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ScienceDirect
Microorganisms have provided an attractive route for

biosynthesis of various chemicals from renewable resources.

CRISPR-Cas systems have served as powerful mechanisms

for generating cell factories with desirable properties by

manipulating nucleic acids quickly and efficiently. The CRISPR-

Cas system provides a toolbox with excellent opportunities for

identifying better biocatalysts, multiplexed fine-tuning of

metabolic flux, efficient utilization of low-cost substrates, and

improvement of metabolic robustness. The overall goal of this

review highlights recent advances in the development of

microbial cell factories for chemical production using various

CRISPR-Cas systems. The perspectives for further

development or applications of CRISPR-Cas systems for strain

improvement are also discussed.
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Introduction
Microbial fermentation has been successfully introduced

for the commercial production of many chemicals [1,2],

such as citric acid and 1,3-propanediol. This strategy has

drawn increasing attention because of its feasibility, con-

venient manipulation, outstanding cost performance and

fewer greenhouse gas emissions. In this context the

Design–Build–Test–Learn (DBTL) cycle is indispens-

able for the construction of an advanced cell factory [2,3],

which always needs several rounds of engineering due to

the complexity of cellular metabolism. Traditionally

‘Build’ has been seen as a rate-limiting step in the DBTL

cycle, as it is generally time consuming and expensive to
Current Opinion in Biotechnology 2022, 73:34–42 
build engineered strains. Advances in strain engineering

technologies in the last decade has, however, reduced

time and costs associated with the construction of effi-

cient cell factories.

Clustered regularly interspaced short palindromic repeats

(CRISPR) and CRISPR-associated (Cas) systems are

progressing rapidly and have become the gold standard

technology for genetic and metabolic engineering [4],

thanks to easy-to-design, high specificity, and high func-

tional genome-editing efficiency. Now CRISPR-based

toolbox has been demonstrated to implement most of

the genetic manipulations in high efficiency, and is there-

fore providing a remarkable solution for construction

desirable cell factories (Figure 1).

CRISPR-Cas systems originate as a heritable adaptive

immunity reaction of bacteria and archaea, by introducing

a double-strand break (DSB) at a specific target site

complementary to crRNA or single-guide RNA (gRNA).

As shown in Figure 2, the DSB will enable genetic

insertions, deletions, or replacement through intrinsic

DNA repair processes; what is more, dCas (nuclease-

deficient Cas protein) can serve as a sequence recognizer

without introducing a DSB, and flexible transcriptional

regulation can be achieved by recruiting effector domains

to the nuclease-deficient CRISPR complex [5]. More

advanced functions for targeted modifications have been

empowered by other functional effectors, such as meth-

ylation by fusion to methyltransferase [6] and base editing

by fusion to deaminases [7��]. The establishment of a

CRISPR-Cas system with orthogonal functions has

emerged as a powerful and versatile tool to implement

the combinatorial and multiplex modifications required

for constructing a superior cell factory [8–10].

The advanced CRISPR-Cas system has been shown to

revolutionize strain construction faster and more reliably

in many ways (Table 1), such as pathway construction and

optimization, enzyme engineering and evolution, extend-

ing the substrate scope, and metabolic robustness

improvement. This review focuses on the recent

advances and immediate challenges for creating efficient

cell factories for chemical production driven by CRISPR-

Cas systems.

Assembly of biosynthetic pathways for target
chemical production
There are many chemicals that can be produced via

microbes [11]. However, some chemicals are non-natural
www.sciencedirect.com

mailto:nielsenj@chalmers.se
https://doi.org/10.1016/j.copbio.2021.07.002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2021.07.002&domain=pdf
http://www.sciencedirect.com/science/journal/09581669


CRISPR/Cas systems for chemical production Shi, Qi and Nielsen 35
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CRISPR based perturbations

CRISPR-based perturbations for the development of advanced

microbial cell factories for production of various chemicals.

