the
harmonic oscillator is experimentally used as a proxy of more complicated quantum
circuits, not only to reduce the overhead in fabrication, but, more importantly to reduce
the measurement time and simplify the experimental setup.

Explaining the technique for circuit quantization is out of the scope of this thesis, but
fortunately, many reviews have extensively covered this procedure [8, 16, 17]. Consider
an isolated LC circuit, with a charge Q in the capacitor, the Lagrangian of the isolated
circuit is

L =
1
2
LQ̇2 − 1

2
Q2

C
, (1.6)

where C is the capacitance of the resonator L is its inductance8. Using the magnetic flux
generated by the inductor Φ , which is the variable conjugate to the charge ∂L/∂Q̇ =
LQ̇ = Φ , we can derive the Hamiltonian of the circuit

H = Q̇Φ −L =
1
2
Φ2

L
+

1
2
Q2

C
. (1.7)

From Hamilton’s equations, we can derive the classical equations of motion:

∂tΦ = −∂H/∂Q, (1.8)

∂tQ = ∂H/∂Φ , (1.9)

that combined give ∂2
tQ = −Q/LC. Both L and C being positive, we retrieve the well

known oscillatory behavior with angular frequency:

ωr = 1/
√
LC. (1.10)

It is important to notice that the energy oscillates between purely in the electric field to
being purely in the magnetic field [see Eq. (1.7)]. Consequently, the ratio between the
amplitudes of the electric and magnetic fields is:

Zr =
√
L/C, (1.11)

called the characteristic impedance of the oscillator.
We quantize the Hamiltonian promoting the charge and flux dynamical variables to

operators that satisfy the commutation relation:[
Φ̂ , Q̂

]
= i~. (1.12)

Finally, rewriting them in terms of the annihilation and creation operators,

Φ̂ =

√
~Zr

2

(
b̂† + b̂

)
= ΦZPF

(
b̂† + b̂

)
(1.13)

Q̂ = i

√
~

2Zr

(
b̂† − b̂

)
= iQZPF

(
b̂† − b̂

)
. (1.14)

8In the circuits realized in this thesis, the capacitance ranges from 50 to 100 fF, while the inductance spans
from 2 to 10 nH.
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CHAPTER 1. CIRCUIT QUANTUM ELECTRO- AND ACOUSTO-DYNAMICS

the harmonic oscillator Hamiltonian then assumes its usual form:

H = ~ωr

(
b̂†b̂+

1
2

)
. (1.15)

Since we are interested in transition energies, in the following we will omit the zero
point energy.

1.2.2 Vacuum fluctuations and impedance

In the following sections we will show that the coupling of two quantum systems is
proportional to the number of excitations in the system and to the vacuum fluctuation.
Therefore, in the quantum regime, with few excitation our ability to couple systems
strongly depends on these quantities, hence the attention we are dedicating to vacuum
fluctuations.

We can rewrite the flux and charge vacuum fluctuation, ΦZPF and QZPF respectively,
in terms of the elementary charge (a single Cooper pairs, 2e) and flux (a single flux
quantum Φ0):

ΦZPF = Φ0

√
Zr

4πRQ
= Φ0

√
α

4π

√
Zr
Zvac

, (1.16)

QZPF = 2e

√
RQ

4πZr
= Φ0

√
1

4πα

√
Zvac

Zr
, (1.17)

where we introduced the superconducting quantum resistance RQ = h/(2e)2 ≈ 6.45kΩ,
and the fine structure constant α = Zvac/8RQ ≈ 1/137. Interestingly, if we calculate the
ratio of the normalized vacuum fluctuations we get

ΦZPF/Φ0

QZPF/2e
= α

Zr
Zvac

. (1.18)

Restricting to the geometric inductance, straight wires do not exceed the vacuum
impedance, and the small value of α results in an asymmetry toward small flux fluctu-
ations. Nevertheless we can overcome this limitation by designing specific geometries
[18], using kinetic inductance [19], or exploiting arrays of JJs or SQUIDs [20–22]. In this
thesis we will follow the latter approach.

The ratio between the amplitude of the electric field, proportional to Φ̂ and the
magnetic one, proportional to Q̂, is Zr also in the quantum mechanical version of the LC
circuit. In this context, this has deeper consequences, in fact the zero point fluctuations
of voltage or current in the circuit are given by

∆V̂ =QZPF/C =ωr
√
Zr
√
~/2 (1.19)

∆Î = ΦZPF/L =ωr
1
√
Zr

√
~/2, (1.20)

10



1.2. SUB-WAVELENGTH (LUMPED) OSCILLATORS

with the important result

∆V̂ /∆Î = Zr . (1.21)

At this point, it is natural to wonder what values these quantities assume in our
circuits and possible natural limitation. We did not realize lumped LC-resonators, but
the standard impedance for microwave components is 50Ω. If the resonator frequency
ωr ∼ 2π5GHz, the vacuum fluctuations result in the following expectation values

〈∆V̂ 〉 ≈ 1µV (1.22)

〈∆Î〉 ≈ 30nA. (1.23)

1.2.3 Charge qubit and transmon regime

If we substitute the linear inductance in the LC-resonator with a JJ we obtain a qualita-
tively different system.

From a topological point of view, we separate the superconductor in two regions
(see Fig. 1.3). Usually one of these regions is the large ground plane, while a smaller
section is called island. On one hand, it is possible to have both these superconductors
floating with respect to the ground plane (as for example used in [23]), while leaving
the single qubit Hamiltonian unchanged. On the other hand the coupling Hamiltonian
between two qubits will contain different terms depending which of the two approach
is used [24, 25]. In this system, the only degree of freedom is the excessive charge on
one electrode, hence the name charge qubit. Among the others, Nakamura investigated
this arrangement, in a regime called Cooper pair box [13]. Other types of qubits can
be obtaining with different arrangement of JJs. For example, Martinis used the phase
(phase qubit) for the degree of freedom [26], Mooij et al. encoded the information in the
flux (flux qubit) [27]. In this thesis, we will only use the charge qubit, and we will not
investigate other qubit types any further.

From an energy point of view, also the level structure will be affected. In fact,
considering the minimal charge (2e, a Cooper pair) tunneling through the junction with
a frequency ωq/2π ∼ 6GHz, it generates an effective current of I ∼ 2eωq/2π = 2 nA.
This is of the same order of magnitude as the critical current in the JJ, from Eq. (1.4)
the nonlinear effects on the inductance are not negligible. We can estimate the energy
necessary to build up a phase difference φ (see Fig. 1.3(c)) between the two electrodes of
the junctions[8]:

E =
∫
V (t)I(t)dt =

~Ic
2e

∫
∂tφsinφdt

= −EJ cosφ,
(1.24)

where we introduced the Josephson energy

EJ =
~Ic
2e
. (1.25)
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CHAPTER 1. CIRCUIT QUANTUM ELECTRO- AND ACOUSTO-DYNAMICS

(a) (b) (c)

Cq
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EJ

100 μm 100 μm

Φ

Figure 1.3: Transmon qubit. (a) Floating transmon qubit fabricated in aluminium on
silicon. A single JJ (in the zoom window) separate the two superconducting electrodes
(orange and green). (b) A transmon qubit with the island (orange) shunted to the ground
plane (green) by a SQUID (in the zoom window). (c) Electrical circuit equivalent of (a)
and (b).

We can write the Lagrangian of the circuit considering that a voltage generator can
apply a classical potential ∂tΦg on the capacitance, and

L =

(
Cq∂tΦ −Cg∂tΦg

)2

2(Cq +Cg)
+EJ cosφ. (1.26)

As already mentioned, it is common to assume the excessive charge n̂ = Q̂/2e, as one of
the conjugate variables. We can calculate the Hamiltonian

Ĥ = 4EC(n̂−ng )2 −EJ cos φ̂, (1.27)

where we introduced the charging energy EC = e2/2(Cq +Cg), that together with EJ, are
the only two energy scales in this circuit. In particular, the regime EJ/EC >> 1, called
the transmon regime, is the one that we chose in this thesis. Initially investigated in
Schoelkopf Laboratory [28], the transmon exponentially suppresses charge noise. In
fact, the m-th transition frequency, oscillates with an amplitude εm, periodically with
the charge offset ng

εm ≈ (−1)mEC
24m+5

m!

√
2
π

(
EJ

2EC

)m
2 + 3

4

e−
√

8EJ/EC . (1.28)

In our work, the frequency of the transmon qubit is between 4 and 7 GHz, and the
anharmonicity is always below 300 MHz; we can easily estimate the ratio EJ/EC ∼40 to
60.
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1.3. WAVEGUIDES

The characteristic impedance of this circuit is set by

Zq =

√
LJ

Cq +Cg
, (1.29)

that for the junctions fabricated in this thesis we obtain Zq ≈ 300Ω. For small values of
the phase, we can perturbatively expand the potential term in the Hamiltonian Eq. (1.27).
Neglecting the charge offset ng , we have

Ĥ = ECn̂
2 +EJ

(
φ̂2/2− φ̂4/4!− φ̂6/6! + ...

)
. (1.30)

The first two terms correspond to the harmonic oscillator. If we also keep the 4-th power
contribution, and we express n̂ and φ̂ in terms of the creation and annihilation operators,
we obtain

φ̂ =
(
EJ

2EC

)1/4 (
b̂† + b̂

)
= φZPF

(
b̂† + b̂

)
(1.31)

n̂ =
i
2

(
EJ

2EC

)1/4 (
b̂† − b̂

)
=
i
2
nZPF

(
b̂† − b̂

)
(1.32)

the approximated Hamiltonian becomes

Ĥ/~ =ωqb̂
†b̂ − EC

2~
b̂†b̂†b̂b̂, (1.33)

where we introduced the transmon qubit frequency ~ωq =
√

8ECEJ −EC. For the rest of
the thesis, we will express EC in angular frequency. Hence, for many applications, the
transmon qubit can be treated as a resonator with a weak Kerr nonlinearity EC.

1.3 Waveguides

Many measurements in this thesis are performed with planar waves. A general form for
a planar wave equation propagating in an homogeneous medium with speed vp is

(∂t − vp∂x)ψ = 0, (1.34)

where ψ represents a mechanical, an electromagnetic or an elementary particle degree
of freedom. A wave that satisfies this equation, propagates along a straight line. On
one hand this may be trivial, since the equation presented is intrinsically in a single
dimension, but this statement is true also for the three dimensional wave equation
version. By adding boundary conditions to the physical system, and consequently to
its mathematical representation, we confine the wave to smaller dimensions (from the
three-dimensional space to two or one dimension) and guide its propagation. Such
systems are called waveguides. For example, in the optical part of the electromagnetic
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Figure 1.4: Distributed lumped elements model for transmission line in microwave. (a)
Left handed tranmission line. The electrical circuit is the dual of the more common
right handed transmission line showed in (c), where the inductor and capacitor swap
positions. (b) Composite left right handed trasmission line. Depending on the values of
its components, the waveguide can present left or right handed features depending on the
traveling wave frequency.

spectrum, the waves are guided with dielectric transparent wires with large diffraction
index (optical fibers). Mechanical waves do not propagate in vacuum so the surfaces of
an elastic material confine and guide their propagation.

For microwaves, a single hollow conductor supports propagating modes where only
the electric or magnetic components are perpendicular to the propagation direction (TE
or TM modes, respectively). In this thesis we did not use TM or TE waveguides, so we
will not discuss them further. Instead we concentrate on a transmission line given by
two conductors close to each other, one commonly representing ground and the other
the signal. In this case, in the propagating mode, both the electric and the magnetic field
components are perpendicular to the propagation direction (TEM mode).

1.3.1 Waveguide circuit model

The microwave transmission lines are made out from circuits elements and can be
modeled with discrete capacitors and inductors, arranged in different geometries (see
Fig. 1.4). We can separate the waveguides used in this thesis in two families. The
waveguides with a linear dispersion relation, right handed (RH) waveguides, usually
realized with pieces of superconductors, are heavily used in cQED for coupling quantum
systems or for transmitting pulses to excite them. The waveguides obtained with a
periodic loading or an array structure result in a nontrivial dispersion relation, as
the one realized for paper Paper F. In this category falls the left handed (LH) and
composite right left handed waveguides (CRLH). The latter structures are sometimes
called metamaterials, due to their unusual properties compared with naturally occurring
materials.
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1.3. WAVEGUIDES

This nomenclature, originally chosen by Veselago that theoretically studied the light
transmission in these materials [29], relates the three vectors involved in waves propaga-
tion: electric E and magnetic H fields, and the Poynting vector P = E×H. For the majority
of materials, the dielectric coefficient and the magnetic permeability are positive, ε,µ > 0,
so that this vector triplet follows the right hand rules. If we instead assume both ε,µ < 0,
the scalar product follows the left hand rule.

In order to quantize the transmission line with the same procedure followed for
the lumped oscillators, we need to change the discrete index in the flux variable to a
continuous variable

Φi(t)→ Φ(x, t). (1.35)

Considering the RH transmission line, we can write the Lagrangian density

L =
C′R
2

(∂tΦ)2 − 1
2L′R

(∂xΦ)2. (1.36)

The Euler-Lagrangian equations give the usual plane wave equation in two directions

(∂2
t −

1
C′RL

′
R
∂2
x)Φ = 0 (1.37)

with a phase velocity vp = 1/
√
C′RL

′
R. Considering a section of length d, with total

capacitance C, and total inductance L, the phase velocity is

vp =
d
√
LC

. (1.38)

This result may look surprising: an artificial waveguide realized with lumped L and
C, in a section d long enough, would result in a superluminar propagation! This is, in
fact, impossible. When we realize a waveguide with lumped element, we can neglect
the propagation delay only if the cell section d is small enough. In this thesis the RH
transmission line has a coplanar waveguide geometry. The phase velocity is then given
by

vp = c/
√
εeff, (1.39)

where εeff is the effective dielectric constant of the transmission line. The exact value is a
non analytical combination of the two dielectrics (usually substrate and vacuum9), that
can be calculated solving Maxwell’s equations.

