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Göteborg, Sweden 2021



2D hybrid modeling of defects in an ultrasonic inspection situation
MARIA SEMENOVA

© MARIA SEMENOVA, 2021

ISSN 1652-8565
Department of Industrial and Materials Science (IMS)
Division of Engineering Materials
Chalmers University of Technology
SE-412 96 Göteborg
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Abstract

Advanced methods of nondestructive evaluations (NDE) are widely used for
in-service inspection in many industrial applications, e.g. nuclear and aerospace in-
dustries. In these applications the components are exposed to different degradation
mechanisms (e. g. fatigue, corrosion, stress corrosion cracking). In-service caused
defects such as fatigue and stress corrosion cracks can be sized and monitored in
order to postpone repairs or replacements.

The reliability of NDE methods and the interaction between applied energy
and addressed defect is highly dependent on the equipment adjustment to a
specific object and to the expectation of the crack features. The crack feature
and morphology vary widely between different crack mechanisms and between
material types, in which crack appears.

Complex shaped defects, such as fatigue and stress corrosion cracks (SCC), are
in many cases difficult to characterize with ultrasonic NDE methods. SCC has in
many cases a heavily branched macroscopic shape with a large number of crack
tips. Ultrasonic NDE method is not always reliable in sizing such defects, as the
diffraction from the crack tips is commonly used as the basis for such analysis.
In this case, thoroughly validated mathematical models could be used to do the
parametrical studies that address such interactions.

In the current work, a developed hybrid model is described. This model is
based on a combination of a semi-analytical model with a numerical approach.
The basic idea is to use the numerical solution for interaction between the wave
and the complex shape defect, which could be done by surrounding it with a
volume modelled by a finite element scheme. The analytical method is used for
describing the wave propagation between the probe and the volume that contains
the actual defect.

Using hybrid models for parametrical study, could help to avoid costly and
time-consuming experimental work.

Keywords: T matrix, Finite element method, Modelling, Scattering, Ultrasonics
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modeling of an ultrasonic inspection situation”. To be submitted

The appended papers were collaboratively prepared with co-authors. The author
of this thesis was responsible for the major progress of the work, i.e. creating
models in different software, doing simulations, post-processing and writing of the
papers, all with the assistance of the co-authors.

v



vi



Contents

Abstract i

Preface iii

Thesis v

Contents vii

I Extended Summary 1

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technical Background 5

2.1 Ultrasonic Testing (UT) . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Basic principles of ultrasonic testing . . . . . . . . . . . . . 5

2.1.2 Wave types . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Probe model . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Statement of the problem . . . . . . . . . . . . . . . . . . . 9

2.2 Analytical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Elastic waves . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 T matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Expansion coefficients for incoming wave . . . . . . . . . . . 13

2.2.4 Expansion coefficients for scattered wave . . . . . . . . . . . 14

3 Numerical solution 16

3.1 Considered software . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 simSUNDT . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 k-Wave toolbox . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.3 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . . 18

3.2 Validation and comparison of the results . . . . . . . . . . . . . . . 19

3.2.1 Paper A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



4 Hybrid modelling 21
4.1 Determination of T matrix . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Validation and comparison results . . . . . . . . . . . . . . . . . . 24

4.2.1 Paper B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Summary of appended papers 29
5.1 Paper A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Paper B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Conclusion and future plans 31

References 32

II Appended Papers A–B 35

viii



Part I

Extended Summary

1 Introduction

Nowadays, advanced methods of nondestructive evaluation (NDE) and nonde-
structive testing (NDT) are commonly used for in-service inspection in many
areas, such as nuclear and aerospace industries. NDE could be used to determine
and locate flaws and leaks, to estimate chemical composition, mechanical and
physical properties of the material and to verify and control processing ( e. g.
heat treating). Individual components might be exposed to different degradation
mechanisms (e. g. fatigue, corrosion, stress corrosion cracking), and NDE could
be used to evaluate the integrity of individual components. In-service induced
defects such as fatigue and stress corrosion cracks can, if they are detected, be
sized and monitored in order to postpone repairs or replacements. Such defects
become more and more essential to address as the power plants are exploited
beyond their estimated lifetimes in combination with an increase of power outage
in recent years.

1.1 Background

Defects, such as fatigue or stress corrosion cracks, appeared in the machinery
parts during operation need to be detected, sized and monitored, in order to
postpone the repairs or replacement. Nondestructive testing (NDT) methods
are commonly used in the industry for that purpose. It is important to clarify
that the term NDT is generally refers to the actual testing only. Nondestructive
evaluation (NDE) is used, when the procedure and calibration are described. The
full testing procedure, which includes testing method, calibration process and
the interpretation of the obtained results, such as characterization, sizing and
positioning of the defect, is considered in Quantitative Nondestructive Evaluation
(QNDE) [1]. Even though these terms have different definitions, most of the time
NDT, NDE and QNDE are interchangeable and implies to the broadest one. In
this work term NDT is considered to be the broadest.

For selecting an NDT method several criteria need to be considered:

1. What is going to be inspected: material properties, a discontinuity (a void or a
crack), sheet or coating thickness;
2. Which physical process are used in the NDT method;
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3. How the interaction between the probing field with the test material takes
place;
4. Which advantages and limitations chosen NDT method has;
5. Other important factors, such as economic, environmental or others.

To make the correct choice of the suitable NDT method for each specific case it
is important to be aware of the potentials and limitations of the existing tech-
nology. All NDT methods could be divided in two groups, based on the areas of
application: surface and in-depth penetration. Magnetic particle and penetrant
testing belong to the first group, and could only be used for the surface inspection,
when it is necessary to check component for the surface cracks, which are not
possible to identify with naked eye. The main features of these methods are rapid,
simple and inexpensive testing, portable and possible to used in remote locations,
some requirements for materials and only suitable for identifying surface cracks.
The second group includes radiographic and ultrasound testing, which could be
used for scanning internal defects in the components. Both methods have less
limitations of the material requirements and could be used for measuring density
and material properties. Radiographic testing is visual and could be used for rapid
area inspections, but at the same time this method can be hazardous, expensive
and requires highly skilled operator. The main features of ultrasound inspection:
high penetration depth, sensitivity, accuracy. This inspection is safe, and due to
the small size of the equipment, it is quite portable. Although, the interpretation
of the results requires significant operator training, and there are limitations in
the shape and size of defects, which could be found with this procedure. Eddy
current testing could be considered as a part of both groups, because it is used
for detecting surface and near surface defects. Inspection gives immediate results,
sensor is very sensitive to small cracks, equipment is very portable, but it only
can be used for conductive materials.

The reliability of NDT methods is highly dependent on the equipment ad-
justment to a specific object and to the expectation of the crack features. The
crack feature and morphology vary widely between different crack mechanisms
and between material types, in which crack appears. Since all these NDT methods
are indirect and based on prior information on signal into the component, some
kind of interpretation of received signal is always the basis for judgment of the
quality of the component. The different degradation mechanisms produce very
different kind of cracks or defects in a 3D morphological perspective. Therefore,
they interact and influence the received signal in an individual manner.

Stress corrosion cracks (SCC) and fatigue cracks are the most common and
critical defects that appeared in the nuclear industry. SCC tends to have a heavily
branched macroscopic shape with a large number of crack tips. The diffraction
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from the cracks tips is used as the basis for the defect size analysis, and ultrasonic
NDT methods are not always reliable in in this kind of application. In this case,
mathematical modelling could be used to do the parametrical studies that address
such interactions and dependencies that never would be possible to achieve by
experiments.

Instead of costly and complicated experiments, a thoroughly validated math-
ematical models can be used. Such models are very useful in development of
parametric studies and in the qualification of testing procedures. However, up to
this date only a couple of models have been developed that cover the whole testing
procedure, e.g. they include the modeling of transmitting and receiving probes,
the scattering by defects and the calibration. Chapman [2] employs geometrical
theory of diffraction for some simple crack shapes and Fellinger et al [3] have
developed a type of finite integration technique for a two-dimensional treatment
of various types of defects. Lhémery et al [4] employs Kirchhoff’s diffraction
theory that enables their model to handle more complex geometries in 3D. In the
literature, Gray et al [5] and Achenbach [6] presents overviews of ultrasonic NDT
models. Boström and Wirdelius [7] presented a model based on the T matrix
concept, in principle without any approximation, see e. g. Bövik and Boström [8]
for similar work for cracks. However, it is limited to address only simple shaped
defects. In Westlund and Boström [9] a 2D hybrid model of a defect near the back
surface is deduced.

A two-dimensional hybrid method, combining finite element method (FEM) and
an integral representation, is used in this study to predict ultrasonic interaction
with a defect. Mathematical modelling of NDT techniques is also essential when
it comes to quantifying the capacity of a specific procedure and technique (NDE)
in a specific application.

A fundamental problem with modelling in-service induced cracks is that each
defect is individual with a unique morphology created by a unique stress and
chemical environmental progress. Since these specific features of such cracks
cannot be prescribed without a large amount of uncertainty, the conventional
way to model these cracks is to generalize into a very simplified and idealized
geometric shape.

The hybrid method takes advantage of both semi-analytical and numerical
approaches. The basic idea is to surround the defect by a finite element scheme and
deal with the propagation between the probe and the defect with a semi analytical
method. In this way it is possible to model more complex crack geometries that
involves a complicated scattering processes without getting to large numerical
models. Where it is possible to implement, semi-analytical and fully numerical
approaches are complementary.
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1.2 Aims and limitations

This thesis is part of a research project Mathematical modeling of fatigue and
stress corrosion crack, the main purpose of which is to develop a two-dimensional
hybrid model. It will allow to do a simulation of ultrasonic scattering from a
crack like structure and develop a three dimensional model, which will be able
to simulate a situation with a more complicated geometry of the modeled defect
(SCC). To accomplish this goal, the mathematical models of ultrasonic wave
propagation and the software based on finite element method (FEM) should be
studied. Comparison between three software is presented in appended Paper A.
The discrete modeling, made by using two different approaches, FE-modeling
by using of COMSOL Multiphysicsr and a finite difference method by applying
k-Wave toolbox for MATLABr were considered in the paper.

As the next step of the project, it is important to create and validate a
two-dimensional hybrid model for simple shaped defect (e. g. cavity), which
the present work is focused on. The most complicated parts are to get a good
correlation between the analytical solution and the chosen FEM software and to
combine equations with the values received from the software. In Paper B the
developing of the hybrid model is described. The model is based on the combining
numerical and analytical approaches. For the numerical simulations COMSOL
Multiphysicsr was used. The analytical solution and the hybrid model were done
in the MATLABr.

Some obvious limitations do exist, when the analytical equations are combined
with values received from numerical solution. Some of the approximations used
in FEM solution might have too big influence on the hybrid model solution and
might provide error source to the final results.

