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ABSTRACT
This study focuses on the processability of four low-alloy steels (AISI 4130, 4140, 4340 and 8620)
via laser-based powder bed fusion (LB-PBF). In the as-built condition, the alloys consisted of
tempered martensite that was the result of an intrinsic heat treatment (IHT) during LB-PBF.
In terms of defects, a distinct transition in porosity was observed that correlated to the
volumetric energy density (VED). At low VED, specimens contained a lack of fusion porosity,
while at high VED, they contained keyhole porosity. Additionally, cold cracking was
observed in 4140 and 4340 specimens produced at low/intermediate VEDs. This cracking
could be mitigated by increasing the VED or laser power, as both enhance the IHT. This
enhanced IHT lowered the material hardness below specific thresholds (<500HV 4340 and
<460 4140), increasing ductility and allowing the specimens to avoid cracking. From these
findings, crack-free, high-density (>99.8%) low-alloy steel specimens were produced without
the requirement of build plate preheating.
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Introduction

To date, the number of commercially available alloys
for laser-based powder bed fusion (LB-PBF) remains
limited. This is especially true for ferrous alloys,
most of which are restricted to low-carbon contents
(<0.05 wt-%), as this makes them easier to process
with LB-PBF. However, this lack of carbon in ferrous
alloys limits the use of LB-PBF components in struc-
tural applications and for functional prototyping.

In these applications, a cheap and robust material is
required, providing a use case for low-alloy steels,
which offer good hardness, strength, ductility, tough-
ness and wear resistance while still maintaining a low
cost [12]. The higher carbon content (0.2–0.6 wt-%)
of low-alloy steels noticeably improves the hardenabil-
ity of the material, providing a high strength and tough-
ness. However, this increased hardenability has proven
to be a challenge during LB-PBF, as it promotes the for-
mation of martensite due to the rapid cooling rates that
occur during processing [3]. This, combined with
residual stresses from rapid cooling [4–6] and the trans-
formation of martensite [78], can lead to cracking
within the material that will significantly affect the pro-
cessability of such materials when using LB-PBF.

A number of low-alloy steels have already been suc-
cessfully processed with LB-PBF, including HY100 [9],
AF9628 [10], 4130 [11], 4140 [12–14] and 4340 [1516].
These studies indicate that build plate preheating is
advised to successfully minimise cold cracking within
the as-built components. However, there is still a

general lack of knowledge regarding the effect of LB-
PBF processing parameters on crack formation and
mitigation. In addition, almost no work has been
done on the propensity for cracking when build
plate preheating is not applied.

Understanding the types of defects, their character-
istics (size, shape, location, etc.) and their formation
mechanism(s) is extremely important when develop-
ing robust processing windows for additively manu-
factured components that achieve the desired
mechanical properties [1718]. The present study
aims to provide a basic understanding of the micro-
structure and defects that form during LB-PBF for a
variety of low-alloy steels (AISI 4130, 4140, 4340 and
8620) when no build plate preheating is applied.
This is done by investigating the types of defects
formed in relation to the applied LB-PBF processing
parameters. Ultimately, the study defined processing
windows for each examined alloy that produced
high-density (>99.8%), defect-free specimens without
the requirement of build plate preheating.

Materials and methods

Materials

Low-alloy steel powder produced via open furnace
metallurgy and gas atomisation, provided by Sandvik
AdditiveManufacturing (Osprey® powder) andHöganäs
AB, was used as the feedstock material in this study. The
chemical composition of each powder is listed in Table 1.
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Analysis of the AISI 4140 alloy involved two compo-
sitions, a high-carbon variant and a low-carbon variant,
referred to as 4140HC and 4140LC, respectively. The
AISI 4140LC, 4340 and 8620 powder grades had a sup-
plied sieve fraction of 15–45 µm, while the AISI 4130
and 4140HCpowder grades had a supplied sieve fraction
of 20–53 µm.The correspondingD10,D50 andD90 values
of each powder grade are listed in Table 2.

LB-PBF specimen fabrication

LB-PBF was performed with an EOS M100 machine
(EOS GmbH, Germany) equipped with a Yb-fibre

laser that had a maximum laser power of 200 W and
a beam diameter of ∼40 µm. During processing, an
Ar atmosphere was maintained within the build
chamber, where the oxygen content was kept at
∼0.1%. In addition, no build plate preheating was
used during processing.

