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Regularised Weights in Statistical Models

A General Strategy for Bias Reduction and Increased Stability
in Overparameterised Settings

Olof Zetterqvist

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

For flexible and overparameterised models like neural networks, overfitting
can be a notorious problem that makes it hard to give accurate predictions in
real-life usage. Overfitting is in particular likely in the presence of errors in
the training data, such as misclassifications or outliers. Therefore it is essential
to either carefully inspect the data or, more realistically, adapt the training
algorithm to reduce variance and overfitting.

To reduce the risk of overfitting, a common approach is to manipulate the loss
function. Either by adding a penalty on the model’s flexibility, which reduces
variance with a cost of an increased bias, or weight the loss contribution from
different data points in order to reduce the influence of harmful data.

This thesis introduces a self-maintained method to reweigh different com-
ponents (observations and/or parameter regularisation) in the loss function
during training. With some care with the choice of model, these weights can be
solved for, leading in the end to only a modification in the loss function. Due
to this, the resulting method can easily be combined with other regularisation
techniques.

Using the weighting technique on observations in a setting with mislabeled
data produces more robust training than an unweighted model and detects
mislabeled examples in data.

When used on the regularisation penalty, the weights reduces bias introduces
by the regularisation term while keeping some crucial attributes from the
original penalty.

Keywords: Deep Learning, Neural Networks, Noisy Labels, Lasso, Regularisa-
tion, Robust Statistics, Weighted loss.
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1 Introduction

The first ideas behind artificial neural networks were introduced by [McCulloch
and Pitts| (1943) and have since then become a popular tool in many data
science applications. The reason for this is the power of these models and the
increment of computational power making it able to use them. However, even
if they show very impressive results, their flexibility leads to some demanding
challenges in the form of overfitting. This decreases the performance of the
model, which leads to uncertain predictions. This thesis introduces a general
way of using weights in the loss function to attack these problems, making the
training more robust.

This chapter is structured as follows; Section [I.T]describes the structure and
concepts of neural networks and introduces the different loss functions used
to train them. Next, section[I.2] describes some of the problems that can occur
when using flexible models like neural networks, and section describes how
regularisation techniques can be used to reduce these problems. Finally, section
describes the concept of influential data points, how mislabeled data can be
harmful in a classification setting and some methods used to overcome these
problems.

1.1 Neural networks and their mathematical com-
ponents

The structure of a neural network is highly inspired by the brain’s architecture,
which is built by billions of neurons. These neurons can be seen as small
computational building blocks that can be used to build larger models. Even
if one specific neuron cannot solve complex problems, the union of them can
achieve remarkable things. Mathematically one neuron can be modelled as

1



2 1. Introduction

Figure 1.1: An illustration of the mathematical modulation of a neuron. The neuron
takes in several inputs, process these to give one output. Setting o(x) = z gives a

classical regression model and o(x) = H% gives a logistic regression model.
k
FX;0) =0 [ > 0;X;+ 06
j=1

where X = (X3,...,X}) is the input vector and § = (6o, ..., 0;) parameters
determining the behaviour of the neuron. The function o corresponds to the
neuron’s activation function that transforms the input to the desired output
domain. Some commonly used examples are o(z) = x which is simply linear

——~— which is used in logistic regression. One neuron

regression and o(z) = 1
is illustrated in figure[l.1jwhere an input vector of length 5 goes into the neuron

and are used to calculate the output Y.

Even though ordinary regression and logistic regression models perform well
in many situations, they have limitations since they can only model linear
behaviours in data. However, combining many of these neurons creates a
model with extensive flexibility that, with an appropriate choice of o, can
handle more complex data. In figure[I.2]is an example of how these neurons
can be stacked together, creating a feed-forward neural network. Setting the
o’s in the interior layers of the network, also called the hidden layers, to some
non-linear function, the network can be very expressive. Neural networks can,
as shown in |Cybenko| (1989), approximate any function to a given degree as
long as it has enough neurons in its model. So, regardless of the complexity of
the data, it is possible to create a neural network that can model its behaviour.
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Figure 1.2: An illustration of a neural network. Each circle represents one neuron shown
in figure By stacking these together creating a neuron network, we get a more
flexible model that can approximate more complex functions.

1.1.1 Loss functions

Given the data distributions (X,Y), the goal of training a neural network,
f(X;0),is to tweak 6 such that the network models the conditional expectation
E[Y|X]. However, since the distributions of X and Y are unknown, the model
is based on observed data points (X1,Y7),...,(X,,Y,) sampled from their
joint distribution. Depending on the problem formulation, finding an estimate
g is typically done by a mean square error estimate, in the case of regression, or
a maximum likelihood estimate, in classification. For example in regression,

the goal is to find the parameters § such that

Bxx |30 - JCx:0)

is minimised. Since the distributions of X and Y are not known, a common
approach is to use the mean square error estimates #, which can be expressed
as

- . 1 . 1 < .
6 = argmin L(f(X;0),Y) = arg min 5 ||Y = f(X; 0)[[3 = argmin 5 > *(V;—f(X;;6))*.
0 o 2 o 2=

In a classification setting, the problem of finding 6 is usually formulated in
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terms of maximum likelihood. In a binary setting, the goal is to find 0 that
maximises

n

Exy |[]F(X:0)" (1 - f(X;:0)1

i=1
where f(X;;6) models the probability of input X belonging to class one. This
can easily be generalised to more than two classes.

Since the distribution of X and Y are unknown, we use the maximum likeli-
hood estimate

= argmax H (X550)" (1= f(X550)) 7Y

which is equivalent to solving

6 = argeminL(f(X; 0),Y) = argemmz —Y;log(f(Xi;0)—(1-Y;) log(1—f(X;;6)).

Notice that in both the regression and classification problem, the minimisation
problem is of the form

0 = argmin L(f(X;0),Y; —argmanE (X5 0),
0

where ((f(X;;0),Y;) represent the loss contribution from data point (X;, Y;).
This form is of create importance for some algorithms as we will see later.

Usually, the minimisation problem is hard to solve analytically, meaning that
we need to turn to numerical methods. The most common method is to use
variants of gradient descent where the gradients are obtained through back-
propagation for larger models Rumelhart et al.| (1985).
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1.2 Problems with flexible models

Neural networks have, in many setting, shown impressive results. The reason
for this is the excellent approximation property of neural networks. However,
these models can be hard to train if not appropriately handled. One obvious
challenge is the problem of optimising the usually very high-dimensional and
sometimes non-convex loss function, whose expression is very involved. This
in itself is an extensive and active research field. It will, however, not be the
focus here.

What will be the focus is the fact that the number of parameters is typically very
large, which for proper estimation leads to a need for tremendous amounts of
data, whereas in practice, the size of the data set is, strictly speaking, much too
small compared with the complexity of the model. We will now discuss some
problems that can follow from this.

1.2.1 Opverfitting and the bias-variance tradeoff

Assume that the data (X1, Y1),. .., (X,,Y,) follows the true model E[Y;|X;] =
f(X;;6%). Here 6* is considered the true parameters of the model.

There are several ways to evaluate how good an estimation method is at pro-
ducing good estimates 6 based on these observations. One way is to measure
the mean square error of the parameter difference

Ey [(9 - 9*)2} = By[(6 — Eo[0))?] + (B[] — 0%)2 = Var(d) + Bias()>.

We will now consider the consequences of having large, respectively, small
values of both terms.

Having a high variance on the estimator  indicates that minor differences in
the training data give a significant difference in the estimated 6. This comes
from the fact that the model often adapts to the noise in data and memorise
each data point separately. One example of this is the green prediction in figure
This phenomenon is called overfitting and can typically be seen with larger
models where the flexibility is large, and the amount of data is insufficient.
Having a low variance means that the estimate is not affected drastically by
noise and is more robust, i.e. more stable in its predictions. On the other hand,
a large bias term results in an estimator that will not, on average, predict the
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correct parameters, regardless of the amount of data.

Optimally, there exists an estimator that gives both low variance and a low
bias. This is, however, often not the case in overparameterised settings. The
reason for this is the flexibility of the model.

In order to reduce variance, several different techniques have been developed.
These techniques are referred to as regularisation techniques and are designed
to limit the model’s flexibility, making it harder to overfit against data. Unfortu-
nately, most of them also come with the side effect of increasing the bias. This
means that using too much regularisation lowers the variance but introduce
too much bias. On the other hand, using too little regularisation gives a small
bias but a high variance. This phenomenon is called the bias-variance tradeoff
and shows the importance of finding an optimal compromise in the amount of
regularisation.

The terms in this tradeoff can differ between different types of regularisation
techniques. Therefore it is essential to use a regularisation method that fulfils
the required properties of the problem with an optimal tradeoff.

1.3 Regularisation penalties

One common regularisation technique is to introduce a constraint on the pa-
rameters §. This is done by adding an additional term, called a regularisation
penalty, to the loss function. The loss can then be written as

L(f(X;0),Y) + gr(0: ¢)

where g, (0; ¢) represents the regularisation penalty, A the strength of the
penalty and ¢ are parameters determining the shape of the penalty. Two
common penalties are the ridge penalty g = A|| - ||3 and the lasso penalty
g = A|| - ||1, Tibshirani| (1996). By adding the regularisation term, we can pe-
nalise the model for using large values on # and, by changing the value of A,
determine the flexibility of the model f(z; ). This makes it possible to control
how much variance that is removed. An example of the effect of regularisation
is shown in figure where an ordinary least square loss (OLS) with and
without regularisation is used on a regression problem.
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30 *  Training points
—— Prediction without regularisation
—— Prediction with regularisation

-20 -15 -10 -05 0.0 05 1.0 15 2.0

Figure 1.3: An illustration of overfitting with a model of the form Y; = 3,% 0, X} +¢&;
where ¢; is normal distributed noise with parameters §; ~ N (0, 5%). Based on the 10
marked data points we see the prediction of both an OSL estimate (green line) and a
lasso estimate with A = 1 (red line).

Even though the Lasso and Ridge penalties have turned out to be excellent
at reducing variance and overfitting, they indeed come with a significantly
increased bias.

Because of the challenges with the bias-variance tradeoff, several other and
more refined regularisation penalties have been developed to reduce the vari-
ances with a minimal increase in bias. Some examples are non-convex penalties
like SCAD, |Fan and Li(2001), and some settings of Bridge ,Frank and Friedman
(1993), that use the non-convexity to reduce the bias of larger parameters. By
having a penalty with a derivative close to zero for larger values, these pa-
rameters are not as affected by the penalty as smaller parameters. Another
way to reduce bias is to weigh the regularisation terms differently for different
parameters. One example of this is the adaptive lasso,Zou|(2006) which uses an
extra estimation step to calculate regularisation weights, w; for each parameter.
To summarise the three examples, the regularisation penalties are

* Bridge: gA(0;7) = A, 6|7, v > 0.
* SCAD: gy (0:0) = X2, [1(6:] < NG| + 1A < (6] < a) LA

1(|6;| > ax)%};a > 1.

* Adaptive lasso: g»(0;7) = XY, w;|0;|; where w; is weights based on a
previous estimate 6. One example is w; = ——; v > 0
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It is crucial to keep in mind that also these models introduce additional bias
to the estimates. However, the bias is more negligible in comparison with
standard lasso or ridge.

Several methods to reduce variance other than adding a regularisation penalty
are used. In particular, for neural network models where methods like early
stopping and dropout, Srivastava et al.|(2014), are very powerful.

1.3.1 Model selection

Even if regularisation methods are good at reducing the complexity in the
models, they do not generally reduce the number of parameters used. However,
there could be many benefits with a regularisation method that is able to
reduce the number of parameters in the model. For example, it makes it
easier to understand what features contribute to the result of the response and
the predictions made by the model. Also, a regularisation method that can
find the optimal set of features makes the cost of introducing new features less
significant. Such methods are most attractive with linear models where the user
can easily interpret the meaning of each parameter. Regularisation penalties
that are good at reducing the model size are those that are non-differentiable at
zero. Examples of this are lasso, Adaptive lasso, SCAD and Bridge when v < 1.