1.3 Thesis structure

This thesis is structured in following sections according to the aims. Section
1 provides background information as well as the objectives and limitations of
the current work. Section 2 introduces basic knowledge related to the ultrasonic
testing method and the analytical model. Next Section 3 introduces the hybrid
method, gives an overview of the used software and a summary of Paper A. Section
4 describes the developed hybrid model and introduces the results from Paper B.
Section 5 lists the summary of the appended papers, and Section 6 contains some
concluding remarks and the future direction of work.

4



2 Technical Background

2.1 Ultrasonic Testing (UT)

2.1.1 Basic principles of ultrasonic testing

The ultrasonic testing (UT) method is based on the ability of ultrasonic waves to
propagate in solids, and as the waves travel, they interact with solids in ways that
we can predict and represent mathematically. UT inspection can thus be used to
describe nature of a solid material (thickness, flaws, elasticity, etc) [1].

The conventional UT probe consists of the piezoelectric element which converts
electrical signals into mechanical vibrations (transmit mode) and mechanical vi-
brations into electrical signals (receive mode). In general, piezoelectric transducers
are set up to vibrate at the fundamental frequency. Piezoelectric transducers need
some sort of coupling medium to transmit the ultrasound between the transducer
and the test specimen, due to the large acoustic impedance mismatch between
the transducer and air. Grease, gels, liquids, special high-viscosity material could
be used as a coupling to help certain wave type to propagate into the medium.

Real material is inhomogeneous and can contain structure irregularities, such
as: porosity, inclusions, phase changes in metals or ceramics, grain structure, and
the change from one constituent material to another in composite materials. When
a wave collides with these material variations, it can reflect, refract, or transform
modes according to the angle of incidence, change in density, and change in elastic
properties. Thus, it is obvious, that there is a special inspection procedure to
identify different defects, and in each case the shape of the scattered wave is also
different. For example, wave scattered from the surface of the cavity differs a lot
from one scattered from the crack tip.

The stress corrosion cracks (SCC) often tends to have a heavily branched
macroscopic shape with a large number of crack tips, see Figure 2.1. As the
diffraction from the crack tips is commonly used as the basis for the defect size
analysis ultrasonic NDT methods are not always reliable in this kind of applications.
The scattered wave signal becomes too noisy, so it is impossible to analyze it [10].

The scattered waves can travel in all directions depending on the property of
the hit object and some of them returns to the probe. After the piezoelectric
element receives the scattered waves, it converts them back to an electrical pulse,
which is then amplified as the output signal. This signal is represented as pulse
amplitude versus elapsed time. Ultrasonic inspection directly measures four
variables: time of flight, amplitude, phase and frequency. All other information is
derived from this set of variables. Therefore, the ultrasonic testing method, as
all other NDT methods, is indirect, since the measured output data comes in the
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Figure 2.1: Typically branched shape of TGSCC in austenitic stainless steels [11]

form of quantitative information, which requires further interpretations.

There are several existing UT methods, which are used for specific cases [1]:

• Pulse-echo ultrasonic measurements can be used to determine the location
of a discontinuity in a part or structure by accurately measuring the time required
for a short ultrasonic pulse generated by a transducer to travel through a thickness
of material, reflect from the back or the surface of a discontinuity, and be returned
to the transducer.

• Angle Beam Transducers and wedges are typically used to introduce a re-
fracted shear wave into the test material. An angled sound path allows the sound
beam to come in from the side, thereby improving detectability of flaws in and
around welded areas.

• Ultrasonic scanning systems are used for automated data acquisition and imag-
ing. The signal strength and the time-of-flight of the signal is measured for every
point in the scan plan. The most common ultrasonic scanning systems involve
the use of an immersion tank. The ultrasonic transducer and the part are placed
under water so that consistent coupling is maintained by the water path as the
transducer or part is moved within the tank.

• Laser ultrasonic systems use laser beams to generate the ultrasound and collect
the resulting signals in an noncontact mode. Advances in transducer technology
has lead to the development of an inspection technique known as air-coupled
ultrasonic inspection. These systems are capable of sending ultrasonic energy
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through air and getting enough energy into the part to have a useable signal.
These system typically use a through-transmission technique since reflected energy
from discontinuities are too weak to detect.

2.1.2 Wave types

The elastodynamic waves propagating in the solid medium can be divided into
four types of waves: longitudinal waves, transverse waves, surface waves and plate
waves in thin materials.

The main difference between the first two is the direction of movement of the
medium particles, see Figure 2.2. Longitudinal (P-wave), which also called pressure
wave, cause the parallel motion to the direction of propagation. The displacement
of the transverse waves (S-waves) are usually located in the perpendicular direction
of wave propagation and are designated as horizontally (SH) and vertically (SV)
polarized waves [12].

P-wave
SV-wave

SH-wave

Figure 2.2: Propagating wave in the solid medium

Surface (or Rayleigh) waves could appear in the a relatively thick solid material,
and are penetrating to a depth of one wavelength. Surface waves combine both a
longitudinal and transverse motion to create an elliptic orbit motion. Rayleigh
waves are very sensitive to surface defects and can follow the surface around
curves.

Plate waves (Lamb waves) are similar to surface waves except they can only
be generated in materials a few wavelengths thick. Lamb waves are complex
vibrational waves that propagate parallel to the test surface throughout the
thickness of the material. Propagation of Lamb waves depends on the density
and the elastic material properties of a component and also influenced by the test
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frequency and material thickness. The complex motion of the particles is similar
to the elliptical orbits for surface waves (symmetrical and asymmetrical mode).

All these waves could be used for conventional UT inspection purposes. The
influence of surface and plate waves could be ignored if the testing component is
thick and the defects are located far from the surface.

2.1.3 Probe model

As was described in 2.1.1, the contact probes are usually used in UT. In this
work conventional ultrasonic contact probe is considered. A model developed by
Boström and Wirdelius [7] can be used to model incident signal.

The surface of the component is free of traction, except beneath the probe. The
traction is derived so that a plane wave is generated, see eq. (2.1) for longitudinal
(P) and vertical transverse (SV) wave types, respectively.

t =



Aiµkp

[
δ sin(2γ)ext1 +

(
k2s
k2p
− 2 sin2(γ)

)
ext2

]
e−ikpx

t
1 sin(γ), P probe

Aiµks

[
−δ cos(2γ)ext1 + sin(2γ)ext2

]
e−iksx

t
1 sin(γ), SV probe

(2.1)

where ext1 and ext2 are the unit vectors in corresponding directions, A is the
displacement amplitude of the plane wave, µ is the Lamé constant of the elastic
half space, kp and ks are longitudinal and transverse wave numbers, respectively.
γ is the angle of the probe, measured clockwise from the normal of the probe.
Parameter δ is used to consider the effect of the couplant applied between the
wedge and the scanning surface: δ = 1 for glued probe and δ = 0 for fluid coupling,
for the fluids with different viscosity parameter could vary as 0 < δ < 1.

The Fourier transform Tt of the prescribed traction t is described in the paper
by Westlund and Boström [13], and the equation is given as:

Tt =



Aiµkp

[
δ sin(2γ)ext1 +

(
k2s
k2p
− 2 sin2(γ)

)
ext2

]
2sin(wt(q + kp sin(γ)))

q + kp sin(γ)
, P probe

Aiµks

[
−δ cos(2γ)ext1 + sin(2γ)ext2

] 2sin(wt(q + ks sin(γ)))

q + ks sin(γ)
, SV probe

(2.2)
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where wt – half diameter of the transmitting probe and q - Fourier space
variable.

It is convenient to express traction this way, because it will be used later to
calculate the incident field.

2.1.4 Statement of the problem

In this work a 2D in-plane scattering problem is considered, see Figure 2.3. A
circle shaped cavity, e.g. a side drilled hole, is located in the elastic half-space,
which is isotropic and homogeneous with Lamé constants µ and λ and density
ρ. On the top of the scanning surface an ultrasonic probe is located. The probe
can act as both transmitter and receiver to model a pulse-echo testing situation.
Multiple scattering between the scanning surface and the defect is neglected, so
the distance between them can be arbitrary, but assumed to be large enough (e.g.
at least a couple of wavelengths).

In the Figure 2.3 two coordinate systems are introduced: the probe coordinate
system xti and the cavity coordinate system xdi .

On the surface of the cavity a traction-free (for hollow cavity) boundary
condition is used. The scanning surface of the component is also traction-free
except for the area beneath the ultrasonic probe (more about the probe model in
Section 2.1.3).

Figure 2.3: Illustration of the geometry with a defect in the elastic half-space
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2.2 Analytical solution

2.2.1 Elastic waves

In the analytical solution the propagation of the waves can be described by the
elastodynamic equation of motion. If the time-harmonic conditions are assumed,
the factor e−iωt, where ω is the angular frequency and t is time, can be suppressed
throughout. The equation of motion, where u is the displacement field, can be
written as:

k−2p O(O · u)− k−2s O× (O× u) + u = 0 (2.3)

where kp = ω
cp

and cp =
√

(λ+2µ)
ρ are pressure wave number and pressure wave

speed, respectively; ks = ω
cs

and cs =
√

µ
ρ are shear wave number and shear wave

speed, respectively.

The total displacement field is considered as a summation of the incident field
uin and the scattered field usc:

u = uin + usc (2.4)

The displacement field can be written as:

u = OΦ + O× (ezΨ) (2.5)

where the Φ and Ψ are scalar and vector potentials, respectively. Substitution
equation (2.5) into the (2.4) will show that potentials satisfy Helmholtz equation
with wavenumbers kp and ks, respectively:

O
2
Φ + k2pΦ = 0

O
2
Ψ + k2sΨ = 0

(2.6)

Analytical solution could be done in any coordinate system, and in this case
it is more convenient to write down the solution in cylindrical coordinates, as
the incoming wave will be scattered from a circle shaped obstacle. By using ∇
operator for the cylindrical coordinate system as:

O = ∂
∂r r̂ + 1

r
∂
∂ϕϕ̂ (2.7)
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and using separation of variables, the potentials Φ and Ψ may be expressed as:

Φ0 = Jm(kpr)

(
cos(mϕ)
sin(mϕ)

)

Ψ0 = Jm(ksr)

(
cos(mϕ)
sin(mϕ)

) (2.8)

where the upper index ”0” is used for regular waves, containing Bessel functions
Jm. The corresponding outgoing waves have upper index ” + ” and contain Hankel

functions H
(1)
m .

