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Genome-scale insights into the metabolic
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Abstract

Background: Limosilactobacillus reuteri (earlier known as Lactobacillus reuteri) is a well-studied lactic acid bacterium,
with some specific strains used as probiotics, that exists in different hosts such as human, pig, goat, mouse and rat,
with multiple body sites such as the gastrointestinal tract, breast milk and mouth. Numerous studies have
confirmed the beneficial effects of orally administered specific L. reuteri strains, such as preventing bone loss and
promoting regulatory immune system development. L. reuteri ATCC PTA 6475 is a widely used strain that has been
applied in the market as a probiotic due to its positive effects on the human host. Its health benefits may be due,
in part, to the production of beneficial metabolites. Considering the strain-specific effects and genetic diversity of L.
reuteri strains, we were interested to study the metabolic versatility of these strains.

Results: In this study, we aimed to systematically investigate the metabolic features and diversities of L. reuteri
strains by using genome-scale metabolic models (GEMs). The GEM of L. reuteri ATCC PTA 6475 was reconstructed
with a template-based method and curated manually. The final GEM iHL622 of L. reuteri ATCC PTA 6475 contains
894 reactions and 726 metabolites linked to 622 metabolic genes, which can be used to simulate growth and
amino acids utilization. Furthermore, we built GEMs for the other 35 L. reuteri strains from three types of hosts. The
comparison of the L. reuteri GEMs identified potential metabolic products linked to the adaptation to the host.

Conclusions: The GEM of L. reuteri ATCC PTA 6475 can be used to simulate metabolic capabilities and growth. The
core and pan model of 35 L. reuteri strains shows metabolic capacity differences both between and within the host
groups. The GEMs provide a reliable basis to investigate the metabolism of L. reuteri in detail and their potential
benefits on the host.

Keywords: Limosilactobacillus reuteri, Lactobacillus, Probiotic, Genome-scale metabolic model, Metabolic versatility,
Core metabolism, Pan metabolism

Introduction
Probiotics are “live microorganisms that, when adminis-
tered in adequate amounts, confer a health benefit on
the host” and many of them are applied in disease treat-
ment and food products [1, 2]. Some specific strains of
Limosilactobacillus reuteri, previously known as Lacto-
bacillus reuteri [3], are widely used as probiotics. L.

reuteri are able to colonize in a wide variety of mammals
and birds affecting the hosts’ health and metabolism. As
a lactic acid bacterium that is generally recognized as a
safe microorganism [4], some L. reuteri strains has been
applied in a large variety of food products and food sup-
plements throughout the world [1, 4], and also exploited
as a potential cell factory [5]. With the shown beneficial
properties of Lactobacillus/Limosilactobacillus strains, L.
reuteri proved to have positive effects on several diseases
such as improving symptoms of infantile colic, reducing
diarrhea in children, preventing bone loss in the elderly
and promoting regulatory immune system development
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and function [1, 6–10]. The L. reuteri ATCC PTA 6475
could prevent bone loss in a menopausal ovariectomized
mouse model and were contented in chewable tablets as
a dietary supplement [11–13]. Due to these advantages
and possibilities, the interests of studying L. reuteri have
significantly increased in recent years [14–16].
The benefactions in metabolism may be due, in part,

to the production of metabolites such as reuterin, hista-
mine, vitamins and exopolysaccharide [17]. For example,
histamine suppresses expression of tumor necrosis factor
alpha and reuterin is known as an antimicrobial com-
pound [18]. Interestingly, L. reuteri shows strain-specific
effects on human health [17, 19]. Even among human-
derived L. reuteri strains, the ability to reduce intestinal
inflammation varies [19]. Recent studies have revealed
the genetic diversity of L. reuteri strains [20, 21], which
revealed that the diversification of L. reuteri strains
could result from host-driven evolution, and some func-
tional genes may be attributable to host-specific features
[20, 21]. We were therefore interested to study the me-
tabolism of individual L. reuteri strains in detail [8].
Genome-scale metabolic models (GEMs) are useful

