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A B S T R A C T   

Pelvic fractures have been identified as the second most common AIS2+ injury in motor vehicle crashes, with the 
highest early mortality rate compared to other orthopaedic injuries. Further, the risk is associated with occupant 
sex, age, stature and body mass index (BMI). In this study, clinical pelvic CT scans from 132 adults (75 females, 
57 males) were extracted from a patient database. The population shape variance in pelvis bone geometry was 
studied by Sparse Principal Component Analysis (SPCA) and a morphometric model was developed by multi
variate linear regression using overall anthropometric variables (sex, age, stature, BMI). In the analysis, SPCA 
identified 15 principal components (PCs) describing 83.6% of the shape variations. Eight of these were signifi
cantly captured (α < 0.05) by the morphometric model, which predicted 29% of the total variance in pelvis 
geometry. The overall anthropometric variables were significantly related to geometrical features primarily in 
the inferior-anterior regions while being unable to significantly capture local sacrum features, shape and position 
of ASIS and lateral tilt of the iliac wings. In conclusion, a new detailed morphometric model of the pelvis bone 
demonstrated that overall anthropometric variables account for only 29% of the variance in pelvis geometry. 
Furthermore, variations in the superior-anterior region of the pelvis, with which the lap belt is intended to 
interact, were not captured. Depending on the scenario, shape variations not captured by overall anthropometry 
could have important implications for injury prediction in traffic safety analysis.   

1. Introduction 

Road traffic injuries are the eighth leading cause of death globally 
and the leading cause of death in the age-group 5–29 (WHO – Road 
traffic injuries, 2020). Prevention of these injuries is listed as one of the 
UN sustainable development goals (UN – SDGs, 2015). 

Pelvic bone injuries of occupants in motor vehicle crashes (MVCs) 
are studied extensively. Pelvic fracture has been identified as the second 
most common AIS2+ injury in MVCs (Weaver et al., 2013), and the 
dominating AIS2+ lower extremity injury in lateral and oblique impacts 
(Pipkorn et al., 2020). For patients with orthopaedic injuries, pelvic ring 
fractures are associated with the highest early mortality rate and some 
degree of residual disability can be expected regardless of treatment 
(Tile et al., 2015). Real-life MVC data has shown that pelvic fracture risk 
is associated with occupant sex, age, stature and BMI (Melocchi et al., 
2010; Schiff et al., 2008; Sochor et al., 2003; Stein et al., 2006; Sunne
vång et al., 2015). Considering future autonomous vehicles and seating 

positions the pelvis injury risk might be accentuated. With the intro
duction of advanced driver assistance systems, an increased ratio of side 
impacts on the total number of MVCs is expected (Östling et al., 2019), 
and consequently an increased ratio of pelvic fractures given current 
injury data. Furthermore, reclined seating positions creates less benefi
cial interactions between the pelvis and the lap-belt, increasing the risk 
for submarining (Rawska et al., 2020). 

Pelvic anthropometry, and its involvement in locomotion and 
posture, is researched extensively using discrete measurements of 
anatomical landmarks (DelPrete, 2019). Studies have presented detailed 
3D morphology of the pelvic bone using Principal Component Analysis 
(PCA) on e.g. a Belgian population (n = 271) (Audenaert et al., 2019a), a 
Japanese population (n = 50) (Arand et al., 2018), and a US population 
(n = 116) (Klein, 2015). However, it is currently unknown to what 
extent differences in pelvis bone geometry can be linked to risk for injury 
in MVCs. Recent studies on submarining, using Post Mortem Human 
Subjects (PMHS), has identified the need to account for subject-specific 
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factors as pelvic shape and position (Richardson et al., 2020). 
Finite Element Human Body Models (FE-HBMs) are used to evaluate 

occupant injury risk. Using morphing techniques, FE-HBMs can repre
sent a wider portion of the population than those typically used in 
current injury risk evaluations (Gayzik et al., 2008; Schoell et al., 2015; 
Shi et al., 2014; Wang et al., 2016; Zhang et al., 2017). Traditionally, 
linear regression models using overall anthropometry, such as sex, age, 
stature and BMI, are used to describe the morphing geometries. Results 
reported on variance captured by these models include 77%/75% for a 
male/female femur (Klein, 2015), 68%/84% for a male/female tibia 
(Klein, 2015) and 51% for a ribcage (Wang et al., 2016). However, for 
the single study on pelvis geometry, such models have so far only 
captured 15%/18% (male/female) of the total pelvic geometrical vari
ance (Klein, 2015). 

Studies of 3D morphology commonly utilize PCA to transform the 
data and capture most of the shape variance using a smaller set of var
iables (Slice, 2007). The axes of the transformed system are often 
referred to as loading vectors, while the new variables are called principal 
components (PCs). However, since the PCs are global by nature the result 
of PCA can be difficult to interpret (Zou et al., 2006). To address this, an 
extension to PCA called Sparse Principal Component Analysis (SPCA) 
penalizes the weight of some variables to zero, creating sparse loading 
vectors that describe localized variance (Zou et al., 2006). Given the 
complex geometry of the pelvic bone, anatomically localized variations 
could influence the injury prediction. By knowing which geometrical 
features that are associated with injury risk for a given scenario we 
would gain valuable insight into the biomechanics of the system. 
Studying 2D corpus callosum contours, Sjöstrand et al. (2007) showed 
that SPCA can extract anatomically meaningful components that are 
easier to interpret and relate them to clinical data. 