The incident field can be expanded in terms of regular cylindrical vector wave
functions (χ0

τσm), and the scattered field caused by any obstacles can be expanded
in its outgoing cylindrical vector wave functions (χ+

τσm):


uin =

∑
τσm

bτσmχ
0
τσm

usc =
∑
τσm

fτσmχ
+
τσm

(2.9)

Corresponding wave functions could then be defined as:

χ0
1σm(r) =

√
εm
2

[
er

m
ksr
Jm(ksr)

(−sin(mϕ)
cos(mϕ)

)
− eϕJ

′
m(ksr)

( cos(mϕ)
sin(mϕ)

)]
χ0
2σm(r) =

√
εmkp
2ks

[
erJ

′
m(kpr)

( cos(mϕ)
sin(mϕ)

)
+ eϕ

m
kpr
Jm(kpr)

(−sin(mϕ)
cos(mϕ)

)] (2.10)

Here the first index τ = 1 and τ = 2 on the wave functions indicates transverse
(SV) and longitudinal (P) waves, respectively, m = 0, 1, 2, 3... and σ = e (even) for
the upper row or σ = o (odd) for the lower row, with σ = o excluded for m = 0.
The Neumann factor ε0 = 1 and εm = 2 for m = 1, 2, 3.... The upper index ”0” on
the wavefunction means that these functions are regular, so the Bessel functions
Jm are used, the corresponding outgoing wavefunctions have the upper index ”+”

and contain Hankel functions H
(1)
m . As we can see from the equation above, the

wave functions have different dependence on ϕ, cosine and sine functions switched
place. For the case of scattering by the circle, it is convenient to couple wave
functions in this order: τ = 1 σ = e with τ = 2 σ = o and τ = 1 σ = o with τ = 2
σ = e.
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Traction is needed for the applying correct boundary conditions. The corre-
sponding traction on r = a could be calculated from equation:

t(r)(χ0
1σm) =

µ
√
εm
2

[
er2m

d
dx

(
Jm(ksr)
ksr

) (−sin(mϕ)
cos(mϕ)

)
−

−eϕksJ
′′
m(ksr)

( cos(mϕ)
sin(mϕ)

)
t(r)(χ0

2σm) =
µ
√
εm

2ks

[
er

(
2k2pJ

′′
m(kpr) + (2k2p − k2s)Jm(kpr)

) ( cos(mϕ)
sin(mϕ)

)
+

+eϕ2mkp
d
dx

(
Jm(kpr)
kpr

)
(−sin(mϕ)
cos(mϕ)

)
(2.11)

Traction for outgoing wave functions can be determined in the same way as
for the displacement field by changing all Bessel functions to Hankel functions in
(2.11).

2.2.2 T matrix

In this work scattering from the circled shaped obstacle with radius a is considered.
Surrounding material is isotropic and homogeneous. The source of the wave is
assumed to be located outside the defect, so the plane wave can be considered.
The incident wave field can be expanded in terms of regular wave functions:

uin(r) =
∑
τσm

bτσmχ
0
τσm(r) (2.12)

where the summation is over τ = 1, 2, σ = e, o and m = 0, 1, 2, 3..., with σ = o
excluded for m = 0. The expansion coefficients bτσm can be considered as known,
as they can be found from the probe and incoming wave configurations. The wave
scattered by the defect is considered to carry energy away from the obstacle, and
it is possible to expand scattered field in the outgoing wave functions as:

usc(r) =
∑
τσm

fτσmχ
+
τσm(r) (2.13)

Here the expansion coefficients fτσm are unknown. It is possible to determine
them with the help of incident wave configuration and the properties of the
obstacle. When both these coefficients, for incident and scattered waves, are
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calculated, the transition (T) matrix could be determined. This matrix is defined
as a linear relation between the expansion coefficients [7]:

fτσm =
∑

τ ′σ′m′

Tτσm,τ ′σ′m′ bτ ′σ′m′ (2.14)

For the circular (homogeneous) obstacle the T matrix could be written as:

Tτσm,τ ′σ′m′ = δmm′ ξτσ,τ ′σ′T
m
ττ ′

(2.15)

where ξτσm,τ ′σ′m′ =

{
1 if τ = τ

′
and σ = σ

′
or τ 6= τ

′
and σ 6= σ

′

0 otherwise

From the equation above we can see that for our case transition matrix is
symmetric and diagonal except that mode coupling elements between P and SV
waves are nonzero if the m values are the same and the σ values are different.

The advantage of calculating T matrix is that it fully describes the obstacle
and is independent of the location of the incident wave signal.

2.2.3 Expansion coefficients for incoming wave

The incident field (2.2) from the transmitting probe may be analytically solved
for in term of a Fourier transform. Using the notation of Boström et. al. [14] for
the Fourier transform, the incident field can be written as:

uin,t(xt) =
2∑
j=1

∫
C−

ξj(β)ϕtj(β;xt)dβ (2.16)

where ϕj – vector plane waves and j = 1, 2 corresponds to SV and P waves,
respectively, β – is a polar angle of propagation of the plane wave. The vector
plane waves could be written as:

ϕ1(β,x) = − iβ̂
8πe

iksγ̂·x,

ϕ2(β,x) =
kp
ks

iγ̂
8πe

ikpγ̂·x,

(2.17)

with polar unit vectors:

β̂ = (cosβ, sinβ)

γ̂ = (−sinβ, cosβ)

(2.18)
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The integration contour C− - in this case is defined as β ∈ [0, 2π], see the
Boström et al. [14], where the integration contour is named Γ−. In order to
determine functions ξj(β), it is necessary to transform equation to rectangular
coordinate q in Fourier space. Then, calculate the corresponding traction and
identify it with the Fourier transformed traction T t of the prescribed traction
from the probe, eq. (2.2). The functions could be written as [9]:

ξ1(q) =
√

2
π
hsks
µR

[(
2q2 − k2s

)
T t1 − 2hpqT

t
2

]
ξ2(q) =

√
2
π
hpks
µR

[
2hsqT

t
1 +

(
2q2 − k2s

)
T t2
] (2.19)

whereR = 4q2hphs + (2q2 − k2s)2 is the Rayleigh function and hj = hj(q) =
√
k2j − q2

with j = p, s. T t - the Fourier transform of the prescribed traction, see eq. (2.2).
The incident field from the probe can be determined with ξ1(β) = ξ1(q = kscosβ)
and ξ2(β) = ξ2(q = kpcosβ).

By transforming the vector plane waves ϕj into the cylindrical vector wave
functions χjσm it is possible to determine the expansion coefficients bjσm in the
incoming field equation (2.9). Such transformation could be done in two steps:
first, the plane waves should be translated from the center of the probe to an
origin at the center of the defect; then, expanded in the cylindrical wave functions.
More details of these transformations are described by Boström et al. [14]. In our
case, after all transformations, coefficients could be defined as:

bjσm = im
√
εm
2π

∫
C−

ξj(β)eikj γ̂·d
(
cos(mβ)
sin(mβ)

)
dβ (2.20)

where d is the vector directed from the center of the probe to the center of the
cavity.

2.2.4 Expansion coefficients for scattered wave

To simplify the way of using wave function equations and to avoid possible
misreading, it is convenient to use such notification of the equation (2.10):

χ0
1σm(r) =

[
V 0
r1m(r)

(−sin(mϕ)
cos(mϕ)

)
+ V 0

ϕ1m(r)
( cos(mϕ)
sin(mϕ)

)]
χ0
2σm(r) =

[
V 0
r2m(r)

( cos(mϕ)
sin(mϕ)

)
+ V 0

ϕ2m(r)
(−sin(mϕ)
cos(mϕ)

)] (2.21)

As for the actual equations, the upper index ”0” is used for the regular wave
functions, and that means, that it is contained Bessel functions. For the outgoing

14



wave functions index ” + ” is used, and all Bessel functions are switched to the
Hankel functions. Traction equations (2.11) could be transformed in the same
way:

t(r)(χ0
1σm) =

[
S0
r1m(r)

(−sin(mϕ)
cos(mϕ)

)
+ S0

ϕ1m(r)
( cos(mϕ)
sin(mϕ)

)]
t(r)(χ0

2σm) =
[
S0
r2m(r)

( cos(mϕ)
sin(mϕ)

)
+ S0

ϕ2m(r)
(−sin(mϕ)
cos(mϕ)

)] (2.22)

With such notation of wave functions and traction, analytical solution could
be written more clearly. First, the simple case with hollow cavity as a defect is
considered. As the boundary condition both traction components are equal to
zero. For m = 0 there are some restrictions: for τ = 1 only an azimuthal traction
is considered, and for τ = 2 – only radial traction component. So, for m = 0 there
are no coupling between τ = 1 and τ = 2. The boundary condition at r = a for
m = 0 and τ = 1 gives:

S0
ϕ10(a)b1e0 + S+

ϕ10(a)f1e0 = 0 (2.23)

Similarly, the boundary condition for τ = 2 gives:

S0
r20(a)b2e0 + S+

r20(a)f2e0 = 0 (2.24)

Full boundary condition equations for m = 1, 2, 3... can be written as:

S0
r,1m(a)b1om + S0

r,2m(a)b2em + S+
r,1m(a)f1om + S+

r,2m(a)f2em = 0

S0
ϕ,1m(a)b1om + S0

ϕ,2m(a)b2em + S+
ϕ,1m(a)f1om + S+

ϕ,2m(a)f2em = 0

S0
r,1m(a)b1em + S0

r,2m(a)b2om + S+
r,1m(a)f1em + S+

r,2m(a)f2om = 0

S0
ϕ,1m(a)b1em + S0

ϕ,2m(a)b2om + S+
ϕ,1m(a)f1em + S+

ϕ,2m(a)f2om = 0

(2.25)

The expansion coefficients for scattered wave could be found by solving the
system of equations ((2.23), (2.24) and (2.25)) in terms of the incoming wave
expansion coefficients (2.20). With both sets of these expansion coefficients known,
it is possible to define T matrix, using eq. (2.14) and (2.15) and solving the
corresponding system of equation for each value of m. The final equations are
quite big, therefore are not given.
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3 Numerical solution

3.1 Considered software

Any in-service inspection must be performed by using qualified procedures, which
are reliable to detect, locate, characterise and accurately determine the size of
defects that may occur in the specific type of component. To qualify the procedures
a big amount of inspections on the test pieces is a conventional routine, which is
very costly and time-consuming. A thoroughly validated model could be used as
an alternative or an addition to the experimental work in order to reduce the cost.

There are several options how to model the inspection situation, mostly semi-
analytical and numerical approaches are implemented [10]. Using only semi-
analytical methods for modeling UT inspection limits the possibilities to model
the geometry of the defect. Simple-shaped defects are well defined, and the
analytical solution for them are known, or can be easily derived. Hence, most
of the time simple-shaped defects, such as spheres, strip-like or penny-shaped
cracks, are used to model the real test situations. However, in real life defects are
far more complex. Numerical approaches work better for complicated geometry.
Although, using numerical based software for modeling a realistic NDT situation,
where the distance between the probe and the defect could be large, might be
very expensive, because the big amount of computer memory might be required.

The hybrid methods take advantage of both semi-analytical and numerical
approaches. The basic idea is to surround the defect by a finite element scheme
and use the semi-analytical method for the propagating between the probe and
the defect. In this case it is possible to model more complicated shape of the
defect, which involves more complicated scattering process without getting too
large numerical models.