1.3.2 Dispersion relation and density of state

The waveguides are used for coupling a quantum system to the classical world. Impor-
tantly, even when no pulses are used, they still modify the electromagnetic environment
of the system. The density of states of the quantum system coupled to the waveguide is
proportional to the inverse of the group velocity vg [30]. Therefore, it is important to
calculate (or measure) the dispersion relation of a waveguide. Following the derivation

9A simple rule of thumb gives εeff = (εsub + εvac)/2
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CHAPTER 1. CIRCUIT QUANTUM ELECTRO- AND ACOUSTO-DYNAMICS

in the general case of a CLRH transmission line [31], we can define the impedance of the
signal electrode per unit length

Z ′(ω) = i
(
ωL′R −

1
ωC′L

)
, (1.40)

and the admittance between signal and ground per unit length

Y ′(ω) = i
(
ωC′R −

1
ωL′L

)
. (1.41)

Considering d a section of the transmission line (the lattice constant), the dispersion
relation is simply

cos(kd) = 1 +
1
2
Z ′Y ′ . (1.42)

The group velocity can then be calculated

vg =
∂ω
∂k
. (1.43)

1.3.3 Mechanical waves on substrate surface

In a different approach to cQED, mechanical quanta, or phonons, can substitute the
photons as the interaction mediator [15]. As the electromagnetic counterpart, in a
defect-free lattice, phonons do not interact with other phonons, and propagate with
low negligible loss. Remarkably, two features make them qualitatively different from
photons:

• their propagation speed, 5 orders of magnitude smaller than that for light, imposes
micrometer wavelengths in the GHz range. Except having a minuscule footprint
compared with the cQED devices, this regime gives the possibility to explore effect
of atoms much larger than the radiation wavelength [32]

• they do not propagate in vacuum. This feature makes it possible to drastically
reduce unwanted radiative losses, realizing resonators with extremely high Q-
factors > 1010 [33]

In this thesis we use waves confined on the surface of the substrate, surface acoustic
waves (SAWs) initially investigated by Lord Rayleigh [34]. On one hand, this lets us
exploit the usual lithography process already developed for cQED, and on the other
hand, it makes the devices really sensitive to surface imperfection. In Paper C we use
the latter feature for acoustically investigating the two-level systems at the top of the
substrate.

Due to the substrate lattice properties, SAW are naturally confined to propagate with
small diffraction, so that the substrate itself constitutes our waveguide. Unfortunately,
our instruments only generate photons. In this perspective, we use an interdigitate (IDT)
transducer that converts electromagnetic waves from the coaxial lines of the cryostat to
mechanical ones on the substrate.
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1.4. DISTRIBUTED RESONATORS

(a) (b) (c)
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Figure 1.5: Three types of distributed resonators used in this thesis. (a) Quarter wave-
length resonator fabricated in aluminium on gallium arsenide. It consists of a section of
a coplanar waveguide shorted to ground at one end, and open (zoomed window) at the
other. (b) JJ resonator realized in aluminium on silicon. The circuits consists of a series of
10 JJ (in red) and a large capacitor (in blue). (c) SAW resonator realized in aluminum
on gallium arsenide. Two Bragg mirrors (in green) facing each other, effectively creates a
multimode cavity for mechanical waves, that can be excited with an IDT (in orange).

1.4 Distributed resonators

One of the features of the lumped elements is the simplified treatment of their interaction
with the electromagnetic or mechanical waves. In fact, we neglect any phase change
of the waves. On the other hand, when we spread the circuit elements (capacitor and
inductors) to an extent comparable with the photon wavelength, we cannot keep this
assumption anymore. The relatively small increase in complexity, is overcome with
benefits that these systems bring.

In this thesis we used three of such systems: a CPW quater wave resonator, a JJ array
resonator, and finally a Bragg mirror resonator for SAW (see Fig. 1.5). Remarkably, the
length scale in (a), (b) and (c) span 3 orders of magnitudes, nevertheless all three of these
resonators have a spatial extension comparable with the excitation wavelength. In fact,
while the phase velocity in a CPW geometry is only few times smaller than the c, the JJ
resonator, depending on its parameters, may slow down light significantly. Finally, the
SAW phase velocity, imposes wavelengths 5 orders of magnitude smaller compared to
electromagnetic waves at the same frequency. In the rest of the section we will examine
these systems more in details.
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1.4.1 Coplanar waveguide resonators

Modifying the impedance of a transmission line, Z0, results in a reflection of a traveling
wave [35], with a reflection coefficient

S11 =
Z −Z0

Z +Z0
. (1.44)

In particular, the short or open circuit condition is very efficiently implemented in a
coplanar geometry. A segment of a transmission line with two such boundary conditions
is called a coplanar waveguide resonator (see Fig. 1.5(a) ). If the ends of the transmission
line, apart from each other a physical length l, are open (shorted), the resonant conditions
are met when the microwave field wavelength

nλ/2 = l, (half wavelength resonator for n = 1) (1.45)

where n is the mode number. In this case the ends are current (voltage) nodes, and
voltage (current) anti-nodes. This information is important to chose the position and
type of coupling element when we will couple multiple circuits.

On the other hand, if one of the ends is open while the other is shorted, the resonances
appear when (

n− 1
2

)
λ/2 = l, (quarter wavelength resonator for n = 1). (1.46)

Interestingly, for a chosen fundamental mode, the quarter wavelength resonator presents
half of length compared with the other resonator, while the free spectral range is the
same.

CPW resonators are very versatile in cQED because the large quality factor and the
small mode volume that favor coupling with other systems. In fact, the first demon-
stration of strong coupling between a qubit and a resonator exploited this device [5].
These two features, together with the fabrication simplicity, makes the CPW resonator
suitable for investigating loss in superconducting circuits [36–38]. Finally adding a
tunable elements to one end, as a SQUID, the resonators can be parametrically driven,
make it possible to study, among the others, dynamical Casimir effect, amplification and
period multiplication [39–41].

In this thesis we use CPW resonators for direct investigation of losses in piezoelectric
substrates (in Paper B), and as read-out resonators (in papers Paper A, Paper E and
Paper F). We design the frequency of the first harmonic in the 4 to 8 GHz band, and we
use an impedance of 50Ω. With these quantities we can extract the total capacitance of
our resonator to be Cr =600 fF and relative inductance Lr = 2 nH.

By imposing the short or the open boundary conditions, to the discrete model of the
right-handed waveguide (see Fig. 1.4(c)), we obtain the harmonic oscillator Hamiltonian
[8]:

Ĥ/~ =
∑
n

ωnb̂
†b̂, (1.47)

where ωn are the resonant modes expressed in Eq. (1.46).
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In this thesis, the total capacitance of the resonator, Cr ∼600 fF is much larger than
the coupling capacitance, Cc ∼ 10 fF, so Eq. (1.47) is still valid, while ωn is obtained from
the perturbative treatment around the resonant condition Eq. (1.46).

1.4.2 JJ and SQUID array resonators

In this thesis we use the JJs array resonators. In Fig. 1.6(a) we show the electrical
equivalent representation of our devices. If we disregard the capacitance at the end of
the circuit, the JJ array is a discrete realization of a section of right hand transmission
line, with inductance substituted by JJs. For a case in which we can neglect Cr , it should
not surprise that we have similar resonant modes, displayed in Fig. 1.1(b).

In general, each electrode that connects two junctions has a spurious capacitance C0
to ground. Accounting also for the capacitance of the JJ, in the linearized regime, the
Lagrangian for the circuit is

L =
1
2
Cr (∂tΦN )2 +

N∑
n

1
2
C0(∂tΦn)2 +

1
2
CJ (∂tΦn −∂tΦn+1)2 − 1

2LJ
(Φn −Φn+1)2 (1.48)

=
1
2
∂tΦ

TC∂tΦ−
1
2
ΦT L̃Φ, (1.49)

with the vector notation Φ = (Φ1, ...,ΦN )T , the tridiagonal capacitance matrix

C =



CJ+C0 −CJ 0 ... 0 0 0
−CJ 2CJ+C0 −CJ ... 0 0 0

0 −CJ 2CJ+C0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . 2CJ+C0 −CJ 0

0 0 0 ... −CJ 2CJ+C0 −CJ
0 0 0 ... 0 −CJ Cr+CJ+C0


(1.50)

and the tridiagonal inductance matrix10

L̃ =
1
LJ



1 −1 0 ... 0 0
−1 2 −1 ... 0 0

0 −1 2
. . . 0 0

...
...
. . .
. . .
. . .

...

0 0 0
. . . 2 −1

0 0 0 ... −1 1


. (1.51)

From simple visual inspection of C (or directly from the circuit) we realize that the
capacitance Cr breaks the symmetry of the resonators.

In the case where Cr � CJ,C0, initially studied in [20], we can neglect Cr contribution,
obtaining the dispersion relation (or also the normal modes resonances):

ωk =ωp

√
1

1 + C0
2CJ

1
1−cos(πk/N )

, k ∈
[
−N

2
,
N
2

]
(1.52)

10Notice that the physical dimensions of L̃ are the inverse of an inductance.
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Figure 1.6: Modes frequency and structure of a Josephson Junction array resonator. (a)
In the low excitation regime, a JJ array resonator shunted by a capacitor (upper circuit)
can be linearized substituting the junction with the equivalent inductor LJ and capacitor
CJ. Moreover we consider also the effective capacitance to ground C0 (lower circuit). (b)
Different modes frequency with and without the large shunted capacitor. (c) Comparison
of the voltage at each node for the same JJ array, with and without the shunt capacitor.
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where ωp = 1/
√
LJCJ is the plasma frequency of the JJ. The modes frequencies are shown

in Fig. 1.6. We design our device to be in the opposite regime, Cr � CJ,C0, pushing
the ground plane far from the junctions array (see Fig. 1.5(b)). Nevertheless, from
electrostatic simulations (see appendix C), we cannot completely neglect C0, and an
analytical approach is hard.

The numerical evaluation of the resonant modes of the JJ resonator, with the parame-
ters we used in the experiments is shown in Fig. 1.6(b). The first resonant mode yields at
5.5 GHz, while the second mode is much far detuned, resonating above 30 GHz. This
is a consequence of the large shunting capacitor. Also the mode structure is drastically
altered by the capacitor. In Fig. 1.6(c) we plot the mode structure for the first three array
modes, for the case with (in orange) and without (in blue) the large shunted capacitance.
In our experiment we treat the JJ resonator as a single mode, only considering its first
array mode.

1.4.3 SAW resonators

Periodically altering the property of the surface, produces a forbidden propagation
region for traveling mechanical waves, a phononic bandgap. In particular, we realize
an aluminum grating with a lattice constant equal to the wavelength of the SAWs (see
Fig. 1.5(c)). This results in a twofold loading of the surface: a mechanical loading, due
to a larger stiffness of the metal compared to GaAs and due to an additional periodic
mass, and an electrical loading, due to the superconducting properties ”shortening”
the piezoelectricity of the substrate (see chapter 2). The grating opens stop bands for
propagating SAWs when multiples of the wavelength match the pitch of the grating
[42]. Two gratings in front of each other produce a Fabri-Perot cavity [43], with resonant
frequencies in correspondence of the stop bands. The resonances can be probed by
including an IDT transducer between the two mirrors. In this thesis we used only the
first stop band.

These devices have been successfully coupled to qubits [44], making it possible to
investigate, for example, phonon Fock state [45] or radiation pressure [46]. Interestingly,
breaking the mirror in two electrodes and reconnecting them with a SQUID, introduces
a nonlinearity in the mechanical modes that can be used for two mode squeezing (see
Paper II for details).

1.5 Coupling quantum systems

Two coupled systems can transfer an excitation of one, b̂, to another ĉ,

Ĥ = ~ωbb̂
†b̂+ ~ωc ĉ

†ĉ+ Ĥint, (1.53)

where we introduced the interaction Hamiltonian,

Ĥint/~ = g(b̂† + b̂)(ĉ† + ĉ) = g(b̂†ĉ+ ĉ†b̂) + g(b̂†ĉ† + b̂ĉ) (1.54)

where g is called coupling or interaction strength, and, in general, it is proportional to
the number of excitations in the system, n, and to the vacuum fluctuation, VZPF. We are
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interested in the evolution on a time scale set by g. However, when g � ωi , the terms
b̂†ĉ† and b̂ĉ produce an evolution much faster, that averages out on the time scale of
interest. Applying a secular approximation, we can drop these terms [47, 48]. With this
approximation, called rotating wave approximation (RWA) in quantum optics [49], the
total Hamiltonian preserves the number of excitations in the system[

Ĥ, b̂†b̂
]

=
[
Ĥ, ĉ†ĉ

]
= 0. (1.55)

At this point many energy scales (or equivalently time scales) are present in the
systems: the systems resonances ωi , their total decay rates, κ,γ , and the interaction
strengths gi . We can identify three different regimes.

Weak coupling: the losses of the systems are larger than the coupling g � κ,γ . In time
domain, there is no coherent exchange between the two systems, while in frequency
space the line width of two resonant systems are not resolved.

Strong coupling: the coupling strength is larger than the decay rates g � κ,γ but it
is still a small fraction of the transition frequency of the system g/ωi < 0.1. In
this regime, we can resolve coherent exchange and spectroscopically identify the
avoided crossing of the two resonances. All the systems studied in this thesis fit
this category.

Ultrastrong coupling: the interaction strength becomes an appreciable fraction of the
transition frequency g/ωi > 0.1. In this regime, only recently experimentally
accessible, many of the usual assumption in cQED break down: for example, the
rotating wave approximation is not valid [49], or the Purcell effect is modified [50].
Additional information about this regime can be found in [51] .

In naturally occurring quantum systems, the photon is the mediator of the electric
interaction. In particular, the fine structure constant, α = Zvac/(2RQ) ≈ 1/137 sets the
interaction strength between a charged elementary particle and a photon [52]. The
small value of this constant sets the qualitative behavior of light-matter interaction; for
example, the spontaneous decay rate γ of an atomic transition ωa, due to the interaction
of the atom with the photonic vacuum fluctuation, is

γ ≈ωaα
3, (1.56)

i.e. in our universe the atomic linewidths are sharp [53]. We already mentioned that the
light-matter interaction can be enhanced by confining the atom in a resonant cavity. In
this case the dimensionless coupling

g̃cav ≈
α3/2
√
Ṽ
≈ 10−6, (1.57)

where we introduced the dimensionless mode volume Ṽ of the cavity. Despite the small
value of this coupling, it is possible to achieve strong coupling, in fact the ratio

g̃cav

γ/ωa
≈ α

−3/2
√
Ṽ

(1.58)
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can be made larger than unity.
In this section, we study this interaction for artificial matter in the frame of cQED

and cQAD. Remarkably, designing the interaction with lumped elements and confining
it in one dimension can boost the interaction by up to four orders of magnitude. As we
will see in this section, the dimensionless transmon-resonator coupling

g̃res ≈ nZP F

√
Zq
Zvac

Cc

Cc +Cq
α1/2 ≈ 10−2, (1.59)

where Cc is the coupling capacitance between the resonator and the transmon. In this
case, the ratio between coupling strengths and losses can be made orders of magnitude
larger than 1. This imply that the two system can store and manipulate the quantum
information for a long time before losing the excitations.