The construction of a superior cell factory is the key for industrial

biotechnology process, which required combinatorial and multiplex

modifications in cell metabolisms, such as insertion, deletion,

disruption, point mutation, activation, repression. CRISPR-Cas system

has been demonstrated to implement most of the genetic

manipulations from the enzyme to genome level, which was

determined by the pool of gRNA used.

Figure 2
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Scheme of the CRISPR-Cas systems for genome editing and

regulation.

(a) Basic applications of the CRISPR-Cas system for DSB-based

genome editing, including gene deletion, mutation or disruption,

insertion. In this system, a Cas nuclease (i.e. Cas9) binds to a specific

site in the genome guided by gRNA, and generates a DSB. Then

desired genome editing could be achieved by HR or NHEJ. Donors

are required when precise editing is conducted by HR. (b) Advanced

applications of the CRISPR-dCas system for non-DSB-based genome

editing and regulation, including base editing, transcriptional activation

(CRISPRa) and repression (CRISPRi). In this system, a dCas (dead

Cas or nuclease-deficient Cas) is obtained by mutating a Cas

nuclease, which can still recognize the binding sites but without the

formation of DSB. Then, a customized function can be achieved by

recruiting a desired effector (e.g. deaminase). DSB, double-strand

break; HR, homology repair; NHEJ, non-homologous end joining.
to the host, and heterologous pathways must be estab-

lished in the first step. The majority of previous endea-

vors employed non-integrative plasmids, but suffered

from inherent problems of clonal variations, instability,

and selection pressure requirements. In view of these

limitations, as indicated in Figure 3a, the CRISPR-Cas

system greatly facilitates the assembly, or knock-in, of

heterologous pathways in chromosomes for stable expres-

sion of pathway genes [12,13]. It has been shown that the

integration of large synthetic pathways into chromosomes

of Escherichia coli for the production of 5-methylpyrazine-

2-carboxylic acid (MPCA), and the integrated copy
www.sciencedirect.com 
number of xylM and xylA could be adjusted by selecting

different integration sites, improving the production of

MPCA to 15.6 g/L [13].

Recently, six desirable intergenic loci were screened and

engineering to build multiplex integration platform [14�].
Based on these pre-characterized sites, a simultaneous

integration of 2-genes, 3-genes, 4-genes, 5-genes, or 6-

genes was achieved to produce betalain or kauniolide. In

parallel, successful examples for pathway integration

could also be found in non-conventional microbes, such
Current Opinion in Biotechnology 2022, 73:34–42
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Table 1

Selected CRISPR-Cas mediated metabolic engineering works for microbial chemical production

Host Types of

modifications

Products or desired traits Achievements Reference

Assembly of biosynthetic pathways for target chemicals

E. coli Pathway

integration

5-Methylpyrazine-2-carboxylic acid

(MPCA)

Improving the MPCA titer to 15.6 g/L [13]

S. cerevisiae Pathway

integration

Betalain or kauniolide A simultaneous integration of biosynthetic pathways

for betalain (3-gene pathway) or kauniolide (6-gene

pathway)

[14�]

P. kudriavzevii Pathway

integration

Itaconic acid Improving the itaconic acid production to 401 mg/L [15]

Z. mobilis Pathway

integration

Lactate Improving the lactate production to 2.21 g/L [16]

S. cerevisiae Pathway

integration

2, 3-Butanediol A up to 25 copies of pathway integration, and improved

2, 3-butanediol production to 1.7 g/L

[18�]

Optimization of production pathways for target chemicals

S. cerevisiae Deletion Free fatty acids (FFA) Giving a 30-fold increase of FFA production [19��]
E. coli Repression Isopentenol Up to 98% enhancement in production of isopentenol [20]

Synechocystis sp.