It is convenient to use already existing software, which is validated to meet all
the needed requirements for the task. Further in this section, as in the Paper A,
three software are considered.

3.1.1 simSUNDT

The simSUNDT software consists of a Windowsr-based pre- and post-processor,
as well as a mathematical kernel UTDefect [8, 15] that conducts the actual
mathematical modeling and computation. UTDefect was developed at Chalmers
University of Technology and has been experimentally validated and verified [16,
17]. The 3D elastodynamic wave equation, which defines the wave propagation in
a homogeneous half space, is solved using vector wave functions [15].
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The modelling of the contact probe assumes that the probe is placed on an
elastic half-space. The surface of that half-space is traction free, except the area
beneath the probe. This enables an adaptation to a variety of realistic parameters
related to the probe, e.g. wave type, angle, crystal (e.g. size and shape), focus
depth and contact conditions, etc.

The traction is derived in the manner, that a plane wave is generated in the
far field. This approach is used in elastodynamic wave propagation problem, see
eq. (2.1) for two dimensional longitudinal (P) and vertical transverse (SV) wave
types.

UTDefect uses the T-matrix method [18], and all information regarding the
defects is included in the transition matrix, as well as the linear relation between
the expansion coefficients of the incoming (bτσm) and scattered (fτσm) wave fields
in eq. (2.14). To incorporate the probe model into the T-matrix formulation, the
displacement field needs to be transformed from the plane vector waves centered
at the contact area into spherical vector wave functions oriented and centered at
the defect. The receiver is modeled by applying an Auld’s reciprocity argument
[19]. The electrical signal response is derived in [15] an can be expressed as:

δΓ ∼
∑
nn′

abnTnn′a
a
n′ (3.1)

where aan′ represents transmitting probe, Tnn′ - defect and abn - receiving probe.

3.1.2 k-Wave toolbox

k-Wave is an open source MATLABr toolbox designed for the time-domain
simulation of propagating acoustic waves in 1D, 2D, or 3D [20]. The toolbox is an
advanced numerical model that can account for both linear and nonlinear wave
propagation and an arbitrary distribution of heterogeneous material parameters
[21]. The equations in the toolbox are solved using a k-space pseudospectral
method, where spatial gradients are calculated using a Fourier collocation scheme.

The k-Wave toolbox was originally developed within the Photoacoustic Imaging
Group at University College London (UCL). The first beta version was focused
primarily on forward and inverse initial value problems for the simulation and
reconstruction of photoacoustic wave fields in lossless media [20]. In the updated
version, time varying pressure and velocity sources, acoustic absorption, nonlin-
earity, elastic materials and models for ultrasound transducers are included in the
toolbox.

As the modeling of ultrasound trasdusers and wave propagation in the toolbox
were done mostly for biomedical ultrasonics, it is impossible to use materials
with large differences in density in k-Wave simulation. Hence, there is a massive
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limitation on shape and type of the modelled defects. The other critical limitation
in this software is the fact, that the wave numbers depend on the grid, which
makes it impossible to apply Fourier transformation and consider the problem in
the frequency domain.

3.1.3 COMSOL Multiphysics

The COMSOL Multiphysicsr software is a simulation platform that includes
all of the steps requires in the modeling process: defining geometries, material
properties, physics that describe specific phenomena, solving and postprocessing
models.

This software allows to combine any physics phenomena from electromagnetics,
structural mechanics, acoustics, fluid flow, heat transfer, and chemical reaction
phenomena in a single model. Accurate multiphysics models consider a wide range
of possible operating conditions and physical effects. This makes it possible to
use models for understanding, designing, and optimizing processes and devices for
realistic operating conditions.

For each modeling situation software suggests available study types, such as
time-dependent or stationary solvers. The software also automatically recom-
mends the appropriate numerical discretization of the mathematical model, solver
sequence, and visualization and postprocessing settings that are specific to the
physics phenomena. The physics interfaces can also be combined freely in order
to describe processes that involve multiple physics phenomena.

The acoustic module works with analysis of acoustics and vibration problems
[22]. It is possible to solve problems in linear ultrasound and propagation of
pressure and elastic waves in porous materials. In general, the interface of this
module is suited for modeling the propagation of acoustic signals over large
distances relative to the wavelength. The interface includes absorbing layers that
are used to set up effective nonreflecting like boundary conditions. The interface
is based on the discontinuous Galerkin (dG or dG-FEM) method and uses a time
explicit solver. The method is very memory efficient and can solve problems with
many million degrees of freedom (DOFs). However, it is not possible to get a
value of the displacement field as an outcome in this module.

The Structural Mechanics Module is more suitable for determination of the
displacement field [23]. It solves problems in the fields of structural and solid
mechanics, including special physics interfaces for modeling shells and beams.
The physics interfaces in this module are fully multiphysics enabled, making it
possible to couple them to any other physics interfaces in COMSOL Multiphysicsr.
Several material models are available, such as: isotropic, orthotropic, or fully
anisotropic Linear Elastic Materials, Linear Viscoelastic, Piezoelectric, etc. The
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study capabilities include static, eigenfrequency, time dependent (transient),
frequency response, buckling, and parametric studies. There is a possibility to do
calculations in time or frequency domain, or apply Fourier transformation.

3.2 Validation and comparison of the results

3.2.1 Paper A

A 2D time-dependent problem was considered in Paper A. The ultrasonic line-
source was located on the surface of a half infinite solid structure and modelled as
a pressure distribution with values for the specific line. The perfectly matched
layer (k-Wave) and low-reflected boundary (COMSOL Multiphysicsr) were used
to allow a free-field simulation at the borders of the computational grid. A defect
was located in the material underneath the probe. Three simple shaped defects
were considered in the paper: side-drilled hole (SDH), perpendicular and parallel
strip-like cracks (SC). The values of diameter of SDH and length of SC were equal.
The distance between the probe and the upper surface of the defect was the same
for all three defects. The distribution of the resulting stress field can be seen in
Figure 3.1.

a) b)

c) d)

Figure 3.1: Stress field at t=2.9 µs for SDH and parallel SC in COMSOL
Multiphysicsr (a, b) and in k-Wave (c, d)

Even if the stress distribution in the Figure 3.1 looks correct, the actual values
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of stress and displacement, calculated in the COMSOL Multiphysicsr, were very
noisy. The reason for this was that in the version 5.4 of the software, which was
used in this paper, the low-reflected boundary condition in combination with the
prescribed pressure from the probe were not working correctly for the Structural
Mechanics Module. The values of the displacement field were much bigger and
much noisier, in comparison with other software, thus they were not included on
the graphs below. In the later version of COMSOL Multiphysicsr it becomes
possible to include the perfectly matched layer as the boundary condition in the
Structural Mechanics Module.

a)

c)

b)

Figure 3.2: Comparison of A-scan for: a) SDH, b) SC parallel, c) SC perpendicular
in SimSUNDT and k-Wave
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In Figure 3.2 a comparison of the results from simSUNDT and k-Wave is
presented. For each defect two simulations were made: with and without defect.
It was done in order to be able to compare results with simSUNDT, where the
Auld’s reciprocity relation is used to calculate the change in the signal [19]. As a
result, only pure signal from the defect was considered, since the signal from the
case ‘without defect’ was subtracted. Presented results are normalized to SDH,
which means that all values are divided by the maximum value for SDH case.

One of the main limitation in k-Wave is the inability to use materials with
large differences in density. Therefore, for the solid structure the properties of
steel (density, pressure and shear wave speeds) were used, and for the defects,
values of these properties are reduced by 100. In comparison, in SimSUNDT
and COMSOL Multiphysicsr it is possible to model a void with zero material
properties (vacuum).

SC might be modelled as a rectangular crack with very small thickness compare
to the length. In the case of a SC parallel to the surface, the thickness does not
matter, since the largest amount of received energy is due to reflection from the
parallel surface of the defect. The crack-tip diffraction tends to be much smaller
than corresponding surface reflection.

For the perpendicular SC case the dimension of crack tip matters. In modeling,
the value of the width of the crack tip depends on the mesh. In k-Wave the
smallest possible mesh does not allow to neglect the impact of the parallel surface
and the corners of the defect. In order to avoid such influence, the crack was
modelled as a rigid line with no thickness, instead of rectangular looking one.
That is not physically correct, and thus the differences in results seems bigger
than in other cases, see Figure 3.2, c).

The agreement between SimSUNDT and k-Wave could be considered quite
good, as the position and shape of the signal are very similar, but there are some
important limitations which prevent the use of this software for further research.
Most essential features that may limit its application in wave propagation are
the wavenumber dependence on grid and inability to use materials with large
differences in density.

4 Hybrid modelling

The hybrid model, as a combination of two different methods, takes advantage of
both semi-analytical and numerical approaches. By using such models it becomes
possible to consider complex shape defects without describing it analytically, which
might be very complicated or even impossible.

The hybrid model is based on using two approaches separately for the specific
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parts of the problem first, and then combing them. The analytical method is used
for describing the wave propagation between the probe and the defect, and the
numerical solution simulates the interaction between the wave and the complex
shape defect by surrounding it with a finite element scheme.

In this work, for the analytical part MATLABr software was used. The
simulation was done in the Fourier space in cylindrical coordinate system.

The COMSOL Multiphysicsr software was used for the numerical calculations.
The simulations were done in frequency domain using the Structural mechanics
Module with the rectangular coordinate system.

4.1 Determination of T matrix

For the geometry, an infinite elastic half-space, see Figure 2.3, was considered.
The surface was traction-free except beneath the probe, located on the surface.
For the prescribed traction SV probe signal was used, see eq. (2.1). The defect,
the hollow cavity in our case, was located underneath the probe in the material.

It is necessary to have similar geometry, material properties, boundary condi-
tions and incoming wave from the probe for analytical and numerical solutions
to be able to combine them. Hence, for the boundary condition in COMSOLr

a perfectly matched layer was used to model an infinite half-space, which allows
waves to propagate without being scattered from the boundaries, see Figure 4.1.

Figure 4.1: Model created in COMSOL Multiphysicsr version 5.6
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In the Figure 4.1 the radius of the outer circle, which surrounds the defect,
is twice bigger than the radius R of the obstacle. This circle consists of points,
where the displacement field data from numerical model was collected and used
in further calculations of T matrix.

T matrix describes a linear relationship between expansion coefficients for
incoming wave bτσm and expansion coefficients for scattered wave fτσm. Equations
(2.14) and (2.15) can be used to determine T matrix. As we know, expansion
coefficients for incoming wave only depend on the probe configurations, so they
can be easily derived using (2.20) for any frequency and m values.

The situation with expansion coefficients for scattered wave is more complicated.
In the analytical solution they could be found by solving the system of equations,
described in Section (2.2.4), and using the traction-free boundary conditions
on the surface of the hollow cavity. But in the real life situation the boundary
conditions of the defect could not be determined. Thus, our hybrid model uses a
numerical data received from the COMSOLr simulation as an updated boundary
conditions.