1.5.1 Coupling of resonant circuits

Relating the coupling coefficient with the circuit parameters, not only gives a direct
design tool for the experiments, but also make it possible to estimate the achievable
values for these quantities. Experimentally, coupling two resonant circuits is as simple
as introducing a mutual capacitance, and in this thesis almost all couplings have a
capacitive nature. If we consider two LC-resonators with a coupling capacitance Cc, their
Lagrangian is

L = L1 +L2 +Lint

=
1
2
C1(∂tΦ1)2 − 1

2L1
Φ2

1 +
1
2
C2(∂tΦ2)2 − 1

2L2
Φ2

2 +
1
2
Cc(∂tΦ1 −∂tΦ2)2

=
1
2
∂tΦ

TC∂tΦ−
1
2
ΦT L̃Φ,

(1.60)

with C1 and C2 (L1 and L2) the capacitances (inductances) of resonator 1 and 2 respec-
tively. Introducing the conjugate charge variables

Qi =
∂L

∂(∂tΦi)
i = 1,2 (1.61)

the Hamiltonian is given by the Legendre transformation

H =
1
2

QTC−1Q +
1
2
ΦT L̃Φ. (1.62)

Introducing the resonator frequenciesωi =
√

C−1
ii /Li and the usual commutation relations[

Φ̂n, Q̂m
]

= i~δnm, we can express the Hamiltonian as

Ĥ/~ =ω1b̂
†b̂+ω2ĉ

†ĉ+ g(b̂† − b̂)(ĉ† − ĉ), (1.63)
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where we have used

Φ̂1 =
√
Z1
√
~/2

(
b̂† + b̂

)
Q̂1 = i

1
√
Z1

√
~/2

(
b̂† − b̂

)
, (1.64)

Φ̂2 =
√
Z2
√
~/2

(
ĉ† + ĉ

)
Q̂2 = i

1
√
Z2

√
~/2

(
ĉ† − ĉ

)
, (1.65)

g =
√
ω1ω2

Cc

2
√

(C1 +Cc)(C2 +Cc)
=

1
2
ω1ω2Cc

√
Z1Z2 (1.66)

1.5.2 Atom in a cavity and the Jaynes-Cumming Hamiltonian

The interaction between a cavity mode and an atom has a privileged role in cQED and
more generally in quantum optics. In a semi-classical approach, Rabi introduced the
Hamiltonian of atom and classical field [54]

ĤR/~ =ωâ†â+
1
2
ωqσ̂z + gσ̂x

(
â† + â

)
. (1.67)

Jaynes and Cumming studied the Rabi model when the radiation is a quantized cavity
mode with frequency ωr [55]. In this case, after applying the RWA, they obtained the
Hamiltonian

ĤJC/~ =ωr â
†â+

1
2
ωqσ̂z + g

(
â†σ̂− + σ̂+â

)
(1.68)

In the dispersive regime, (ωr −ωq)� g, the Hamiltonian can be written as

Ĥdisp = (ωr +χσ̂z) â
†â+

1
2

(
ωq +

g2

∆

)
σ̂z (1.69)

where χ = g2/∆. This is only true for a two level system. For a transmon qubit, which
has mode levels, this is modified to[28]

χ =
g2

∆

EC

EC −∆
. (1.70)

1.5.3 Coupling to waveguide

In this thesis we couple lumped or distributed elements to waveguides, in three possible
geometries depicted in Fig. 1.7, reflection, transmission and notch configuration; for
simplicity we will discuss the capacitive coupling case here, while the inductive case is
treated on each experiment in the following chapters.

In cQED, a purely microwave engineering approach, or a purely quantum optics one,
are effective. Considering that in both theories, the system has an undulatory behavior,
this should not leave the reader surprised. Both techniques were, in fact, developed for
the study of propagating or stationary waves. Here we will use quantum optics methods.

If we drive a resonator with a coherent tone, different configurations have different
responses. As an example we can derive the reflected signal of a resonator coupled at the
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Figure 1.7: Waveguide coupling topologies. (a) Reflection. The input field âin interact
with the cavity and the output âout propagates back into the waveguide in the opposite
direction. (b) Transmission. The field injecting from one waveguide, interacts with the
quantum system, propagates into a second waveguide. The reflection in this configura-
tion, is the same as the case shown in (a) where the decay in the second waveguide is
incorporated in the nonradiative decay. (c) Notch. The waveguide where the field travels,
is not interrupted, so the signal is not scattered by waveguide boundary, but only by the
cavity. Even if the SNR reduction in this configuration, may preclude its use in some
applications, the possibility to multiplex many system on the same waveguide makes this
geometry very appealing.

end of the waveguide with rate κr, with internal loss κnr [see Fig. 1.7(a)]. When we drive
the system with an external field âin , the Heisenberg equation is

∂t b̂(t) = i
[
Ĥ, b̂(t)

]
− 1/2(κr +κnr) b̂(t) +

√
κrâin(t) (1.71)

If the driving field âin(t) = âine
−iωt , confining the time dependence of the intra-cavity

field only to its phase, b̂(t) = b̂e−iωt , the Hilbert equation becomes:

i(ω −ω0)b̂ − 1/2(κr +κnr) b̂+
√
κrâin = 0 (1.72)

Finally using the input-output relation:

〈âin〉+ 〈âout〉 =
√
κrb̂ (1.73)

we can calculate the reflection coefficient:

S11 =
〈âin〉
〈âout〉

(1.74)

and substituting the

S11 =
κnr −κr + 2i(ω −ω0)
κnr +κr + 2i(ω −ω0)

. (1.75)

The same procedure can be applied to the transmission configuration, in Fig. 1.7(b),

S21 =
2
√
κr1κr2

κr1 +κr2 +κnr + 2i(ω −ω0)
(1.76)
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Figure 1.8: Measurement response of resonators in reflection (a-c), transmission (d-f)
and notch configuration (g-i) to a coherent tone. The colors highlight the overcoupled
(blue), critically coupled (orange) and undecoupled (green) regime.

and to the notch one, in Fig. 1.7(c)

S21 =
κnr + 2i(ω −ω0)

κr +κnr + 2i(ω −ω0)
. (1.77)

The plot of the expected reflection or transmission coefficient is shown in Fig. 1.8. As
usual, it is very interesting to link the coupling coefficient to the electric components of
the equivalent circuit. The radiative decay can be expressed as

κr =ω2
r Z0

C2
c

Cr +Cc
=ωr

Z0

Zr

(
Cc

Cr +Cc

)2

(1.78)

while the nonradiative decay

κnr =
1

R(Cr +Cc)
(1.79)
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1.5.4 Quality factor

An important figure of merit for resonators in the quality factor Q, a dimensionless
parameter that, roughly speaking, describe how many cycles the resonator finishes,
before its energy decays:

Q = 2π
Energy stored

Energy lost per cycle
=
Etot

∆E
. (1.80)

This quantity comes in handy when we want to compare different loss channels in
resonators with different frequencies. In particular if we can factorize the total loss in
different channels ∆E =

∑
i∆Ei , the total Q-factor

1
Q

=
∆E
Etot

=
∑
i

∆Ei
Etot

=
∑
i

1
Qi

(1.81)

Remarkably, as for the radiative and nonradiative decay, we can separate the total
quality factor in internal quality factor,

Qi =ωr /κnr, (1.82)

and external one,
Qext =ωr /κr. (1.83)

The total Q for the resonators and qubits investigated in this thesis, range from 103 to
106. While Qext is set by design, many factors limit Qi and in chapter 2 we will identify
some of them, quantitatively study them and implement strategies to reduce or eliminate
them.

27





–If we’re collapsing right now, I’m gonna collapse on them. I’m not gonna wait for
them to collapse on us.

Coherence, Oscilloscope Pictures (2013)

2
Coherence

Coherence is one of the most important properties for a quantum system. It describes
the possibility to have quantum interference effects between its degrees of freedom. The
evolution of the degrees of freedom, is described by an unitary matrix, independently on
how large the system is. However, when we only focus on the few ones of a quantum
circuit, we can observe the loss of coherence (or decoherence) due to the interaction with
the remaining degrees of freedoms of the environment (or baths).

Representing the state of the circuit with a density matrix, ρ̂(t), the decoherence
describes the decay of diagonal and off-diagonal elements to the stationary value, repre-
senting the population and coherence respectively. These processes are called relaxation
and dephasing.

In this chapter we explore the decoherence caused by defects on the surface of the sub-
strate where the circuits are fabricated or in the interfaces between the superconductors
and vacuum. They behave as a bath of two levels systems, electrically or mechanically
coupled to the circuit. Moreover, we investigate the effect of the photonic bath in the
highly attenuated coaxial line which we use to drive or readout the qubit, and finally
we measure the effect of a strong coupling between superconducting resonators and the
phonons on the substrate.

2.1 Decoherence sources

The quantum systems we implement in cQED are superconducting circuits cooled to their
quantum mechanical ground state and manipulated with microwave signals. In chapter
1 we introduced the ideal case, where the circuits are in vacuum. In a more accurate
treatment, many baths weakly coupled to the quantum system, alter its spectrum and
influence its behavior.
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Figure 2.1: Decay rate of the qubit due to unwanted coupling to thermal baths. (a)
Sketch of an artificial atom coupled to the photons in the waveguide, to phonons in the
substrate, to two-level systems on the surfaces of the superconductors and substrate, and
to quasiparticles in the metal. (b) When all the baths are in thermal equilibrium with the
mixing chamber plate, we can plot the individual baths contribution to the relaxation
of the atom. In particular we plot the loss rate of the atom using the common values we
obtain in the fabrication on silicon (b), or on gallium arsenide (c).

In Fig. 2.1(a) we sketch an artificial atom and the surrounding baths with the largest
coupling strengths, γph,γpn,γTLS,γqp that refer to the photonic, phononic, two-level
systems and quasi-particles baths, respectively. By restricting to the single excitation
subspace (or equivalently considering a perfect two level system), we can calculate the
evolution of the system solving the master equation [8, 56]

∂tρ̂ =
i
~

[
ρ̂, Ĥ0

]
+

∑
k

γk(1 +nk)

D[σ̂−]ρ̂+

∑
k

γknk

D[σ̂+]ρ̂, (2.1)

where the k-index runs over different baths, nk is the average occupation number of
the baths, Ĥ0 = ~ωqσ̂z/2 is the atom Hamiltonian and finally we define the Lindblad
superoperator (dissipator)

D[Ô]ρ̂ = Ôρ̂Ô† − 1
2

(Ô†Ôρ̂+ ρ̂Ô†Ô). (2.2)

By solving for the population ρ11 and ρ22, we obtain an exponential relaxation with a
characteristic time T1, given by

1/T1 = γ = γph(1 + 2nph) +γpn(1 + 2npn) +γtls(1 + 2ntls) +γqp(1 + 2nqp). (2.3)

The phonons in the substrate are cooled to T = 10 mK. Using the Bose-Einstein distribu-
tion for microwave phonons at ω/2π = 5 GHz gives

n =
1

e
~ω
kBT − 1

≈ 4 · 10−11. (2.4)
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At these temperatures, the baths are usually out of thermal equilibrium, with an average
occupation many orders of magnitude larger than the one calculated with Eq. (2.4). In
Paper D and in Paper E we measure the population of the photons and TLSs, respectively.
This knowledge can be used to benchmark setups with optimized thermalization and,
more importantly, for experiments of bath engineering. For example, the microwave
modes in a waveguide can be used as a thermal bath in quantum thermodynamics
experiments[57–59], where the bath temperature needs to be probed accurately.

One way to mitigate the total relaxation rate of the atom is to limit the population
of these baths. A large effort, over the past two decades, improved the lifetime of the
transmon qubits up to a few hundreds of microseconds[60]. In particular, the quasi-
particles population can be reduced by shielding from stray radiation [61], engineering
metallic traps [62], or actively cooling them down [63]. The photonic population can be
lowered by improving attenuators thermalization [64] or by embedding the system in
a detuned cavity [65–67]. Single TLSs coupled to a qubit have been spectroscopically
measured as a function of their frequency [68]. A similar experiment [69] located their
presence on the substrate and metal surfaces. Nevertheless the nature of the TLS bath is
still under investigation, and further research is necessary to understand how to reduce
their density and temperature. In appendix A we present the general setup used in the
experiments, where we implemented many of the aforementioned strategies.

The complementary approach consists in reducing the coupling of the baths. The
quasi-particles decay rate is given by [61] is

γqp =
ωr
π
βk

√
4π
kBT
~ωr

e
− ∆s
kBT , (2.5)

where βk is the kinetic inductance ratio (a function of geometry), and the only free
parameter is the superconducting energy gap, ∆s. While many superconductors have
been investigated [70, 71], this research is still active.

When the driving power of the circuits is smaller than a critical photon number
(depending on the substrate and geometry), the TLSs coupling [72]

γtls =ωrFδt tanh
(
~ωr

2kBT

)
, (2.6)

where δt is the intrinsic loss tangent of the substrate [35], and F is the filling factor (the
ratio of the electric field produced by the circuits that thread the substrate). In this case,
reducing F [73, 74] or choosing low loss substrate [75] effectively reduces the coupling of
the qubit with the TLSs. In our devices the value Fδ ≈ 10−6 for both silicon and gallium
arsenide.

The coupling to the photonic environment depends on the system geometry. If the
circuit is directly coupled to the waveguide, γph = κr. In case a resonator Purcell protects
the atomic system then

γph = κr
g2

∆2

ωq
ωr
. (2.7)

The design choice also needs to consider the readout time (see appendix B for more
details).
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Finally the phononic coupling can span over many orders of magnitude depending on
the substrate nature. For piezoelectric substrates, γpn is directly related to the electrome-
chanical coupling K2 (see section 2.4). On nonpiezoelectric substrates, this coupling is
negligible. In Paper B we measure this quantity for superconducting resonators realized
on gallium arsenide.

When we plot the total decay rate Eq. (2.3) with parameters in our experiments,
and assuming all baths in thermal equilibrium, we obtain the curves in Fig. 2.1(b) for
circuits fabricated on silicon and Fig. 2.1(c) for the one on gallium arsenide. Identifying
and quantifying accurately the main source of loss is then necessary for sample and
experiment design.

Finally, the model used in Eq. (2.1) assumes the constituents of the baths being
independent. A more detailed treatment may include interacting two-level systems [76],
or correlated noise in the coaxial cables. We did not use these refinements in the data
analysis of our experiments.

2.2 Two levels systems

In this section we present the effects of the TLS baths on the circuits we fabricated,
describing the main finding in Paper A, Paper C and Paper E.

2.2.1 Qubit decoherence statistic

In Paper A we investigate the decoherence in two fixed frequency transmon qubits
dispersively coupled to a read-out resonator. These qubits are fabricated on silicon
(see appendix C for more details on the fabrication process), bonded with aluminum
wires in two separated sample boxes and measured at the same time. The qubits,
with frequencies ωa/2π = 4.437GHz and ωb/2π = 3.759GHz, are driven through their
resonators by applying the pulse schemes showed in appendix B. By measuring the decay
and dephasing rates for many hours we obtain significant statistics of the fluctuations.

We noticed that 5% of the decay measurements presented a revival, and, in fewer
instances, the relaxation rate switched between two separate values while being measured.
It has been shown also in other papers that the frequency of the TLSs fluctuates [77,
78], and we believe that in this case we observe a resonant interaction with a single
TLS. From the resonant oscillations, we can extract the coupling with the single TLS,
γtls/2π = 4.8kHz.