Volumetric energy density (VED) was used to rep-
resent the energy input. It is a function of the laser
power (P), hatch spacing (h), scan speed (v) and
layer thickness (t):

VED = P
v∗h∗t . (1)

Fabrication of 10 × 10 × 10 mm3 specimens was
done in a VED range of 60–220 J mm−3. In this
study, two parameters – the layer thickness (20 µm)
and the hatch spacing (70 µm) – were fixed when
altering the VED, as previous investigations with
iron powder have found these values to provide ade-
quate overlap between deposited melt tracks and
layers [19]. When altering the VED, three different
levels of laser power were used: 110, 140 and 170 W.
Using these sets of parameters, the VED was changed
by adjusting the scan speed from 350 to 2000 mm s−1.
The scanning strategy for the specimens involved a
5 mm stripe pattern and a scan rotation angle of 67°
between each layer. In addition, no outer-skin or
top-skin parameters were used during exposure.

Heat treatment of as-built specimens

Selected specimens underwent additional heat treat-
ment following LB-PBF. This involved either (i)
quenching, entailing austenisation at 900 °C for 1 h,
followed by quenching in oil or (ii) quenching and
tempering, entailing the same austenisation and
quenching procedure used in (i), followed by temper-
ing at 500 °C for 2 h. The aforementioned heat treat-
ments were performed in a Carbolite CWF 1200 box
furnace, where an inert atmosphere of Ar gas
(99.998%) was maintained during each heat treatment.

Metallography and specimen analysis

Metallography involved sectioning the as-built speci-
mens parallel to the build direction (XZ). Sub-
sequently, the specimens were mounted, ground and
polished down to 1 µm with diamond paste using a
Struers TegraPol machine. After polishing, selected
specimens were etched using nital (3%). Images of
etched and unetched specimen cross-sections were
collected using a Zeiss Axiovision 7 optical micro-
scope (OM) and a Leo Gemini 1550 high-resolution
scanning electron microscope (HR-SEM).

The as-built specimen density was measured via
OM images of unetched XZ specimen cross-sections
using ImageJ analysis software [20]. The melt pool

Table 2. Particle size distribution of the examined low-alloy
steel powder grades.

D10 (μm) D50 (μm) D90 (μm)

AISI 4130 28.7 43.5 64.8
AISI 4140 (LC) 19.9 32.3 50.8
AISI 4140 (HC) 25.9 39.8 60.2
AISI 4340 24.0 34.2 49.0
AISI 8620 23.2 34.8 51.7

Table 1. Chemical composition of the examined low-alloy
steel powder grades in wt-%.

%C
%
Ni

%
Cr

%
Mo

%
Mn %Si %P %S

AISI 4130 0.34 — 1.0 0.20 0.60 0.30 0.010 0.006
AISI 4140
(LC)

0.43 — 1.0 0.20 0.75 0.29 0.006 0.004

AISI 4140
(HC)

0.47 — 1.0 0.20 0.60 0.20 0.011 0.007

AISI 4340 0.43 1.9 1.0 0.30 0.60 0.17 0.010 0.005
AISI 8620 0.20 0.7 0.5 0.23 0.80 0.35 0.010 0.005

Figure 1. OM image of the unetched top layer found in an AISI
4140LC specimen produced at 160 J mm−3 using a 140 W
laser power. Measurement of the melt pool depth was con-
ducted by measuring the depth of this unetched top layer
using ImageJ software. An example measurement of the
melt depth (as well as the corresponding value) is included
in the figure using a black line and text.

Table 3. VED chosen for porosity image analysis. All listed
specimens were fabricated using a 140 W laser power.

Region I Region II Region III

AISI 4130 60 J mm−³ 110 J mm−³ 200 J mm−³
AISI 4140 (LC) 60 J mm−³ 110 J mm−³ 200 J mm−³
AISI 4140 (HC) 60 J mm−³ 110 J mm−³ 200 J mm−³
AISI 4340 60 J mm−³ 110 J mm−³ 200 J mm−³
AISI 8620 60 J mm−³ 110 J mm−³ 200 J mm−³
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depth was estimated by measuring the top layer of
etched specimens (see Figure 1). For each set of pro-
cessing parameters, 10–15 melt pool depth measure-
ments were conducted.