The boundary conditions and the system of equations could be updated: instead
of considering the surface of the defect, where the value of total displacement field
is equal to zero, the displacement field on the outer circle should be considered.
In that case, we could put the value of total field equal to the values that are
collected from the COMSOLr. It is important to use the same coordinates of
the data points in both analytical and numerical solution to be able to put an
equal sign between them. The updated equation for boundary condition can be
expressed as: ∑

τσm

(bτσmχ
0
τσm(r, ϕ) + fτσmχ

+
τσm(r, ϕ)) = U com(r, ϕ) (4.1)

where r and ϕ are the coordinates of the considered data point, Ucom(r, ϕ) -
displacement field in the same point, collected from COMSOLr.

The amount of equations in the system depends on the m value. For each
natural m number there are 4 unknown expansion coefficients fτσm, and for m = 0
with the restrictions, similar to eq. (2.23) and (2.24), there are only two unknown
expansion coefficients f1e0 and f2e0. Both radial and azimuthal components (or x
and y components in the rectangular coordinate system) are used in this system
of equations.

The expansion coefficients for scattered wave could be found by solving the
updated system of equations (4.1) in terms of the incoming wave expansion
coefficients bτσm, see eq. (2.20). With both sets of these expansion coefficients
known, the T matrix could be defined, using eq. (2.14) and (2.15) for each m
value.

23



The T matrix contains information about the defect and do not depend on any
probe configuration or position. Therefore, with T matrix known it is possible to
model a scanning inspection situation for the range of probe positions. To verify
the developed model, comparison with numerical results are used.

4.2 Validation and comparison results

4.2.1 Paper B

Paper B describes the developed hybrid model. In this paper, a 2D in-plane
scattering problem was considered, the full description of which could be found in
Section 2.

The numerical calculations for the 2D hybrid model were done in COMSOL
Multiphysicsr. The analytical solution, determination of T matrix and further
calculations were done in MATLABr. Vpasolve command was used in MATLABr

to numerically solve the systems of equations and to determine the values of
expansion coefficients for incoming and scattered waves.

T matrix was calculated for the Position 1 of the probe, see Figure 4.2,
according to the procedure described in Section 4.1. Probe angle γ = −π

4 for the
Position 1 was used, in order to get maximum level of scattered energy to use in
the T matrix calculations.

Position 1 Position 2

Figure 4.2: Illustration of the different positions of the probe

With known T matrix it becomes possible to use it to determine the expansion
coefficients for scattered wave, eq. (2.14) and (2.15), for any Position 2 of the
probe, in this work γ2 = −π

6 . After that, the displacement field could easily be
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calculated.

To verify that the hybrid model is working correctly for any Position 2 of the
probe, the full numerical model was created in COMSOLr, and the full analytical
model - in MATLABr. Simulations were done separately for each value of the
frequency from 1 to 6MHz with m equal to 9.

To determine the total displacement for each point on the outer circle in
COMSOLr, the solid.disp command was used, the equation for which can be
expressed as:

solid.disp =
√
real(Ux)2 + real(Uy)2 (4.2)

where the Ux and Uy are the displacement components in the x and y directions
of the rectangular coordinate system. The displacement components are complex
numbers, but only real part is used to calculate the total displacement.

In results presented in Figure 4.3 and Figure 4.4, the analytical and hybrid
solutions in MATLABr were done in the cylindrical coordinate system. Hence,
the determined displacement components Ur and Uϕ should be transformed, see
eq. (4.3), into the rectangular coordinates to make it possible to compare results.

Ux = Urcos(ϕ)− Uϕsin(ϕ)

Uy = Ursin(ϕ) + Uϕcos(ϕ)
(4.3)

where Ux, Uy and Ur, Uϕ are displacement field components in rectangular and
cylindrical coordinate systems, respectively; ϕ - angle coordinate.

In this work, two sets of results are presented. The comparison of the total
displacement field vs. angle ϕ on the outer circle for the radius equal to 2R and
1.05R could be found in the Figure 4.3 and Figure 4.4, respectively, where R is the
radius of the obstacle. Calculations were done separately for each frequency from
1 to 6MHz with the step of 1MHz. On the graphs, solid black line represents
results from Hybrid model, dotted blue line is assigned for the Numerical solution
made in COMSOLr, red dash line is used for Analytical solution. All presented
values are normalized, so we can compare only the shape of the signal.

The Hybrid solution is located in between the analytical and numerical solutions,
as expected. This solution has better correlation with numerical part than the
analytical one has.

Comparing results in Figure 4.3 and Figure 4.4, it is obvious that the displace-
ment fields for hybrid and numerical solutions, calculated on the radius 1.05R,
have better correlation, than the same calculated on the radius 2R. That might be
connected with the numerical values, which were used to determine the T matrix.
These data were collected from COMSOLr separately for two corresponding

25



0 1 2 3 4 5 6 7

Angle fi, rad

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

is
p

la
c
e

m
e

n
t,

 n
o

rm
a

liz
e

d
Total displacement, m= 9 freq= 1MHz

Hybrid

Numerical

Analytical

a) b)

c) d)

e) f)

0 1 2 3 4 5 6 7

Angle fi, rad

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

p
la

c
e

m
e

n
t,

 n
o

rm
a

liz
e

d

Total displacement, m= 9 freq= 2MHz

Hybrid

Numerical

Analytical

0 1 2 3 4 5 6 7

Angle fi, rad

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

p
la

c
e

m
e

n
t,

 n
o

rm
a

liz
e

d

Total displacement, m= 9 freq= 3MHz

Hybrid

Numerical

Analytical

0 1 2 3 4 5 6 7

Angle fi, rad

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

p
la

c
e

m
e

n
t,

 n
o

rm
a

liz
e

d

Total displacement, m= 9 freq= 4MHz

Hybrid

Numerical

Analytical

0 1 2 3 4 5 6 7

Angle fi, rad

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

p
la

c
e

m
e

n
t,

 n
o

rm
a

liz
e

d

Total displacement, m= 9 freq= 5MHz

Hybrid

Numerical

Analytical

0 1 2 3 4 5 6 7

Angle fi, rad

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

p
la

c
e

m
e

n
t,

 n
o

rm
a

liz
e

d

Total displacement, m= 9 freq= 6MHz

Hybrid

Numerical

Analytical

Figure 4.3: Comparison of Hybrid (solid, black), Numerical (dotted, blue) and
Analytical (dash, red) solutions for different frequencies with radius of outer circle
equal 2R
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Figure 4.4: Comparison of Hybrid (solid, black), Numerical (dotted, blue) and
Analytical (dash, red) solutions for different frequencies with radius of outer circle
equal 1.05R
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values of the outer circle radius. The bigger distance from the actual defect we
use to collect the data, the noisier signal we get. Thus, the total result is highly
dependent on the fact, which data was used to determine T matrix.

The differences between the solutions for the higher frequencies, Figure 4.4,
e)-f), is more noticeable than for the lower frequencies, Figure 4.4, a)-d). The
reason for this could be the value m and the amount of data points used to
determine T matrix. In our case, m was equal 9, thus there were 38 equations used
as a boundary condition while calculating T matrix. The amount of equations
was divided by 2 to identify how many data points were considered, as both
components Ux and Uy of the displacement field were used. It might be necessary
to have more equations and consider more points to get more accurate results.

In both Figures you can see very big values on the edges of the graphs, around
ϕ ≈ 0 and ϕ ≈ 2π. It might be connected with the sine and cosine functions, that
were used for calculating displacement components in the hybrid model equations.
That phenomenon should be investigated further.
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5 Summary of appended papers

5.1 Paper A

There are several options how to model the inspection situation, mostly semi-
analytical and numerical approaches are implemented. Using only semi-analytical
methods for modeling UT inspection limits the possibilities to model the geome-
try of the defect. Numerical approaches work better for complicated geometry.
Although, using numerical based software for modeling a realistic NDT situation
might be very expensive and time consuming, because the big amount of computer
memory might required. It is more suitable to use the Hybrid model, which
combines both semi-analytical and numerical approaches.

To develop the Hybrid model, it is convenient to use already existing numerical
software, which is validated to meet all the needed requirements for the task. In
Paper A, a 2D time-dependent problem with simple shape defects was simulated
in three software: k-Wave toolbox for MATLABr, COMSOL Multiphysicsr and
simSUNDT.

Though, the agreement between the stress and displacement field for all software
could be considered quite good, some important limitations, which prevent the
use of the software as it is for further research were discovered. One of the main
limitation in k-Wave is the inability to use materials with large differences in
density. For COMSOL Multiphysicsr version 5.4, which was used in this paper,
the boundary condition in combination with the prescribed pressure from the
probe were not working correctly for the Structural Mechanics Module. This
problem was solved in the later version, which allow us to use this software for
further research.

5.2 Paper B

The Hybrid model is based on using semi-analytical and numerical approaches
separately for the specific parts of the problem first, and then combing them. The
analytical method is used for describing the wave propagation between the probe
and the defect, and the numerical solution simulates the interaction between the
wave and the complex shape defect by surrounding it with a finite element scheme.
In this Paper, the numerical calculations for the 2D hybrid model were done in
COMSOL Multiphysicsr. The analytical solution, determination of T matrix and
further calculations were done in MATLABr.

The developed hybrid model is based on the T matrix method. The T matrix
contains information about the defect and do not depend on any probe config-
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uration or position. Therefore, with T matrix known it is possible to model a
scanning inspection situation for the range of frequencies and probe positions. To
verify the developed model, comparison with fully numerical and fully analytical
results were used. Simulations were done separately for several values of the
frequency.

30



6 Conclusion and future plans

In recent years, the problem of the power plants being exploited beyond their
estimated lifetimes in combination with an increase of power outage is very urgent.
In-service caused defects can, if they are detected, be sized and monitored in order
to postpone repairs or replacements.

Stress corrosion cracks (SCC) and fatigue cracks are the most common defects
that appeared in the nuclear industry. SCC tends to have a heavily branched
macroscopic shape with a large number of crack tips. The diffraction from the
cracks tips is used as the basis for the defect size analysis, and ultrasonic NDT
methods are not always reliable in in this kind of application. In this case,
mathematical modelling could be used to do the parametrical studies that address
such interactions and dependencies that never would be possible to achieve by
experiments.

In this thesis, a newly developed hybrid model is described. This model is
based on using semi-analytical and numerical approaches separately for the specific
parts of the problem first, and then combing them. The analytical method is used
for describing the wave propagation between the probe and the defect, and the
numerical solution simulates the interaction between the wave and the complex
shape defect by surrounding it with a finite element scheme. The numerical
calculations for the 2D hybrid model were done in COMSOL Multiphysicsr. The
analytical solution, determination of T matrix and further calculations were done
in MATLABr.