In Fig. 2.2(a) we report the decay rates from level |e〉 and |f
〉

as a function of time for
one of the two qubits measured in the paper. While in Fig. 2.2(b) we display the free
induction decay rate, T ∗2 , measured with a Ramsey sequence. The fluctuations of the
decay rates affects the performance of any device; for example, in Paper III it directly
affects the stability of the single photon source. Therefore, we usually quote the average
values with their variances. In Fig. 2.2(c) and (d) we build the histograms of the series
reported in (a) and (b), respectively. With our fabrication process, the qubit realized on
silicon have a lifetime of T̄1 = 50µs, while T̄ ∗2 = 95µs.
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Figure 2.2: Decoherence statistics. (a) Total decay rate of the qubit, from the level |e〉 and
|f
〉
. (b) Free induction decay measured with a Ramsey sequence, for the qubit first and

second excited state. (c) and (d) Histograms of the decay rate measured in (a) and (b),
respectively.
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The Allan deviation [79] of the temporal series of the decay rates, shows a peak that
cannot be obtained by any noise with a power law spectrum, while it can be generated
by Lorentzian noise. Adding this component, and fitting the data, we found a switching
time between 16 min and 3.7 hours.

Finally, we do not measure any significant correlation between the fluctuation of
decoherence of the two qubits, ruling out the measurement setup as a possible source of
this Lorentian noise.

2.2.2 Qubit population

Calculating the steady state in Eq. (2.1), the population of the first excited state of the
qubit is given by the average of the populations of its surrounding baths weighed by
their coupling rates

Pe =
γphnph +γpnnpn +γtlsntls +γqpnqp

γ
. (2.8)

For qubits fabricated on silicon the phononic component does not have an appreciable
contribution. Moreover, at 10 mK the quasiparticles population is negligible. If we also
ignore nonequilibrium quasiparticles, the qubit population is

Pe =
γphnph +γtlsntls

γ
. (2.9)

As we already mentioned, the photonic and TLS baths are not in thermal equilibrium
with the thermometer on the mixing chamber plate. In fact, measuring the population
of Pe as a function of the mixing chamber plate temperature [see Fig. 2.3(a)] shows the
present of a heat source that warms up the qubit.
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Figure 2.3: Qubit population. (a) Population of qubit A and B (see paper A) as a function
of the mixing chamber plate temperature. The black solid line represents the population
of the transmon (with 4 levels included in the calculation). (b) Population of qubit A as a
function of added photon in the coaxial line. The black solid line represents the best fit of
Eq. (2.9) to the data.

In the draft of Paper E we study the effects of different input set-ups on the population
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Pe and the decay rate γ of the qubit for five different configurations, with different total
attenuation, filtering and connector types.

Moreover we use calibrated white noise to increase the photon occupation in the
line nph. From the population and decay measurement, we extract the coupling with
the TLS bath, with the preliminary value of γtls/2π = 2kHz comparable with the one
measured in Paper A. At the same time we extract the occupation of the TLS bath,
ntls = 0.65 %, corresponding to a temperature 42 mK for the qubit A. Although additional
investigations are necessary to identify and possibly remove the source(s) of the heating,
the full characterization of the qubit environments can help design future experiments
and improve the understanding of the present ones.

2.2.3 Saturating TLSs bath

For a coherent drive with n� 1, Eq. (2.6) becomes [80]

γtls =ωrFδt

tanh
(
hfr

2kBT

)
√

1 +
(
n
nc

)β , (2.10)

where nc is the critical photon number and β is a phenomenological parameter1. The
loss due to TLSs vanishes when they are saturated.

In Paper C we exploit the high finesse of a SAW resonator (described in section 1.4.3)
to saturate the TLSs bath with a coherent tone (pump) while probing the internal quality
factor of a neighboring mode. The variation δ(1/Qtls) of TLSs contribution to the quality
factor for a pump with strengthΩ and detuned by∆ from the probe mode with frequency
ωr , depends on the ratio [81]

ξ =
∆2

Ω2 (2.11)

and is given by

δ

(
1
Qtls

)
= −Fδt tanh

(
hfr

2kBT

){
1 + ξ

[
6 + 3

√
1 + 2ξ ln

(
1 + ξ(1−

√
1 + 2ξ)

)]}
. (2.12)

We observe a reduced loss from TLSs up to 90% for pump powers with n ≈ 105 pho-
tons. This result opens a new direction in reducing losses from TLSs. Realizing devices
that saturate the TLSs bath with mechanical excitation could be used on nonpiezoelectric
substrate, to mitigate the energy loss of superconducting resonators limited by TLSs.

2.3 Photons

The expected occupation of microwave modes in the coaxial lines in our cryostat can be
estimated by knowing their attenuation profile and filtering (see appendix A). Neverthe-
less the presence imperfections, high-frequency leakages or nonperfect thermalization of

1In the Standard Tunelling Model (STM) for two-level systems β = 1.
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the microwave components may alter the average photon occupation by many orders of
magnitude.

In Paper D we probe the average photon number of the input lines using a super-
conducting qubit. The qubit is directly coupled at the end of the waveguide line [see
Fig. 2.1(a)]. The reflected signal of a coherent driving with strength Ω is shown in
Fig. 2.4(a).
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Figure 2.4: Coherent scattering from the thermometer. (a) Real (blue), imaginary
(orange) and absolute value (green) of the reflection coefficient as a function of the
coherent probe power. (b) Real part of the reflection coefficient as a function of added
thermal photons for three probe powers.

In order to calculate the scattering property, we modify the master equation Eq. (2.1),
considering a driven three level atom, so that Eq. (1.33) in the rotating frame with the
driving frequency ωd reads

Ĥ/~ = −δb̂†b̂ − EC

2
b̂†b̂†b̂b̂+ i

Ω

2
(b̂ − b̂†). (2.13)

Moreover we neglect the phononic and quasi-particles contribution, as well as TLSs
bath population. Solving for the steady state and applying the input-output relation,
we obtain the reflection coefficient for resonant driving (see Paper D for the calculation
details)

r(0) = −1 +
8ngeph + 4nefph

1 + 3iγph/(2EC)
+ 4

γφ
γph

+ 2
γtls

γph
+

4(Ω/γph)2

1 + iγph/EC
(2.14)

In order to use the qubit as a thermometer, we mitigate the effect of the TLSs designing

a large photonic coupling: γph � γtls. In this regime, considering that ngeph ≈ n
ef
ph, the

reflection coefficient becomes

r(0) = −1 +
12

1 + 3iγph/(2EC)
nph +

4(Ω/γph)2

1 + iγph/EC
. (2.15)

Eq. (2.15) shows that the reflection coefficient at low driving strength, is linear with the
thermal photons in the line. Moreover this thermometer does not need to be calibrated
against another one.
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In Fig. 2.4(b) we measure calibrated white noise to artificially increase the photonic
thermal bath in the waveguide for three driving strengths. We have a perfect agreement
between data and theory.

In the follow-up experiment, we show a time resolved measurement of the photon
number with a response in less than 7 ns. The sensitivity for our thermometer, estimated
to be 4 · 10−4 photons/

√
Hz, can be further improved with a better amplification chain.

2.4 Phonons

Eq. (2.8) shows that the phononic bath effectively cools the qubit. The better the cooling
the smaller is the error in resetting the qubit that we implement by simply waiting longer
than the qubit decoherence times2. Unfortunately, a large coupling may degrade the
performance of the circuits. In fact, when the superconducting circuits are fabricated on
a piezoelectric substrate, their electromagnetic excitation can be directly converted in a
mechanical one due to the electromechanical coupling. The phonon coupling γpn cannot
be calulated analytically, but can be estimated numerically for each specific geometry.

2.4.1 Piezoelectric effect

On a piezoelectric material, any time dependent electric field generates mechanical
waves. The energy flows away from the superconducting circuits at the speed of sound,
and the amount depends on the material (by the electromechanical coupling), on the
frequency and on the geometry of the device. The geometry of some devices, for example
SAW filters [42], is designed to achieve the largest conversion efficiency possible.

Hooke’s law for a nonisotropic material linearly relates the stress σij and the strain skl

σij = cijklskl , (2.16)

where cijkl is the elastic constant, and we used Einstein notation of the sum over the
indices. Piezoelectric materials generate an electric field when subject to strain, due to
the lack of symmetry for inversion respect to the center of the crystal unit cell [82]. In
the same way, an electric field Ek produce a strain in the material. In this case, we can
rewrite Eq. (2.16) and add the effect of the strain on the electric field [83]

σij = cijklskl − eTijkEk , (2.17)

Di = eijksjk + εijEj (2.18)

where we introduced the piezoelectric coefficient eijk and the material permittivity εij .
The wave equation for the deformation ui and for the electric potential V are given

by [84]

dm∂
2
t ui − cijkl∂j∂luk = ekij∂j∂kφ, (2.19)

εij∂i∂jV = eijk∂i∂kuj . (2.20)

2As we saw, this introduces a small systematic error on the qubit state, because the qubit relaxes to the
mixture ρ̂ = Pg |g〉〈g |+ Pe |e〉〈e|
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where dm is the density of the piezoelectric material. Planar waves are solutions of
the Eq. (2.19) and Eq. (2.20). For each direction of propagation, the voltage wave is
completely determined by the coefficients of the mechanical ones. In particular the
effective elastic coefficient becomes

c′ijkl = cijkl(1 +K2
ijkl), (2.21)

where we introduced the electromechanical coupling for a wave propagating in direction
(x1,x2,x3) [84]

K2
ijkl =

emijenklxmxn
cijklεpqxpxq

. (2.22)

The positive value of the electromechanical coupling, implies that a piezoelectric material
is ”stiffer” than it would be without the piezoelectric effect.

In Paper B we fabricated superconducting coplanar waveguide resonators on gallium
arsenide, whose crystal presents a cubic lattice. With this symmetry there are only three
independent elements in the elastic tensor [82]. In general, the elastic tensor in the Voigt
notation is

cij =



c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44


, (2.23)

the piezoelectric tensor

eij =

 0 0 0 e14 0 0
0 0 0 0 e14 0
0 0 0 0 0 e14

 , (2.24)

and the dielectric tensor

εij =

 ε11 0 0
0 ε11 0
0 0 ε11

 . (2.25)

The deformation produced by an electric field on such anisotropic substrate is difficult
to visualize using the tensor formalism. In Fig. 2.5 we report the effect 1 V potential
applied to opposite faces of a 1µm cube of gallium arsenide, oriented in different
directions.

For the orientation used in Fig. 2.5(b), we notice that the angles are not preserved.
SAW resonators with an orientation parallel to the faces of this cube do not work. For our
fabrication process we always orient the devices parallel to the faces shown in Fig. 2.5(c).
In this case the deformation is perpendicular to the direction of the applied electric field.
Unfortunately, our alignment relies on the wafer cut (see appendix C), so our device
suffers from beam steering losses [42, 85].
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(a) No electric field applied, cube faces: (100),
(010) and (001) (b) Electric field applied

(c) No electric field applied, cube faces (110), (1̄10)
and (001) (d) Electric field applied

Figure 2.5: Numerical calculation of equilibrium solution for a GaAs cube of 1µm
side subject to electric field. An electric potential of 1V is applied to the top face with
respect of the bottom one; this produces an electric field along the z direction, that
induces a mechanical deformation. Because of the symmetry a voltage of -1V generates a
displacement with opposite sign. The color scale shows the total displacement from the
original position. The deformation has been amplified 106 times to make it visible.
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(a) No electric field applied, center conductor di-
rection (110) (b) Electric field applied

(c) No electric field applied, center condutor direc-
tion (1̄10) (d) Electric field applied

Figure 2.6: Numerical calculation of equilibrium solution for a coplanar waveguide
structure on a GaAs substrate subject to electric field. The electric differential of potential
applied on the central conductor and on the ground plane produces an electric field
confined in the XY plane far away from the edge. The mechanical deformation is amplified
106 times to make the effect visible. The colorscale shows the total displacement from the
original position.

2.4.2 2D simulations

In Paper B we numerically solve the system of piezoelectric and electrostatic equations
with a finite element solver (COMSOL, piezolectric module).

In Fig. 2.6 we see the effect of a static potential between inner conductor and the
ground plane on a coplanar waveguide structure. The waveguide is oriented in the
directions (110) or (1̄10), the same followed in the fabrication of our device. In order to
simulate the intra-resonator electric field at different frequencies, we apply an oscillating
potential.

The phase velocity of mechanical waves on the surface and in the bulk of GaAs
goes from 3 to 6 km/s, implying a wavelength between 500 nm and 1µm for microwave
frequencies. Unfortunately, only a fraction of the total geometry, as the one shown in
Fig. 2.6 can be simulated in the GHz regime, because of the fine meshing needed for
a correct discretization of the mechanical wave. We restrict our simulation to a two-
dimensional layer of gallium arsenide, and we rotate the elastic and piezoelectric tensor
to reproduce the material orientation used in the experiment[86].
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Figure 2.7: Simulation of the internal Q-factor of resonators. (a) Two-dimensional ge-
ometry simulated. The color scale represents the displacement of the GaAs from its resting
position. (b) Simulated value of the internal quality factor (green crosses) compared with
the one measured in the experiment (red, orange and blue indicate different samples).

The simulation shows the generation of mechanical waves (with more than 95%
corresponding to bulk acoustic modes) when an oscillating field is applied between the
two electrodes. The displacement, represented by the color scale in Fig. 2.7(a) and the
velocity of the gallium arsenide are used to estimate the fraction ∆U of the total energy
U , converted in mechanical waves within one oscillation period. We extract the internal
quality factor as

Qi = 2π
U
∆U

, (2.26)

reported in Fig. 2.7(b) in green. This agrees well with the measured resonators Q-factors
covering a range of 10 GHz.

Varying the probe power and the temperature of the mixing chamber plate, we
measure the TLS and quasiparticle contribution to the total loss. We determine that
the average TLS loss account for 14% of the total loss on the substrate, while the quasi-
particles loss is negligible at 10 mK (see Paper B for more details).
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–You Shall Not Pass!

Gandalf, The Fellowship of the Ring (2001)

3
Quantum emitters in structured

electromagnetic environment

In chapter 2 we presented the effects of different baths on superconducting resonators
and qubits. In those experiments, the degrees of freedom of the environment are treated
as an ensemble, characterized by only two global parameters (its effective coupling to
the system and its population). Moreover, in chapter 1, we saw that placing a quantum
emitter in a cavity alters the density of state of the environment affecting its energy
(Lamb shift) and its decay rate (Purcell effect). Also in this case, these effects can be
treated perturbatively [87].

The introduction of a more structured electromagnetic environment, such as finite
band pass or band gap, alters the energy structure and the dynamics of a quantum
emitter [88] beyond any perturbative approximation. In this chapter we concentrate on
these effects of such an environment.

3.1 Metamaterials in circuits QED

One dimensional metamaterials realized with superconducting circuits are ideal for
engineering on-chip dispersion relation [89]. In many cases, pass and stop bands can
be realized exploiting the collective response of a periodic structure. In reference [90],
a photonic crystal is obtained modulating the impedance of a coplanar waveguide
with a pitch p comparable to the wavelength. In reference [91], a transmission line is
periodically loaded, drastically reducing the foot print for the waveguide.