In select specimens (Table 3) the roundness and
aspect ratio of the pores was analysed to define the
pore shape, while the size distribution of the pores,
based on the feret diameter, was analysed to define
the pore size and overall size distribution. Any pore
with an area <20 µm2 was filtered out to reduce
noise. Additionally, all cracks in the material were
excluded during this analysis and all OM images had
a resolution of at least 1.08 µm per pixel.

Fractography analysis was conducted on select
specimens that displayed cracking defects. To prepare
these specimens, a 1–2 mm incision was made on the
specimen surface in a direction that was parallel to a
crack on the opposite specimen surface. This incision
was then used to fracture the specimen to reveal
said crack, which was subsequently evaluated using
SEM.

Measurement of the bulk hardness was conducted
on as-built and heat-treated specimens. These
measurements involved 16 HV10 indentations that
were spaced 2 mm apart. Measurement of the micro-
hardness across the crack interface was conducted
on select as-built AISI 4140LC, 4140HC and 4340
specimens. These measurements involved six HV0.1
indentations above and below the crack interface
that were spaced 0.1 mm apart. A DuraScan 70-G5
machine was used for all hardness indentation
measurements.

Results and discussion

Porosity in as-built specimens

Measurement of the as-built specimen density
revealed its strong dependence on the VED,
where three distinct regions could be identified
(see Figure 2). At low VED (Region I), irregularly
shaped pores (up to 500 µm in size) could be

Figure 2. Relative density as a function of VED for each examined low-alloy steel. Marked areas (I, II or III) denote the defined
process regions, where the segmentation of each region is marked using dashed box lines. Region II represents the ideal proces-
sing window where specimen densities of >99.8% are produced.
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found within the as-built specimens (see Figure 3).
These characteristics, coupled with the presence of
unmelted powder particles, helped identify them
as lack of fusion defects [2122]. The formation of
the lack of fusion porosity at these low VEDs was
not caused by inadequate bonding between layers,
as the melt pool depths were much larger than
the chosen layer thickness (see Figure 14). Instead,
the lack of fusion porosity formed due to
inadequate overlap between deposited melt tracks.
This insufficient overlap could be observed within
the top surface of the specimens, as lower VED
specimens had a more irregular surface that con-
tained numerous cavities between deposited melt
tracks (see Figure 4a). These issues of surface irre-
gularity and cavities went away once higher VEDs

were used that allowed for adequate overlap
between melt tracks (see Figure 4b).

At high VED (Region III), oval-shaped pores (up to
150 µm in size) could be found within the as-built
specimens (see Figure 5). These pores formed at the
bottom of the melt pool boundaries (see Figure 5)
and could be identified as keyhole porosity [23–25].

At regions of intermediate VED (Region II), high-
density (>99.8%) specimens with minimal porosity
could be produced (see Figure 6).

Quantitative image analysis of this porosity was
conducted to define the size, shape and distribution
of pores from each process region. The results of
this evaluation (see Table 4 and Figure 7) indicated
that a majority of the cumulative porosity area in
Region I specimens consisted of larger pores

Figure 3. (a) Lack of fusion porosity in an AISI 4140HC specimen produced at 60 J mm−3 using a 170 W laser power. (b) Higher
magnification of image (a). (c) Higher magnification of image (a) showing a lack of fusion porosity within a partially sintered pow-
der particle (outlined by the black box).

Figure 4. (a) Top surface of an AISI 4140LC specimen produced at 60 J mm−3 using a 170 W laser power. Here, the top surface is
highly irregular, with many cavities and pores between deposited melt tracks. (b) Top surface in an AISI 4140LC specimen pro-
duced at 120 J mm−3 using a 170 W laser power. Here, the top surface is less irregular and is free of any large cavities or pores
between deposited melt tracks.
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(>50 µm). Additionally, porosity in Region I was the
most irregularly shaped, as evidenced by the
large aspect ratio and low roundness. These character-
istics indicate the presence of the lack of fusion
porosity.