1.4 Influence and mislabeled data

Overfitting can be a challenging problem in both regression and classification
tasks and is even more likely to occur when data points are not following the
"regular behaviour" of the data distribution, especially in the output space.
Since every training point, by default, is treated as equally important, some
data points affects the resulting model more than others. We say that these
points have a strong influence on the model. A high influential point means that
the resulting model would be very different if it is retrained on the same data
set except for the specific point. Highly influential points are often considered
bad for the model since they reduce robustness, which in turn leads to bad
predictions. Examples of highly influential point could be an outlier in the
input space or a data point with an incorrect label in a classification setting,
which many studies have shown can be harmful to the resulting model, Koh
and Liang| (2017);|Zhang et al.| (2016); |Arpit et al[{(2017). An example can be
seen in figure|l.4where a neural network has been trained on a classification
task with two classes, orange triangles and blue squares. With perfect data, the
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Figure 1.4: An illustration of what could happen when one training data point is miss
classified. To the left is how a multilayered neural network classifies the two classes
triangles and squares. The marks correspond to the training data. To the right is the
result when using the same network and starting position but one training point has
changed label.

model gives a very accurate classification of the two classes, but by changing
the label of one data point, the prediction becomes very different, and the
model cannot generalise.

Using neural networks requires a massive amount of data, making it hard
to find mislabeled points by manual inspection. Since the impact can be
so devastating, it is essential to use a method that reduces the influence of
mislabelled data. To achieve this, several different techniques have been tried,
[Frénay and Verleysen| (2014); [Song et al.| (2020). Like in a typical overfitting
case, regularisation techniques like Lasso and Ridge can reduce the complexity
of the model and, therefore, also reduce the influence. Also, methods more
commonly used for neural networks like early stopping have been efficient
in this regard, (2020). Even if these methods reduce overfitting, it
could mean that the model cannot learn the true behaviour in data due to its
increased bias and reduced expressiveness.

Another approach is not to limit the model’s flexibility but instead change the
loss function or model architecture to reduce the influence of each point. Several
such approaches have been suggested. One example is to locate misclassified
data points by estimating the influence function of each point and then remove
those with a high influence, Koh and Liang] (2017). Some extend the model
also to model the label noise. This can, for example, be done with a confusion
matrix|Goldberger and Ben-Reuven! (2016); Hendrycks et al.| (2018). The model
should adapt to the noise and, therefore, learn which points are incorrect. Some
use different kind’s of prepossessing techniques to make the training more
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robust against mislabelled data. An example of this is mixup |[Zhang et al.
(2017)), which uses a linear combination of data points as an input to the model.

A further approach is to put a weight on each data point in the loss function
Ren et al.[(2018). This means to use a loss function like

L(X,Y;8) = sz (Xi;6),Y:)

where w; is the individual weight corresponding to each point. The weights
could, for example, be estimated by comparing gradients between training
data and a separate dataset where the user knows that the labels are correct,
Mengye Ren|(2018). The goal is to give low weights to data that are harmful to
the model and reduce their contribution to the total loss. Even though there
are ways to detect mislabelled data and reduce their influence on the model,
there is still much to learn about dealing with them optimally.



2 Summary of papers

In this theses, a general strategyto weight components in the loss function is
introduced. This strategy can be used to give different weights to regularisation
terms for different parameters as well as to give different weights to different
data points. These weights are incorporated into the model by expanding the
loss function to include terms to control the weights. By choosing the form of
these terms wisely, one can solve for the weights in terms of the parameters
and thus avoiding the apparent inclusion of a large set of new parameters. The
particular form of weight controlling term that we have chosen to work with is
~v(wlog(w) — w + 1), where v is a hyperparameter. This choice is analytically
amenable and works well in experiments.

2.1 Article 1 Robust Neural Network Classification
via Double Regularization

This article introduces our strategy when used to weigh different data points
in a classification setting. It gives us the loss function

(0,&) = argmin L(X,Y; 8) = arg minZwié(f(Xi; 0),Y;)+7v(w; log(w;)—w;+1)
0,w 6,w P

with some appropriate constraints on w within each class, such that the mean
weight within each class ¢ should be a number p.. p. is chosen to reflect the
proportion of training data that belongs to ¢. We show that the minimization
problem can be rewritten as

11
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_(f(X4:0).Y))

Hzarg;nin—’yZch\ logZe 2]

ceC i€c

where C' corresponds to the different classes in the training set. In other words,
the use of observation weights and regularisation terms for them translates to a
certain modification of the loss function. We prove some analytical results that
our methodology can indeed make the training more robust against mislabelled
data. Numerical experiments are carried out on neural networks in a binary
classification setting. These show that this loss function makes the overfitting
against mislabelled data less significant and accurately finds which data points
are classified incorrectly.

My contribution to this paper is

* contributing to the development of the methodology
* doing all implementations and simulations

* writing large parts of the article except for section four.

2.2 Article 2 Entropy weighted regularisation, a gen-
eral way to debias regularisation penalties.

In this article, we investigate our methodology when applied to regularisation
in a linear regression setting. This means to consider a regularised mean square
loss function, e.g. lasso or ridge, and modify it by allowing different weights
on the penalty for different parameters. The weights themselves are then
controlled as before. Note the difference from paper 1, where the weights are
on the observations whereas they are now on the model parameters. This
reflects that the goal in paper 1 is to handle contaminated data, whereas in this
paper, the goal is to handle overparametrisation. It gives us the loss function

. _ 1 P
(,0) = argmin = 5||Y — X603+ Zuigk(&; @) + v(u; log(u;) — u; + 1).
0,u

i=1

However, we show that this minimization problem can be rewritten as
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0 Ly - X034 300 - B
= argmin — — +y —e Rl .
o 2 ’ i1

Hence, our procedure for individual parameter penalty weights translates
to a modification to a more robust form of the original parameter penalty.
We investigate how this regularisation behaves when g (6;; ¢) = A|6;|, called
entropy weighted lasso (EWL), and ¢, (6;; ¢) = %0?, called entropy weighted
ridge (EWR). Since these regularisation’s are extensions of Lasso and Ridge,
they inherit some properties from these. We derive requirements on A and +y for
when the optimization problems are convex, and show that both are consistent.
The EWL regression model is also proven to be sign consistent, giving it nice
properties for model selection. We derive optimization algorithms for EWL
and EWR and compare the resulting models with other methods like adaptive
lasso, SCAD, lasso and ridge on simulated data.

My contribution to this paper is
¢ writing large parts of the theory. This includes both properties of EWL
and EWR but also in finding efficient training algorithms
¢ implementing the algorithms and writing code for simulations

¢ writing large parts of the texts.
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Abstract

The presence of mislabeled observations in data is a notoriously challenging problem in statis-
tics and machine learning, associated with poor generalization properties for both traditional
classifiers and, perhaps even more so, flexible classifiers like neural networks. Here we propose
a novel double regularization of the neural network training loss that combines a penalty on
the complexity of the classification model and an optimal reweighting of training observations.
The combined penalties result in improved generalization properties and strong robustness
against overfitting in different settings of mislabeled training data and also against variation
in initial parameter values when training. We provide a theoretical justification for our pro-
posed method derived for a simple case of logistic regression. We demonstrate the double
regularization model, here denoted by DRFit, for neural net classification of (i) MNIST and
(if) CIFAR10, in both cases with simulated mislabeling. We also illustrate how DRfit, as
a useful side-benefit, can be used to identify mislabeled data points. This provides strong
support for the DRFit as a practical of-the-shelf classifier, since, without any sacrifice in per-
formance, we get a classifier that reduces overfitting against mislabeling and gives an accurate
measure of the trustworthiness of the labels.

Keywords: Deep Learning, Robust Statistics, Regularization, Mislabeling, Mislabeled data,
Contaminated labels, DRFit, weighted loss.



1. Introduction

In supervised, semi-supervised or active learning with machine learning algorithms in general,
and deep neural nets in particular, the default models assume that the given annotations of
training data are correct. However, since well-annotated data sets can be expensive and time
consuming to collect, a fair amount of recent research has focused on using larger but noisy
sets of training data. Such data sets are much cheaper to collect, e.g. via crowd sourcing. The
working assumption is that collecting larger amounts of data that are labeled with a decent
accuracy can compensate for the noise (inaccurate labels).

Clearly, it is desirable that neural networks estimation is robust with respect to changing
a small fraction of the labels of the training data. Results in the literature are conflicting,
with findings depending on the noise distribution, the type of neural net, the amount of cor-
rectly labeled data and level of contamination. While some results indicate that classification
performance on correct labels can be noise stable (e.g. (Rolnick et al., 2017)), there are many
studies that have shown that neural networks are highly sensitive to label contamination (Koh
and Liang, 2017; Zhang et al., 2016; Arpit et al., 2017).

There is a variety of methods for dealing with noisy labels (Frénay and Verleysen, 2014;
Song et al., 2020). One approach is to try to identify training examples that are likely to
be mislabeled and correct them manually (Koh and Liang, 2017; Pleiss et al., 2020). This is
computationally costly and suffers from a chicken-and-egg problem; examples that stand out
as likely to be incorrectly labeled do so on the basis of a model that is in itself trained on noisy
data.

Some methods focus on using data augmentation in order to reduce the impact of noisy
labels (Zhang et al., 2017), while others estimates a confusion matrix that compensates for
the noise in the labels (Goldberger and Ben-Reuven, 2016; Hendrycks et al., 2018).

Another approach is to incorporate the noise directly into the loss function of the training
model (Reed et al., 2015; Natarajan et al., 2013; Sukhbaatar et al., 2015; Liu and Tao, 2016;
Tanaka et al., 2018; Arazo Sanchez et al., 2019), either via a surrogate loss function that
augments the classification loss with noise rate parameters or with a data reconstruction term.
Overfitting is still common for these methods which is usually addressed via early stopping.
The intuition behind early stopping is that the optimization algorithm at its early stages finds
the large scale classification boundaries and only after that starts to fine-tune to individual
training examples and hence overfit. This intuition is supported by recent theoretical results
(e.g. (Li et al., 2020)). Early stopping results in the final network parameters to be a mix of
starting values and optimal values. Several questions arise; how should the starting values be
chosen?, when should we stop?. Also, from a statistical point of view, it is very unsatisfactory
to define a model (loss) that we in some sense do not ultimately use.

It is common to attempt to overcome overfitting through some form of regularization on
the network parameters, e.g. lasso or ridge. However, we will here show that this does not
fully alleviate the overfitting in the presence of training data mislabeling.

In this paper we suggest a double regularization (DR) technique where, in addition to
using lasso or ridge, each term in the loss function is multiplied with an observation weight.
The observation weights will be optimally penalized for deviating from equal. The weights
can be seen as a new set of model parameters, different from the network parameters but may
be trained in parallel with these. However, with the proper choice of regularization penalty
for the observation weights, when optimizing this new loss function, it is easy to solve for the



observation weights in terms of the original parameters and thereby obtain an explicit new loss
function, where in fact no new parameters have been added and hence no extra complexity has
been imposed. The benefits of the new model include; (a) a mathematical formulation that
explains the weighting methodology as a regularization mechanism and (b) circumventing the
need for early stopping since the loss function is explicitly optimized.

We claim that intuitively this model does not overfit, since early on in the training, the
weights will adjust to leave only the large structure in feature space and hence works in itself
as early stopping but without the need to actually stop. Experimental results very strongly
suggest this intuition is correct. In addition, in section 4 we provide a theoretical justification,
showing that for a simple version of logistic regression, DR performs strictly better than a
standard regularized neural network.

2. Methods

Consider a binary classification in the space X x Y where X is the input space and Y the label
space and let z; = (x;,v;) € X xY be a realization. For inference we use a model y = f(x;0),
where # € O are the model parameters and z € X. In order to find the optimal 6, a loss
function C(;z) = Y, L(6; z;) is minimized.

Now consider uniform label noise such that each training point is contaminated with a
probability that may depend on class but is otherwise independent of the features. In such
a setting, a model with even a few parameters can easily overfit in the sense that it eventu-
ally learns a false and overly complex structure, trying to separate between instances in the
training data that have different labels but are in truth of the same class. As a result, the
model generalizes poorly to new data. To alleviate this problem, we propose a regularization
technique that gives each training point an observation weight that reflects how much we “be-
lieve” in the annotation of that point, combined with a penalty for observation weights for
deviating too much from one (since without such a penalty, the model would simply put all
weight on one example from each class). The idea is that our model will learn observation
weights that are close to 0 for mislabelled data while leaving other weights well away from
0. When the model is also over-specified, we combine this observation weighting with some
standard regularization on the model parameters, such as a ridge or lasso regularization.