The Hybrid model is using T matrix method to combine two approaches. The
T matrix contains information about the defect and do not depend on probe
configuration or position. Therefore, with T matrix known it is possible to model
a scanning inspection situation for the range of probe positions. To verify the
developed model, comparison with fully numerical and fully analytical results
were used. Simulations were done separately for several values of the frequency.

The comparison of the results from Hybrid, Numerical and Analytical solutions
is shown to have good agreement in general. The Hybrid solution is located in
between the analytical and numerical solutions, as expected. This solution has
better correlation with numerical part than the analytical one has.

Based on the results, the next step of the research is investigation of possibility
to validated this model with more complex defects, such as SCC or defects
surrounded by strongly anisotropic material. The further development of the
Hybrid model into the 3D case is look like the natural continuation of the research.

31



References

[1] Peter J. Shull. Nondestructive evaluation: theory, techniques, and applica-
tions. CRC press, 2002.

[2] R. K. Chapman. A system model for the ultrasonic inspection of smooth
planar cracks. J Nondestruct Eval 9 (1990), 197–210.

[3] P. Fellinger et al. Numerical modeling of elastic wave propagation and
scattering with EFIT—elastodynamic finite integration technique. Wave
motion 21.1 (1995), 47–66.
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Paper A

Comparison between three mathematical models of three
well defined ultrasonic NDT cases
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Abstract. Ultrasonic nondestructive testing (NDT) is commonly used for in-service inspection in 

different areas. But reliability of NDT method is highly dependent on the equipment and crack 

features. Although, it is possible to use thoroughly validated mathematical models to avoid 

complicated and costly experimental work, when it is necessary to qualify new procedures. Finite 

Element Model (FEM) is a powerful tool, which is commonly used for such cases. In this paper 

three mathematical models of three well defined cases will be compared with each other.  

Introduction 

The propagation and scattering of waves in the elastic solids are important in ultrasound testing and 

material characterization. Ultrasonic nondestructive testing (NDT) is commonly used for in-service 

inspection in different areas, e.g. in nuclear and aerospace industries. NDT methods are used to evaluate 

the integrity of individual components, which might be exposed to different degradation mechanisms 

(such as fatigue, corrosion and stress corrosion cracking).  

     However, the reliability of NDT method is highly dependent on how the equipment is adjusted to a 

specific object and how to anticipate crack features. Their morphology and thus signal response may 

vary widely between different crack mechanisms and material types, in which crack appear. Due to these 

reasons it is very complicated and costly to validate (or qualify) new procedures to inspect defects with 

more complex geometry, e.g. stress corrosion cracks. Such experimental work requires tests on 

manufactured specimens with well known fabricated defects.  

     To avoid these difficulties, it is possible to use thoroughly validated mathematical models. Finite 

Element Model (FEM) is a powerful and comprehensive tool, which is commonly used nowadays. Up 

to this date only a couple of models have been developed that cover the whole testing procedure, i.e. 

they include the modeling of transmitting and receiving probes, the scattering by defects and the 

calibration. Chapman [1] employs geometrical theory of diffraction for some simple crack shapes and 

Fellinger et al [2] have developed a type of finite integration technique for a two-dimensional treatment 

of various types of defects. Lhémery et al [3] employs Kirchhoff’s diffraction theory that enables their 

model to handle more complex geometries in 3D. In the literature, Gray et al [4] and Achenbach [5] 

presents overviews of ultrasonic NDT models. 

     In this paper an ultrasonic “pulse-echo” inspection situation was modelled by a line-shaped source 

on the surface of a component. Different defects were introduced beneath the source and the signal 

response from two FEM models and an analytical model were compared.  
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Analytical model 

The simSUNDT program consists of a windows based pre-processor and postprocessor together with a 

mathematical kernel (UTDefect) dealing with the actual mathematical modelling. The UTDefect 

computer code has been developed at Chalmers University of Technology and has been experimentally 

validated and verified. The analytical model used as kernel in the simSUNDT software [6-8] is 

completely three dimensional, though the component is two dimensional (infinite plate with finite or 

infinite thickness) bounded by the scanning surface where one or two probes are scanning the object 

within a rectangular mesh. The probe is modeled by an assumed effective area beneath the probe, used 

as boundary conditions in a half-space elastodynamic wave propagation problem. This enables an 

adaptation to a variety of realistic parameters related to the probe, e.g. wave type, angle, crystal (i.e. size 

and shape), focus depth and contact conditions. The receiver is modeled by applying a reciprocity 

argument by Auld [9]. 

     The governing linearized equations for wave propagation in an elastic medium are the equation of 

motion, Hooke's law and the strain-displacement relation. If time harmonic conditions are assumed (time 

factor 𝑒−𝑖𝜔𝑡 is suppressed) these three relations can be combined into the elastodynamic equation of 

motion governing the displacement field u: 

 

𝑘𝑝
−2∇∇ ∙ 𝐮 − 𝑘𝑠

−2∇ × ∇ × 𝐮 + 𝐮 = 𝟎 (1) 

where 𝑘𝑝  and 𝑘𝑠  are the compressional and shear wave numbers, respectively.  

     The total displacement field is given by the sum of the incident field (ui) and the scattered field (us). 

Let us expand the incident field in terms of regular spherical partial vector waves (Re𝚿𝑛) and the 

scattered field in corresponding outgoing spherical partial vector waves (𝚿𝑛), i.e.  

 

{
 
 

 
 𝐮𝑖 =∑𝑎𝒏Re

𝒏

𝚿𝑛

𝐮𝑠 =∑𝑓𝒏
𝒏

𝚿𝑛      
 (2) 

     Then it is possible to find a linear relationship between the expansion coefficients for the incident 

and scattered field and this entity is known as the transition matrix T 

 

𝑓𝒏 =∑𝑇𝒏𝒏′
𝒏′

𝑎𝒏′ (3) 

     All information about the scattered field is contained in its transition matrix and the characterization 

of the probe acting as a transmitter is encapsulated in the expansion coefficients for the incident field 

(an). To evaluate its behaviour as a receiver we use an electromechanical reciprocity argument by Auld 

[9]. Then the change in the electrical response of probe b, due to the presence of a defect (enclosed by 

a control surface S), is found as 

 

δΓ~∑𝑎𝑛
b

𝑛𝑛′

T𝑛𝑛′𝑎𝑛′
a  (4) 

 

Numerical models 

The discrete modeling is made by using two different approaches, FE-modeling by use of COMSOL 

and a finite difference method by k-Wave. 

     COMSOL Multiphysics is a simulation software for a wide array of applications, which included 

several modules, categorized according to the applications areas: Electrical, Mechanical, Fluid, 

Chemical, Multipurpose, and Interfacing.  
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     k-Wave is an open source acoustics toolbox for MATLAB and C++. The software is designed for 

time domain acoustic and ultrasound simulations in complex and tissue-realistic media [10,11]. The 

equations are solved using a k-space pseudospectral method, where spatial gradients are calculated using 

a Fourier collocation scheme, and temporal gradients are calculated using a k-space corrected finite-

difference scheme. 

 

  
(a) (b) 

 

 

 

 
(c) (d) 

Figure 1. Stress field at t=2.9 µs for SDH and parallel SC in COMSOL (a, b) and in k-wave (c, d) 

 

     In this paper a 2D time-dependent problem is considered. For the geometry, a half infinite solid 

structure with a defect is used. The perfectly matched layer (k-wave) and low-reflected boundary 

(COMSOL) are used to allow a free-field simulation at the borders of the computational grid. The 

ultrasonic 6 mm line-source with a center frequency of 2MHz and 50% bandwidth is placed on the 

surface and modelled as a pressure distribution with values for specific line. For the defects side-drilled 

hole (SDH), perpendicular and parallel strip-like cracks (SC) are considered. The diameter of SDH and 

length of SC are 5 mm, and the distance between probe and the defect is 7,5mm. The resulting stress 

field can be seen in Figure 1.  

     In Figure 2 a comparison of the results from simSundt and k-wave is presented. For each defect two 

simulations are made: with and without defect. As a result, only pure signal from the defect is used, 

since the signal from the case ‘without defect’ is subtracted. It should be considered, that presented 

results are normalized to SDH, which means that all values are divided by the maximum value for SDH 

case. 
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(a) (b) 

 

 

(c)  

Figure 2. Comparison of A-scan for: (a) SDH, (b) SC parallel, (c) SC perpendicular in SimSUNDT 

and k-wave  

 

Results 

In k-wave simulation it is impossible to use materials with large differences in density. Hence, properties 

of steel (density, pressure and shear wave speeds) is used for the solid structure, and for the defects 

values of these properties are reduced by 100. In comparison, in SimSUNDT and COMSOL it is possible 

to have a void with zero material properties. 

SC might be modelled as a rectangular crack with very small thickness compare to the length. In the 

case of a SC parallel to the surface, the thickness does not matter, since the largest amount of received 

energy is due to reflection from the parallel surface of the defect. A rule of thumb is that crack-tip 

diffraction tends to be about 20 to 30 dB less than corresponding surface reflection. 



ToPME-2019

IOP Conf. Series: Materials Science and Engineering 747 (2020) 012061

IOP Publishing

doi:10.1088/1757-899X/747/1/012061

5

 
 

Figure 3. Comparison of A-scan for perpendicular SC in SimSUNDT and perpendicular rectangular 

SC in k-wave 

 

For the perpendicular SC case the dimension of crack tip is important. In k-wave smallest possible mesh, 

element size 50µm is used. Accordingly, the smallest possible width of the perpendicular SC is also 

50µm. In this case the impact of the parallel surface and the corners of the defect is significant. In Figure 

3 you can see that the signal from rectangular SC in k-wave looks like signal from the parallel SC. To 

avoid this influence, instead of rectangular looking crack there is used a line, located on the grid points 

under the centre of the probe. That is not physically correct, and thus the differences in results seems 

bigger than in other cases, see Figure 2, c). However, the agreement between analytical and simulation 

results in SimSUNDT and k-wave can be considered quite good, as the position and shape of the signal 

are same, and differences in values are less than 10 dB. Although even if this software has good 

correlation with analytical solution, there are some features, which may limit further use. One essential 

parameter that may limit its application in wave propagation is the wavenumber dependence on grid 

coordinates.  

     COMSOL results differ a lot from other software. Even if the stress distribution on the pictures looks 

correct, see Figure 1, the values of stress and displacement are very noisy. Such simulations require big 

CPU of the computer to be able to use finest mesh and relatively small time-step. However, the good-

looking animation of stress distribution can be achieved even with the fine-sized mesh.  

 

Conclusions 

The next step of the research is investigation of possibility to model complexed shaped defects (SCC) 

or defects surrounded by strongly anisotropic material using existing FEM software. This paper 

describes a comparison between analytical and two numerical solutions for a 2D time-dependent 

problem. Both mathematical models have advantages and disadvantages, which must be considered for 

each simulation purpose. 
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Abstract 

In many industrial applications, e.g. nuclear and aerospace industries, components could be 

exposed to different degradation mechanisms (e. g. fatigue, corrosion, stress corrosion 

cracking), which might cause defects such as fatigue and stress corrosion cracks. Advanced 

methods of nondestructive evaluations (NDE) are widely used for in-service inspection to 

estimate the size of the defect and monitor it over the time in order to postpone repairs or 

replacements.  