Region II specimens were characterised by high
specimen densities (>99.8%) and contained a rela-
tively low number of pores that were small
(<20 µm) and circular in shape. The cumulative por-
osity area of pores found in Region III related

Figure 5. (a) Keyhole porosity in an AISI 4340 steel specimen produced at 185 J mm−3 using a 110 W laser power. (b) Example of
keyhole pores at the bottom of melt pools in an AISI 4340 specimen produced at 140 J mm−3 using a 110 W laser power.

Figure 6. (a) High-density (>99.8%) AISI 8620 specimen produced at 110 J mm−3 using a 110 W laser power. (b) Higher magnifi-
cation of specimen from (a) showing the presence of minimal porosity.

Table 4. Average pore characteristics from each process region for each examined low-alloy steel.
Number of pores Average aspect ratio Average roundness Porosity area fraction (%)

Region I (4130) 5600 1.9 ± 0.8 0.58 ± 0.2 5.7
Region I (4140HC) 5000 2.0 ± 0.9 0.58 ± 0.2 4.6
Region I (4140LC) 4700 2.0 ± 1.2 0.59 ± 0.2 2.9
Region I (4340) 3400 1.9 ± 0.9 0.59 ± 0.2 2.8
Region I (8620) 6000 2.0 ± 0.9 0.56 ± 0.2 3.9
Region II (4130) 1400 1.6 ± 0.9 0.71 ± 0.2 0.19
Region II (4140HC) 1000 1.6 ± 1.2 0.72 ± 0.2 0.1
Region II (4140LC) 130 1.3 ± 0.5 0.8 ± 0.2 0.02
Region II (4340) 230 1.7 ± 1.0 0.68 ± 0.2 0.02
Region II (8620) 230 1.6 ± 1.0 0.73 ± 0.2 0.03
Region III (4130) 2400 1.4 ± 0.4 0.72 ± 0.2 1.2
Region III (4140HC) 2900 1.5 ± 0.5 0.69 ± 0.2 1.4
Region III (4140LC) 1300 1.4 ± 0.4 0.74 ± 0.1 1.0
Region III (4340) 4000 1.4 ± 0.4 0.75 ± 0.1 2.8
Region III (8620) 2500 1.5 ± 0.5 0.72 ± 0.2 0.8
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primarily to medium-sized pores (20–100 µm) that
maintained similar shape characteristics to the por-
osity found in Region II specimens. A comparison
of the pore size distribution (see Figure 7) helped
to better distinguish the porosity found in Region
III from the porosity found in Region II. First,
Region III specimens contained pores sized 20–
100 µm, which were not present in Region II speci-
mens. This size range is the characteristic of keyhole
porosity (see Figure 5). Second, Region III speci-
mens also had an increase in small pores
(<20 µm), which helped to distinguish the transition
from Region II to Region III as marking the begin-
ning of keyhole porosity as well as an increase in
small, circular pores.

As-built microstructure

Figure 8 shows the as-built microstructure of each
low-alloy steel. For all alloys, a martensitic microstruc-
ture was observed. In addition, these microstructures
displayed numerous overlapping boundaries that

related to the heat-affected regions of deposited melt
tracks. These boundaries could be distinguished
because they were preferentially etched in comparison
to the rest of the material.

SEM analysis (see Figure 9) was used to study
the as-built specimen microstructure at a higher
resolution. Said analysis revealed a fine lath struc-
ture of martensite that had an abundance of nanos-
cale precipitates, that are likely small cementite or
transitional carbides that can form during the
short-time tempering of a martensitic structure
[26–29]. Hardness measurements (see Figure 10)
provided additional evidence of tempering, as the
as-built specimens had a hardness that was similar
to specimens that had been quenched and tempered
after processing.

Cold cracking

In some AISI 4140LC, 4140HC and 4340 specimens,
the presence of cracking could be observed. This

Figure 7. Histogram and cumulative porosity area for low-alloy steel specimens from each process region.

6 W. HEARN ET AL.



Figure 8. As-built microstructure for (a) AISI 4140LC alloy specimen produced at 110 J mm−3 using a 140 W laser power, (b) AISI
4130 alloy specimen produced at 110 J mm−3 using a 170 W laser power, (c) AISI 4140HC alloy specimen produced at 100 J mm−3

using a 110 W laser power, (d) AISI 4340 alloy specimen produced at 110 J mm−3 using a 170 W laser power and (e) AISI 8620 alloy
specimen produced at 100 J mm3 using a 110 W laser power.