The minimization object of our doubly regularized model, DRFit, can in its general form
thus be written as

(0", w") = argming , ZwiL(zi7 0) + ag(w) + Ag(0), (1)

k3

where a and A are hyper-parameters controlling the amount of regularization, and g and §
are regularization functions which are typically convex functions and where the last term may
be dropped if the model is not over-parametrized. For the rest of this article we will consider
g= %H -3, i.e. a ridge regularization on the original model parameters.

There are some recent studies that utilize observation weights in the context of regularized
or robust regression (Luo, 2016; Gao and Fang, 2016; Gao and Feng, 2017) as well as some
methods on neural networks (Ren et al., 2018) where they calculate the observation weights
based on a comparison between the gradients of training and validation data. With the extra



forward and backward passes this algorithm requires the model takes approximately three
times the training time to train.

The two hyperparameters in (1) control the trade-off between observation weighting and
regularization of the network parameters. A larger A reduces the complexity of the neural
network and a larger « restricts the flexibility of observation reweighting. While it may
appear as if we have introduced a large number of extra parameters with observation weights,
as mentioned above, with a certain natural choice of regularization function g, we will be able
to solve for the observation weights in terms of the model parameters, hereby getting a new
modified minimization objective explicitly expressed in terms of the loss function L(6; z).

3. Choice of weight regularisation function

In this paper we will use an entropy regularization on the observation weights: g(w;) =
wj log(w;) — w; combined with the constraint that Ei:yz cc, Wi = pk|Ck| for each class k. Here
Cl is the set of training examples that have been labeled k and py, is a scaling factor that can
be tuned to fit the label noise. The main purpose of the pg’s is to make up for the difference
in class proportions as they appear in the noisy training data and the true proportions. To
estimate the true proportions, a natural assumption is that we have access to a clean set of
validation data. If not, the natural choice is to set pr = 1 for all k.

As promised, we can now solve for the observation weights in terms of the original model
parameters as follows. With the given g, the DRFit optimization problem reads:

* * . 1
(0,w*) = argmin, Z [wiL(z,0) + a(w; log(w;) — w;)] + /\5H€||% (2)
i

Solving for w in terms of 6 (2) gives the following:

Proposition 1 Solving the minimization problem

1
(0%, w*) = argming, » _ [wiL (2, 0) + awi In(wi) = wi)] + A [16]13
i

with the constraint Y ..~ w; = pg|Ck| is equivalent to solving

1€Cl,

. _ L(z,0) A
0* = argming — azk:pk\(}k\ log Z e o + 5\\6”% (3)

1€C

Proof For convenience, we let ¢; = L(z;,0), ni, = pi|Ck| and

1
FO,w) = Zwi& + a(w; log(w;) — w;) + )\§H9||§ + 1 EZC wi —ng |,
i 1eCg

where 7 is our Lagrange factor associated with class k. Our goal is now to find stationary
points of F(f,w). Pick an w;, let k be the class to which y; belongs and differentiate with
respect to w; and solve z2-F(0,w) = 0:

OF(0,w)

T = 0= 4+ alog(wi) 41 = 0= wp = —e”GitT/a
&ui



Inserting into the constraints zieck w; = nyg and solving for ri, we get
eféi/a
—l
E]ECk /Ot

From the arguments it is clear that this stationary point is unique and must hence corre-
spond to the minimum of (2). Plugging into (2) minus the ridge penalty term gives

Ww; = Nk

Z wili + aw; log(w;) — w;)
i

= Z Z wil; + a(w;log(w;) — w;)

k i€Cy

O [ (A A
= Ny 7-bita | ng=—"—7F-- log | ni — — Nk —7
k icCy ZJEC Yjec, e b Yiec, el Yjec, €77

:—aanlog Ze b/ + ng log(ng) — ny.

JECK

Since ny is a constant our preposition follows. |

In summary, with this choice of g, we simply get a new minimization objective with no
extra parameters, besides the hyperparameter o which still controls how much the observation
weights are allowed to deviate from equal.

4. Theoretical results

In what follows, we will make a theoretical justification of the weight penalty in a simple
setting, namely logistic regression for one-dimensional covariates without intercept term. The
model will then not be overparametrized, so we discard the ridge penalty term from (3). The
model may thus be written as

e5%i

Plvi=1)= o=

for an unknown slope s. For standard logistic regression, s is estimated as
$p = argmax L(s), (4)
where

nly(s) = nly(s;x,y)

=S Z Ti — Z x; —zn:log(es‘“ + 75T,
i=1

iyi=1 iy =0



We claim that under various natural distributions of the covariates, one can always find an «
such that (3) will produce an estimate of s that exactly coincides with §, which is arguably
best possible. In almost all cases, the proof relies on numeric computation of expectations.
However in a special case of Gaussian distribution of covariates in each class, an analytic proof
can be given.

We start by showing that under very mild assumptions, contamination of the labels will
always cause standard logistic regression to underestimate s. This is formalized by a propo-
sition below. Since the introduction of a fair amount of notation will be needed to state
the proposition, we introduce it along with proving the proposition and state the result as a
summary.

For data generation, assume that covariates whose true label is k are distributed according
to density fx, k = 0,1. Write X}, for a random variable distributed according to f; and assume
that E[X;1] > 0, E[X] < 0, P(X; < 0) > 0 and P(Xy > 0) > 0. These assumptions make sure
that the two distributions are overlapping but not equal. They also entail that 0 < § < oo.
As n — o0, Ly(s) converges to

L(s) = s(mE[X1] — poE[Xo]) — Ellog(e"™ +e~*¥)], ()

where py = ng/n, where ny is the number of observations with y; = k, and X is chosen
according to the overall distribution of the covariates, and § := lim,,_,« §, is the argmax of
(5).

Now assume that true labels 1 are misclassified as 0 and vice versa independently but
potentially with a probability depending on x;. This gives us contaminated labels y; and we
assume that E[X}] < E[X;] and E[Xj] > E[X,]. Assume also that piE[X7] — pjE[X]] <
mE[X1] — poE[X0], where X} is a random variable chosen according to the distribution, f, of
covariates for which yf = k and pj is the probability that a random observation has y; = k.
It can be shown in a straightforward manner that this assumption is satisfied e.g. whenever
the probability of mislabeling is conditionally independent of z; given y;, provided that the
first two assumptions hold. Let

§* = argmax L*(s)

where
L£*(s) = s(PiE[X]] — pE[X5]) — Ellog(e*X" 4+ e7*¥7)).
Now § is the solution of
OL(s)

Js

and, since X is independent of contamination, §* is the solution of

=pE[X1] — poE[Xo] — E[X tanhsX] =0

piE[XT] — ppE[X(] — E[X tanh(sX)] = 0.

Since piE[X;] - psE[Xg] < p1E[X1] —poE[Xo] and (9/9s) X tanh(sX) = 4X2/(e*X +e75%)2 >
0, so that (by the Dominated Convergence Theorem) E[X tanh sX] is increasing in s, we get
§ > §*. We have proved:

Proposition 2 Under the above assumptions on the covariate and mislabel distributions, stan-
dard logistic regression underestimates s, i.e.

§* < 5.



Next we claim, under the conditions of Proposition 2, optimizing (3) without the ridge
penalty term with « sufficiently small will, in the limit as n — oo, estimate s to co. We will
not prove the full claim as the proof is tedious and we judge that the given form is sufficient
for making the point that DRFit behaves in a good way in the present setting.

Proposition 3 Consider the optimization problem

Sw(a) = argmaz O(s)

esXi 1/a
est +67SXT

=56 1/a
€SX§ +€75X6‘ .

Assume that f{(z) > fi(—z) and f§(z) < f5(—x) whenever x > 0, then §,(a) = co whenever
a<l1.

where

O(s) = pilogE

+ pjlogE

Proof Finding the maximum of O(s) is equivalent to finding the maximum of &£(s) =
exp(O(s)), i.e. the maximum of

X3 1/a] P
E(s)=E (esxl* T 6*3X1*>

e—sX§ 1/a7 P
E|| ———"= .
(CSXU + e*SXO )

Now we claim that both factors of £(s) are increasing in s when o < 1. To see that this
is so, observe that for b > 0,

"00 sz b —sz b
€ €
- * - * — d

o ST b —sx b
€ e " '

- " (7)17 (fi (@) - fi(~2))da.

esT 4 e~ ST

Since fi(z) > fi(—z) by assumption, the second term is increasing in s. If also b > 1, the
first term is nondecreasing in s since the integrated function is then nondecreasing. Taking
b = 1/a now proves that the first factor of £(s) is increasing and the second factor follows
analogously.

|

A consequence of Proposition 3 is that if it could be shown that s} () is continuous in « for
a > 1 with lim,); = co, would be that for some o = a one has s}, (o) = 8. However, £(s) is



very difficult to analyze analytically, so it is hard to come up with explicit general conditions
that ensure this. Numerically, we have verified that §, is indeed continuous for numerous
natural cases of distributions on X; and Xg. On the other hand, we have also found examples
where continuity does in fact not hold. One such example is P(Xy = —1) = P(Xo =1) = 1/2,
P(X; = —-1) =P(X; =1) = 1/10, P(X; = 10) = 4/5 and 20% mislabels for both classes. In
this case we find that in the range o € [1.54,1.69], two local maxima in £(s) appear and the
the global maximum shifts from one to the other at approximately a = 1.62.

Making the strong assumptions that Xo =4 —X1, p1 = po = 1/2 and p} = p§ = 1/2,
maximizing £(s) boils down to maximizing the target function.

esXi 1/a 1
E e X . —sX* =E | ——7-|
(6‘5X1 +€75X1) |:(1+6725X1)1/a]

over s. This is easier, but still very difficult, to analyze. However if we also add that X is
Gaussian with positive mean, the problem indeed turns out to be analyzable:

Proposition 4 Assume that Xg =q —X1, po = p1, X1 ~ N(u,0?) with p > 0 and that
mislabels occur independently and with equal probability less than 1/2 for the two classes.
Then sy(c) is continuous decreasing and limgy |1 sy () = co.

Proof Taking the derivative of the target function, the proposition follows once we have
proved that the solution in s of

]:(S;b) = E[G(S>Xik7b)] =0,

where b = 1/a and

.72872‘%

(1 + e—25z)b+1

is unique and continuously increasing in b and converges to oo as b 1 1. Assume with loss of
generality that g = 1 and 02 = 1/2. Then F(s;b) equals 1/,/7 times

G(s,z,b) =

7/ G(s,z, b)ef(zfl)zdr +(1—7) / G(s,x, b)(f(z“)zdx,

which in turn explicitly equals

00 x672szef(171)2 00 Ic2sz€7(z+l)2
| et 00 [t

where ~ is the probability of having a training point correctly labeled. We claim that the
integrated function in the first term (and hence the second) is antisymmetric in 2 about the
origin for s = sp := 2/(1 — b) and hence F(s) is 0 for so. A straightfoward computation of
the partial derivative of G(s,z,b)/G(s, —x,b) with respect to s, one finds this to be positive
for > 0 and hence G(s, z, b)e_(’”_1>2 < —G(s, -z, b)e_(’”"'l)2 for s > 2/(1 —b) and vice versa
for s < 2/(1 —b). Hence, since v > 1/2, F(s;b) < 0 for s > 2/(1 — b) and vice versa. Hence
the solution s = s¢ is unique. It follows that once the claimed antisymmetry is proved, we are
done.



Now, proving the claim means to show that for each x > 0,

xe*?ngef(zfl)2 xe?sozef(aﬁﬁl)Q
(1 + 8—250I)b+] - (1 + e2soz)b+1 .

After shortening fractions and taking logarithms of both sides, this is equivalent to
4z ) 1+ ete/(1-b)
1—b B\ 1yede/iy |-

Now the general observation that
) 1+4e¥
le) =
& 14+eY Y

finishes the proof.
|

As already stated, we have numerically verified that under the same conditions, one has
that s,(a) i continuous and decreasing in « and lim,|; = oo, for some natural assumptions
on the distribution of X7. These include

e X ~ logistic with positive mean.
e X, ~ Cauchy centered at a positive number.

e X, ~ uniform with positive mean.