tools in metabolic engineering that could help us to
understand the metabolism and physiology of the organ-
ism [22–24]. GEMs provide a way to integrate genome
sequences, experimental data, and other types of data ef-
ficiently, as a platform to connect experimental data with
internal metabolic mechanisms. The GEMs of several
species from family Lactobacillaceae, such as Lactobacil-
lus plantarum [25], Lactobacillus casei [26], Lactobacil-
lus reuteri [5, 27] had been reconstructed and applied
for simulation related to food fermentation, probiotics,
and potential cell factory.
In this study, we reconstructed a comprehensive GEM

for L. reuteri ATCC PTA 6475, namely iHL622, using a
template-based method. To explore its metabolic char-
acteristics as a probiotic strain, we simulated the growth
with different carbon sources, amino acids usages and
biosynthesis pathways of valuable products with experi-
mental data. In order to explore the metabolic diversifi-
cation of L. reuteri strains from different hosts, we
further reconstructed metabolic networks for 35 L. reu-
teri strains. Comparison between L. reuteri strains re-
vealed potential metabolic reactions related to host
adaptation.

Materials and methods
Genome sequences
One of the genome sequences of L. reuteri ATCC PTA
6475 we used was provided by BioGaia, and the genome
annotation was performed by the Prokka software [28]
and the COG database. We also used two additional ge-
nomes of this strain sequenced by the Human Micro-
biome Project [29], which were collected from the NCBI

database with accession numbers of NZ_ACGX00000000
and GCF_000159475.2 [29]. For the core and pan -models
of the L. reuteri species, we collected 35 strains listed in a
previous study [20], which could be downloaded from
NCBI (Table S1). The genome comparison was performed
with BLASTP [30, 31] with following parameters: E value
<=1E-10; bit score > = 100; percentage of positive scoring
matches > = 45%. The sequences analysis was performed
by the open-source package Biopython [32].

Generation of L. reuteri GEMs
The GEM iHL622 of L. reuteri ATCC PTA 6475 was con-
structed by a template-based method with four templates,
iNF517 (Lactobacillus casei MG1363) [26], LbReuteri (L.
reuteri JCM 1112) [5, 27], iML1515 (Escherichia coli
MG1655, 33], and iBT721 (Lactobacillus plantarum
WCFS1) [25]. As shown in Fig. 1a, a semi-automatic pipe-
line was developed for GEMs reconstruction. The iNF517
was employed as the main template to build the initial
draft model, and orthologs genes were identified by the
best bidirectional best hits (BBHs) from BLASTP results,
with the parameters: E value <= 1E-10; bit score > = 100;
percentage of positive scoring matches > = 45%. Then, the
enzymes and associated reactions were integrated into the
initial draft GEM by comparison against LbReuteri [5],
iML1515 [33] and iBT721 [25] one by one, this order
takes into account homology and Memote scores. The
exchange reactions and transport reactions were added ac-
cording to the transporter annotations and corresponding
medium composition. The default exchange reactions in
our model corresponding a chemically defined medium
with 111mM glucose and serial amino acids like arginine
that adopted from template model of LbReuteri. More
medium conditions and description can be found in refer-
ences [5, 27]. The gap-filling was performed with COBR-
Apy [33–35] and used iNF517 as a template network. The
resulting GEM was manually curated using the RAVEN
[36] toolbox and reactions from the MetaCyc [37] data-
base to improve the model performance. Since L. reuteri
ATCC PTA 6475 is a well-studied probiotic, some poten-
tially health-related metabolites could be produced such
as lactate, acetate, ethanol, 1-propanol [38], and 1,3-pro-
panediol [39], reuterin [40] (3-hydroxypropionaldehyde),
histamine, vitamin B12 [41–43] (cobalamin) and vitamin
B9 [42, 44] (folate). Therefore, missing reactions involving
in these pathways were introduced into the draft GEM
based on references and databases. For example, produc-
tion of reuterin (3-hydroxypropionaldehyde) from glycerol
is not annotated automatically but introduced manually.
After functional curation, the mass balance, charge