PCC 6803

Repression Fatty alcohols Up to 3-fold enhancement in production of

octadecanol and gave the highest specific titers

(10.3 mg/g CDW)

[21]

M. xanthus Activation Epothilones Improving the epothilones production to >20 mg/L [23]

K. marxianus Combinatorial

integration

2-Phenylethanol Improving the 2-phenylethanol production to 1943 mg/

L

[24]

S. cerevisiae Activation and

repression

3-Hydroxypropionic acid (3-HP) Giving a 36% increase of 3-HP production [25]

S. cerevisiae Activation and

repression

Carotenoid and triacylglycerols (TAGs) A modest increase in the carotenoid-associated

phenotype; TAGs levels increased >2-fold over WT

after 24 hours

[26]

S. cerevisiae Activation,

repression, and

deletion

b-Carotene Giving an improvement of b-carotene production by 3-

fold

[10]

S. cerevisiae Activation,

repression, and

deletion

a-Santalene Giving an improvement of a-santalene production by

2.66-fold

[27�]

Corynebacterium

glutamicum

Base editing Lycopene Achieving a lycopene yield of 2.9 mg/gCDW [7��]

B. subtilis Activation and

repression

N-Acetylglucosamine Achieving a N-acetylglucosamine production at

131.6 g/L

[28]

Yarrowia lipolytica Repression Naringenin Giving a 74.8% increase of naringenin production [29]

Screening or engineering of alternative enzymes

S. cerevisiae Integration Carotenoids An 11-fold improvement in carotenoid production by

directed evolution of two essential enzymes

[30]

E. coli Integration Tryptophan (Trp) Identification of variants of AroG with increased

resistance to feedback inhibition and improved the Trp

production by 38.5%

[31]

E. coli Site targeted

mutagenesis

Novel variant of rpsE Identification of novel mutations in rpsE that conferred

spectinomycin resistance

[32]

E. coli and C.

glutamicum

Site targeted

mutagenesis

Proline Identification of a variant of ornithine aminotransferase

that contributed a proline production of 38.4 g/L

[33�]

Diversifying the substrate scope

E. coli Integration Ability for xylose-utilization A 3-fold increase of the xylose-utilization rate [34]

S. cerevisiae Integration Ability for xylose-utilization Achievement of simultaneous co-fermentation of

lignocellulosic hydrolysates (composed of glucose and

xylose)

[35]

C. glutamicum

and Bacillus

subtilis

Base editing Ability for utilization of glycerol and

xylose

Improved glycerol utilization capability in B. subtilis

and improved xylose utilization capability in C.

glutamicum,

[7��]

E. coli Integration, and

deletion

Ability for simultaneous utilization of

acetate and glucose

Improving the carbon molar yield from 0.67 to

0.75 mol/mol for glycolate production

[37]

E. coli Deletion Ability for utilization of ethanol Production of 1.1 g/L polyhydroxybutyrate or 24 mg/L

prenol from ethanol

[38]

Current Opinion in Biotechnology 2022, 73:34–42 www.sciencedirect.com
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Table 1 (Continued )

Host Types of

modifications

Products or desired traits Achievements Reference

Improvement of metabolic robustness

S. cerevisiae Integration Resistance to ethanol Improving ethanol tolerance and giving an 2-fold

improvement for ethanol production

[40]

E. coli Integration Resistance to styrene Improving styrene tolerance and giving an 3.45-fold

improvement for styrene production

[41��]

Synechocystis sp.

PCC 6803

Repression Resistance to lactate Identification of a single repression of bcp2 for a 49%

improvement of growth rate in cultures with added L-

lactate

[42]

S. cerevisiae Integration, and

deletion

Resistance to various environmental

perturbations, including higher

temperature

Identification of 68 small open reading frames which

are vital for cell’s robustness

[43]

S. cerevisiae Activation Thermotolerance Achieving a faster growth rate in OLE1-overexpressing

strain than the control strains at 42�C
[44]

S. cerevisiae Integration Resistance to furfural and acetic acid Improving the tolerance to furfural and acetic acid by

�42-fold and �20-fold

[45]