The reliability of NDE methods and the interaction between applied energy and addressed 

defect is highly dependent on the equipment adjustment to a specific object and to the 

expectation of the crack features. The crack feature and morphology vary widely between 

different crack mechanisms and between material types, in which crack appears.  

In many cases, fatigue and stress corrosion cracks (SCC), as defects with a complex shape, are 

difficult to characterize with ultrasonic NDE methods. SCC tends to have a heavily branched 

macroscopic shape with a large number of crack tips. Ultrasonic NDE method is not always 

reliable in sizing such defects, as the diffraction from the crack tips is commonly used as the 

basis for such analysis. But a thoroughly validated mathematical models could be used to do 

the parametrical studies that address such interactions. 

The most convenient approach in this case would be to use the hybrid method, which is a 

combination of a semi-analytical model with a numerical approach. The basic idea of 

combining these two methods is to use the numerical solution for interaction between the 

wave and the complex shape defect. This is then done by surrounding it with a volume 

modelled by a finite element scheme and to use the analytical method for describing the wave 

propagation between the probe and the volume that contains the actual defect. By using 

hybrid models for parametrical study, it is possible to avoid costly and time-consuming 

experimental work.  

Keywords: T matrix, Finite element method, Modelling, Scattering, Ultrasonics 

 

 

 



1. Introduction 

Nowadays, advanced methods of nondestructive evaluation (NDE) and nondestructive testing 

(NDT) are commonly used for in-service inspection in many areas, such as nuclear and 

aerospace industries. NDE could be used to determine and locate flaws and leaks, to estimate 

chemical composition, mechanical and physical properties of the material, to verify and 

control processing ( e. g. heat treating). Individual components might be exposed to different 

degradation mechanisms (e. g. fatigue, corrosion, stress corrosion cracking), and NDE could 

be used to evaluate their integrity.  

In-service induced defects, such as fatigue or stress corrosion cracks, appeared in the 

machinery parts during operation need to be detected, sized and monitored, in order to 

postpone the repairs or replacement. Such defects become more and more essential to 

address as the power plants are exploited beyond their estimated lifetimes in combination 

with an increase of power outage in recent years. NDE methods are commonly used in the 

industry for that purpose.  

The reliability of NDT methods is highly dependent on the equipment adjustment to a specific 

object and to the expectation of the crack features. The crack feature and morphology vary 

widely between different crack mechanisms and between material types, in which crack 

appears. Since all these NDT methods are indirect and based on prior information on signal 

into the component, some kind of interpretation of received signal is always the basis for 

judgment of the quality of the component. The different degradation mechanisms produce 

very different kind of cracks or defects in a 3-D morphological perspective. Therefore, they 

interact and influence the received signal in an individual manner. 

Stress corrosion cracks (SCC) and fatigue cracks are the most common and critical defects that 

appeared in the nuclear industry. SCC tends to have a heavily branched macroscopic shape 

with a large number of crack tips. The diffraction from the cracks tips is used as the basis for 

the defect size analysis, and ultrasonic NDT methods are not always reliable in in this kind of 

application. In this case, mathematical modelling could be used to do the parametrical studies 

that address such interactions and dependencies that never would be possible to achieve by 

experiments. 

Instead of costly and complicated experiments, a thoroughly validated mathematical models 

can be used. Such models are very useful in development of parametric studies and in the 

qualification of testing procedures. However, up to this date only a couple of models have 

been developed that cover the whole testing procedure, i.e. they include the modeling of 

transmitting and receiving probes, the scattering by defects and the calibration. Chapman [1] 

employs geometrical theory of diffraction for some simple crack shapes and Fellinger et al [2] 

have developed a type of finite integration technique for a two-dimensional treatment of 

various types of defects. Lhémery et al [3] employs Kirchhoff’s diffraction theory that enables 

their model to handle more complex geometries in 3D. In the literature, Gray et al [4] and 

Achenbach [5] presents overviews of ultrasonic NDT models. Boström and Wirdelius [6] 

presented a model based on the T matrix concept, in principle without any approximation, 

see e. g. Bövik and Boström [7] for similar work for cracks. However, it is limited to address 



only simple shaped defects. In Westlund and Boström [8] a 2D hybrid model of a defect near 

the back surface is deduced. 

Mathematical modelling of NDT techniques is also essential when it comes to quantifying the 

capacity of a specific procedure and technique (NDE) in a specific application. A fundamental 

problem with modelling in-service induced cracks is that each defect is individual with a 

unique morphology created by a unique stress and chemical environmental progress. Since 

these specific features of such cracks cannot be prescribed without a large amount of 

uncertainty, the conventional way to model these cracks is to generalize into a very simplified 

and idealized geometric shape.  

The hybrid method takes advantage of both semi-analytical and numerical approaches. The 

basic idea is to surround the defect by a finite element scheme and deal with the propagation 

between the probe and the defect with a semi analytical method. In this way it is possible to 

model more complex crack geometries that involves a complicated scattering processes 

without getting to large numerical models. Where it is possible to implement, semi-analytical 

and fully numerical approaches are complementary. 

 

2. Statement of the problem 

In this paper a 2D in-plane scattering problem is considered, see Figure 1. A circle shaped 

cavity is located in the elastic half-space, which is isotropic and homogeneous with Lamé 

constants 𝜇 and 𝜆 and density 𝜌. On the top of the scanning surface an ultrasonic probe is 

located. The probe can act as both transmitter and receiver to model a pulse-echo testing 

situation. Multiple scattering between the scanning surface and the defect is neglected, so 

the distance between them can be arbitrary, but assumed to be large enough (i.e. at least a 

couple of wavelengths).  

 

 
Fig. 1. Illustration of the geometry with a defect in the elastic half-space 

 



In the Figure 1 two coordinate systems are introduced: the probe coordinate system 𝑥𝑖
𝑡 and 

the cavity coordinate system 𝑥𝑖
𝑑.  

On the surface of the cavity a traction-free (for hollow cavity) boundary condition is used. The 

scanning surface of the component is also traction-free except for the area beneath the 

ultrasonic probe, which will be described later. 

In the analytical solution the propagation of the waves can be described by the elastodynamic 

equation of motion. If the time-harmonic conditions are assumed, the factor 𝑒−𝑖𝜔𝑡, where 𝜔 

is the angular frequency and 𝑡 is time, can be suppressed throughout. The equation of motion, 

where 𝒖 is the displacement field, can be written as: 

 (2.1) 

 

where 𝑘𝑝 = 𝜔 𝑐𝑝⁄  and 𝑐𝑝 = √(𝜆 + 2𝜇) 𝜌⁄  are pressure wave number and pressure wave 

speed, respectively; 𝑘𝑠 = 𝜔 𝑐𝑠⁄  and 𝑐𝑠 = √𝜇 𝜌⁄  are shear wave number and shear wave 

speed, respectively. 

 

3. T matrix method 

The total displacement field is considered as a summation of the incident field 𝒖𝑖𝑛 and the 

scattered field 𝒖𝑠𝑐: 

 (3.1) 
 

The incident field can be expanded in terms of regular cylindrical vector wave functions 𝝌1𝜎𝑚
0 , 

and the scattered field caused by any obstacles can be expanded in its outgoing cylindrical 

vector wave functions 𝝌1𝜎𝑚
+  [9]: 

 

(3.2) 

 

Corresponding wave functions could be defined as: 

 

(3.3) 

 

Here the first index 𝜏 = 1 and 𝜏 = 2 on the wave functions indicates transverse (SV) and 

longitudinal (P) waves, respectively, 𝑚 = 0,1,2,3 … and 𝜎 = 𝑒 (even) for the upper row or 



𝜎 = 𝑜 (odd) for the lower row, with 𝜎 = 𝑜 excluded for 𝑚 = 0. The Neumann factor 𝜀0 = 1 

and 𝜀𝑚 = 2 for 𝑚 = 1,2,3 …. The upper index "0" on the wavefunction means that these 

functions are regular, so the Bessel functions  𝐽𝑚  are used, the corresponding outgoing 

wavefunctions have the upper index "+" and contain Hankel functions  𝐻𝑚
(1)

.  

As we can see from the equation above, the wave functions have different dependence on 𝜑, 

cosine and sine functions switched place. For the case of scattering by the circle, it is 

convenient to couple wave functions in this order: 𝜏 = 1, 𝜎 = 𝑒 with 𝜏 = 2, 𝜎 = 𝑜 and           

𝜏 = 1, 𝜎 = 𝑜 with 𝜏 = 2, 𝜎 = 𝑒. 

Corresponding traction on 𝑟 = 𝑎 will be used as the boundary condition, and could be 

calculated from equation: 

 

(3.4) 

 

In this work scattering from the circled shaped obstacle with radius 𝑎 is considered. 

Surrounding material is isotropic and homogeneous. The source of the wave is assumed to be 

located outside the defect, so the plane wave can be considered.  

The expansion coefficients for incoming wave 𝑏𝜏𝜎𝑚, can be considered as known, as they can 

be found from the probe and incoming wave configurations. The wave scattered by the defect 

is considered to carry energy away from the obstacle, and the expansion coefficients 𝑓𝜏𝜎𝑚 for 

scattered wave are unknown. It is possible to determine them with the help of incident wave 

configuration and the properties of the obstacle.  

When both these sets of coefficients, for incident and scattered waves, are calculated, the 

transition (T) matrix could be determined. This matrix is defined as a linear relation between 

the expansion coefficients: 

 

 
(3.5) 

 

For the circular (homogeneous) obstacle the T matrix could be written as: 

 (3.6) 

 

where 



 
(3.7) 

 

The advantage of calculating T matrix is that it fully describes the obstacle and is independent 

of the incident wave. 

 

4. The probe model 

In this paper conventional ultrasonic contact probe is considered. A model developed by 

Boström and Wirdelius [6] can be used to model incident signal.  

The surface of the component is free of traction, except beneath the probe. The traction is 

derived so that a plane wave is generated, see eq. (4.1) for longitudinal (P) and vertical 

transverse (SV) wave types, respectively. 

 

(4.1) 

 

where 𝒆𝑥1
𝑡  and 𝒆𝑥2

𝑡  are the unit vectors in corresponding directions, 𝐴 is the displacement 

amplitude of the plane wave, 𝜇 is the Lamé constant of the elastic half space, 𝑘𝑝 and 𝑘𝑠 are 

longitudinal and transverse wave numbers, respectively. 𝛾 is the angle of the probe, measured 

clockwise from the normal of the probe. Parameter 𝛿 is used to consider the effect of the 

couplant applied between the wedge and the scanning surface: 𝛿 = 1 for glued probe and 𝛿 =

0 for fluid coupling, for the fluids with different viscosity parameter could vary as 0 < 𝛿 < 1. 