5. Numerical solver for DRFit

In the general DRFit setting (i.e. with a penalty ¢ different from the one given in Section 3,
one cannot solve for w in terms of § in (1) and then has to settle for numerics. In that case,
we will alternate between applying numerical fitting of 8 given w and vice versa. This is to
say that we split the optimization into two sub-problems:

A
Problem 1: 6" = argminZwiL(zi, 0) + ag(w) + §||0H%,

0 (2

A
Problem 2: w*= argminZwiL(zi, 0) + ag(w) + =|0]13.
ww>0 2

We alternate between these two tasks during training. Problem 1 is a standard minimiza-
tion problem for the network model parameters 6. The optimization of w is done with gradient
decent which gives us the updating procedure

wi < w; — B[L(z;,0) + ag'(w)],

where 3 is the learning rate for the observation weights. In order to speed up convergence, we
use a burn-in period where we do not update the weights w. In this way, the model learns the



more global structure of the data before we update the weights. In our experiments we found
that a short burn-in of just a few epochs suffices.

In order to prevent the weights from becoming negative we use weight clipping to set
negative weights to zero. In each iteration the weights are also normalized to sum to pcn.
This is to preserve the same learning rate throughout training. The training algorithm is
summarized in algorithm 1.

Algorithm 1 Training algorithm with observation weights.

procedure TRAIN(Training set D, ,burn_in,update frequency, p., 8, N)
w1
for epoch =0...N —1 do
for Batch S C D do
Update 0 with batch S for current w.
if (epoch > burn_in)
and (mod(epoch,update frequency) = 0) then
wg « wg — BIL(S;0) + aVg(ws)]
foriin S do
if (w; < 0) then
w; <0

Normalize wg to mean p, for each class present in S
return

6. Experiments

We will experimentally evaluate the performance of the DRFit method by training on differ-
ent neural networks for classification tasks of varying difficulty. We will train DRFit both
analytically (in the sense of solving for w in terms of 6) and according to Algorithm 1. The
reason for doing the latter is to see if there appears to be non-convergence phenomena that
cannot be seen for the analytic solver. In each simulation we have used p. = p(c)/(1 — ¢q(c))
where p(c) is the proportion among those instances that have been classified as class ¢ that
are indeed of class ¢ and ¢(c) is the proportion of instances for which the correct label is ¢, but
have been classified as something else. Good estimates of p. can be obtained from a set well
annotated validation data that only needs to be large enough that the proportions involved
can be estimated with a decent precision. This scaling is used both for the DRFit method and
standard regularized networks. Results for when we omit scaling (i.e. p. = 1) are presented
in the appendix. In all experiments a small burn-in period is used where we trained with a
regular loss.
The experiments are the following;

e A small network on the MNIST dataset to classify 1’s from 7’s. The network has been
chosen small enough that the number of parameters is small compared to the number of
training examples; we used one hidden layer with eight nodes followed by a final logistic
layer. Hence the network is not overparametrized per se and only the mislabels will
cause it to overfit. We have hence here dropped the ridge regularization term and can
study the refined effect of observation weighting in a standard network. The network

10



we used has one hidden layer with eight nodes and ReLU activation followed by a final
logistic layer.

e A subset of the well-known Cifarl0 dataset. We have chosen to work with classifying
cars vs airplanes. Here we use a convolutional neural network with three convolutional
layers with 8, 16 and 32 filters, max pooling between each layer and Relu activations.
This is followed by three dense layers with 124, 64 and 2 neurons. We have also used a
cross-entropy loss for L.

For both the datasets, we have considered three levels of distribution of mislabels: (i)
20% mislabels in each class, (ii) 30% misalabels in one class and 10% in the other and (iii)
40% mislabels in one class and none in the other. We have also compared with classification
without noise.

A small neural net on MNIST

In order to distill the introduction of observation weights, we have chosen to train a mini-
malistic network on a contaminated subset of the MNIST dataset. The network in question
was taken small enough that overfitting via overparametrization in itself is not a problem and
we have consequently dropped the 12 penalty term from the target loss functions. We have
selected two classes, images of ones and sevens, and then sampled down the images to a size
of 14 x 14. The network we used has one hidden layer with eight nodes followed by a final
logistic layer. We introduced random label noise where we have shifted the labels of the ones
and sevens in the training set. The hyper-parameter a has been optimized on an separate
validation set. We have then executed 100 training runs with the optimal a and compared
this with 100 runs for the same network without observation weights. In figure 1 we find the
results. We trained DRFit both by Algoritm 1 and by the analytic solver for the observation
weights and compared with the same network network with no regularization. It is clearly
seen that the unregularized network suffers heavily from overfitting while DRFit does not have
this problem.

In figure 5 we can see that when we have 30% noise in ones and 10% noise in sevens, we
almost get a perfect separation between the observation weights between the correctly classified
data-points and the mislabeled ones. This explains how DRFit has virtually no problems at
all with overfitting; DRfit learns the false labels early on and disregards them completely
from then on and since the model is not overparametrized in itself, the test accuracy remains
optimal. Some of the few misclassified images that DRFit could not detect can be seen in
Figure 2 along with some correctly classified images that DRFit considered mislabeled.
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1.00 no noise 40 % in 1:s, 0 % in 7:s 30 % in 1:s, 10 % in 7:s 20 % in 1:s, 20 % in 7:s

0.99

0.98

Bo.97

0.96

—— Weight regularisation

=== 10/90 percentile
0.95 —— Numerical regularisation
=== 10/90 percentile
—— No regularisation
=== 10/90 percentile

epoch epoch epoch epoch

Figure 1: The mean accuracy on test data during training of 100 different random initializa-
tions, done with DRFit both with a numerical and a analytical solver and the same network
without regularization. This is done in four different label noise settings. With no label noise,
with 40% noise in class 1 and 0% noise in class 2, 30% noise in class 1 and 10% noise in class
2 and with 20% noise in class 1 and 20% noise in class 2

y: 7, w: 0.7109 y: 1, w: 1.0022 y: 1, w: 1.1352
y: 7, w: 0.9883 y: 7, w: 1.3547 y: 7, w: 1.2621
y: 7, w: 0.7838 y: 7, w: 1.3545 y: 7, w: 1.3634

[} A "

Figure 2: Example of images that where mislabeled but the DRFit method did not detect.
Above of each image is the label the model was given and the weight the model set to the
data point.
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y: 7, w: 0.2225 y: 1, w: 0.0911 y: 1, w: 0.0895

L = i

y: 7, w: 0.0272 y: 1, w: 0.0 y: 7, w: 0.0375
y:7,w: 0.2138 y: 1, w: 0.0 y: 1, w: 0.0353

Figure 3: Example of images that are classified correctly but has been assigned a low obser-

vation weight by DRFit. Above each example you can see the label the model was given and
the weight the model gave the data point

y: 1, w: 0.0 y: 7, w: 0.0 y: 1, w: 0.0
y:7,w: 0.0 y:7,w: 0.0 y: 1, w: 0.0
y: 7, w: 0.0 y: 7, w: 0.0 y: 7, w: 0.0

I | ’

Figure 4: Example of images that where mislabeled and that DRFit could detect. Above each
example is the label the model was given and the weight that DRFit assigned to the data
point.

. Mislabled data
I Correct data

=

0.0 0.5 1.0 1.5 2.0
Figure 5: Histograms for the observation weight distributions for correctly labeled data and

for mislabeled data. These are produced by training the DRFit on the subset of ones and
sevens in the MNIST dataset.
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A deep convolutional neural net on Cifar10

After finding the optimal parameters A\ and « on a separate validation set, we trained the
network 100 times with different random parameter initializations. We found that ridge reg-
ularization is highly sensitive to initialization and frequently crashes, meaning that during
training the model starts to learn from data but suddenly drops to 50% accuracy and stays
there for the rest of the training period. To make a direct comparison with DRFit we therefore
remove all crashed runs from both DRFit and ridge. In these experiments, DRFit is by far
more robust to parameter initialization. Indeed, DRFit did not crash for any of the 100 runs,
whereas ridge for some noise settings crashed up to nearly 40 % of the runs and even 9 % of
the runs without any label noise.

In Table 1 we can see the corresponding hyperparameters and the final mean accuracy on
the test data for our different models on the different datasets.

Notice here that with a more uneven noise in the data, A tends to increase leading to a
stronger regularization with respect to the network parameters. Notice that « also increases
with a more uneven noise in the training data leading to less regularization via observation
weights, i.e. more uniformly distributed w;:s. So with more uneven noise in the data, more
regularization is moved from the observations to the network parameters, i.e. it becomes more
beneficial to restrict the network than the data itself.

In Figure 6, we can see that in the majority of the noise settings, the use of observation
weights decreases overfitting. The optimal peak in accuracy seams to be unchanged between
the two training algorithms.In Figure 7 we illustrate how the data weights are distributed
for correct and mislabeled data respectively. This is done for the data set with 30/10-noise.
Notice that a works as a scaling parameter for the weights. This means that with a lower o we
would get a larger separation between correct and mislabeled data at the cost of having more
correct data with lower weights; clearly too low an a will result in too much information being
lost. By judging data points with observation weights below a fixed threshold as mislabeled,
choosing this threshold will result in tuning the balance between the proportion of correct
annotations rightly judged as correct and the proportion of mislabeled examples rightly judged
as mislabeled. Figure 8 illustrates this. Notice e.g. that, when using optimal hyperparameters,
one can find thresholds such that, when using the mean weight of data points over the 100
runs to compare with the threshold, more than 90% of correct labels are judged as correct and
more than 90% of false labels are considered false.
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class 1 (%) | class 2 (%) | Opt. A | Opt. a | Acc test end | Acc test top | % crashes removed

DRFit
0 0 0.10281 | 3.0309 0.94734 0.95409 0
20 20 0.059512 | 1.1712 0.90177 0.91854 0
30 10 0.30801 | 1.1222 0.90878 0.91911 0
40 0 0.56716 | 3.1629 0.91544 0.92816 0
RidgeNet
0 0 0.50868 - 0.94773 0.95507 9
20 20 0.16716 - 0.82947 0.91690 38
30 10 0.26122 - 0.83802 0.91790 38
40 0 0.23280 - 0.82148 0.92814 24

Table 1: Table showing pptimal values of the hyperparameters A and « for different noise
settings, mean accuracy at the end of training, the top accuracy during training and the
percentage of crashes of the runs. Both accuracies are calculated on test data over the 100
training runs with these optimal hyperparameter values.

1.0 no noise Class 1: 20 %, class 2: 20 % Class 1: 30 %, class 2: 10 %  Class 1: 40 %, class 2: 0 %
0.9 r
0.8
0.7
0.6

—— DRFit

Ridge
0.5 0 50 100150200250 300 0 50 100150200250300 0 50 100150200250 300 0 50 100150200250300
epochs epochs epochs epochs

Figure 6: The average accuracy on a test data for DRFit and pure ridge regularization during
training when trained on the classes cars and planes in the cifarl0 dataset. In order to vary
the noise we have done this in four different label noise settings. One with equally amount
of noise in both classes, one with 30% noise in class one and 10% in class two, one with 40%
noise in class one and no noise in class two and one setting with no label noise in the training
data. In order to get a better comparison the runs that crashed are removed.
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Figure 7: Histograms of the observation weight distributions over all simulations for mislabeled
and correctly annotated data respectively for the 30/10-contaminated data set. The runs that
crashed are removed.
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Figure 8: Curves that describe the balance between finding mislabeled points versus finding
correctly labeled points while tuning a threshold ¢. For each value ¢ the model classifies a data
point as mislabeled if its observation weight w; < t and as correctly labeled if w; > t. Each
blue curve is for one training run and the red curve is the result of using the average w; over
the training runs to compare with ¢.

7. Discussion

We have proposed a double regularization framework, DRFit, for the training of a predictive
model in the presence of mislabeled training data. We have presented a theoretical result that
supports the method and we have experimentally demonstrated that DRFit improves perfor-
mance over standard regularizarion in two experiments on different data sets with different
neural net predictive models and different noise distributions.

We found that combining regularization on observation weights with regularization on
model parameters (or with no regularization when the model is not overspecified) results in
higher, or at least as high, classification accuracy and significantly stronger robustness to
overfitting.

In addition to test accuracy, we found, both on MNIST and Cifar10, that DRFit performs
remarkably well for separating mislabeled training examples from those with correct labels.
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In the MNIST case, we could also clearly see that mislabeled training examples that DRFit
failed to detect were in fact very ambiguous.