Figure 9. SEM images of tempered lath martensite in (a,b) an AISI 4130 alloy specimen produced at 80 J mm−3 using a 110 W
laser power, (c,d) an AISI 4140HC alloy specimen produced at 200 J mm−3 using a 140 W laser power and (e,f) an AISI 4340 alloy
specimen produced at 140 J mm−3 using a 170 W laser power.
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cracking mainly originated at the specimen surface
and grew towards the centre (see Figure 11). Micro-
hardness measurements across the crack interface
(see Table 5) showed that the hardness in both regions
was similar, indicating a comparable microstructure
and suggesting that solidification had occurred before

crack formation. These findings helped to distinguish
these cracks as a post-solidification cold cracking
phenomenon. SEM evaluation of fractography speci-
mens (see Figure 12) revealed that transgranular frac-
ture was the dominant micro-failure mechanism,
reinforcing the notion that these cracks were related
to a cold cracking phenomenon that was a result of
the brittle martensitic microstructure and internal
residual stresses [78].

The occurrence of cold cracking in the AISI
4140LC, 4140HC and 4340 alloy specimens was
dependent on both the VED and the laser power
(see Table 6). Increasing the VED reduced crack pro-
pensity and crack size until an upper VED threshold
was reached, above which no cracking occurred (see
Figure 13). While increasing the laser power would
reduce the VED that was required to avoid cold
cracking.

To examine how increasing the VED and laser
power mitigated cold cracking, the alloy hardness

Figure 10. Bulk hardness (HV10) for each low-alloy steel in the
as-built, quenched, and quenched and tempered conditions.

Figure 11. (a) Cracking defects in an unetched AISI 4340 specimen produced at 80 J mm−3 using a 140 W laser power. (b) Etched,
higher magnification image of a crack from (a).

Table 5. Average microhardness (HV0.1) across the crack interface.
AISI 4140 (LC) AISI 4140 (HC) AISI 4340

Hardness above crack interface (HV0.1) 490 ± 32 500 ± 33 490 ± 16
Hardness below crack interface (HV0.1) 480 ± 21 490 ± 19 480 ± 16

Figure 12. Fracture surface of AISI 4340 specimens produced at 80 J mm−3 using a 170 W laser power, showing transgranular
decohesion facets.
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Table 6. Maximum VED at which cold cracking occurred in the AISI 4140LC, 4140HC and 4340 alloys.
110 W 140 W 170 W

AISI 4140 (LC) 110 J mm−3 100 J mm−3 80 J mm−3

AISI 4140 (HC) 110 J mm−3 110 J mm−3 110 J mm−3

AISI 4340 110 J mm−3 110 J mm−3 80 J mm−3

Figure 13. Evolution of cold cracking in the AISI 4140LC alloy as a function of VED for specimens produced with a laser power of
140 W.

Figure 14. Variation in bulk hardness and melt pool depth as a function of the VED. Hardness is displayed as a scatter plot, while
melt pool depth is displayed as a bar chart. The VEDs at which cold cracking occurred are indicated with fill.
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and melt pool depth were plotted as a function of VED
(see Figure 14). This analysis showed that increasing
the VED or laser power increased the depth of the
melt pool and subsequently decreased the hardness
of the as-built material. During LB-PBF, an intrinsic
heat treatment (IHT) occurs as new layers of material
are deposited on top of previously solidified layers
[3031]. The extent of this heat treatment is influenced
by the distance from the deposited layer and the num-
ber of times the material is reheated. Owing to the lar-
ger melt pool depths at higher VEDs and laser powers,
there is a larger volume of melted and subsequently
reheated material, providing an enhanced IHT.

The hardness measurements from Figure 14
showed that cold cracking would occur at a hardness
level >460HV for the AISI 4140 alloys and >500HV
for the AISI 4340 alloy. This indicates that if a large
enough VED or laser power is used, the IHTIHT
during LB-PBF can adequately temper the material
so it can avoid cold cracking defects. This hardness
threshold could also explain why the AISI 4130 and
8620 alloys did not display any cold cracking, as the
highest hardness for said alloys (∼425HV) was
below the aforementioned thresholds.