The Fourier transform 𝑻𝑡 of the prescribed traction 𝑡 is described in the paper by Westlund 

and Boström [10], and the equation is given as: 

 

(4.2) 

 

where 𝑤𝑡 – half diameter of the transmitting probe and 𝑞 - Fourier space variable. 

The incident field (4.2) from the transmitting probe may be analytically solved for in term of 

a Fourier transform. Using the notation of Boström et. al. [9] for the Fourier transform, the 

incident field can be written as: 



 
(4.3) 

 

where 𝝋𝑗 – vector plane waves and 𝑗 = 1,2 corresponds to SV and P waves, respectively;         

𝛽 – is a polar angle of propagation of the plane wave. The vector plane waves could be written 

as: 

 

(4.4) 

 

with polar unit vectors: 

 

(4.5) 

 

The integration contour 𝐶− - in this case is defined as 𝛽 ∈ [0,2𝜋], see the Boström et al. [9], 

where the integration contour is named 𝛤−. In order to determine functions 𝜉𝑗(𝛽), it is 

necessary to transform equation to rectangular coordinate 𝑞 in Fourier space. Then, calculate 

the corresponding traction and identify it with the Fourier transformed traction 𝑻𝑡 of the 

prescribed traction from the probe, eq. (4.2). The functions could be written as: 

 

(4.6) 

 

where 𝑅 = 4𝑞2ℎ𝑝ℎ𝑠 + (2𝑞2 − 𝑘𝑠
2)2 is the Rayleigh function and ℎ𝑗 = ℎ𝑗(𝑞) = √𝑘𝑗

2 − 𝑞2 

with 𝑗 = 𝑝, 𝑠. 𝑇𝑡 - the Fourier transform of the prescribed traction, see eq. (4.2). The incident 

field from the probe can be determined with 𝜉1(𝛽) = 𝜉1(𝑞 = 𝑘𝑠 cos(𝛽)) and 𝜉2(𝛽) = 𝜉2(𝑞 =

𝑘𝑝 cos(𝛽)).  

By transforming the vector plane waves 𝝋𝑗 into the cylindrical vector wave functions 𝝌𝑛 it is 

possible to determine the expansion coefficients 𝑏𝜏𝜎𝑚 in the incoming field equation (3.2). 

Such transformation could be done in two steps: first, the plane waves should be translated 

from the center of the probe to an origin at the center of the defect; then, expanded in the 

cylindrical wave functions. More details of these transformations are described by Boström 

et al. [9]. In our case, after all transformations, coefficients could be defined as: 



 
(4.7) 

 

where 𝒅 vector directed from the center of the probe to the center of the cavity, see    

Figure 1. 

 

5. Hybrid model and Results 

The hybrid model is based on using two approaches separately for the specific parts of the 

problem first, and then combing them. The analytical method is used for describing the wave 

propagation between the probe and the defect, and the numerical solution simulates the 

interaction between the wave and the complex shape defect by surrounding it with a finite 

element scheme. In this paper, for the analytical part MATLAB® software was used. The 

simulation was done in the Fourier space in cylindrical coordinate system. The COMSOL 

Multiphysics® software was used for the numerical calculations. The simulations were done 

in frequency domain using the Structural mechanics Module with the rectangular coordinate 

system. 

It is necessary to have similar geometry, material properties, boundary conditions and 

incoming wave from the probe to be able to combine these two solutions. Hence, for the 

boundary condition in COMSOL® a perfectly matched layer was used to model an infinite half-

space, which allows waves to propagate without being scattered from the boundaries. 

To verify that the hybrid model is working correctly the full model was created in COMSOL®. 

The diameter of the circle, which surrounds the defect, is twice bigger than the diameter of 

the obstacle. This circle consists of points, where the displacement field data from numerical 

model was collected. 

The combination of the analytical and numerical approaches was done by calculating the T 

matrix, by using equations (3.5) and (3.6).  

T matrix describes a linear relationship between expansion coefficients for incoming wave 

𝑏𝜏𝜎𝑚 and expansion coefficients for scattered wave 𝑓𝜏𝜎𝑚. As we know, expansion coefficients 

for incoming wave only depend on the probe configurations, so they can be easily derived 

using (4.7) for any frequency and 𝑚 values.  

The situation with expansion coefficients for scattered wave is more complicated. In the 

analytical solution they could be found by using traction - free boundary conditions on the 

surface of the cavity. But in our model, we need to have these values for the outer circle, 

which surrounds the defect. The data received from the COMSOL® simulation could help with 

this issue.  

The system of equations for boundary conditions should be updated: instead of having 

displacement field equal to zero (boundary condition on the surface of the defect) we could 

put it equal to the values that are collected from the outer circle from the COMSOL® 



calculations. In this case, it is important to use the same coordinates of the data point in both 

analytical and numerical solution to be able to put an equal sign between them. The updated 

system of equations, with the restrictions for 𝑚 = 0 included, can be expressed as: 

 
(5.1) 

 

where 𝑟 and 𝜑 are the coordinates of the considered data point, 𝑈𝑐𝑜𝑚(𝑟, 𝜑) - displacement 

field in the same point, collected from COMSOL®. 

The amount of equations in the system depends on the 𝑚 value. For each natural 𝑚 number 

there are 4 unknown expansion coefficients 𝑓𝜏𝜎𝑚, and for 𝑚 = 0 values with 𝜎 = 0 are 

excluded, so there are only two unknown expansion coefficients 𝑓1𝑒0 and 𝑓2𝑒0. Both radial 

and azimuthal components (or x and y components in the rectangular coordinate system) are 

used in this system of equations.  

The expansion coefficients for scattered wave could be found by solving the updated system 

of equations, see eq. (5.1) in terms of the incoming wave expansion coefficients 𝑏𝜏𝜎𝑚, see eq. 

(4.7). With both sets of these expansion coefficients known, the T matrix could be defined, 

using eq. (3.5) and (3.6) for each 𝑚 value.  

The T matrix contains information about the defect and do not depend on any probe 

configuration or position. Therefore, with T matrix known it is possible to model a scanning 

inspection situation for the range of frequencies and probe positions. To verify the developed 

model, comparison with numerical results is used. Simulations were done separately for each 

value of the frequency from 1𝑀𝐻𝑧 to 6𝑀𝐻𝑧 with 𝑚 = 7. 

T matrix was calculated for the Position 1 of the probe, see Figure 2, with probe angle 𝛾 =
𝜋

4
. 

With known T matrix it becomes possible to use it to determine the expansion coefficients for 

scattered wave for a new Position 2 of the probe. After that, the displacement field could be 

easily calculated.  

The numerical simulations in COMSOL were done in the rectangular coordinate system. The 

analytical and hybrid solutions in MATLAB® were done in the cylindrical coordinate system. 

Hence, the determined displacement components 𝑈𝑟 and 𝑈𝜑 should be transformed into the 

rectangular coordinates, see eq. (5.2), to make it possible to compare results. 

 

(5.2) 

 

In the Figure 3 the comparison of the total displacement field vs. angle 𝜑 on the outer circle 

for the three models are presented. Calculations were done separately for each frequency 

from 1𝑀𝐻𝑧 to 6𝑀𝐻𝑧 with the step of 1𝑀𝐻𝑧. On the graphs, solid black line represents results 

from Hybrid model, dotted blue line is assigned for the Numerical solution made in COMSOL®, 



red dash line is used for Analytical solution. All presented values are normalized, so we can 

compare only the shape of the signal. 

 

 
Fig. 2. Illustration of the different positions of the probe 

 

 

The Hybrid solution is located in between the analytical and numerical solutions, as expected. 

This solution has better correlation with numerical part than the analytical one has. 

Comparing results in Figure 3 and Figure 4, it is obvious that the displacement fields for hybrid 

and numerical solutions, calculated on the radius 1.05𝑅, have better correlation, than the 

same calculated on the radius 2𝑅. That might be connected with the numerical values, which 

were used to determine the T matrix. These data were collected from COMSOL® separately 

for two corresponding values of the outer circle radius. The bigger distance from the actual 

defect we use to collect the data, the noisier signal we get. Thus, the total result is highly 

dependent on the fact, which data was used to determine T matrix. 

The differences between the solutions for the higher frequencies, Figure 4, e)-f), is more 

noticeable than for the lower frequencies, Figure 4, a)-d). The reason for this could be the 

value 𝑚 and the amount of data points used to determine T matrix. In our case, 𝑚 was equal 

9, thus there were 38 equations used as a boundary condition while calculating T matrix. The 

amount of equations was divided by 2 to identify how many data points were considered, as 

both components 𝑈𝑥 and 𝑈𝑦 of the displacement field were used. It might be necessary to 

have more equations and consider more points to get more accurate results. 

In both Figures you can see very big values on the edges of the graphs, around 𝜑 ≈ 0  and 

𝜑 ≈ 2𝜋. It might be connected with the sine and cosine functions, that were used for 

calculating displacement components in the hybrid model equations. That phenomenon 

should be investigated further. 

 

 



 
Fig. 3. Comparison of Hybrid (solid, black), Numerical (dotted, blue) and Analytical (dash, 

red) solutions for different frequencies with radius of outer circle equal 2R 
 

 



 
Fig. 4. Comparison of Hybrid (solid, black), Numerical (dotted, blue) and Analytical (dash, 

red) solutions for different frequencies with radius of outer circle equal 1.05R 
 

 



6. Conclusions 

In this paper, a newly developed hybrid model is described. This model is based on using semi-

analytical and numerical approaches separately for the specific parts of the problem first, and 

then combing them. The analytical method is used for describing the wave propagation 

between the probe and the defect, and the numerical solution simulates the interaction 

between the wave and the complex shape defect by surrounding it with a finite element 

scheme. The numerical calculations for the 2D hybrid model were done in COMSOL 

Multiphysics®. The analytical solution, determination of T matrix and further calculations 

were done in MATLAB®.  

The Hybrid model is using T matrix method to combine two approaches. The T matrix contains 

information about the defect and do not depend on probe configuration or position. 

Therefore, with T matrix known it is possible to model a scanning inspection situation for the 

range of frequencies and probe positions. To verify the developed model, comparison with 

fully numerical and fully analytical results were used. Simulations were done separately for 

several values of the frequency.  

The comparison of the results from Hybrid, Numerical and Analytical solutions is shown to 

have good agreement in general. The Hybrid solution is located in between the analytical and 

numerical solutions, as it was expected. This solution has better correlation with numerical 

part than the analytical one has, especially for the higher frequencies.  

The total displacement for hybrid and numerical solution is very similar for the higher 

frequency values. For the lower frequencies the difference is more obvious, but overall shape 

of the signal and the positions of the peaks are close enough.  
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