Yet another benefit of DRFit is that early stopping does not have to be explicitly applied;
we can run training until convergence. By contrast, standard neural networks with pure
parameter regularization rely to a large extent on early stopping in the presence of label noise.
(As shown in Li et al. (2020), early stopping will indeed make the model more robust to label
noise, which is a result we also have seen in our simulations). DRFit is thus a more intelligible
model in that we actually reach a minimum of the chosen loss minimization objective. We
strongly believe that the reason that DRFit does not overfit is the effect that was intended,
namely that mislabeled data is to a very large extent "turned off" early on in the training
process and that this works as a replacement for early stopping. This means that we will get
an optimization problem that we actually will optimize in contrast to the early stopping case.

The experiments on both datasets show that using observation weights does not have any
adverse effects when training on a dataset without any mislabeled data. Moreover, in the
MNIST case we see that DRFit is more consistent in the sense that the variation in test
accuracy is smaller than for the nonregularized network.

The beneficial effect of double regularization seems to be pronounced in all tested noise
distributions. While the inclusion of the scaling factors p. improved performance overall,
DRfit still outperformed standard regularization when p. = 1 was used (see the appendix). In
practise, we can obtain estimates of the noise level for the different classes from the validation
set. Alternatively, as a two-stage training alternative, one could estimate the noise levels from
weight distributions from initial training with no scaling. This latter option has been reserved
for future work.

An unavoidable drawback of double regularization compared to standard ridge or lasso,
is the need for two hyperparameters instead on one and hence optimization of the them
is a more costly process. However experiments indicate that DRFit is fairly insensitive to
hyper-parameter settings and our optimization algorithm was coarse-grained and far from a
complete grid search. We also did not optimize the burn-in period or the learning rate for the
observation weights in Algorithm 1, neither during hyperparameter optimization, nor during
the test runs. This means that DRFit could potentially perform even better if further fine
tuning in the hyperparameter optimization was applied. The optimization of these parameters
is a non-trivial problem which we leave for further research.

In this paper, we restricted ourselves to binary classification. However the general formu-
lation of DRFit was by no means restricted to that, or even to classification problems. We
expect, however, that in cases of class imbalance in noise, the case of multiclass classification
need more care.

Future research along the lines presented here will analyze other types of double regulariza-
tion. This will potentially lead to new interesting findings on regularization synergies. Another
obviously important extension is to go beyond the assumption of random noise. While random
noise is a natural assumption in some situations, there are clearly situations where noise may
be more pronounced for training examples that are "close" to other classes in feature space
and yet other situations where it is natural to assume adversarial noise.
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Figure 9: The mean accuracy on test data during training of 100 different random initializa-
tions, done with DRFit both with a numerical and a analytical solver and the same network
without regularization. This is done in with 30% label noise in class ones and 10% noise in
class sevens. In this simulation we have assumned that we don’t know anything about the
noise distribution so p = 1.
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Figure 10: The average accuracy on a test data for DRFit and pure ridge regularization during
training when trained on the classes cars and planes in the cifarl0 dataset. In order to vary
the noise we have done this in four different label noise settings. One with equally amount of
noise in both classes, one with 30% noise in class one and 10% in class two, one with 40% noise
in class one and no noise in class two and one setting with no label noise in the training data.
In all settings we have assumed that we don’t know anything about the noise distribution so
pr = 1. In order to get a better comparison the runs that crashed are removed.
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1 Abstract

Lasso and ridge regression are well established and successful models for variance reduction and, for
lasso, variable selection in regression problems where the number of estimated parameters is large com-
pared to the number of observations. That however comes with a significant bias for large parameters.
Many authors have, with varying degrees of success, suggested different modifications to come to terms
with this without sacrificing the benefits.

Here we propose a general method that learns individual weights for each term in the regularisation
penalty (e.g. lasso or ridge). To bound the amount of freedom for the model to choose the weights, a
new regularisation term, that imposes a cost for choosing small weights, is introduced. If the form of
this term is chosen wisely, the apparent doubling of the number of parameters vanishes, by means of
solving for the weights in terms of the parameter estimates.

This paper is focused on the case where the regularisation on the weights is unnormalized entropy.
The resulting optimisation problem is potentially nonconvex, but it is shown that convexity holds
under reasonable assumptions. The model is shown to produce consistent parameter estimates as the
number of observations n — oo, in the case where the number of parameters is independent of n.
Moreover we show that the lasso version of the model is sign consistent in a very strong sense, even
W};CII the number of nonzero parameters grows linearly and the number of zero parameters grows like
e .

Experimentally, the proposed method in four different forms is compared with adaptive lasso,
SCAD, standard lasso, standard ridge and standard OLS. The four forms are the lasso and ridge
versions (EWL and EWR), both with and without forcing hyperparameters to be chosen to guarantee
convexity of the corresponding optimisation problem. The comparisons are carried out on synthetic
data with varying degrees of noise variance and varying degrees of correlation between covariates. It
is found that EWL in both settings performs on par with adaptive lasso and SCAD, both in terms
of mean squared error and deviation of estimated parameters from their true values. EWR performs
well only when allowed to drop the convexity condition. The level of performance appears to be quite
insensitive to the choice of hyperparameters.



2 Introduction

Consider the standard linear regression model

Y =Xp"+¢

where X € R"*P is the design matrix, 8* € RP is the unknown parameter vector and £ € R" a
N(0,0%1,,)-distributed noise vector. Then the standard OLS estimator § = argming 1||Y — X3 =
(XTX)71XTY is the optimal estimator of 3* in several ways, provided that the number of parameters
is small compared to the number of observations. However, when the number of parameters is large,
a serious problem with the OLS estimator is its large variance and the risk of overfitting. Also, when
one purpose with the analysis is variable selection, another drawback of OLS is that the estimator
will never estimate any 8 as 0. In order to attack these problems, several different regularisation
techniques have been suggested. The general idea behind these is that one adds a penalty term to the
OLS loss. This term is typically increasing in the absolute values of the parameters. The regularised
estimator in its general form can the be formulated as

= axgmin 3 [Y — XG5+ £3(5:0). 1)

Here ) is a hyperparameter that determines the strength of regularisation, and 6 a set of hyperpa-
rameters that determines the shape of the penalty term. These can be optimised via cross-validation
on training data or performance on a separate validation set. For the following discussion, it is useful
to keep in mind what conditions for considering an estimator to be good are. Common such conditions
are the following.

e Unbiasedness. Parameter estimates should be unbiased or very close to unbiased, in particular
for parameters that are far from zero.

e Consistency of the estimated parameters; the parameter estimator converges in probability to
the true parameter as n — oo.

e Continuity. Parameter estimates should be continuous as functions of the data.
When the purpose of estimation is also variable selection, the following can be added.

e Sparsity. This means that (as many as possible of the) parameters whose true value is zero
should be estimated as zero.

e Sign consistency. With probability converging to one in the number of observations, all pa-
rameter estimates have the same sign as the true parameter (where sign(0) = 0).

Two examples of regularisation penalties, that are arguably the most commonly used (along with
the elastic net, a combination of the two), are ridge regression and lasso regression |Tibshirani, 1996].
These are both examples of the following special case of (1):

P
B = axgmin ||V — X513+ 2D 151" )
8 =

Here A and « are two hyperparameters that determine the strength and shape of the regularisation.
Taking o = 1 gives lasso regression and a = 2 gives ridge regression.

The lasso estimator gives rise to sparse estimates which are continuous with respect to data. In
[Knight and Fu, 2000] it is shown that when p does not grow with n and under mild conditions lasso is
consistent if X is chosen wisely. In [Zhao and Yu, 2006] it is shown that under similar conditions, it also
is sign consistent even when p grows with n provided that the growth satisfies some extra conditions.



(In [Zou, 2006] some cases where the parameter estimates are not consistent are also demonstrated.)
However it is well known that in practice, balancing variance against bias optimally in lasso regression
produces a large bias for large parameters.

For general o > 0, the estimator (2) is known as the bridge estimator, [Frank and Friedman, 1993].
In [Knight and Fu, 2000], it is shown that the bridge estimator can be consistent. In [Huang et al., 2008]
it is shown that when a < 1, the model can be sign consistent. In this case, the estimates also have a
small bias for larger parameters but fail to be continuous with respect to data. For o > 1 the estimates
are continuous, but cannot detect zero coefficients and have a larger bias.

Since no version of the bridge estimator satisfies all key properties, variants of the lasso esti-
mator have been developed, with the goal of reducing the bias and guarantee consistency and sign
consistency. One way to do this is to use a weighted version of the lasso estimator. Some exam-
ples of this are [Zou, 2006, Jung, 2011, Bergersen et al., 2011, Zhang, 2011, Javanmard et al., 2018,
Bellec and Zhang, 2019]. The first of these is the well known Adaptive Lasso Estimator. The idea is
to introduce a weight, w;, for each parameter §; and estimate (3 as

~ o1
B = argmin 1Y - XBIF + 23 w8
J
The word “adaptive” refers to that the weights are data generated; first an initial estimate, e.g.
an OLS estimate of 3 is computed, and then w is set based on that result. One suggestion from the
authors is to use w; = ﬁ, where 7 is a hyperparameter and § is the initial estimate.
J
Another approach is of course to use a loss penalty different from the Bridge loss. One successful
example of this is the Smoothly Clipped Absolute Deviation estimator (SCAD) [Fan and Li, 2001],
where

AL it 0< Bl <A
i|“—2aX A .
fBra)={ —BLZALEX yry < g <an
(a+1)A? . )
i if 18] = ar

Both the adaptive lasso and the SCAD estimator satisfy the criteria formulated above. However,
adaptive lasso relies on the quality of the inital estimates ;. We also need to do an extra estimation
step to find B, which may be costly. The SCAD estimator does not suffer from any of these drawbacks,
but it does not appear to be as robust with respect to the choice hyperparameters, as we will illustrate
with experiments in Section 7.

In this paper, we introduce a novel general strategy /point of view for reducing bias in regularisation
penalties. Like other techniques, e.g. adaptive lasso, we also use different weights w; for different
parameters 3;. Initially, we regard these as a set of new parameters, apparently doubling the number
of parameters of the model. However, by introducing regularisation on the weights of a wisely chosen
form on how the weights are penalized for being low and solving for them in terms of the g;:s, we end
up with a model with only two hyperparameters in addition to the $;:s. In Section 4 we introduce
the method and observe how solving for the weights gives an explicit expression for them in terms
of the B;:s. In Section 5 we present some properties when the method is used with lasso and ridge
penalties. Section 6 presents the numerical algorithms for optimisation. Finally Section 7 contains
results of numerical experiments and comparisons between ordinary least square (OLS), lasso, ridge,
adaptive lasso, SCAD and a few instances of the new method. Proofs are given in the appendix.

3 Notation

We are considering the standard linear regression model of the form

Y =X +¢



As is common, we assume that the design matrix X € R™*? is standardised so that each column
has mean 0 and standard deviation 1. The vector 5* € RP contains the true unknown parameters and
the &:s are independent normal with mean 0 and standard deviation o. Without loss of generality, we
assume that the first 7 elements in 8* are nonzero and that the next ¢ = p — r elements are zero. The
matrix C = X7 X corresponds to the correlation matrix for the columns in X. We sometimes write

XTX — Cn = |: C111 ClQ :|

C’2 1 CQ 2

where C7; € R™7" corresponds to the covariates of the nonzero parameters, Cyy € RI*7 the
covariates of the zero parameters and Cio = C2; € R™¥9 contains the covariances between non zero
and zero covariates. To consider consistency of the model, we use the notation 3}, A,, and ~,, to make
clear that these variables can change with respect n, even though we sometimes drop the indexes for
better readability when these can be understood. We use the same definition as in [Zhao and Yu, 2006|
for sign consistency.

Definition. An estimator Bn of 3} is sign consistent if

lim P(sign(Bn) = sign(8%)) =1

]
Here sign(a) = 1{a>0}—1{a<o} and the sign of a vector is considered element-wise: sign(zy,...,2n) =
(sign(xq), ..., sign(x,)). Loosely speaking, being sign consistent means that the estimator in the limit

works as a perfect variable selector.