balance and information annotation of the GEM were
checked. To make the GEM recognized in other name-
spaces and connected with other databases, we gener-
ated annotations of EC number and the links to
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databases such as MetaCyc, KEGG and MetaNetX. Fur-
thermore, MEMOTE [45] was applied to assess the
GEM quality. With the proteome sequences of 35
strains, we performed the GEMs reconstruction for each
strain as previously described [20].
The biomass reaction was adopted from the template

models. The DNA coefficients were generated by the

BOFdat toolbox [46]. The fraction weight of DNA was
set to 0.031 g of 1 g biomass, and the detail coefficients
of each nucleotide were set according to the DNA se-
quence GC content. The biomass content and compos-
ition of protein and lipid fractions were recalculated
based on the LbReuteri model [5]. The code and model
files could be found at a public GitHub repository

Fig. 1 The L. reuteri ATCC PTA 6475 genome-scale metabolic reconstruction. (a) Template-based modeling pipeline. The iNF517 was employed as the
primary template model and extracted ortholog genes and reactions based on bidirectional best hits (BBH) to generate the draft models. After
comparing with LbReuteri, iML1515 and iBT721, the exchange and transport reactions were added from the templates according to the transporter
annotations and corresponding medium composition. The gap-filling was performed with COBRApy on the primary template model and used the
MetaCyc database as a backup to improve the model performance. The GEM was also manually curated during the simulation and validation. (b) The
COG functional distribution of genes in GEM. J, translation, ribosomal structure and biogenesis; K, transcription; L, replication, recombination and repair;
D, cell cycle control, cell division, chromosome partitioning; V, defense mechanisms; T, signal transduction mechanisms; M, cell wall/membrane/
envelope biogenesis; N, cell motility; O, posttranslational modification, protein turnover, chaperones; C, energy production and conversion; G,
carbohydrate transport and metabolism; E, amino acid transport and metabolism; F, nucleotide transport and metabolism; H, coenzyme transport and
metabolism; I, lipid transport and metabolism; P, inorganic ion transport and metabolism; Q, secondary metabolites biosynthesis, transport and
catabolism; R, general function prediction only; S, function unknown; *, no COG categories. (c) The venn diagram of common and unique reactions in
the four lactic acid bacterium models. iHL622 is the GEM of L. reuteri ATCC PTA 6475 in this study, iNF517, LbReuteri and iBT721 are the GEMs of
L. lactis MG1363, L. reuteri JCM 1112 and L. plantarum WCFS1 separately
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(https://github.com/SysBioChalmers/Lactobacillus_
reuteri_MM41A_GEM).

Flux balance analysis
Growth capabilities in different mediums and essential
amino acids validation were tested by flux balance ana-
lysis (FBA) [47]. We set the constraints of exchange re-
actions of medium and amino acids in the model with
experimental substrate uptake rates and set the biomass
reaction as the objective function to test the growth cap-
ability. During the testing of essential amino acids, D-
glucose was selected as the sole carbon source and the
uptake rate was set as 25 mmol/g DW/h from reference.
When we tested the essential amino acids for growth,
we set the uptake rate of 20 amino acids as 0 mmol / g
[CDW] / h respectively. Growth rates under 1E-10 or in-
feasible results were considered as no growth. To test
the synthesis capacities of products, we set secretion re-
action of corresponding products as the object function
to perform FBA. Secretory rates above zero pointed to
that the model has corresponding synthesis capacity.
The simulations were carried out in Python 3.7.9 with
the COBRApy [33] 0.20.0 package and CPLEX optimizer
12.5.1 from IBM.

Results and discussion
The characteristics of L. reuteri ATCC PTA 6475 GEM
Three L. reuteri ATCC PTA 6475 genome sequences from
different sources were collected. Two of them had been se-
quenced by the Human Microbiome Project [29] and the
third one had been sequenced by BioGaia. Genome annota-
tion of L. reuteri ATCC PTA 6475 from BioGaia yielded
2019 protein-encoding genes, 71 tRNA and 18 rRNA genes.