S. cerevisiae Activation,

repression, and

deletion

Resistance to furfural In the presence of 17.5 mM furfural, the screened strain

can consume most of glucose in 2 days, while the

control strain failed to grow after 6 days

[8]

S. cerevisiae Activation and

repression

Resistance to wheat straw hydrolysate Giving a 2.3-fold increase in final biomass yield in

medium with wheat straw hydrolysate

[46]
as the implementation of itaconic acid production in

Pichia kudriavzevii [15] and lactate production in Zymo-
monas mobilis [16]. To further increase the copy number

for a higher expression, DSB were generated at delta sites

by the CRISPR-Cas system, and an up to 25-copy inte-

gration could be achieved in one step, resulting in engi-

neered strains for efficient production of 2,3-butanediol

[17,18�].

Optimization of metabolic flux for target
chemical production
On theother hand, cells have been notevolved for chemical

production. Thus, optimization of metabolic flux is

required for maximizing the production, such as deletion,

knock-down or overexpression of target genes, which has

been enabled with the assistance of CRISPR technology in

a markerless and efficient manner (Figure 3b). For exam-

ple, to achieve high production of free fatty acids (FFAs),

CRISPR-Cas was used to simplify the lipid network of

yeast by deleting eight non-essential FA utilization genes

in ten days, giving a 30-fold increase in FFA production

[19��]. Similarly, the competing pathway could also be

knocked down by CRISPR interference (CRISPRi), where

the inactive Cas enzyme (dCas) was used. CRISPRi was

demonstrated to improve the production of isopentenol in

E. coli [20] or fatty alcohols in Synechocystis [21] at varying

strengths of repression for combinations of several target

genes.

Overexpressing genes of interest is another widespread

genetic manipulation, and CRISPR-Cas has been repur-

posed to activate gene expression (CRISPRa) when a

transcriptional activator was coupled to dCas. Initially,

CRISPRa was actively employed in eukaryotes since

there are many activation domains reported [10]. Now,
www.sciencedirect.com 
a generalizable platform was available to screen and select

transcriptional activators that can be used in different

bacterial species [22]. Recently, CRISPRa was shown to

upregulate the expression of biosynthetic genes for the

production of epothilones in Myxococcus xanthus [23]. In

this study, the activation effects of each gene in the

pathway were also clarified by using different sgRNAs

and activator proteins. Generally, CRISPRi or CRISPRa

is more suitable for multiplex engineering, as multiplex

deletion/integration would be more harmful to the host.

Because of the complex regulatory metabolic network of

living cells, combinatorial and multiplex pathway editing

is needed to alter cell metabolism. For example, a multi-

gene integration system mediated by CRISPR-Cas9 was

developed for pathway refactoring in Kluyveromyces marx-
ianus [24]. The system was demonstrated to create a 33

combinatorial library to optimize the expression of three

key shikimate pathway genes, ARO4, ARO7 and

PHA2. Later, simultaneous transcriptional activation or

repression was reported for different strategies that

improved the production of target chemicals. Recently,

a platform tool was established to upregulate or down-

regulate gene expression using dCas9 coupled to the

VP64-p65-Rta (VPR) [25]. This tool was used to allow

transcriptional perturbation of the 168 selected genes,

and increased the production yield of 3-hydroxypropionic

acid by 36% through targeting the gene encoding ade-

nylate kinase 1. Another work has also shown the use of

RNA scaffold systems for repression or activation of target

gene expression to enhance the production of carotenoid

and triacylglycerols [26].

In a recent study, three orthogonal Cas proteins were used

to construct a tri-functional CRISPR system for
Current Opinion in Biotechnology 2022, 73:34–42
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Figure 3

(a) (b)

(c)

(d)

(e)

Gene1

nCas-Pol

A mutant library

Substrates with
higher yield

Renewable
substrates

Gene2 Gene3 Gene4

Osmolarity

Cas or dCas

CRISPR based toolbox

Temperature

pH

?