4 Methods

Recall the general form (1) of regularization:
= 1
= argmin 5[V — X8I+ A7(5)

where \ sets the amount of regularisation. The function fA(3) can in principle be any function
with global minimum at zero, but for the purpose of efficient optimisation it is often chosen convex.
For lasso and ridge f(B) is ||3|]1 and ||3||3 respectively. Since both of these put an equal amount of
penalty on all parameters, they lead to biased estimates. As for e.g. adaptive lasso and SCAD, but
in a different way, we suggest a modification by extending the regularisation function to give each
parameter its own unique penalty weight:

. 1 P
(8,1) = arg min IV = XBIE + D Dy f(8) +(us log(uy) — uy + 1)) ®3)
,a j=1
By adding the weight parameters u1, ..., up, the amount of regularisation of 3 is determined dy-

namically. The term ~y(u; log(u;) — u; + 1) is a regularisation penalty on the weights that hold them
back from differing too much from 1 and the hyperparameter v determines the strength of this regu-
larisation. Since lim,_,o4(d/dz)x log(x) — x = —oco, we get 4; > 0 for all j. By setting v increasingly
large, the regularisation term will have an effect more and more similar to Af(5;).

The minimisation problem (3) now involves 2p parameters. However, it is easy to solve for u in
terms of §:

Theorem 1. Let (3,1) be as in (3). Then

~ o1 P _A
B:arg;mngllY*XﬁH%vZ(lfe A (4)

i=1



Hence in fact, since Theorem 1 makes away with the u;:s, we arrive at a model with only the two
hyperparameters A and v in addition to the regression parameters. However, it should be noted that
since 1 — ™% is a non-convex function, we cannot guarantee that the minimisation objective in (4) is
convex for an arbitrary choice of (A, ). In the following sections, we investigate key properties of (4)
theoretically and experimentally for the cases f(8;) = |8;| and f(8;) = 6 We name these instances
of the model as Entropy Weighted Lasso (EWL) and Entropy Weighted R7dge (EWR).

5 Properties of EWL and EWR

First consider EWL. This gives us the minimisation problem

B= mmeY Xﬁller“/Z(l*e 71831y (5)

Jj=1

A
Since the term (1 — 67;‘&‘) is not convex with respect to 3; we do not know for sure that the
minimisation objective has a unique local minimum. However in many situations, convexity holds with
just a small measure of care with the choice of (A, 7):

Theorem 2. Let s3 be the smallest eigenvalue of XTX. The minimisation problem (5) is convex
whenever vy > f:—;
“1

So given some prior knowledge on the design matrix X, we can guarantee convexity of the min-
imisation problem and hence that there is an unique local minimum, which is then of course also the
global minimum. Aslong as p < n, X X is typically not singular and it is reasonable to expect that s?
is of order n and the condition v > becomes that v/A2 > ¢/n for some finite constant ¢ independent
of n.

Choosing v < sometlmes indeed leads to multiple local minima and also non-continuous B with
respect to data. Thls is demonstrated in Figure 1 for the p = 1 setting. (It could be noted however
that in this case, the bias for large 8 is very small.)

The following result establishes that under mild conditions, the general estimator B in (4) is con-
sistent when the number of parameters p is independent of n.

T
Theorem 3. Assume 7" — v >0, Ao 5 A0 >0, Imnseo XW—X = C is nonsingular and that f is a
convex function. Let

- 1 L
5:arg[§nln§||YfXﬁH§+’ynZ(176 i) (6)
j=1

Then B —, argmin(Z) where

P Py
Z(8) = (B~ B)C(B— ) +70 Y (1 —e 0/ 5),
j=1
where we define the second term to be 0 if Ag = 0 or 9 = 0. Hence if v, = o(n) or A, = o(n),
then B is consistent.

The following result proves that with f(z) = |z|, i.e EWL, j is sign consistent as well as consistent
in a very strong sense under conditions of a different nature than those of Theorem 3.

Theorem 4. Assume that ||C|e < and ||Ca1l|leec < Kan for some constants K1, Ko < oo
independent of n, where || - ||oo is the co-operator norm. Assume also that there is a constant 6 > 0

Lish
n



such that for alln, n > X\, > n'/2+20 and \,|Bnj| /40 > n?® and |Bnj| > n~V2*2 forall j=1,...,7,.
Assume in addition that v, > 1 and g, < e’
Let L be the minimisation objective

1 on _An
L(8) = La(B: Y) = 1Y = XB)IB +9n (1 — e 1))
j=1
Then with probability at least 1 7787"6, L has a local minimum B such that with probability 1 — e’"é,
[|B = B*||oo < n~Y2*3 and sign(B) = sign(8*). Hence if L has a unique minimum, then

_ ) 1 Pn m
B = argmin | Z|[Y = XB)|3 4+ ) (1 —e %)
s |2 =

satisfies with probability at least 1 — e that [1B = B|lco < n~Y2%% and sign(B) = sign(8*).

Note that even though we allow g, to be very large (assuming that correlations between covariates
for zero and nonzero parameters respectively are correspondingly small), the existence of Cﬁl implicitly
assumes that r,, < n.

If the minimisation objective L(3) of Theorem 4 is convex, then it has a unique minimum and B
is sign consistent. By Theorem 3, this holds if A%/Wn < s%. If p, < m it is natural to expect that s% is
of order n and then there is room in Theorem 4 for choosing \,, and =, in that way without violating
the conditions of the theorem: e.g. v, = n®? and A, = n'/272" for a suitable i > 0.

Next we consider EWR, i.e. f(3;) = #2. This means that the regularisation term is now (1 —
e ). As in the case of EWL the minimisation objective is not necessarily convex for all A and ~.
The following theorem provides a sufficient condition for convexity.

Theorem 5. The minimization problem

7 = minL(9) =n;;n§<Y—Xﬁ>2+WZ<1—e-%ﬁ?>. (7)

2.3
. . s7€
is conver if A < L~

Interestingly, the constraint of Theorem 5 does not depend on v and if s? grows as order n. This
leaves correspondingly more freedom for choosing .

2 3/2
Setting A > 3164 can make the estimated parameters non-continuous with respect to data. When

it comes to consistency, Theorem 3 applies to conclude that 3 is consistent for constant p with v = o(n)
and \,, = o(n). However, EWR can obviously not be sign-consistent. Figure 1 plots /3 as a function of
Y forp=1.
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Figure 1: How /3 depends on y with EWL, EWR, SCAD and adaptive lasso for a single data point
y and a single parameter 8. In this case s7 = 1 and EWL is convex whenever v > A2 and EWR is

convex whenever \ < €3/2/4 ~ 1.12.

Note from Figure 1 that as long as EWL is convex, EWL and adaptive lasso give very similar curves.
Since both are based on the lasso penalty, this is not surprising. Also noticeable is the difference in
"width" of the "plateau" between EWL and EWR. The width in EWL is determined by A while ~y
determines how fast the bias is reduced as |y| grows. The shape of EWR is determined by A while v
determines the width of the plateau. (Of course strictly speaking EWR does not have a plateau, only
a plateau-like part around 0.)

6 Training algorithms
Training algorithm for EWL

Let L(B) be the minimisation objective in (5), To minimise L, we use coordinate descent: iteratively
minimise with respect to f;, keeping f;, i # j, fixed, run through j = 1,...,p and repeat until
convergence. The j’th component of the set of subgradients of L is

“Xe?fi B <0
—pitnfi+y [FAA B=0
e 5% 8 >0

where p; = X]T(Y — Xi2jBji), Xj is the j'th column of X, X, is X matrix except X; and f;;
is the vector 3 except j3;.

Set this to zero and solve for 3;. For this, we need to determine when the solution is nonzero and
if so, determine its exact value. First consider if there is a solution 8; > 0. We claim that this is the

case if and only if p; > X. A solution 3; > 0 exists if and only if
—pj+nBj+Are 7 =0
By substituting [)2- = %ﬂj the equation becomes
s N s A
i+ e ="p,
ny n

which is equivalent to
2

N A 5 A A A
AN Bi=pizs) — _ 2 —Piny 8
</5] Pj 7W) € n’ye (8)



Note that 0 > —2—26_’”% > —% if and only if p; > A; the upper bound is trivial and the lower
bound holds if and only if p; > . Hence this equation has no real solutions for p; < A, which in
particular rules out that there is a positive solution when p; < A (for p; = A, the solution is 0). For

pj > A, there are two real solutions, namely
A A2 A
e (Eeor) 2
ny ny

Y o2, P
=W - Pim -
B; b\ < n,\/e ”) + n’ )

where W is either of the two branches W, and W_ (the positive and negative branch respectively) of
the Lambert W-function, taking values in (—oo, —1) and in [—1, c0) respectively. However, as we will
shortly prove, the solution with W = W_ gives a negative value of ; and since we are looking for a
positive solution, this branch can be discarded. Now check that the solution with W = W produces
a positive value for j3;

Setting W = W, and requiring the right hand side of (9) to be positive, the resulting inequality
for p; gives

which gives

which is equivalent to

2 .
W+ (*)\767‘0’%> >,/\ﬂ_
ny ny

Since W, is increasing, taking the inverse yields

2
AN _p].ie—mn%
ny ny
which is equivalent to
A A2
<p17 — 7) 67[)]ﬁ > 07
ny ny

i.e. pj > X In short, whenever p; > X, one solution with respect to 8; of (8/98;)L(8) = 0 satisfies
B; > 0 and is given by (9). The solution is the unique positive solution provided that that using W_
in (9) gives negative values of 3. For this, note that setting p; = X gives

o' A A yAZ A
= (=L 212 4 2.
B A ( n'ye w)Jrn )\n'ern
Taking the derivative of 3; with respect to p; in (9) gives
dp; 1

— = <0
dp; (1 W <7A—267”9%’>>
ny
as the output of W_ is in (—oo, —1). Hence, since p; > A, we get 3; < 0.
By symmetry, the solution satisfies 3; < 0 if and only if p; < —A and is then given by

¥ A2 a Pj
= —W(— Piw 0
Bj Y ( n'ye )+ o

where W is again the positive branch of W.



Finally we need to establish that 5; = 0 is a solution whenever —A < p; < A. The subgradients
are —p; +nf; + [\, Al. With 8; = 0 this set becomes [-A — p;, A — p;], which includes 0 precisely
when -\ < p; <A

Putting all things together we end up with with the coordinate update

2 A "
WEEerE) 8 g
2 A ;
—IW(=25eP ) + 5 <A
In practice, in order to increase the numerical stability, we scale with n and make the substitutions
p=L A= % and 4 = . The training algorithm is summarised in Algorithm 1. Note that if v should
be chosen so that (5) is not convex, the algorithm can still be used and converges. However, we are
not guaranteed to converge to a global optimum.

Algorithm 1 Training algorithm with weighted L1 regularisation.

procedure TRAIN(X,Y ,\,7,N = max number of iterations, ¢ = tolerance)
A A/n
¥+ /n
B+ 0
for iteration = 0... N do
BB
perm = random permutation of [1...m]
for j € perm do
p = X (Y = Xin; Bizj) /1
if |p| > A then
. 2 _|,1A
Bj = sign(p)W (=3¢ 15) +p
else
6]' «~—0
if max(]3 — f|) < € then

Break loop
return [

Training algorithm for EWR

To solve the minimisation problem in (7) we start from equation (3) and solve for 8 and u iteratively.
By fixing one and solving for the other, we end up with the solutions:

are in SV = X813 + 37 D F(50) + (g log) — s + 1)] = [X7X + Adiag(w)] " XY

1 < i
arg min §||Y7X[5H§ + E Mui f(Bi) + v(uilog(w;) —w; + 1) = e A
u

i=1
By iterating between these two solutions, we get the solver in algorithm 2. If we use a A that
guarantees convexity, we end up in the global minimum of (7).



Algorithm 2 Training algorithm with weighted L2 regularisation.

procedure TRAIN(X,Y \,7,N = max number of iterations, e = tolerance)

u«1
S+ 0
for iteration = 0... N do
BB
B+ (XTX + Adiag(u)) "t XTY
u < 67[32%
if max(]3 — f|) < € then
Break loop
return [

7 Experiments

The experiments have been done with two collections of synthetic data sets. The collection for the first
experiment contains data sets with uncorrelated covariates and varying noise variance. The collection
for the second experiment consists of data sets that have a fixed noise variance, but varying degrees
of correlation between covariates. In more detail, the collections of data are as follows.