Functional analysis based on clusters of orthologous groups
(COG) classification showed that 80.5% of protein-encoding
genes were mapped into COG categories. As shown in Fig.
S1, 28.6% genes were related with metabolism and 26.3%
genes associated with cellular process and signaling. The top
three most abundant functional categories were ‘Mobilome:
prophages, transposons’(X), ‘Translation, ribosomal structure
and biogenesis’(J) and ‘Amino acid transport and metabo-
lism’(E). Comparative genomic analysis shows that 1852
genes (93.17% on average) are shared between genomes from
the three sources (Fig. S1b), while 102 protein-encoding
genes were specific for strain from BioGaia. These three gen-
ome sequences got same complete value of 98.4% by BUSCO
[48] analysis and the L. reuteri ATCC PTA 6475 genome se-
quence from BioGaia with only one contig was employed to
reconstruct the GEM.
As shown in Fig. 1a, the GEM iHL662 was recon-

structed by a template-based method. The initial draft
model including 383 reactions and 465 metabolites was
developed using iNF517 as template based on 763 BBHs.
The metabolic genes and associated reactions mapping
to the other three template models were also integrated
into the draft model based on BBHs. The exchange reac-
tions and transport reactions were added to enable nu-
trient uptake and by-product secretion, and gap-filling
was performed to enable growth and by-product produc-
tion. Furthermore, manual curations were conducted to
remove potential errors in reactions or metabolites.
Altogether, the final model iHL622 was obtained includ-
ing 869 reactions and 713 metabolites with intracellular
and extracellular components (Table 1), which is associ-
ated with 623 genes (30.8% of the genome) and 584 of
them with COG categories (Fig. 1b). Compared with

Table 1 Model characteristics of iHL622 and comparison with template GEMs

Model iHL622 iNF517 LbReuteri iBT721 iML1515

Organism L. reuteri ATCC PTA 6475 L.lactis MG1363 L. reuteri
JCM 1112

L. plantarum WCFS1 E. coli
MG1655

Genes 2019 2339 1943 3063 4243

Included 622 (31%) 516 (22%) 530 (27%) 724 (24%) 1516 (36%)

Reactions 869 754 714 778 2712

Common with iHL622 869 483 531 392 509

With GPRa 709 (82%) 541 (72%) 606 (85%) 528 (68%) 2266 (86%)

Internal 644 530 507 538 1548

Transport 122 119 123 127 833

Exchange 103 105 84 113 331

Metabolites 713 650 660 662 1877

Unique 605 545 561 549 1071

Biomass consistency 1.00 0.83 -b -b 1.00

MEMOTE Score 80% 60% 57% 38% 68%

a Gene-Protein-Reaction Associations
b Not applicable
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other published GEMs, there are 392 to 531 common re-
actions and 155 unique reactions in iHL622 (Table 1
and Fig. 1c). In addition, iHL622 included 31% more
genes than the other three lactic acid bacterium tem-
plates models and there are 82% reactions in iHL622 as-
sociated with genes. MEMOTE analysis also showed the
highest quality of iHL622 comparison against other
GEMs.

Prediction of L. reuteri ATCC PTA 6475 growth with
different substrates
iHL622 was employed to simulate growth of L. reuteri
ATCC PTA 6475 under different growth conditions
(Fig. 2). A previous study revealed that L. reuteri
JCM1112, a highly similar strain of L. reuteri ATCC PTA
6475 [49, 50], grows faster with glycerol supplied and pre-
dominantly using the phosphoketolase (PK) pathway [5].
Therefore, iHL622 was used to simulate the growth

capability with only glucose and with both glucose and
glycerol by constraining the carbon sources uptake rates,
and the exchange fluxes of other extracellular metabolites.
Some studies have described the importance of L. reuteri’s
glycolytic pathway and we also found that it could signifi-
cantly affect the growth rate, so we added constrains of
maximum flux of Embden-Meyerhof-Parnas (EMP) path-
way to curate relevant pathways [5, 51]. Since both EMP
and PK pathways exist in L. reuteri, the PK pathway
should be dominant pathway, even the EMP pathway
could provide more energy yield than the PK pathway [5,
51]. When reducing the EMP pathway flux with con-
straints on phosphofructokinase (PFK) and fructose-1,6-
biphosphate aldolase (FBA) reactions [5], the growth rate
was reduced significantly and close to the experimental
data [5, 51, 52], which coincides with reports that the PK
pathway shared the main carbon flux [5, 51]. In addition,
the constraints of amino acids uptake rates and secretion