LB-PBF processing window for crack-free, high-
density specimens

From the results of this work, it was possible to estab-
lish VED-based process windows that produced crack-
free, high-density (>99.8%) specimens without requir-
ing build plate preheating. The ranges of these proces-
sing windows are displayed in Table 7.

At low VED, the noticeable presence of the lack of
fusion porosity was found within the as-built speci-
mens. Additionally, low VEDs did not allow for an
adequate IHT, leading to the formation of cold crack-
ing defects within AISI 4140 and 4340 alloy specimens.
As for specimens produced at high VED, they dis-
played the noticeable presence of keyhole porosity.

With respect to the laser power, it was found that
increasing this value, at a set layer thickness and
hatch spacing, expanded the size of the processing
window, as this reduced the VED that was required
to avoid cold cracking defects and increased the
VED that was required to induce keyhole porosity.

Regarding alloy composition, the carbon content
was the most influential factor, as it strongly affected
the martensite hardness and hence the brittleness of
the material. Alloys with ≥0.43 wt-% C displayed

cold cracking at low to intermediate VEDs, while
alloys below said carbon content did not display crack-
ing in any of the produced specimens. This is related
to the increased hardness at elevated carbon contents,
making the material more brittle and thus more sus-
ceptible to cold cracking.

Conclusions

In this study, LB-PBF processing was conducted on
five low-alloy steels (AISI 4130, 4140LC, 4140HC,
4340 and 8620) with the resulting microstructure
and defects being characterised. The conclusions can
be summarised as follows:

. In the as-built state, all studied low-alloy steel speci-
mens consisted of tempered martensite. Where this
tempering occurred due to the IHT that takes place
during LB-PBF.

. The evolution of porosity within the as-built speci-
mens was dependent on the VED and could be
categorised into three regions:

. At low VED (Region I), as-built specimens contained
irregularly shaped, large pores (up to 500 µm) that
were related to the lack of fusion porosity.

. At high VED (Region III), as-built specimens con-
tained oval-shaped, medium-sized pores
(≤150 µm) that were related to keyhole porosity.

. At VEDs between these two regions (Region II),
only trace amounts of porosity were found, allow-
ing for high specimen densities (>99.8%).

. Cold cracking was observed in some AISI 4140 and
4340 low-alloy steel specimens. However, these
defects could be avoided by increasing the VED
or laser power, as both factors enhance the IHT
that occurs during LB-PBF, lowering the hardness
of the as-built specimens. This indicated that the
correct tailoring of the IHT to achieve certain hard-
ness values (<460HV for AISI 4140 and <500HV
for AISI 4340) will enable the as-built specimens
to avoid this issue of cold cracking.

. Based on these results, processing windows were
established that produced crack-free, high-density
(>99.8%) specimens without the requirement of
build plate preheating:
o AISI 4130 (110 W: 100–140 J mm−3, 140 W: 110–
180 J mm−3, 170 W: 110–180 J mm−3);

o AISI 4140LC (110 W: 110–185 J mm−3, 140 W:
110–180 J mm−3, 170 W: 110–200 J mm−3);

Table 7. VED ranges that produced high-density (>99.8%), crack-free specimens.
110 W 140 W 170 W

AISI 4130 100–140 J mm−3 110–180 J mm−3 110–180 J mm−3

AISI 4140 (LC) 110–185 J mm−3 110–180 J mm−3 110–200 J mm−3

AISI 4140 (HC) 130–160 J mm−3 110–160 J mm−3 110–180 J mm−3

AISI 4340 110–130 J mm−3 110–130 J mm−3 100–180 J mm−3

AISI 8620 110–130 J mm−3 100–160 J mm−3 100–200 J mm−3
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o AISI 4140HC (110 W: 130–160 J mm−3, 140 W:
110–160 J mm−3, 170 W: 110–180 J mm−3);

o AISI 4340 (110 W: 110–130 J mm−3, 140 W: 110–
130 J mm−3, 170 W: 100–180 J mm−3);

o AISI 8620 (110 W: 110–130 J mm−3, 140 W: 100–
160 J mm−3, 170 W: 100–200 J mm−3).
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