1. Experiment 1. Independent covariates in the design-matrix X € R'9°%20 and varying noise

variance o2 in the response: Each element in X is sampled uniformly in the interval [—25,25].
The first 5 elements in the true parameter vector * are sampled uniformly in the interval
[~10,10] and the rest of the 15 parameters are set to 0. Then Y is generated by Y = X* + &
where £ € N(0,0%I). The standard deviation o varies between 0 and 40 over the different data
sets in this collection.

2. Experiment 2. We create 3* exactly as for the first experiment; [1,..., s are chosen inde-
pendent and uniform on (—10,10) and s = ... = B30 = 0. The observations Y are sampled as
Y = XB* + ¢ with £ ~ N(0,02I) with 0 = 30. However, the design matrices are in this case
constructed with correlated columns. More precisely, X € R!'99%2V is set to X = ZD, where
Z € RY09%20 with elements sampled from a uniform distribution on the interval (—25,25) and
D € R?%20 ig given by for each k = 1,...,5, Dgx = 1, Dy 45 = Di k10 = Dy py15 = p and
Dy,; = 0 for all other i. In other words, the parameters have been split into five groups of four
parameters, each of which exactly one is nonzero and correlation is imposed within groups, but
not between groups. The correlation controlling entity p varies between 0 and 0.8 over the data
sets in this collection.

In both experiments, we evaluate each model by (i) normalizing the covariates, (ii) training it on
training data, including a hyper-parameter search with cross-validation, and (iii) evaluating it on a
separate test set. The evaluation is done in terms two different measures: (a) the L2 distance between
the estimated parameters and the true parameters and (b) the mean square error of predictions on the
test set.

Experiment 1. For each o, the models have been run on 100 independently sampled data sets and
the results displayed in Figure 2 are averages over these runs. For comparison, this has been done for
seven different estimators: ordinary least square, lasso, ridge, adaptive lasso, SCAD, EWL and EWR,
where the last two come with two hyperparameter settings each: one in the range where convexity of
the loss function is guaranteed and one without that restriction. Some of the results displayed have
been extracted in numeric form and are given in Tables 1 and 2 in the appendix.

Figure 2 displays the results of the evaluation. Figure 5 plots how the optimal hyper parameters
change with 0. The latter plot has been put in the appendix as it does not seem to reveal any
noteworthy observations.
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In addition, Figure 3 displays proportions of parameters estimated correctly in terms of their signs
as functions of the amount of regularisation. This is done with ¢ = 30 for the relevant models, i.e.
SCAD, lasso, adaptive lasso and EWL.

Looking at the results in Figures 2, it is noteworthy that EWR greatly benefits when allowed
to move into the non-convex setting, whereas EWL behaves well already with convex loss. Overall,
SCAD, adaptive lasso, EWL in both settings and EWR in the non-convex setting show very similar
performance.

The most interesting observation to make in Figure 3 is that SCAD stands out. While the curves
for lasso, adaptive lasso and EWL are almost indistinguishable, SCAD is clearly more sensitive to the
amount of regularisation for being sign-consistent.

linear regression
lasso

linear regression

—— lasso

=
N
3

ridge 400 ridge
1.00 adaptive lasso adaptive lasso
~ ° —— SCAD 300 SCAD
i —— convex EWL w —— convex EWL
075 EWL > 22 EWL
<cq —— convex EWR // 200 —— convex EWR
=050 EWR = EWR yZ
025 100
0.00 - 0
0 10 20 30 40 0 10 20 30 40
(o4 g

Figure 2: The average Lo distance between the estimated parameters B and the true parameters 3
(left) and the mean squared error of predictions on test data (right) over 100 runs as functions of the
noise standard deviation for nine models on uncorrelated covariates.
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Figure 3: The proportion of correct signs on estimated parameters /5 as functions of A\. The blue curve
represents the proportion of nonzero parameters that are estimated with the correct sign. The green
curve shows the proportion of zero parameters that are estimated as zero. These models are trained
on data where X € R'90%20 where 5 of the true parameters are separate from zero. Each element in
X are sampled from a uniform distribution on the interval [—25,25]. The standard deviation of the
noise is set to o = 30. In each setting parameters except A has been fixed to a constant or in the case
of EWL such that the loss function is convex. Since these only determines the penalty shape these
will not affect the amount of correct signs.

Experiment 2. The procedure is very similar to that of Experiment 1. For each p, the models have
been run on 100 independently sampled data sets and the results displayed in Figure 4 are averages
over these runs. For comparison, this has been done for the same estimators as for Experiment 1:
ordinary least square, lasso, ridge, adaptive lasso, SCAD, EWL and EWR, where the last two again
come with two hyperparameter settings each: one in the range where convexity of the loss function is
guaranteed and one without that restriction.

As for Experiment 1, some of the displayed have been extracted in numeric form and are found in
Tables 1 and 2 in the appendix.

Figure 6 plots how the optimal hyper parameters change with the amount of correlation. The plot
has been deferred to the appendix.

12 — incarregression — inear regresson
J— 250 J—
— idge — idge
adapive lasso adapive lasso
1.0 — scAD — scAD

—— convex EWL 200 —— convex EWL
o~ EWL EWL
0g — gy 7*//4% — e

ey = 150
06
) \ 0 -~
~— =3 w—/
T
0.0 0.2 04 0.6 08 0.0 02 04 0.6 08
P P

Figure 4: The Lo distance between the estimated parameters B and the true parameters 5* (left)
and the mean square error of predictions on the test set (right) as functions of correlation between
covariates as p varies between 0 and 0.8. The results displayed are averages over 100 runs. The solid
lines correspond to the mean distance and the dashed lines correspond to the 95% confidence intervals.
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8 Discussion and open problems

We have introduced a novel method of reducing the bias of an estimators based on regularisation
penalty on the parameter estimates and studied its properties theoretically and experimentally, mainly
when used together with an L1 or an L2 penalty. This gave rise to the EWL and EWR losses, which
under some conditions have been shown to be convex and the corresponding estimators have been
shown to be consistent. Under other assumptions, EWL has also been shown to be sign consistent,
making it an asymptotically consistent variable selector.

Comparing to adaptive lasso, EWL can be optimized without any pre-estimation of parameters,
making EWL more efficient when trained on large data-sets and many parameters and also independent
of the quality of the initial estimates. This gives EWL an edge. Experiments suggest that the two
methods are equally robust with respect to hyperparameter settings and perform equally well with
respect to bias and prediction. However as mentioned in [Zou, 2006] efficient algorithms such as LARS
can be used to optimize the A parameter in adaptive lasso.

In comparison with SCAD, EWL no longer has an edge in not having to pre-estimate the param-
eters, since this goes for SCAD too. In terms of bias and prediction, SCAD performs on par with
EWL and adaptive lasso. However, experiments suggest that SCAD is more sensitive to the choice of
hyperparameters for sign-consistency, giving EWL an advantage provided that this holds in general.

EWR does on average not seem to perform as well as the other three. However, to which extent this
is true seems to depend heavily on if hyperparameters are allowed to be chosen such that the EWR
loss becomes non-convex or not. EWL is not nearly as reliant on this and the experiments do not
suggest that we should make any definite conclusion on whether or not the optimal hyperparameters
are within the convex regimen or not. Regarding the non-convex settings, it should be noted that
the experiments may neither have found the optimal hyperparameters nor the optimal /3 for the given
hyperparameters. Thus EWL and EWR are potentially better than what we have found here, given
an efficient method for non-convex optimisation.

Open problems for future research are e.g.

e Is EWL optimal for hyperparameters that make the loss convex or not? When the EWL loss is
not convex, can we find the optimum efficiently? The latter question also applies to EWR.

e How do EWL and EWR perform on more complex models, such as deep neural nets? How do
they work for classification rather than regression, or a combination of the two?

e The regularisation function on the weights u;, i.e. # — xlog(z)—, is natural and also convenient
as it allows for a closed expression of u; in terms of ;. However strictly speaking, it is rather
arbitrary. Are there other functions that perform better?
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9 Appendix

Plots of model hyperparameters as functions of experimental settings
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Figure 5: The average optimal hyper-parameters with respect to MSE for EWL and EWR, both in
the convex and in the non-convex setting with uncorrelated covariates as functions of . The dashed
lines correspond to the estimated 95% confidence intervals based on 100 sample points.
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Tables

c=17.78,p=0

o =23556,p=0

o =30, p=0.36

o=230,p=0.71

Linear regression
Lasso
Ridge

Adaptive lasso
SCAD
EWL convex
EWL
EWR convex
EWR

246.12 +£5.29
143.65 =4.54
2446+ 5.2
92.93 £4.93
73.49 £2.72
80.91 £ 2.75
79.9+£2.94
159.13 £ 3.18
99.41 £ 2.86

230.94 £20.4
139.37 £ 18.95
230.46 £ 20.7
83.89 £ 15.21
73.06 £ 16.38
85.98 4= 14.46
80.02 +14.16
170.15 £ 14.1
98.02 4+ 14.73

246.12 £ 18.38
143.65 £ 16.29
244.6 £17.88
92.93 +£19.14
73.49 £10.41
80.91 £ 10.02
79.9+12.64
159.13 £11.42
99.41 £+ 15.89

230.94 +15.45
139.37 £ 12.36
230.46 £ 15.41
83.89 £ 11.88
73.06 £10.13
85.98 £ 10.58
80.02 £ 16.32
170.15 £ 11.75
98.02 +14.15
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Table 1: 95% confidence intervals of the mean square error for each method on four different datasets.



c=1778, p=0| 0 =35.56, p=0 | 0 =30, p=0.36 | 0 =30, p=0.71
Linear regression 0.6 +0.02 1.24+0.04 1.1+£0.04 1.18 £0.05
Lasso 0.44 £0.02 0.91 £ 0.05 0.76 £0.04 0.72 £ 0.05
Ridge 0.6 £0.02 1.19+0.04 1.1£0.04 1.174+0.05
Adaptive lasso 0.33 £0.03 0.65 £ 0.05 0.52 £ 0.06 0.41 £ 0.05
SCAD 0.3 +£0.02 0.65 £ 0.05 0.46 £0.04 0.34 £0.02
EWL convex 0.3£0.02 0.67 £ 0.05 0.5+ 0.04 0.39 £0.03
EWL 0.3£0.02 0.65 £ 0.05 0.48 £0.05 0.36 £0.04
EWR convex 0.45 £0.01 0.92£0.03 0.85+0.03 0.93 £0.03
EWR 0.31 £0.02 0.68 £0.05 0.56 £ 0.05 0.49 £ 0.06

Table 2: 95% confidence intervals of the L2 distance between true and estimated parameters on four
different datasets.

Proofs

Theorem 1. Let (3,1) be as in (3). Then

- 1 L
B = argmin g [Y = XBI +7 3 (1 /™) (11)
i=1

Proof. By optimizing over u in equation (3) we need to solve
01 5
%5\\1/ — XB3+ > Puif(B) + v(uilog(u;) — u; +1)] = 0

L -

for all j, which is equivalent to

Af(B7) 4 v log(u;) = 0.