A versatile approach, that combines a reduced footprint and access to full connectivity,
is to realize an array of coupled resonators [92] or even qubits [93]. These structures open
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a pass band in the photonic spectrum where the propagation of light is much slower
compared to the usual CPW geometry, and at the edge of the band, the group velocity
vanishes. When an artificial atom is coupled to this localized light [94], its excitation is
dressed with a photonic component [95, 96], named an atom-photon bound state1.

3.1.1 Coupled cavity array

In Paper F we realized a slow light waveguide with an array of capacitively coupled high
impedance JJ resonators (see section 1.4.2 for more details regarding the resonators).
Initially, we fabricate the array without any qubit. In Fig. 3.1(a) we show a micrograph
of a sample realized to test the bare array, where 21 resonators are capacitively coupled
with their neighbors and at the edges with coplanar waveguides. In order to test the full
structure, we leave the ”ghost” electrodes for the qubits and their control. Importantly,
once the qubits are fully fabricated, the electromagnetic environment and ground plane
will not be perturbed. In Fig. 3.1(b) we display the details of these floating structures.
The 7× 5mm2 chip is wire-bonded in a 4-port sample holder (see appenix A for details).

1 mm 0.2 mm

(a)
(b) (c)

Figure 3.1: Couple cavity array. (a) The slow light waveguide is realized with 21
resonators capacitively coupled. The sample is realized in aluminum (light color) on
silicon (darker color). (b) Micrograph of the ”ghost” electrodes of the qubits and their
control lines. (C) Sample wirebonded in a 4-port sample holder.

3.1.2 Array modes and band pass

In Fig. 3.2(a) we report the full circuit model where the JJ resonator has 10 junctions
each. The first array mode for an individual resonator has a frequency ωr /2π ≈ 5.7GHz,
while the second mode is pushed above 30 GHz by the large capacitance (see section
1.6). Restricting the excitation frequency in the system below this threshold, we can
simplify our model, substituting the JJ array with a single equivalent inductor, as shown
in Fig. 3.2(b).

The values of the capacitances showed in the circuits are simulated solving the Poisson
equation in a FEM solver (COMSOL, electrostatic module). The Lagrangian of the circuit

1This phenomenon is analogous to the presence of a localized electronic state, seeded by an impurity,
between two conduction bands in a semiconductor[30].
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L =
1
2
Φ̇T CΦ̇−V (3.1)

where Φ̇T = (Φ̇q1, Φ̇q2, Φ̇1, ..., Φ̇N ) and

V =
∑
i

Φ2
i

2Li
, (3.2)

and C is the tridiagonal capacity matrix, with Cr on the main diagonal and −CJ for the
first off diagonal elements. From the Lagrangian we can calculate the Hamiltonian

ĤCCA/~ =ωr
N∑
l=1

â†l âl + J
N−1∑
l=1

(
â†l+1âl + â†l âl+1

)
(3.3)

where ωr = 1/
√
Lr (Cr + 2CJ ) and J =ωr

CJ
2(Cr+2CJ )

.

The eigenvalues of ĤCCA in the single excitation subspace are reported in Fig. 3.2(c).
Their frequency distribution becomes denser at the edge of the band, while the modes
are more spaced at the center of the band.

Solving the Heisenberg equation with input-output theory to the resonators at the
edge of the array, we can calculate the expected transmission of the waveguide. The
results of this calculation are reported in Fig. 3.2(c). Each peak in the transmittance,
corresponds to one of the modes. In Fig. 3.2 (Mode 1), we report the mode structure for
the first (lowest frequency) array mode. The y-value in the plot represents the voltage
distribution at the resonator nodes. Note, that this mode is the mode with the largest k
vector (or equivalently with the shortest wavelength). On the opposite extreme, in Fig. 3.2
(Mode 21), the last mode at the highest frequency, presents the longest wavelength. This
behavior is a property of the Left-handed metamaterial [89]. As we mentioned in section
1.3, our waveguide is a composite left-right handed metamaterial.

The coupled cavity array can carry more than a single excitation. Fig. 3.3(a) shows
the bands beyond the single excitation subspace.

With the parameters used in our design, a photon in the first three bands does not
excite the second array mode of the individual resonators. The band can be probed
measuring the transmission of a coherent tone. Comparing Fig. 3.2(c) and 3.3(b), we
notice a nonzero transmission outside the band. This behavior (even more pronounced in
the sample bonded in the 8-port sample holder) is attributed to cross talk (as described
in the appendix of Paper F).

3.2 Quantum emitters in slow-light waveguide

In Paper F we capacitively couple two frequency tunable transmon qubits to site 10 and
12 of the resonator chain. Each qubit has a charge and a flux line, and an individual
read-out resonator.
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Figure 3.2: Electric model, transmission and mode structure of the coupled cavity array.
(a) Complete electrical model including the 10 JJs for each resonator. (b) Simplified
electrical model with a single equivalent inductor that substitute the JJs arrays. (c) The
coupled resonators hybridize in 21 modes with different frequencies. They can be probed
by coherent spectrocopy. The left hand metamaterial produces modes with lower frequency
at larger wavenumbers.
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Figure 3.3: Band structure. (a) Energy diagram for the first three excitation subspaces of
the coupled cavity array. (b) Coherent transmission through the waveguide in the first
excitation subspace.

3.2.1 Hamiltonian of the system

Fig. 3.4(a) shows the complete device realized for the experiment. Comparing it with the
sample shown in Fig. 3.2, we added JJ to the qubits and connected their control lines.
Moreover the chip has a slightly increased area of 6.6× 6.6mm2. The increased number
of ports results in longer wirebonds [see Fig. 3.4(b)] with an effective larger cross talk
that needs to be taken into account to describe the data accurately.

CJ CJ CJ
CJ CJ

CJ CJCJ

CqCq

CrCr Cr CrCr
Lr LrLr Lr Lr

Lq Lq

CgCg
Φ1 Φ10 Φ11 Φ10 Φ21

Φ22 Φ23

(a)

(b)

(c)

Figure 3.4: Two artificial atoms in a waveguide. (a) Micrograph of the sample in false
colors. The two transmons (in blue and red), the resonator array (in green) and the
read-out resonators (in yellow) are highlighted in the zoomed region. (b) The sample is
wirebonded in an 8-port sample box. (c) Equivalent circuit model with the same color
code for each component.

Fig. 3.4(c) shows the full circuit model including transmon qubits and read-out
resonators. From the Lagrangian of the circuits we can derive the Hamiltonian

H/~ =
N∑
l=1

ωr â
†
l âl +

N−1∑
l=1

J
(
â†l âl+1 + â†l+1âl

)
+

2∑
i=1

ωqi b̂
†
i b̂i +

1
2
βi b̂
†
i b̂
†
i b̂i b̂i + gi

(
â†li b̂i + b̂†i âli

)
,

(3.4)
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where the cavity-atom interaction is given by

gi = 〈1|Qqi |0〉
Cgi
Vqi

√
ωr

2(Cr + 2CJ )
, i ∈ {1,2} (3.5)

where Qqi =
√
~(Cq +Cg )ωq/2

(
b̂† + b̂

)
.

3.2.2 Atom photon bound state

If we consider only one bound state, and we approximate the semicontinuum of modes
to a band with the same dispersion relation, the energy of the bound state ~ωBS can be
analytically determined by the roots of the algebraic equation

ωBS −ωq =
g2

(ωBS −ωr )
√

1− 4J2

(ωBS−ωr )2

(3.6)

The spectroscopy of the bound state for a single qubit is shown in Fig. 3.5(a). The
bound state asymptotically approaches the band edge, becoming the last band mode
when the bare qubit frequency crosses the pass band. In fact, Eq. (3.6) admits two
solutions, two bound states, one above and one below the pass band. Nevertheless, the
total number of modes in the system will not exceed the number of resonators plus the
qubit. So when the lower bound state emerges from the band, the upper one, becomes
the last mode of the bare array.

The photonic cloud seeded by the atom coupled to position 10 is displayed in
Fig. 3.5(b). It shows the population in each resonator as a function of the bare qubit
frequency. The logarithmic scale used for the population highlights the exponential
localization already present when the qubit is well outside the band. The closer the qubit
becomes to the center of the band, the larger the extension of the cloud becomes.

In Paper F we also access the two-excitation bound state, measuring its frequency as
a function of the bare qubit frequency.

3.2.3 Two bound states interacting

When two bound states are present, their photonic clouds overlap. In this case, the
interaction is mediated by the resonators array. Compared with the dispersive interaction
obtained in a resonators, where the residual interaction decreases algebraically ∼ g2/∆
with the qubit detuning (infinite range interaction), the exponential decay of the clouds
suppresses the residual interaction (finite range interaction).

In our experiment, we measure the interaction of the two bound states mediated by
the photonic excitation in the resonators. The accurate description of this interaction ac-
counts for next-nearest neighbor coupling for inter-cavity and cavity-qubit. We measure
interaction strength up to 52 MHz.

Finally we use the bound state interaction, to implement a SWAP-operation of their
excitation. The swap time varies with the cloud overlap; we measured a complete SWAP
in 18 ns.
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Figure 3.5: Single atom-photon bound state. (a) Frequency of the bound state as a
function of the bare qubit frequency. The data (red dots) agree very well with the
theoretical prediction (solid black line). The green region represents the passband and the
dashed red line is the qubit bare frequency. (b) Expected population of the resonators as a
function of bare qubit frequency.

This work, or many of its parts, can have applications in cQED. The slow-light
waveguide can be a useful tool in bath engineering: it presents a small nonlinearity
that can be tuned by design. Moreover, modifying the parameters of the resonators, the
second array mode can enrich the band structure. The full architecture can be used for
experiments in nonlinear photon transport [97], or quantum simulation of spin.
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Rocky Balboa, Rocky II (1979)

4
Summary

In this thesis we discussed the effects of the environment on quantum systems imple-
mented with superconducting circuits.

In the first chapter, we introduced the circuit quantum electrodynamics, deriving the
Lagrangian and the Hamiltonian of the elementary circuits later used in the thesis.

In the second chapter, we investigated the effects of different baths on a superconduct-
ing circuit. We showed that the coherence of the qubits we fabricated is mainly limited
by a bath of two-level systems. We studied the thermal properties of the photonic bath
in highly attenuated coaxial lines in the cryostat, showing how a qubit strongly coupled
to this photonic bath, can be used as a primary thermometer. Moreover we investigate
the spurious coupling of superconducting resonators with mechanical loss channel.

In the third chapter we introduced a metamaterial for cQED, that opens a passband
in the photonic spectrum. Moreover, we showed how this colored vacuum affects the
energy structure of a quantum emitter. Finally we describe the experiments with two
bound states.

These experiments demonstrate important effects of the environment in cQED, from
a simple perturbation of the expected behavior of the system to a completely new treat-
ment. Our results can have application in cryogenic setup optimization, as well as bath
engineering and quantum simulation.

In Paper A, the relaxation and dephasing mechanisms in superconducting qubits are
studied. Two qubits (A and B) are mounted in two different box enclosures and the deco-
herence times T1 and T2 are measured every three minutes for 60 hours. This is repeated
in multiple cooldowns. The variation of the decoherence is statistically analyzed. The
decoherence is attributed to two-level systems on the substrate surface.
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In Paper B, coplanar waveguide resonators are used as proxies for superconducting
devices on gallium arsenide. The losses are investigated by measuring the internal
quality factor from 3 to 12 GHz. A linear increase of the quality factor is found as a
function of frequency. This behavior is quantitatively explained with the electromechan-
ical conversion of photons in the resonators into mechanical waves in the substrate. By
measuring the two-level system and quasiparticle contributions to decoherence, it is
shown that the main loss channel is electromechanical conversion into acoustic phonons
and that bulk phonons dominate over surface phonons.

In Paper C, a high-finesse, surface-acoustic-wave resonator is used to study and satu-
rate two-level systems. In particular, it is shown that the quality factor of a probe mode
measured at low power (n ≈ 1) strongly depends on the pump power of a neighboring
mode. The two modes, interact with the same TLS bath, saturating the bath and causing
the increase in quality factor.

In Paper D, we demonstrate how a superconducting qubit, directly coupled to a
waveguide, can perform primary thermometry of the thermal population of propagating
photons. The thermal photons disrupt the scattering of a coherent tone to the qubit;
from the continuous measurement of the reflection coefficient, the temperature of the
waveguide can be extracted. The population of the wave guide is set either by artificial
calibrated noise or by heating the mixing chamber plate.

In Paper E, the population of the first excited level, the decay and dephasing rates
of a superconducting qubit are measured with a variable thermal photon population
in its driving line. Assuming that the two-level system bath is not affected by the pho-
ton population, the temperature of the TLS bath and its coupling to the qubit is extracted.

In Paper F, the potential of the atom-photon bound states for quantum simulations
is demonstrated. The architecture consists of a coupled cavity array implemented with
high impedance Josephson junction resonators and two transmon qubits capacitively
coupled to the array. The first and second excitation subspace of the system is explored
spectroscopically, and a time resolved energy SWAP operating between the two bound
states is demonstrated.
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–Roads? Where We’re Going, We Don’t Need Roads

Dr. Emmett Brown, Back to the future part II (1989)

A
Room temperature and cryogenic setup

Wampa

Pingu

Thor

Loki

Figure A.1: Low temperature laboratory where parts of the measurements were performed.
In the figure we can recognize four Blue Fors LD 250 with their nicknames highlighted in
the tags.

The experiments reported in this thesis are carried out in quantum regime, i.e. the
thermal excitation of the systems is much smaller than one quantum. As mentioned
in the introduction we use commercially available dilution refrigerators (similar to the
four ones displayed in Fig. A.1) to maintain the devices in this regime. In this appendix
we describe in detail the room temperature and cryogenic setup used for the different
experiments. Doing so, we will follow the same path the microwave pulses follow to
reach the samples. In particular we describe the pulses generation, we describe the
environment in the waveguides where they travel and finally the sample boxes in which
the sample is situated.
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A.1 Up-down conversion of microwave pulses

The devices used in this thesis are controlled with microwave tones, with frequencies
between 3 and 12 GHz. At the time of writing, instruments capable to direct syntheses
of amplitude modulated pulses in this frequency range are very expensive. A solution
to generate such pulses is mixing a carrier signal generated by a local oscillator (LO)
with frequency ωLO with an amplitude modulated envelope signal at an intermediate
frequency (IF) ωif. The same is true for Digital to Analog Converter (DAC) in the GHz
regime, where we downconvert the signal and digitize with an intermediate sampling
rate (around hundreds of MHz).

A.1.1 Mixers

A mixer is a microwave device that ”mix” two frequencies. In particular the local
oscillator frequency behaves as a switch that does or does not let the signal at the
intermediate frequency go through. This double side conversion can be described in
Fourier space for a single IF tone:

Sup = cos(ωLOt)cos(ωIF) =
1
2

cos[(ωLO +ωIF)t] +
1
2

cos[(ωLO −ωIF)t] . (A.1)

Filtering out one of the sideband can be very demanding especially since our devices are
frequency tunable and we want to drive in a broad frequency range1.
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Figure A.2: Mixer up-conversion. (a) A mixer is a three port passive component. (b) The
signal injected at intermediate frequency (IF) port is up-converted by a local oscillator
(LO) producing two side bands at the radio frequency (RF) port. (c) An IQ mixer is a
4 ports passive microwave device that can be considered as combination of two mixers
driven in quadrature. (d) When the intermediate frequency is applied in quadrature (to
I and Q,) one of the low frequency side band is in phase while the high frequency ones
destructively interfere.