Fig. 2 The predictions based on the iHL622 GEM. (a) Experimental and predicted growth rates. The experimental data for each dataset are shown
in orange, and the prediction showing in green. (b) Growth capability under amino acid omitted medium. Experimental data are showed in the
first row, while the predictions of single amino acid omission are shown in the rest rows. The growth showing in green and no growth showing
in grey. (c) The predictions of representative metabolites. Eight products (lactate, acetate, ethanol, histamine, folate, cobalamin, 1-propanol and
1,3-propanediol) were predicted. Experimental data are showed in the first row, while the modeling results are shown in the rest rows. The
produce showing in green and no productions showing in grey
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rates of lactate and acetate were also added based on the
experimental data. Altogether, the predicted specific
growth rates are consistent with experimental observa-
tions [5]. The experimental growth rates are 0.751 ± 0.03
h− 1 with glycerol supplementation and 0.623 ± 0.04 h− 1

without glycerol, both are close to the values predicted by
the model.
Moreover, iHL622 was used to predict the growth cap-

ability of L. reuteri ATCC PTA 6475 using amino acid
as nitrogen sources (Fig. 2b). A previous study showed
that eight non-essential amino acids (alanine, aspartate,
cysteine, glycine, isoleucine, lysine, proline, serine) could
be omitted from the growth medium and affected the
growth rate and vitamin B12 production to different de-
grees [41]. The study also mentioned that the omission
of serine reduced the specific growth rate about 80%
whereas omission of other amino acids only caused ~
13% reduction on average [41]. The qualitative predic-
tions of single amino acid omission predictions are
matching literature results except for arginine [41]. Since
the uptake rate of amino acids were not mentioned in
the reference, quantitative prediction was not performed.
The mismatch between arginine predictions and experi-
mental data may be due to the inherited characteristics
from template GEMs and insufficient annotation of re-
lated enzymes.
Previous studies show that L. reuteri strains have the

capacities to synthesize lactate, acetate, ethanol [53], his-
tamine, folate [42], cobalamin [41–43], 1-propanol [54–
56] and 1,3-propanediol [57]), which may be linked to
the probiotic effects of L. reuteri. As shown in Fig. 2c,
the biosynthesis capacities of iHL622 for these products
were explored, and production of all these metabolites
can be predicted correctly by iHL622.

The metabolic features of L. reuteri ATCC PTA 6475
As a probiotic strain, L. reuteri ATCC PTA 6475 may
affect host metabolism directly through secretion of me-
tabolites that are influencing human cells. In order to in-
vestigate the health-promoting properties and metabolic
features of L. reuteri ATCC PTA 6475, the main meta-
bolic pathways were investigated tracked (Fig. 3). As
mentioned before, carbohydrate metabolism mainly uses
the PK pathway to produce lactate, acetate and ethanol,
not EMP or EMP extensions even though they all appear
in our model [5, 51, 52]. The PK pathway regulated by
ribulose epimerase (MBLCLPDI_01299) and phosphoke-
tolase (MBLCLPDI_01842) in the model. In food fer-
mentation, lactate is usually the most important end-
product of fermentation by lactobacilli, acetate and etha-
nol are main by-products, but the composition of the
final end-products change dependent on growth condi-
tions [4]. Due to its potential use as a biofuel, biosyn-
thesis of 1-propanol has been extensively studied [54–