Solving for u; gives us

Inserting this result into (3) we end up with

p
ar%min %HY - XB13+ Z i f(Bi) + y(uilog(u;) —u; + 1)) =

i=1
1 u £(8) 185 £(80) £(89)
argmin =||Y — X8||2 + )\cwa Bi +’y(37*7 logcfA*v —(:7*7 +1)| =
gﬁ 2 2

i=1

1 P
arg min EHY — XBl3+ 72(1 — 5 )
s i=1
This finishes the proof.
O

Theorem 2. Let s3 be the smallest eigenvalue of XTX. The minimisation problem (5) is convex
whenever vy > i‘—;
1
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Proof. Let L be the minimisation objective in (5):

P
L(B) = %HY ~ XBIE+~ Y (1 - eI,

i=1

Consider the gradient and the Hessian at the points 3; # 0Vj. They are

Sign(ﬁl)(%wl‘
Lg(ﬁﬁ) =—XT(Y - XB)+ ) :
sign(By)e” 717!
823[,;5(2/3) =xTx - diag <|:%267%‘5“:|> (12)

We want to determine for what values of A and ~ the Hessian is positive definite for each value of
B with nonzero coefficients. Since
8L A2 A2
LB Sy (xrx — A ) s 2o X
op? gl ¥
for all b € RP, it follows that the Hessian is positive definite whenever s3 > A2/v. Hence L is convex
within each (closed) orthant.
It remains to check that L is convex on the union of the 27 orthants. To this end, fix an arbitrary
€ > 0. For a subset P of {1,...,p}, let

Op = [0,0)F x (—o0,0]"".

and )
OF = [—¢,00)F x (—00,¢™".
Define
Lp(B) = IV = XBIE+1(D_ e+ Y /), e 0F.
jepP jepe
Observe that L = Lp on Op for each P, but that Lp is defined on a slightly larger domain than Op.
A
In analogy with the above, Lp is convex on its domain whenever s? > )\726764
Consider now two adjacent orthants Py and P, (i.e. such that points in the interior of Op, and

points in the interior of Op, have the same sign for each coordinate but one). It is easy to see that
Lp, > Lp, on o n 0;2 The restriction, Ly, of L to Op, UOp, can thus be written as

Lp,(B) B €Op, \Op,
Ly(B) = max(Lp (8),Lp,(B)) B€Op NOp,
LPz (ﬂ) ﬁ € OP2 \OP1

Since O;l ﬂO;z is convex and the restriction, L¢, of L there is the maximum of two convex functions,
L¢ is convex. Now we have that the restriction of Lp, to Op, and L¢ agree on the intersection of their
domains (which are Op, and O;l N O}t,z respectively). We also have that each line with one end point
in Op, \O;2 and the other end point in Op, \ Op, passes through an open interval of points in the
intersection Op, N O}JS2 of the two domains. From that observation, it is an easy exercise in convexity
to conclude that the restriction of Ly to O}tl (i.e. the union of the two domains under discussion) is
convex. By the same reasoning, it then follows that Ly is convex.

Now pair off the 2P orthants into 2! pairs of adjacent orthants. Then the restriction of L to each
of these pairs is convex. Next pair off these pairs in turn into 2P~2 adjacent pairs. It then follows that
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L restricted to each of these quadruples of orthants is convex. Now iterate this until all orthants have
been united.
Since € is arbitrary, this concludes the proof.
O

T

Theorem 3. Assume 12 — v5 > 0, Aoy A0 >0, limyyeo X = C is nonsingular and that f is a

convex function. Let

- 1 P
B = argmin 5|V — X813+ 5, (1 ) (13)
j=1

Then 3 —, argmin(Z) where

P o
Z(B) = %([J’ —BCB—B) + 7Y (1- eIy,

j=1
where we define the second term to be zero if Ao or o is zero. Hence if v, = o(n) or A\, = o(n),
then (B is consistent.

Proof. We start by using Y = X3* 4+ £ and setting Z,, to

1 n 1 " "
Za(B) = oIV = XBIP+ 231 — eIy = X846 - XBIP+ 23T (1 - eI E)
2n n 2n n
=1 Y

i=1

T *
= (- e -+ EXE A L EE) %'Zﬂ e300

Note that 3 = arg ming Z,(8). In order to prove the result, it suffices to show that
2

sup |Zn(B) — Z(B) — %\ —, 0. (14)
BEK

for any compact set K C RP and that
B = Op(1). (15)
Inserting Z,, into (14) gives

sup |Zn(ﬁ) - Z(ﬁ) - ‘72| =
BeK

L. XTX “ EXB-p) &
S%P [5(5 - BT (T*C> (B *ﬂ)JFT om 2

P P
Tn —2n (5 —20£(8:)
— 1— Tn — 1— Y
o E (1-—e ) 'mE (I1—e )

i=1 i=1

Since X — | ene — 02, 22, 20 the first four terms vanish. For (14), it remains to consider the
last two terms and show that the left term converges to the right term. When 7 > 0 the convergence
is trivial. When 9 = 0 we use the fact that

P
n =22 f(8;) In
0< 1-— n < 0
< ;:1( e ) o
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This proves that (14) holds. Next we show 3 = O,(1). Observe first that for the OLS estimate:
S o1
B = axgmin [V~ XBI3 = 0,(1).
B8 n
If we can show that there exists a dp s.t. B must be in the ball

B={B+0v:|lvll2=1, 13 <o}
the proof will be concluded. We will show this by finding a Jy s.t.

Z,,,(B +ov) — Zn(B) >0 (16)
whenever § > &y, implying that Z,, can have no minimum outside of B. Using the definition of Z,

and simplifying gives us that (16) is equivalent to

62 TX6 W XTX .

%VXTXV + fT” — (B =B+ 7n ;(e 1B _ =3Iy 5

for every unit vector v. Lower bounds of each term on the left hand side are
5? 5252
—vXTxy >
" V=
€ Xov __|lelladsy

n - vn

T
X

5 > —||8" - Bll20s?

14
Tn -2 f(8i) _ %;ff(/ﬂ(su)b > Tn —2nf(8;) _ In
e )z Z - p.

: n n
i=1 i=1

where s? and sfj are the smallest and largest eigenvalues of
E[llgll2] _
NG

find a § s.t.

XZX respectively. Observe that

O,(1) making the term bounded. Putting it all together gives us that it is suffice to

st (llEll2sp
2 NG
Since this is a quadratic equation in §, s; # 0 and each term is bounded in probability with respect

to n, there exists a dy = Op(1) s.t. (16) holds for all |6 > do.

This shows that 8 must be in B since for values outside B we have Z,(8 + dv) > Z,(3). This
completes the proof.

* Tn An £(8;) "/n
+ -y 0+ — E n > 0.
118 ||25 ) e ” n p=

O

Theorem 4. Assume that ||C|e < % and ||Caillee < Kan for some constants Ky, Ky < 00
independent of n, where || - ||oo is the co-operator norm. Assume also that there is a constant 6 > 0
such that for all n, n > X\, > n'/2+2 and X\, |Bnj| /70 > n?® and |Bnj| > n~V/2F% forallj=1,...,
Assume in addition that v > 1 and g, < e’

Let L be the minimisation objective

Th-

Pn
L(B) = Ln(8;Y) = fHY XB)IB +7m Y (1 — e 325,

Jj=1
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Then with probability at least 1 7767"6, L has a local minimum B such that with probability 1 — e’
[|B = B*||oo < n~Y2*3 and sign(B) = sign(8*). Hence if L has a unique minimum, then

)

- 1 Pn o
o= argmin | [V = XH)[F 470 31— e M)
j=1

satisfies with probability at least 1 — e that [1B = B*|lcc < n~Y2%% and sign(B) = sign(8*).

Proof. For convenience, we drop the subscript n from ~, A, §;, p, 7 and q.
The SSE-term in L can be written as

SSBB) = IV~ XB)I = SlIEll +€7X (5" — ) + (5" — BT XTX(5" ~ )

where the second term can be written as 3, /n(8;—87)Z; where Z = (Z1, ..., Zrig)T ~ N0, XTX/n).
Now write 8 = (¢7,%T)T where ¢ = (B1, ..., B:)T, ¥ = (Brt1, s Brig) ¥ and Z = (Zg,Zlf)T. Write
as above

XTx — { Cn Cr2 }

Co1 Co
‘We can now write L as
1 1 A
L(B) = SIS+ 58— BIXTX(B =5+ Y [ValB; = B2, +(1—e 317

J

Now set 1) = 1p* = 0. We claim that there is a ¢ in the same orthant as ¢* such that (¢7,07)7 is
a critical point of L. Proving this, we will prove that

An

VinZy+C11(d— ¢*) + Ae mr_ =0 (17)
Vj:—-A< \/HZU,)J' + (021((;) - (f)*))J <A (18)

Here (17) is the condition that the gradient of L as seen as a function of ¢ at (¢, 07) vanishes and
then (18) that the zero vector is a subgradient of L seen as a function of ¢ at (¢, 07). To prove this,
we will first show that a solution to (17) is obtained sufficiently close to ¢* so as to be in the same
orthant as ¢* and then that this solution automatically also satisfies (18). To prove the former claim,
we will show that Newton’s method for solving (17) started from ¢(®) = ¢* converges well within the
same orthant as the starting point.

Since by assumption A|@;|/vy > n?®, we have with L(¢) = L((¢7,07)7),

VLi(6") = VnZg + Nsign(e})e 21 5_y = VnZy +o(e™)

and

A

2 N
V2L1(¢%) = Cyy — %diag (e*?‘%‘) = Ch — o(e™™ )L
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The first update step with Newton’s method gives

—1 . 5

oM — ¢ = oy, — o(e’”d)I] {\/EZ¢ Tole™)] = VNCH Zg 4 o(e™™ 1.

Note that with probability 1 — o(e’"%) we have for a given j that |Z;| < n’ and since g < 6"6, this
holds simultaneously for all j with probability 1—0(6’"6). This gives us that |¢51) —¢§°)\ < Kyn~1/2+6
and ||¢™M) — ¢*||so < K1n~1/2+%. We now proceed to show that after this, Newton’s method converges
very fast, in particular fast enough to ensure that ||¢ — ¢(0||oe < 2K n~1/249,

Note that as long as

" 1
ll¢ = &"lloe < G~ 1/2+20 (19)
we have
3
A—ze_%“b‘ <m=o(e™™").

A Taylor expansion of VL(¢); gives

3 A k—1 o
VLi(9); = VL(¢* ), + (Cra(¢ — 6% )); + ;—726?‘4’( (¢ lky2

where ( is between ¢; and ¢§k_1). Since Newton’s method by its nature chooses ¢*) so as to make
the sum of the first two terms on the right hand side sum to 0, it follows that

X k k—
VLi(6®),| < mlg — oV,
ie.
IVL1 (6%)||oo < ml[¢*) — gD [2. (20)
Taking the k + 1’th Newton step and provided that |[|¢®) — ¢(9)||o, < 2K;n~1/2+% we get

D _ (k) = (Cu + o(e*"”)y] VLi(¢"),

which implies

. K .
16049 = 60 oo < VL1 (6™®))|eo- (21)

Taken together with (20), (21) gives

o) — kD2

kD — 6| < Kim
- on

_ Now since [|¢() — (;5%0)”(>c < Kyn~12*e {$(} converges well within the marginal of (19). Taking

& = limy, ¢® | it follows that ¢ solves (17) and satisfies

llp®) — gE=D)]|

— N 2K1m
16 — %o < 1
n
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In particular (E]- and ¢} have the same sign for all j with probability tending to 1 as n grows.
Since ||¢ — ¢% |00 < 2K1n~1/2€ it also follows that with probability tending to 1,

[[V1Zy 4 Ca1 (¢ — ¢5)|loo < n/?H0 4 2K, Kon/270 < A,

In other words, (¢7,07)7 satisfies (18).

Finally it needs to be shown that the given critical point is a local minimum. It then suffices to
show that the function L;(¢) is convex in a neighborhood of ¢. To this end, recall from above that
e=M%il/7 < en” . Then exactly as in the proof of Theorem 2, it follows that the V2L, (¢) is positive
definite in a neighborhood of ¢ whenever v > A2e—n’ /¢, where ¢ is the smallest eigenvalue of Ciy,
which is true by assumption as v > A\/n and ¢ is of order n.

O
Theorem 5. The minimisation problem
~ 1 Ag2
= min L(#) = min - (Y — Xf)? 1—e 5%, 22
B = min L(§) = min ( B) +v;< e ) (22)
929%
is conver if A < L~
Proof. We start by calculate the Hessian with respect to 3
0L T A2 :
82%5) = XTX + diag [me*%ﬁf - 45375*% 5] (23)

In order for L to be convex we need the Hessian to be positive definite for all 5. The eigenvalues
of the right hand side can be no smaller than when the function

2
R(Bi) = 2Xe™ 257 — 45§Lef%ﬁf
Y

is minimised. We minimise by taking the derivative and set to zero.

Oh _ BN —apr _gBX ag  oBIN —am (PN ap {3 - 2535} =0
Y Y Y

B v 72
This gives us the solutions 3; = 0,3, = + % where 5 = 0 corresponds to a maximum and

Bi ==+ % to a minimum. Substituting the minimum points into equation (23) for each ; we end

up with

92L(B)

T _3
g = XX —aeiL

2

The eigenvalues of this matrix are {(512 — 4/\6_%)} where s7 are the eigenvalues of XTX. Now

3
2.5
sjez2

17— Wwhere 52 is the smallest eigenvalue of X7 X.

solving for A we need that \ <

O
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