In order to eliminate these inconveniences, we use IQ mixers. An IQ mixer is the
combination of two mixers driven in quadrature, i.e. with the two LO frequencies shifted

1When failing to filter one of the sideband out, the downconverted signal is affect by the interference
between two sidebands. Moreover, one of the sideband can drive transitions of the system that were not
targeted.
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by π/2, as showed in Fig. A.2(c). Adding the output from the two mixers we get

Sup =cos(ωLOt)cos(ωI) + sin(ωLOt)cos(ωQ) =
1
2

cos[(ωLO +ωI)t] +
1
2

cos[(ωLO −ωI)t] +
1
2

sin
[
(ωLO +ωQ)t

]
+

1
2

sin
[
(ωLO −ωQ)t

]
(A.2)

The I and Q ports are driven by the signal produced by an arbitrary waveform
generator (AWG). We usually generate I and Q to be in quadrature. In this case, cos(ωQ) =
sin(ωI) and the upconverted signal becomes

Sup =cos(ωLOt)cos(ωI) + sin(ωLOt)sin(ωI) =
1
2

cos[(ωLO −ωI)t]
(A.3)

where we only have a single side band (SSB). In principle, we could use only SSB mixers,
that would require only a single port of the AWG and digitizer for up- and down-
converting our pulses. However that will come at the cost of half of the signal, and
loosing the possibility to transmit both sidebands. In addittion it would not be possible
to apply DRAG correction (see section B.1.3). For this reason, in our experiments we
used IQ mixers.

A.1.2 Downconversion and integration

Without loss of generality, we can focus on the read-out pulse of a qubit coupled to a
resonator. The purpose of the experiment is to drive the resonator for a short time (with
respect to the lifetime of the qubit) and detect both the in-phase (I) and quadrature (Q)
signals. As we mentioned above, in the experiments performed in this thesis we used IQ
mixers with IF ports driven in quadrature.

(a)

-1-1

AWG

ROin

ADC

-1
-3
0

ROout(b) (c)

Figure A.3: Up-down conversion setup. (a) Rack-mounted conversion board realized
for a two-qubit setup. The components for qubit read-out are highlighted in the red
dashed rectangle. (b) Scheme of the readout components, including an arbitrary waveform
generator (AWG) that produces the IF tone and a digitizer (ADC) that records the signal
after down-conversion. (c) An example of the up-converted spectrum with IQ mixers
calibrated (blue trace) and unbiased (red trace).
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Fig. A.3(a) shows the setup realized in this thesis for the qubit driving, tuning and
readout. The aluminum plate ensures a common ground with all the SMA connectors,
while the rigid stainless steal coaxial cables, avoid any phase fluctuation induced by
involuntary deformation or vibration (touching the cable during the operation). The
electrical scheme is shown in Fig. A.3(b).

The demodulated time trace (recorded by the digitizer) consists in a low frequency
signal that is digitally processed in the computer. In particular, considering the signal

S = I cos(ω0t)︸     ︷︷     ︸
V1

+Q sin(ω0t)︸      ︷︷      ︸
V2

, (A.4)

we digitally downconvert each trace to DC usingωIF =ω0 and applying a digital low-pass
filter

Xi = LPFilter[Vi cos(ωIFt)], (A.5)

Pi = LPFilter[Vi sin(ωIFt)]. (A.6)

Finally, we recombine the traces
Ai = Xi + iPi , (A.7)

and separate the real and imaginary components:

Atot = A1 +A2 = X1 + P2 + i(X2 − P1). (A.8)

A.2 Cryostat microwave wiring, filtering and shielding

The coaxial lines that control and read out the superconducting devices realized for this
thesis can be summarized in four groups (see Fig. A.4): driving (or charge) lines, they
terminate with a direct capacitive coupling to the qubit and they are used for exciting
the qubit; flux lines, inductively coupled to the a SQUID, they are used to inject static
flux for tuning the frequency of the device, and/or to apply RF signals for parametrically
modulating the SQUID; the input/output lines, usually coupled to a secondary device
(a resonator), they are used for exciting and measuring the scattered signal. Finally
superconducting twisted pairs with low pass RC filters at the 3 K stage (see Fig. A.4) are
used for driving superconducting coils at the mixing chamber stage.

A.2.1 Nonthermal photon distribution in the coaxial line

The specific measurement setup used in each experiment is reported in the appended
papers. Here we describe the general structure of these lines in terms of attenuation
profile and filtering (see Fig. A.4). Moreover, we report the photon occupation distribu-
tion profile for the most attenuated line compared with the thermal distribution of the
relative stages (solid and dashed lines respectively).

Comparing the thermal photonic distribution at the different stages as a function of
photon frequency (dashed lines in Fig. 1.4), and the expected photon occupation[98] in
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Figure A.4: Coaxial lines in the cryogenic setup and their photon distribution. On the
left, a list of the components and materials found in the cryostat. The four microwave
lines and the direct current (DC) twisted pairs used in the experiments. On the right, the
thermal photon distribution of the cryostat stage (dashed lines) can differ of many orders
of magnitude compared to the one in the input line (solid line).
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the coaxials line (solid lines), we conclude that the photon distribution in the coaxial
lines is nonthermal. The choice of the attenuation profile is due to a balance between
not generating too much heat, exceeding the cooling power of the cryostat at 10 mK
(few µW) and maintaining the transmission line photonic population small enough. In
papers Paper D and Paper E we injected calibrated white noise to artificially warm up
the photonic temperature in these lines, while not altering the state of other thermal
baths in the cryostat. In the same experiments we used Eccosorb (CR 117) home made
filters, to prevent high frequency (above 50 GHz) stray radiation from higher stages to
reach the sample.

For the output lines a different approach is necessary. The signal, in some cases, can
be in average smaller than a single photon. So we use superconductive materials (CuNi)
for realizing the lines, and we isolated the sample from the HEMT amplifiers noise, with
isolators.

A.3 Mixing chamber plate thermal distribution

In Paper D we measure the photonic occupation number in the waveguide directly
coupled to the qubit in steady state and as function of time. As we see in Fig. A.4
the sample is embedded in a number of different shields, that inevitably increases
its distance from the rubidium oxide thermometer. In this section we show that the
temperature gradient across the last stage of the cryostat is negligible even in milliKelvin
environments.
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Figure A.5: Thermalization at the mixing chamber stage. (a) Geometry of the mixing
chamber state: the cooling power is applied on the footprint of the mixing chamber.
Diametrically opposed to it, there are the heater and the thermometer. We place the
sample at the end of a vertical copper tail. (b) Steady state solution of the heat equation.
(c) Averaged (by volume) temperatures for the thermometer, the sample box and the
attenuator, when a heating load perturbs the initial condition at 10 mK.

Fig. A.5(a) shows a 3D model of the mixing chamber stage, with the main cryogenic
elements. These parts are realized in gold-plated oxygen-free copper. We simulate the
heat transport, by considering the electronic degrees of freedom [99]. In particular, the
heat capacity is given by C = γT , with γ = 0.011 J

KgK2 , while the heat conductivity of
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electrons is calculated from the Wiedemann–Franz law κ = σLT , with L = 1 · 10−8 WΩ
K2

and the electric conductivity σ obtained for RRR coefficients equal to 1000.
We manually add the cooling power, that scales quadratically with temperature, while

the heating power is fixed during the simulation. In Fig. A.5(b) we report the stationary
solution of the heat equation for the mixing chamber stage. As already mentioned, there
is no appreciable thermal gradient at 20 mK.

When we solve the heat equation in the time domain [see Fig. A.5(c)] for the entire
geometry, we can calculate the average temperature in the vicinity of the thermometer,
for the attenuators and for the sample. Also in this case, their temperature evolution is
very similar. Moreover this simulation agrees with the time scale measured in the fridge
in Paper D.

A.4 Sample box

A superconducting device is composed by many different parts. The sample box encloses
the sample and delivers the electromagnetic signal to it. It assures a structural support
and a good thermal contact.

A.4.1 Electromagnetic modes simulations

We build the sample holder to prevent the decay of the circuit excitation in the box. The
box behaves as a 3D cavity, and we design it such that the first mode has a frequency
very detuned from the measurement frequency.
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Figure A.6: Electromagnetic environment in the sample box. (a) Vacuum region inside
the 8-port (spyder) sample box (grey) and 1x1 cm sample (blue). (b) Electric field
distribution for the first two chip-modes at 7 and 11 GHz respectively.(c) Transmittance
between two ports of the sample box.

Fig. A.6(a) shows the internal area of a sample box with a chip inside. When a
microwave tone is injected in this space, the box resonates at its normal frequency.
Moreover the dielectric of the chip reduces the frequency of these modes. We dilute
the electric field in the chip, milling a pocket beneath the sample. In Fig. A.6(b) we
display the electric field distribution for the first two chip modes, that correspond to
transmission maximum between two ports of the box [see Fig. A.6(c)]. The measurement
of transmission can be performed at room temperature to confirm the prediction of the
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simulation.

A.4.2 Bonding of the sample

The last step before cooling down a device and measuring its performance, is the wire-
bonding of the aluminum ground plane to the copper body of the sample box, and the
inner conductor to the launcher on chip. Each single wire bond acts as an inductor, so a
high density of wirebonds is beneficial in maintaining a good ground plane [100] .

Figure A.7: Sample boxes, bonding and cryogenic installation. (a) Two-port sample
boxes, realized in copper or aluminum. They use SMA connectors where we directly apply
the bonds. (b) 4-port sample box. We use coaxial cables perpendicular to the sample.
This box is integrated in a superconducting coil. (c) 8-port sample box. Using the same
geometry of the 4-port one, we can connect the sample directly to the coaxial cable.

Fig. A.7 shows the three kind of sample boxes used in the experiment in this thesis. In
Paper A, Paper D and Paper E we use the 2-port sample holders, Paper B and Paper C
used the holder shown in Fig. A.7(b) and the experiment in Paper F use the spider sample
holder, shown in Fig. A.7(b). Depending on the bonding conditions, and the sample
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dimensions, we apply two or three bonds to connect the launching pads on the chip,
while 50-100 bonds are used for the ground plane. Moreover, in some occasions, we
reconnect the ground with bonds on the chip (this practice has been successively avoided
with the introduction of air bridges).

61



–Say it with me: ”I don’t know.”

Dr Edward Brazelton, The Core (2003)

B
Measurements

We excite the energy levels of a qubit or we tune its transition frequencies by sending
microwave pulses to the qubit coupling ports. An accurate state preparation requires a
careful calibration of these pulses. Once the calibration its concluded, we characterize
the qubit, measuring its decay and dephasing rate or its excited state population.

B.1 State preparation

The transmon Hamiltonian Eq. (1.33) in presence of a coherent drive with frequency ωd
is

Ĥ/~ =ωqb̂
†b̂ − EC

2
b̂†b̂†b̂b̂+

Ω(t)
2

(b̂† + b̂), (B.1)

where Ω(t) =Ωeiωd t is called Rabi rate and depends on the coupling of the atom with the
driving line as well as the driving amplitude. When restricted to the subspace spanned
by the state vectors {|g

〉
, |e〉}, the Hamiltonian can be written with Pauli operators [49] as

Ĥ/~ =
ωq

2
σ̂z +Ω(σ̂+ + σ̂−) (B.2)

Writing the amplitude of the driving field proportional to the voltage source [101] as

Ω = CV = I(t)cos(ωdt) +Q(t)sin(ωdt), (B.3)

and applying the rotating wave approximation at the driving frequency ωd , we can
rewrite the Hamiltonian as

Ĥ/~ =
δ
2
σ̂z +

C
2
I(t)σ̂x +

C
2
Q(t)σ̂y , (B.4)
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where δ =ωq −ωd .
Representing the two-dimensional subspace of the state of the qubit as the Bloch

Sphere [102], the part I(t) drives rotations along the x-axsis, while Q(t) along the y-axis.
We generate the signals I(t) and Q(t) with an arbitrary waveform generator and we
up-convert with the carrier frequency ωd (see Fig. A.3 for more details).

In Paper E and in Paper F, we excite the transmon to its third level. In the subspace
spanned by{|e〉 , |f

〉
}, the Hamiltonian Eq. (B.4) is valid, and when the qubit remains in

this subspace we can calibrate the pulses in the same way we do in the subspace spanned
by {|g

〉
, |e〉}.

B.1.1 Qubit frequency and read-out

In an open waveguide geometry the qubit can be directly excited by a coherent microwave
tone or a pulse. At low input power (n� 1), the scattering properties of the qubit are
the same as that of a linear oscillator, because the probability to excite the |f

〉
state is

negligible. In Paper D we directly probe the qubit frequency measuring the scattering.
In Paper A, Paper E and Paper F the qubit is coupled to a readout resonator, that

we use to measure the population of the qubit. In the dispersive regime, the system
Hamiltonian Eq. (1.69) shows that the frequency of the resonator depends on the state of
the qubit [see Fig. B.1(b)].
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Figure B.1: Qubit read-out of a qubit as in paper A and paper E. (a) Demodulated signal
(blue) for the resonator for a driving probe detuned and on resonance (top and bottom
panels, respectively). The signal is demodulated to DC with only the I quadrature, ot
using both I and Q quadratures (green and orange solid line respectively) (b) Dispersive
shift of the resonator for the qubit in the ground, first and second excited state (blue,
orange and green respectively). (c) Quadrature histograms of the resonator for the qubit
in the ground, first and second excited state.

As we saw in chapter 2, the state prepared in a qubit has a finite lifetime, that
constrains the time necessary1 for read-out t ≈ 1/κr. By design, we choose κr as a trade
off between a fast read-out and the Purcell decay rate sowed in Eq. (2.7) [103].

1This is true for a pulse of constant amplitude. A pulse with an initial section of larger amplitude can load
the desired amount of photons in the resonators faster than this limit.
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In this thesis, we used a square pulse to read out the qubit, generated with the setup
shown in Fig. A.3(b). The two quadratures Ir and Qr are integrated after after the steady
state is reached, as indicated in the lower panel of in Fig. B.1(a). Varying the carrier
frequency ωd , we measure the resonator dispersive shift for the different states of the
qubit [see Fig. B.1(b)] and we can find the frequency that gives the best contrast. By
building the histogram of integrated signal (without averaging) we can measure our
accuracy in assessing the qubit state (read-out fidelity). In Fig. B.1(c) we display the
histogram for a ternary read-out.