Current Opinion in Biotechnology

Applications of CRISPR-Cas toolbox in development of microbial cell factories for chemical production.

(a) Assembly of biosynthetic pathways for target chemical production. Several biosynthetic enzymes are assembled into functional metabolic

structures, and the integrated copy number could be adjusted at the same time by selecting desirable intergenic loci. (b) Optimization of

metabolic flux for target chemical production. Combinatorial and multiplexed genetic manipulation is established to optimize or balance metabolic

flux to target chemicals. (c) Identification of alternative enzymes for biocatalyst. Enzymes with altered or enhanced activities could be created by

direct integration of protein variants or continuously targeted in vivo mutagenesis. Protein variants could be generated by error-prone PCR, or

(semi-) rational design. The in vivo mutagenesis could be achieved by using engineered DNA polymerases (nCas-Pol) targeted to loci via CRISPR-

guided nickases. (d) Diversification of the substrate scope. Considerable efforts have been expended to efficiently use renewable substrates or

alternative substrates with a higher theoretical yield. (e) Improvement of metabolic robustness. Metabolic robustness or tolerance have been

improved to various cell stressors via screening of functional genes.
transcriptional activation, interference, and gene dele-

tion, which was applied to enhance the production of

b-carotene by threefold in a single step in Saccharomyces
cerevisiae [10]. Later, it also demonstrated that a single

Cas9-VPR protein can accomplish these tri-combinatorial

manipulations and improve a-santalene production 2.66-

fold [27�]. Following this, a CRISPR-guided base editor

was designed for combinatorial optimization of ten

endogenous genes for lycopene biosynthesis by diversi-

fying tailored ribosome binding sites (RBSs) [7��]. In this

method (named BETTER), the library was generated in

situ, and the theoretical maximum library can be up to

2.7 � 1033, providing a significant advantage for diversi-

fying multigene expression.

Dynamic control of metabolic flux is highly effective in

optimizing biological systems. Recently, the production

of N-acetylglucosamine was increased to 131.6 g/L by

Bacillus subtilis using CRISPRi-based NOT gates with the

biosensor of intermediate glucosamine-6-phosphate [28];

similarly, the production of naringenin was increased by

74.8%, enabled by the combined use of CRISPRi and a

fatty acid sensor [29]. Both dynamically self-adjust the

expression of the pathway genes using an autoregulatory

genetic circuit for a balanced flux to the biosynthesis of
Current Opinion in Biotechnology 2022, 73:34–42 
the target product, which can be used as a generalized tool

for pathway optimization. However, these proposed pro-

grammable circuits are limited to the availability of

biosensors.

Screening or engineering of alternative
enzymes for biocatalyst
Enzymes are the basic units for the design and construc-

tion of efficient chemical-producing pathways. However,

natural enzymes may have limitations, such as lower

catalytic efficiency or feedback inhibition. Recently, as

shown in Figure 3c, the CRISPR-Cas system was shown

to directly and effectively integrate protein variants of

interest into the yeast genome with efficiencies reaching

98–99% [30]. Using this method, two key enzyme variants

in the mevalonate pathway were identified with improved

activity from millions of mutants by colony color, which

resulted in an 11-fold improvement in carotenoid produc-

tion. Similarly, when the integrated library was coupled

with growth, several Phe-resistant AroG variants were

found that can be used to facilitate the biosynthesis of

aromatic amino acids [31].

In parallel, the mutation library of a target enzyme was

also demonstrated as being capable of generation in vivo
www.sciencedirect.com
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by the CRISPR-Cas system for the continuous evolution

of user-defined genes (Figure 3c), called EvolvR [32]. In

EvolvR, nucleotides within user-defined regions were

targeted for mutagenesis using CRISPR-guided engi-

neered DNA polymerases, offering a mutation rate 7

770 000-fold greater than wild-type, and novel mutations

of rpsE gene were identified that conferred spectinomy-

cin resistance. Later, EvolvR was used to identify a

variant of ornithine aminotransferase that showed 2.85-

fold improvement in catalytic efficiency [33�]. Now,

facilitated by the CRISPR-Cas system, innovative strate-

gies have been developed that accelerate the generation

and expression of mutated variants. However, further

optimization of the screening method for desired mutants

would be required via growth-coupled or sensor-guided

strategies.