56], and this metabolite can be produced from both glu-
cose or glycerol. Here we focused on histamine and 3-
HPA (reuterin), two potential beneficial metabolites syn-
thesis genes and pathways. The histamine is a potential
immunomodulatory factor that can modulate host mu-
cosal immunity and suppresses pro-inflammatory tumor
necrosis factor alpha production [18]. L. reuteri ATCC
PTA 6475 have the histamine biosynthesis pathway and
transporters that can convert L-histidine to histamine
via histidine/histamine antiporter (hdcP, MBLCLPDI_
01994), histidine decarboxylase pyruvoyl type A (hdcA,
MBLCLPDI_01992), and hdcB (hdcB, MBLCLPDI_
01991) [58]. The predicted histidine decarboxylase
showed 95% identities against the histidine decarboxyl-
ase from conformed L. reuteri strains. 3-
Hydroxypropionaldehyde (3-HPA) is the main compo-
nent of reuterin that acts as a broad-spectrum anti-
microbial substance and is an intermediate of the 1,3-
propanediol synthesis pathway [57]. The 3-HPA produc-
tion needs a one-step reaction from glycerol by the B12-
dependent glycerol/diol dehydratase (PduC, PduD,
PduE) [57, 59], which are encoded by the genes
MBLCLPDI_01903, MBLCLPDI_01902 and
MBLCLPDI_01901.

Core and pan metabolism of L. reuteri
Limosilactobacillus species have been isolated from a
wide range of sources. Recent genome sequencing of
Limosilactobacillus species has provided basis to explore
the metabolic diversity of Limosilactobacillus at the gen-
ome level [20, 21]. Some studies report that L. reuteri
species from different ecological origins are closely asso-
ciated with their living environment and genomic diver-
sity [20, 21]. They also found some functional genes
attributable to the host such as genes encoding cell sur-
face proteins and active carbohydrate enzymes [20].
Here we analyzed the L. reuteri metabolism by metabolic
modeling. The genome sequences of 35 L. reuteri strains
were collected and used for GEMs reconstruction. These
35 strains can be classified into three distinct groups
based on their corresponding host including herbivore,
omnivore, and sourdough, with a distribution of 16, 15,
and four strains into the three groups respectively. The
genome size and GEMs characteristics are shown in
Fig. 4a, with a genome size of 2058.3 ± 222.9 CDS and
GEMs of 919.8 ± 35.0 reactions and 811.0 ± 25.7 metabo-
lites linked to 567.1 ± 35.6 encoding genes. Here we
found that the GEMs size is weakly correlated with gen-
ome size, the genome size is sorted in descending order
(Fig. 4a, right) while none of the model characteristics
correspond to this order (Fig. 4a, left).
Moreover, group-wised core and pan metabolic

models were reconstructed. In the herbivore group, the
GEMs have 929.2 ± 26.1 reactions and 818.8 ± 17.3
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metabolites associated with 579.4 ± 30.6 genes. In the
omnivore group, there are 924.5 ± 30.2 reactions and
812.8 ± 27.4 metabolites associated with 571.8 ± 23.0
genes. While in the sourdough group, there are 864.2 ±
39.0 reactions and 773.0 ± 14.3 metabolites associated
with 500.5 ± 19.4 genes. The herbivore core metabolic
model included 847 reactions and 771 metabolites, cor-
responding to 85.9 and 90.0% of the pan model. The
omnivore core metabolic model included 796 reactions
and 715 metabolites, corresponding to 80.73 and 83.82%
of the pan model. And the sourdough core metabolic
model included 752 reactions and 726 metabolites, cor-
responding to 81.91 and 91.20% of pan model.
Previous comparative genomic analysis showed that

there are host-specific genes in different groups ([20]
and Fig. 4b). However, slight differences in reactions and
metabolites were observed between these strains and
groups (Fig. 4c, d). In this comparison, only appearing in
one group is considered specific, appearing in all groups

is considered common and appearing in two (between
one and all) groups is considered dispensable. As shown
in Fig. 4b, the specific and common genes are 20.7 and
50.4% respectively. In our models (Fig. 4c, d., there are
7.8% specific reactions and 5.5% specific metabolites cor-
respondingly 74.8% common reactions and 83.7% com-
mon metabolites. Here we noticed that the percentage
of specific genes is more than specific model reactions
and metabolites, while the common percentage is oppos-
ite, low correlation suggests that the many of the differ-
ences in the genome are not inherited to GEMs. Finally,
we obtained core and pan models of the 35 strains, con-
taining 671 reactions and 666 metabolites in the core
model, while there are 1010 reactions and 870 metabo-
lites in the pan model.
We compared the synthesis capacities of products be-

tween the three groups and the results are shown in Fig.
3. Most of the strains have similar carbohydrate metab-
olism pathways and have the capacity to produce