One of the advantages of the dispersive read-out is the possibility to determine the
state of the qubit using many photons. This improves the signal to noise ratio by many
orders of magnitude, compared to measurements with single photons. However, the
approximations introduced to obtain the Hamiltonian Eq. (1.69) are valid only below a
critical photon number [104]:

nc =
∆2

4g2 . (B.5)

Once we are able to read out the frequency of the resonator, we can drive the qubit in
a mixed state with a long (with respect to its lifetime) pulse, and as soon as we stop the
driving, measure the resonators state. Once, the rough frequency of the qubit is known,
it can be accurately measured by extracting the period of a Ramsey sequence.

In these pulse schemes, implemented in the experiments, the read-out pulse is
unaltered with respect to the trigger during the sequence, while the timing of the driving
pulses is adjusted according to the scheme. In this way the demodulation window and
consequently phase of the down-converted IF of the read-out pulse is maintained during
the full experiment.

B.1.2 Pulse amplitude calibrations

In order to prepare the state of the qubit accurately, we need to calibrate the quadrature
I(t) and Q(t) of the driving pulse in Eq. (B.3). Initially we can run a Rabi sequence, excit-
ing the qubit with a resonant pulse of increasing amplitude. The pulse that completely
swap the population Pe and Pg is usually named π-pulse. In order to measure a more
accurate value for the amplitude of this pulse we can repeat this sequance adding an odd
number of pulses, as shown in Fig. B.2(a). Using this error amplification [105], we can
measure a precise value for the amplitude of the π-pulse [see black arrow in Fig. B.2(b)].

B.1.3 Derivative Removal by Adiabatic Gate (DRAG)

Driving the transition |g
〉
↔ |e〉 on the qubits used in our experiments, there is a nonzero

probability to excite the state |f
〉

due to a finite anharmonicity EC ≈ 200MHz. By
implementing the ”derivative removal by adiabatic gate”[106] (DRAG), we modify the
Q(t) quadrature such that

Q(t) =
τd
EC
∂tI(t), (B.6)

where τd is the DRAG scaling coefficient. In order to experimentally determine τd , we use
the pulse scheme showed in Fig. B.2(e), where an even number of positive and negative
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π-pulses drive the qubit. After 80 pulses the qubit is excited when the DRAG is not
implemented (τd = 0), as shown in Fig. B.2(f).

Once we calibrate the π-pulse for transition |g
〉
↔ |e〉, we can bring the qubit in the

excited state and calibrate the π-pulse for the higher excitation subspace as shown in
Fig. B.2(c), (d), (g) and (h).

B.2 Common pulse schemes

As we saw in chapter 2, when the qubit is coupled to an unwanted bath, the resulting
noise drives the qubit, causing decoherence increasing the qubit population. In this
section we describe the pulse scheme we used for measuring these effects.

B.2.1 Decay rate, T1

In order to measure the decay rate (longitudinal relaxation, or T1) we apply the pulse
scheme showed in Fig. B.3(a). An initial pulse excite the qubit and a read-out pulse
assesses the qubit state after incrementally larger waiting time τ . The results of this
measurement is shown in Fig. B.3(b). As expected [see Eq. (2.1)], the population of the
qubit exponentially decays as a function of read-out delay τ .

B.2.2 Dephasing, T2

Representing the state of the qubit on a Bloch sphere, during the longitudinal decay
the state is always on the z-axis, therefore it is affected only by transverse noise [107].
In order to have the best sensitivity to longitudinal noise, and measure the dephasing
that produces, we prepare the state of the qubit along the equator of the Bloch sphere
with a π/2-pulse. After a waiting time τ , a second π/2-pulse is applied, and the qubit
population is read out.

The pulse sequence for measuring
During the free evolution, the qubit is also affected by longitudinal noise. The

characteristic time of the decay is in fact a combination of the pure dephasing Tφ and
the relaxation time T1:

1
T ∗2

=
2
T1

+
1
Tφ
. (B.7)

Fig. B.4(b) and (d) show the population in |e〉 and |f
〉

for a Ramsey pulse sequence. As
we mentioned, after the first spectroscopy of the qubit, we use this measurement for
measuring accurately the qubit frequency and its anharmonicity.

B.2.3 Population

Following the method in [108] we can measure the population in the first excited state
of the qubit. Fig. B.5(a) shows the pulse scheme used in the experiments: the qubit is
prepared in |e〉 and after a coherent driving of Rabi oscillations between |e〉 and |f

〉
, the

population of |e〉 and |g
〉

is swapped. The Rabi oscillations between the states |g
〉

and |e〉
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Figure B.2: Driving pulse tune-up. (a) An odd repetition of πge-pulses amplifies the
driving error. (b) Readout of the population in |e〉 as a function of the driving amplitude
and number of pulses. (c) πef -pulse amplitude calibration sequence. (d) Population of
the state |f

〉
as a function of number of pulses and their amplitude (the black arrrow

indicate the optimal value). (e) DRAG calibration sequence. (f) Population in |e〉 as a
function of pulses and their DRAG coefficient. (g) Calibration of DRAG for the transition
|e〉 ↔ |f

〉
. (h) Population in |f

〉
as a function of the number of pulses and their DRAG

coefficient. (i) and (j) Energy structure and driven transitions.
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Figure B.3: Measurement of decay rate. (a) The pulse scheme consists in exciting the
qubit and reading-out its population after increasingly larger waiting time. (b) The
population Pe of the qubit as a function of time. (c) A πge-pulse excite the qubit, and a
following πef -pulse prepare the qubit in |f

〉
. The read-out pulse measure the population

of the qubit. (d) Population decay from |f
〉

as a function of time.
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Figure B.4: Ramsey sequence. (a) Pulse scheme. The first π/2-pulse prepares the qubit
in (|g

〉
+ |e〉)/

√
2, after a time τ of free evolution a second π/2-pulse is applied and the

population measured. (b) Population in |e〉 as function of the sequence duration. (c) After
the initial πge-pulse, we can apply the same sequence showed in (b). (d) Population of
the qubit in |f

〉
.
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have an amplitude Aref [see Fig. B.5(b)]. The sequence is repeated without preparing
the qubit in the excited state. The Rabi oscillations reported in Fig. B.5(d) are due the
residual population, and present a much smaller amplitude A0.
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Figure B.5: Measurement of the population of the first excited state. (a) Pulse scheme.
After preparing the qubit in |e〉, we drive the oscillation between |e〉 and |f

〉
. After a

another πge we readout the population in |g
〉
. (b) Population in |g

〉
as function of the

driving duration. (c) Same pulse scheme in (a) without the initial state preparation. (d)
The population in |g

〉
oscillates due to the residual population in |e〉.

After obtaining the amplitudes Aref and A0 from the fits we can calculate the popula-
tion in |e〉 as

Pe =
A0

Aref +A0
(B.8)

B.3 Attenuation calibration

The knowledge of the the total attenuation of a coaxial line in the cryogenic setup is
necessary to extract the Rabi rate Ω used in the experiments. A linear cavity is not
enough to extrapolate this information because its response is the same at different
powers, while any nonlinear element can be used to measure the attenuation. In the
experiments presented in this thesis we used two possible configurations to calibrate the
field seen by the qubit. From this we can find the attenuation of the line.

B.3.1 Atom in open waveguide

In Paper D we see that for a particular driving strength, Ωm, the reflection vanishes [see
Fig. 2.4(b)]. If we neglect the photonic population, and in the case γph� EC/~, Eq. (2.15)
reads

1 = 4(Ω/γph)2. (B.9)
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Knowing the power emitted by the room temperature microwave source when this
condition is verified, lets us calibrate the attenuation of the input line.

B.3.2 Atom in a cavity: Stark shift

Considering the Jaynes-Cumming Hamiltonian Eq. (1.67), the frequency of the atom
is Stark shifted proportionally to the number of photons in the cavity, n. In order to
calculate this quantity, we use Heisenberg equation with driving, Eq. (1.71). With these
assumptions we obtain Eq. (1.72), that solved for the intra-cavity field becomes

b̂ =
√
κnr

1/2(κr +κnr)− i(ω −ω0)
âin. (B.10)

Calculating the conjugate operator b̂†, we can derive the average photons in the cavity

n̂ = b̂†b̂ =
κr

1/4κ2
tot +∆2

â†inâin =
Pin

~ω
κr

1/4κ2
tot +∆2

(B.11)

where the input power at the sample is

Pin

~ω
= â†inâin. (B.12)

In the usual case of an overcoupled resonator where the radiative decay is much larger
than the intrinsic one, κr� κnr, we can approximate the total number of photons in the
linear cavity for a resonant driving to be

n̂ =
Pin

~ωκr
. (B.13)

If we want to know the attenuation A at the sample, we measure the atom frequency
ωq1 and ωq2, while driving the cavity with two different calibrated powers (at room
temperature), P1 and P2, respectively. According to Eq. (1.67), the Stark shift δ =ωq2−ωq1
is

δ = χ∆n =
(P1 − P2)
A~ωκr

(B.14)

B.4 Mutual inductance matrix in two qubit experiments

It is difficult to shield magnetic field on chip. Therefore the magnetic flux generated by
one flux line will couple to all the inductances on a device, including a squid loop that
is far from it. Measuring the mutual inductance matrix is possible to compensate this
effect with the proper flux line. In Paper F we applied this procedure.
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–To infinity and beyond!

Buzz Lightyear, Toy Story (1995)

C
Design and fabrication

The experiments presented in this thesis are performed with devices fabricated on silicon
or gallium arsenide, on chips with dimensions 5× 7mm2 or 6.6× 6.6mm2. The chips are
wire bonded in an oxygen-free copper-free or aluminum sample box (see Fig. A.7). The
devices have been designed and fabricated using the MyFab Chalmers cleanroom. This
process usually consisted of five parts:

• design a prototype of a portion of the sample in Autocad;

• import the geometry in an electromagnetic solver to simulate Maxwell’s equations
and check the target parameters;

• design the full chip in Autocad, one layer for each lithography step;

• fabricate the design on a 2 inches wafer;

• dice or cleave the wafer into chips.

C.1 Design editing and simulation

Some of the devices realized in this thesis were designed ”piece-wise”, mainly concen-
trating on different parts of their geometry: capacitive (or inductive) coupling points,
resonators or qubits, Josephson Junctions or SQUID.

C.1.1 Coupling and microwave ports

The radiative coupling rates are set by designing the capacitance (or inductance) that
couples different elements (see Eq. (1.66) and (1.78)). We calculate these values with a
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finite element solver in Microwave office (AWR). Fig. C.1(a) shows the usual geometry

(b)

(a)

B

4_um_space_50_um_long 2_um_space_100_um_long 2_um_space_150_um_long 2_um_space_200_um_long

Figure C.1: Numerical solution of the ABCD matrix for four different coupling geome-
tries. (a) Capacitive coupling for a transmission line with progressively longer overlapping
fingers (from left to right). (b) Absolute value of B element of the ABCD matrix as a
function of frequency.

of CPW coupling points. In the simulation we set the parameters of the substrate, the
metal conductivity and finally the boundary conditions that implement a driving port.
From the solution of the electromagnetic equations, we can calculate the value of the
coupling capacitance C as

C =
1

2πf |B|
, (C.1)

where B is the element of the ABCD transition matrix [35]. Remarkably, solving only
the electrostatic equation (Poisson’s equation), may not produce accurate results for the
target frequency. In Fig. C.1(a) and (b) we show 4 different capacitor geometries and the
correspondent value of B as function of frequency, simulated in AWR.
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C.1.2 Qubits and resonators

For elements not directly connected to a transmission setup we used electrostatic simu-
lation. Fig. C.2 shows the geometry simulated for Paper F with a finite element model

Figure C.2: Numerical solution of the Poisson’s equation with a terminal set to 1 V with
respect to the ground plane, and the other terminals are left floating. The color scale
represents the strength of the electric field.

(FEM) solver. The device geometry is imported as a two dimensional layer of perfect
conductor. By solving the Poisson’s equation, we obtain the electric field and charge
distribution. We use this result to calculate the capacitance matrix used in the Lagrangian
of the circuit. The capacity matrices in Paper F and in section 1.4.2 are calculated with
this method.

C.1.3 Flux line field simulation

The magnetic flux in a SQUID loop can be generated by a macroscopic superconducting
coil (see Fig. A.7) or by an on chip flux line. For applications that require static tuning of
a single qubit, the superconducting coil represents the best solution: its large inductance
and mass makes it resilient to small current or thermal fluctuations. Moreover, the flux
it produces is rather uniform over the full chip area. On the other hand, fast frequency
tuning (as the one used in Paper F) requires an on-chip flux line.
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C.2. ROOM TEMPERATURE CHARACTERIZATION
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Figure C.3: Design of on-chip flux lines. (a) Magnetic field perpendicular to the chip
surface (b) Current density along the flux line. (c) Flux distribution in the SQUID array
adjacent to the flux line.

The design of the flux line is constrained by the possibility to produce at least half
a flux quantum in the SQUID without exceeding the critical current density of the
line. Fig. C.3 shows the results of a FEM simulation of the magnetic filed and current
density produced by a current in a flux line. In Fig. C.3(a) the colorscale displays the
magnetic flux component perpendicular to the chip surface. Numerically integrating
this component in the SQUID area we can calculate the maximum flux we can inject.

Moreover, the numerical evaluation of the magnetic filed distribution can help im-
prove the uniformity of the magnetic filed in complex geometries, such as for example a
SQUID array [see Fig. C.3(c)].

C.2 Room temperature characterization

The normal state of the aluminum limits the possibility to test some parts of the devices,
due to the large resistive losses. Nevertheless the JJs and SAW resonators can still provide
useful information when probed at room temperature.

C.2.1 Test junction measurement

Performing a cool-down of a devide with not optimal parameters or, in the worst case,
nonfunctional, delays the experiments. Importantly, the Josephson energy can be inferred
by measurement at room temperature. Using the Ambegaokar-Baratoff relation [109,
110] we link the normal resistance RN of a JJ to its critical current IJ:

RN =
π∆
2eIJ

(C.2)

Using Eq. (1.25), we can estimate the Josephson energy directly from the measurement
of the normal resistance.
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Fig. C.4(a) shows the parameter analyzer used for the 4-probes resistance measure-
ment. We set a current sweep (often from -1µA to 1µA), and we use the machine software
(Kyte) to automatically extract the resistance value from a linear fit of the measured
IV-trace. We usually do not measure directly the JJ on the device, but we fabricate few
test Junctions on the same chip [see Fig. C.4(b)].

(a)

(b)

Figure C.4: Measurement of JJ normal resistance. (a) Parameter analyzer used in the
4-probes measurements of the JJ test structures in (b).

C.3 Samples fabrication recipes

In this sections we report the recipes used for the fabrication of the samples discussed in
this thesis.

C.3.1 Qubits on silicon

Qubit and JJ resonators on silicon used for samples described in Paper A, Paper D,
Paper E and Paper F. The recipe comprises three lithography steps, and with all tools
available it can be completed in one week.
Removing Oxide Layer:

• Standard Cleaning 1 [111] for 10 min.
• Quick Dump Rinse (QDR).
• Dip the wafer in 2% HF solution for 1 min.
• QDR and blow dry with the nitrogen gun.