Diversifying the substrate scope of natural
hosts
There is growing interest in producing chemicals from

waste or inexpensive substrates to reach economic viabil-

ity and avoid competition with foodstuffs (Figure 3d). For

example, facilitated by CRISPR, a one-step integration

and optimization of the xylose utilization pathway has

been reported in E. coli, which gave a threefold increase in

the xylose utilization rate [34]. Similarly, a xylose/glucose

co-fermenting yeast was also developed by rational engi-

neering using markerless CRISPR tools and evolutionary

engineering, as well as overexpression of selected genes

from the pentose phosphate pathway [35]. As there is no

marker left, the co-fermenting yeast would be an excel-

lent platform strain to produce various chemicals. In

parallel, the previously mentioned BETTER method

was successfully used to reprogram xylose and glycerol

utilization to replace tailored RBSs in the original genes

[7��]. The combinatorial re-programmed strains showed a

much higher growth rate on these two substrates, and at

the same time optimal RBSs were screened for efficient

gene expression based on the change of growth rate. The

use of current renewable substrates offers economical and

sustainable production of chemicals. Furthermore, the

emerging 3G biorefinery that uses CO2 as the carbon

source represents an attractive alternative for microbial

chemical production in a carbon-neutral manner [36].

In addition, it has been known that the adoption of

approximate substrates may give a higher theoretical

yield (Figure 3d). Recent advances in computational

biology and in silico modeling have facilitated the design

of efficient pathways for the desired chemical. Guided by

this, a synergetic biosynthetic pathway was designed and

constructed by the CRISPR system to enable simulta-

neous utilization of acetate and glucose, which increased

the carbon molar yield from 0.67 to 0.75 mol/mol for

glycolate production [37]. With a followed systematic

engineering, the final strain can produce 73.3 g/L glyco-

late in fed-batch fermentation, reaching a carbon yield of
www.sciencedirect.com 
0.6 mol/mol. In another work, facilitated by the CRISPR

system, E. coli was engineered to grow on ethanol for

producing acetyl-CoA derived compounds [38]. The

engineered strain was shown to produce 1.1 g/L of poly-

hydroxybutyrate or 24 mg/L of prenol from ethanol.

Compared with glucose or other substrates, this study

showed that ethanol provided building blocks for the

synthesis of acetyl-CoA derived compounds in a shorter

and more carbon-efficient pathway. As shown above, the

balance use of selected substrates will make cells to

efficiently utilize the feedstock and maximize the pro-

duction yield and rate of end products. This strategy has

been used to further improve the theoretical maximum

yield of a wide range of products by redesigning cell

metabolism to assimilate alternative feedstocks such as

fatty acids, glycerol, methanol, and formaldehyde [39].

Improvement of metabolic robustness
Following efficient chemical production, the accumu-

lated chemical products can sometimes be toxic to the

cells. Consequently, it is necessary to improve metabolic

robustness or tolerance of the host cell for maximized

productivity (Figure 3e). In a recent study, a combinato-

rial library targeting 25 genes was constructed based on

CRISPR and massively parallel oligomer synthesis for

improving ethanol resistance [40]. Several identified

mutants screened from the library not only increased

ethanol tolerance but also gave a twofold higher ethanol

production. Later, the same group was extended using

this method to improve the tolerance of styrene [41��].
Similarly, the identified new mutations improved toler-

ance and the production of styrene at the same time. In

another report, it was found that stress tolerance mutants

could be screened by CRISPRi in the presence of 0.1 M

L-lactate [42]. Of the screened targets, a single repression

of the bcp2 gene made a 49% improvement in growth rate.