Fig. 3 Overview of the metabolic pathways in L. reuteri. Green arrows indicate the phosphoketolase pathway (PKP); blue arrows indicate Emden-
Meyerhof Parnas pathway (EMP); orange arrows indicate the extensions of EMP; and the dotted arrows indicate multiple enzymatic reactions.
Green backgrounds indicate the extracellular metabolites and blue backgrounds indicate the L. reuteri products. The pie diagram under the
metabolites shows the percentage of models in each group that could produce those corresponding metabolites. Green-grey pie diagram
showing the group of herbivore-derived strains, orange-grey pie diagram showing the omnivore-derived group and blue-grey pie showing the
sourdough-derived group
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acetate, ethanol and lactate. While for strain-dependent
products like histamine and 1,3-propanediol, the synthe-
sis pathways have differences both in and between
groups. We find that the herbivore-derived L. reuteri
maybe have the most completed metabolic pathways re-
lated to histamine and 1,3-propanediol because most
models in herbivores could produce them (Fig. 3). How-
ever, all the GEMs in the sourdough group cannot pro-
duce histamine and 1,3-propanediol, this suggests that
they may have less beneficial effects on their host. The

omnivore group has the most differences within the
group, i.e. there are 42.9 and 78.6% have the capacity to
produce histamine and 1,3-propanediol separately. And
the methylglyoxal synthase (mgsA) gene was missing in
all GEMs of 35 strains, which explains why 1-propanol
was not produced.
From the comparison of model characteristics and

synthesis capacities, we found that the metabolism of
the three groups of models is very similar, after all, there
are more than 95% common reactions. However, the

Fig. 4 Characteristics of core- and pan-GEMs of 35 L. reuteri strains from different hosts. (a) Genome size shown in blue on the right, GEMs
characteristics shown on the left. Green asterisks indicate the number of reactions, orange asterisks indicate the number of metabolites, and light
blue asterisks indicate the number of genes in each GEM. These GEMs are grouped by host: herbivore, omnivore, and sourdough. The strains list
in the y-axis are sorted in descending order by genome size in each group. (b,c,d) Upset plot of genes, reactions and metabolites between the
pan-models of three groups. The total height of the bar indicates the union size of the corresponding group in the horizontal coordinate. In the
final plotted bar, only appearing in one group is considered specific, appearing in all groups is considered common and appearing in two
(between one and all) groups is considered dispensable. The common, dispensable and specific size from all combinations are shown
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differences cannot be ignored, especially the ability to
provide potentially beneficial metabolites. For instance,
herbivore-derived L. reuteri may have some advantages
in producing histamine and 1,3-propanediol, which pro-
vided the potential to be explored as a probiotic.

Conclusions/ discussion
Here we reconstructed a GEM of L. reuteri ATCC PTA
6475 that can be used to simulate the metabolic capabil-
ities and growth rates under different mediums. Most of
GEM predictions were matched with experimental data
except for the essential of arginine. Furthermore, core-
and pan- GEMs of 35 L. reuteri strains were recon-
structed and based on these we identified different syn-
thesis capacities of histamine and 1,3-propanediol
among these strains. These metabolic differences dem-
onstrate some of the advantages of herbivore-derived L.
reuteri which could provide potential assistance in the
study of strain specificity and the exploration of future
industrial strains. All the GEMs of L.reuteri provide a re-
liable basis to investigate the metabolism of L. reuteri in
detail and their potential benefit on host health.
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