Metal deposition:
• Load in the load-lock of the evaporator (Plassys) as fast as possible and pump it.
• Heat the substrate to 300o C for 10 min.
• Pump the load-lock for 12 hours (expected pressure 6 · 10−8 mbar).
• Deposit aluminum to a thickness of 150 nm at a rate of 1 nm/s while rotating

around the wafer axis.
• Static oxidation with pressure 10 mbar for 10 min

Aluminum Etching:
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• Spin AZ1512HS at 4000 rpm for 50 s.
• Bake on hot-plate at 100o C for 60s.
• Expose in Laser writer, Focus: 40, Intensity: 80, Transmission: 100.
• Develop AZ Developer:H2O 1:1 for 30s.
• Rinse in water for 2 mins.
• Blow dry with nitrogen gun.
• Ash in oxygen plasma with power 40 W for 30 s.
• Etch in Transene type at 100o C for 1 min.
• Rinse in water.

Removing resists:
• Rinse in remover 1165 for 5 min at 85o C.
• Ultrasound in remover 1165 at 35 kHz in sweep mode and 40% power for 5 min.
• Ultrasound in methanol at 35 kHz in sweep mode and 40% power for 5 min.
• Ultrasound isopropanol (IPA) at 35 kHz in sweep mode and 40% power for 5 min.
• Blow dry with nitrogen gun.

Josephson Junctions:
• Spin-coat the wafer with 400 nm of copolymer MMA/PMMA and bake it at 160o C

for 5 min.
• Spin-coat a second PMMA layer of 400 nm and bake it at 160o C for 5 min.
• Expose the designed pattern with a 100 kV electron beam, with a base dose of

800 µC
cm2 , with 2 nA current (and proximity error correction for electron back-

scattering).
• Develop with a 1 : 3 solution of MIBK:IPA for 90 s
• Blow dry with a nitrogen gun.
• Ash away 10 nm of resist and possible organic residue with an oxygen plasma

generated at 25 W for 20 s.
• Load the wafer in the Plassys evaporator, and pump for 12 h.
• At the base pressure of 5 ·10−8 mbar, deposit 50 nm of aluminum at 45o with 1 nm/s

rate (corresponding to 35 nm of metal thickness on the wafer).
• Oxidize the aluminum at 2 mbar of 99.99% pure oxygen for 20 min.
• Rotate the wafer 90o around its axis.
• Deposit 110 nm of aluminum at 45o with 1 nm/s rate (corresponding to 80 nm of

metal thickness on the wafer).
• Oxidize the aluminum at 10 mbar of Oxygen for 10 min.
• Submerge the wafer in Remover1165 at 85o C for 20 min, then leave it to lift-off for

more than 12 hours.
• Pipette away the metal residue from lift-off.
• Insert the beaker containing the wafer in an ultrasonic bath at room temperature.

Use low power ultrasound at 35 kHz in sweep mode for 5 min.
• Repeat the previous step with a beaker with methanol and again with IPA.
• Blow dry the wafer with a nitrogen gun.

Patches:
• Spin-coat the wafer with 400 nm of copolymer MMA/PMMA and bake it at 160o C

for 5 min.
• Spin-coat a second PMMA layer of 400 nm and bake it at 160o C for 5 min.
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• Expose the designed with a 100 kV electron beam, with a base dose of 700 µC
cm2 ,

with 35 nA current (and no proximity error correction).
• Develop with a 1 : 1 solution of MIBK:IPA for 90 s
• Dip in isopropanol for 10 s and blow it dry with a nitrogen gun.
• Ash away 10 nm of resist and possible organic residue with an oxygen plasma

generated at 25 W for 20 s.
• Load the wafer in the Plassys evaporator, and pump for 12 h.
• At the base pressure of 5 · 10−8 mbar, ion mill ca 15 nm of aluminum with 400 V

and 20 mA for 3 min.
• Deposit 200 nm of aluminum with 1 nm/s rate while rotating around the wafer

axis.
• Oxidize the aluminum at 10 mbar of 99.99% pure oxygen for 10 min.
• Submerge the wafer in Remover1165 at 85o C for 20 min, then leave it to lift-off for

more than 12 hours.
• Pipette away the metal residue from lift-off.
• Insert the beaker containing the wafer in an ultrasonic bath at room temperature.

Use low power ultrasound at 35 kHz in sweep mode for 5 min.
• Repeat the previous step with a beaker with methanol and again with IPA.
• Blow dry the wafer with a nitrogen gun.

C.3.2 CPW resonator on GaAs

Etched aluminum resonators on GaAs realized for Paper B. This process only requires
one lithography step and can be completed in few days.
Metal deposition:

• Open wafer package (GaAs epi-ready wafers, individually packaged in inert nitro-
gen atmosphere).

• Load in the Plassys evaporator as fast as possible and pump it.
• Heat the substrate to 300o C for 10 min.
• Pump the load-lock for 12 hours (expected pressure 6 · 10−8 mbar).
• Deposit aluminum to a thickness of150 nm qith a rate of 1 nm/s while rotating

around the wafer axis.
• Static oxidation with pressure 10 mbar for 10 min

Aluminum Etching:
• Spin AZ1512HS at 4000 rpm for 60 s.
• Bake on hot-plate at 100o C for 60s.
• Expose in HEIDELBERG DWL laser writer, Focus: 50, Intensity: 90, Transmission:

100.
• Develop in AZ Developer:H2O 1:1 for 30s.
• Rinse in water for 2 min.
• Blow dry with nitrogen gun.
• Spin AZ1512HS at 500 rpm for 120 s on the wafer back;
• Bake at 120o C for 120s in oven;
• Ash in oxygen plasma with power 40 W for 30 s.
• Etch in Transene etchant type A at room temperature (until the large pads are
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exposed).
• Stop etching by diping in water.
• Rinse with water;

Removing resists:

• Rinse in remover 1165 for 5 min at 85o C.
• Ultrasound in remover 1165 at 35 kHz in sweep mode and 40% power for 5 min.
• Ultrasound in methanol at 35 kHz in sweep mode and 40% power for 5 min.
• Ultrasound isopropanol (IPA) at 35 kHz in sweep mode and 40% power for 5 min.
• Blow dry with nitrogen gun.

Cleaving:

• Spin AZ1512HS at 4000 rpm for 60 s.
• Bake on hot-plate at 100o C for 60s.
• Cleave with diamond scriber in 5× 7 mm2 chips.

C.3.3 SAW device on GaAs

Surface acoustic waves devices on GaAs realized for Paper C. This recipe contains three
or four lithography steps depending on the presence of the junction.
Interdigitate transducer (IDT):

• Spin-coat the wafer with 60 nm of copolymer MMA/PMMA and bake it at 180o C
for 5 min.

• Spin-coat a second PMMA layer of 100 nm and bake it at 180o C for 5 min.
• Expose the designed biased −20 nm in the fingers width direction with a 100 kV

electron beam, with a base dose of 250 µC
cm2 (and proximity error correction for

electron back-scattering).
• Develop with a 1 : 1 solution of MIBK:IPA for 60 s, blow dry with a nitrogen gun
• Ash away 10 nm of resist and possible organic residue with an Oxygen plasma

generated at 50 W for 10 s.
• When reaching the base pressure of 5 · 10−8 mbar, evaporate 30 nm of aluminuim

with planary rotation of the wafer.
• Oxidize the aluminum before breaking the vacuum with 10 mbar of 99.99% pure

Oxygen for 20 min
• Submerge the wafer in Remover1165 at 85o C for 20 min, then leave it to lift-off for

more than 12 hours.
• Pipette away the metal residue from lift-off.
• Insert the beaker containing the wafer in an ultrasonic bath at room temperature.

Use low power ultrasound at 35 kHz in sweep mode for 3 min.
• Repeat the previous step with a beaker with methanol and again with IPA.
• Blow dry the wafer with a nitrogen gun.

The IDT cannot be directly seen with an optical microscope, but they appear of lighter
color compered with the bulk metal (see Fig. C.5).
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(a) Resist Development (b) Lift-off
(c) Finished IDT

Figure C.5: First lithography step. (a) Optical micrograph of the IDT on the 100 nm
thick resist. The uniform shades implies a successful process even without resolving the
individual fingers in an IDT. (b) After 3 h, a uniform sheet of metal detach from the wafer.
(c) Micrograph of the IDT in aluminum (bright color) on GaAs (darker color) .

Ground plane:

• Spin-coat the wafer with 400 nm of MCC LOR3A (6000 rpm for 5 min)
• Bake at 180o C for 5 min.
• Spin-coat a second layer of S1805 resist of 1µm and bake at 115o C for 5 min.
• Expose in Laser writer, Focus: 50, Intensity: 90, Transmission: 100.
• Develop in MF319 for 60s.
• Rinse in water for 2 min.
• Blow dry with nitrogen gun.
• Ash 30 nm in oxygen plasma with power 50 W for 20 s.
• Load in the Plassys evaporator load-lock and pump for 12 h.
• When reaching the base pressure of 5 · 10−8 mbar, evaporate 150 nm of aluminuim

with planary rotation of the wafer.
• Oxidize the aluminum before breaking the vacuum with 10 mbar of 99.99% pure

Oxygen for 10 min.
• Submerge the wafer in Remover1165 at 85o C for 20 min then leave it to lift-off for

more than 12 hours.
• Pipette away the metal residue from lift-off.
• Insert the beaker containing the wafer in an ultrasonic bath at room temperature.

Use low power ultrasound at 35 kHz in sweep mode for 3 min.
• Repeat the previous step with a beaker with methanol and again with IPA.
• Blow dry the wafer with a nitrogen gun.
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(a) Resist Development (b) Lift-off (c) Finished Ground Plane

Figure C.6: Second lithography step. (a) Optical micrograph of the ground plane exposed
on the 1.5µm thick resist. (b) After 12 h the free parts of metal detach from the wafer. (c)
Micrograph of the ground plane in aluminum (light color) on GaAs (darker color).

Josephson Junctions:

• Spin-coat the wafer with 400 nm of copolymer MMA/PMMA and bake it at 180o C
for 5 min.

• Spin-coat a second PMMA layer of 400 nm and bake it at 180o C for 5 min.
• Expose the designed pattern with a 100 kV electron beam, with a base dose of

700 µC
cm2 , with 2 nA current (without proximity error correction).

• Develop with a 1 : 1 solution of MIBK:IPA for 60 s
• Blow dry with a nitrogen gun.
• Ash away 30 nm of resist and possible organic residue with an Oxygen plasma

generated at 50 W for 20 s.
• Load the wafer in the Plassys evaporator, and pump for 12 h.
• At the base pressure of 5 ·10−8 mbar, deposit 50 nm of aluminum at 45o with 1 nm/s

rate (corresponding to 35 nm of metal thickness on the wafer).
• Oxidize the aluminum 2 mbar of 99.99% pure Oxygen for 20 min.
• Rotate the wafer 90o around its axis.
• Deposit 110 nm of aluminum at 45o with 1 nm/s rate (corresponding to 80 nm of

metal thickness on the wafer).
• Oxidize the aluminum at 10 mbar of Oxygen for 10 min.
• Submerge the wafer in Remover1165 at 85o C for 20 min, then leave it to lift-off for

more than 12 hours.
• Pipette away the metal residue from lift-off.
• Insert the beaker containing the wafer in an ultrasonic bath at room temperature.

Use low power ultrasound at 35 kHz in sweep mode for 3 mins.
• Repeat the previous step with a beaker with methanol and again with IPA.
• Blow dry the wafer with a nitrogen gun.
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(a) Resist Development (c) Lift-off(b) Deposition (c) Finished Junction

Arm

Wafer cut

Figure C.7: Third lithography step. (a) Optical micrograph of the SQUID geometry
(indicated by the black arrow) exposed on the 800 nm thick resist. (b) The angle alignment
for the junction depositions is performed placing the wafer cut perpendicular (or parallel)
to plassys arm. (c) After 3 h the free parts of metal detach from the wafer. (d) The
completed aluminum junction (pointed by the black arrow) on GaAs (darker color) .

Patches:

• Spin-coat the wafer with 400 nm of copolymer MMA/PMMA and bake it at 180o C
for 5 min.

• Spin-coat a second PMMA layer of 400 nm and bake it at 180o C for 5 min.
• Expose the designed pattern with a 100 kV electron beam, with a base dose of

700 µC
cm2 , with 2 nA current (without proximity error correction).

• Develop with a 1 : 1 solution of MIBK:IPA for 60 s
• Blow dry with a nitrogen gun.
• Ash away 30 nm of resist and possible organic residue with an oxygen plasma

generated at 50 W for 20 s.
• Load the wafer in the Plassys evaporator, and pump for 12 h.
• At the base pressure of 5 · 10−8 mbar, ion mill ca 15 nm of aluminum with 400 V

and 20 mA for 1 min.
• Deposit 200 nm of aluminum with 1 nm/s rate while rotating around the wafer

axis.
• Oxidize the aluminum at 10 mbar of oxygen for 10 min.
• Submerge the wafer in Remover1165 at 85o C for 20 min, then leave it to lift-off for

more than 12 hours.
• Pipette away the metal residue from lift-off.
• Insert the beaker containing the wafer in an ultrasonic bath at room temperature.

Use low power ultrasound at 35 kHz in sweep mode for 3 mins.
• Repeat the previous step with a beaker with methanol and again with IPA.
• Blow dry the wafer with a nitrogen gun.
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(a) Resist Dev. (c) Finished Device(b) Lift-off (c) Finished Wafer

Figure C.8: Forth lithography step. (a) Optical micrograph of the patches geometry
(indicated by the black arrow) exposed on the 800 nm thick resist. (b) After 12 h the free
parts of metal detach from the wafer. (c) The completed device with the added patches
(pointed by the black arrow). (d) Final wafer.

Cleaving:

• Spin S1805 resist at 3000 rpm for 60 s.
• Bake on a hot-plate at 115o C for 5 min.
• Cleave with diamond tip scriber into 5× 7 mm2 chips.

In Figs. C.5, C.6, C.7 and C.8 we report the progress of this recipe.

C.4 Fabrication challenges

The fabrication of aluminum devices on gallium arsenide presents mainly two inconve-
niences compared to the one on silicon. On one hand, the contrast between aluminum
and substrate, for electrons accelerated with 100 kV, is very small, making fail the auto-
matic detection of marks in the Electron Beam Lithography (EBL) machine. On the other
hand, the lower adhesion of the metal on gallium arsenide, make it difficult to realize
IDT fingers with aspect ratios larger than 1000.

We realized test structures for the IDT geometry, that we tested with a parameter
analyzer. The alignment during EBL exposure was realized ”optically” with the SEM
detector. In order to prevent deposition after a nonoptimal exposure, we measured the
alignment error with a Veriner scale (see Fig. C.9).
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Figure C.9: Micrograph of the Vernier marks used for measuring the alignment error in
the four lithography steps (yellow, green, red, blue) of the fabrication on GaAs.

The global error for a fabrication with four lithography steps, varied from 0.5 to
1µm.
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