In the process of industrial fermentation, environmental

perturbations can affect the performance of a cell factory,

such as inhomogeneities caused by insufficient mixing.

Therefore, it is highly desirable to develop cells with

increased robustness in harsh conditions. Recently, a

Cas9-based approach was used to generate a genome-

wide library containing sequence deletions, substitutions,

and replacements [43]. Yeast mutants were screened with

improved resistance to various environmental perturba-

tions, including higher temperature, in the presence of

hydroxyurea or fluconazole. Finally, 68 small open read-

ing frames were found to be vital for the cell’s robustness.

A focused CRISPRa library was created to screen func-

tional genes for thermotolerance [44], and upregulation of

OLE1 was identified as a key factor in obtaining thermo-

tolerant yeast.

Feedstocks for actual fermentation utilize complex sub-

strates, which may include growth inhibitors, such as

furfural and acetic acid from lignocellulosic hydrolysate.
Current Opinion in Biotechnology 2022, 73:34–42
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The robustness of these inhibitory compounds is highly

desirable to alleviate the inhibition of growth and metab-

olism. A recent method called CHAnGE was reported

that conducts CRISPR-Cas9 and homology-directed

repair-assisted (HDR) genome-scale engineering [45].

The method can generate a genome-scale yeast mutant

library at single-nucleotide precision, and was applied to

improve the tolerance to furfural and acetic acid by �42-

fold and �20-fold, respectively. Meanwhile, the same

group combined oligo pools and the tri-functional

CRISPR for transcriptional activation/interference, and

gene deletion in genome-wide, which was applied to

identify genetic determinants for furfural tolerance [8].

Notably, several targets were only reported in this study.

Furthermore, this method also identified synergistic

interactions between chosen targets for enhanced furfural

tolerance. In another study, with dCas9-based CRISPRi

and CRISPRa, the tolerance towards wheat straw hydro-

lysate was successfully improved by tuning the expres-

sion of a previous known key gene, SSK2 [46]. The strain

with modified expression of SSK2 gave a 2.3-fold increase

in final biomass yield when grown in wheat straw

hydrolysate.

Perspectives and conclusions
The CRISPR-Cas system is becoming an essential tool to

accelerate the creation of cell factories for chemical

production. In particular, with the features of orthogonal-

ity and simplicity, CRISPR-Cas can easily be implemen-

ted in both model and non-model organisms. Further-

more, the capabilities of the CRISPR-Cas system have

been extended with the incorporation of novel functional

proteins [4], such as DNA polymerases, reverse transcrip-

tase, deaminases acting on RNA, or transposase. How-

ever, challenges still exist for some applications of the

CRISPR-Cas system.

The design and effectiveness of gRNA are sensitive to

many factors. There are now several software applica-

tions, websites, and rules that can predict the targeting

ability of gRNA [47]. However, their accuracy still needs

improvement. In CRISPRa and CRISPRi, there is also a

strict position effect determined by the chosen gRNA.

Recently, two studies showed a good understanding of

the rules for designing effective positions of gRNA target

sites [48,49]. There is also a growing interest in giving

gRNA design more flexibility by searching protospacer

adjacent motif (PAM) free nucleases [50].

To obtain a high-performing strain, it has been usual to

conduct combinatorial and multiplex editing/regulation

for tens or even hundreds of metabolic engineering

targets. Now, up to 12 sgRNAs can be assembled and

expressed with a co-expression of Csy4 [51]. Therefore,

we should pay more attention to developing strategies for

the expression of a greater number of gRNAs in one step.
Current Opinion in Biotechnology 2022, 73:34–42 
At present, most examples carried in genome-scale or

multiplex engineering by CRISPR-Cas are limited to a

growth-associated phenotype. However, it is highly

demanding to evaluate a large library of strains efficiently.

The integration of chemical-responsive sensors or high-

throughput small-scale culture and detection techniques

could change screening for new traits [52].
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