Fig. 1. Schematic overview of study method. (1) Landmark subject geometries and template model, (2) align and scale subject geometries to the template model 
using GPA on landmarks, (3) morph template model to scaled subject geometries using landmarks to create corresponding node sets, (4) perform SPCA on morphed 
subject-specific models, (5) perform multivariate linear regression analysis using overall anthropometric variables on GPA and SPCA results, (6) predict subject 
geometries using morphometric model. 

Table 1 
Co-variate subject data, mean and 1 S.D., from subjects included in the final 
morphometric model. As reference, the US population aged 20 years and older 
have an average stature, weight and BMI of 1.62/1.78 m, 76.4/88.8 kg, and 
29.2/28.7 kg/m2, for females/males respectively (Fryar et al., 2016).   

All Female (n ¼ 74) Male (n ¼ 56)  

Mean S.D. Mean S.D. Mean S.D. 

Age [year]  54.4  20.9 53.7  20.1  55.3  22.1 
Stature [m]  1.69  0.11 1.62  0.07  1.79  0.07 
Weight [kg]  81.2  21.2 76.3  21.6  87.6  18.9 
BMI [kg/m2]  28.3  6.5 29  7.4  27.4  5.2  

Fig. 2. Position of the anatomical landmarks (n = 286) used for the study. 
Orange marks fixed anatomical landmarks (n = 38) and blue marks curve semi- 
landmarks from splines (n = 248). Two splines are shown as example in red. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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The present study aims to: (1) Describe the shape of the pelvic bones 
using SPCA, (2) generate an associated morphometric model of the 
pelvic bones using overall anthropometry as independent variables and 
(3) identify the local features that are significantly captured by the 
overall anthropometry. This study will enhance the knowledge of vari
ability in pelvis bone geometry, which can facilitate the development 
and use of FE-HBMs representing the entire population for assessment of 
future restraints. 

2. Method 

Multivariate statistics on dense sets of corresponding nodes, also 
known as geometric morphometrics (GM) or statistical shape models 
(SSM) (Slice, 2005), was used to study the population variance in pelvis 
bone geometries. The steps include; landmarking of subjects and tem
plate, registration with Generalized Procrustes Analysis (GPA), morph
ing of template to each subject geometry using landmarks to create 
corresponding node sets, performing SPCA on morphed subject-specific 

Fig. 3. Qualitative interpretations of the SPCA results for the first 15 PCs covering 83.6% of the shape variance in the studied population. The first four PCs are 
visualized at +/− 3 S.D. (blue/orange), while PC5-PC15 are visualized in Appendix B. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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models, and generating a morphometric model using multivariate linear 
regression to predict the nodal coordinates of the subject-specific 
models, Fig. 1 describes this process schematically while the following 
sub-headings describe the details of each step. To create a corresponding 
representation of each pelvis, a template model with a uniform mesh 
based on the average pelvis geometry was used (see Appendix A for 
template model development details). 

2.1. Description of data 

Clinical CT scans were retrospectively obtained (Klein, 2015) from 
clinical imaging studies at the University of Michigan Department of 
Radiology through a protocol approved by an institutional review board 
at the University of Michigan. A radiologist reviewed the studies to 
ensure that there were no anatomical anomalies or relevant injuries. The 
scans had an in-plane resolution of 0.625–0.977 mm/pixel, with 1.25 
mm between slices. The previous study also segmented the pelvic outer 
3D surfaces. Co-variate data for each subject including sex, age, stature, 
and weight were extracted from medical records for each subject, see 
TABLE 1. In total, pelvic geometries from 132 adults (75 females, 57 
males) were available for this study. 

2.2. Landmarking 

Landmarks are points representing anatomical structures on a spec
imen (Slice, 2005) and can be used to align and scale subject geometries 
to a common reference. Prior to landmarking, each of the subject ge
ometries and the template model were rotated into their standing 
anatomical position (Reynolds et al., 1982). Using ANSA 20.1.0 (BETA 
CAE Systems), 286 anatomical landmarks were manually placed on each 
geometry, where 38 were fixed anatomical landmarks and 248 were 
curve semi-landmarks defined using splines with equidistant spacing, 
see Fig. 2. The splines were generated in ANSA by tracing nodes along 
paths (for example, the lateral iliac crest) or by normal projection (for 
example on the surface of the iliac fossa). The landmarks were defined 
with the aim of capturing the subject geometry, by morphing of the 
template, not in relation to a specific injury location. 

2.3. Subject alignment 

Subject geometries were aligned and scaled to the template model 
using Generalized Procrustes Analysis (GPA) on the defined landmarks. 
GPA retains the geometrical properties that are invariant to location, 
orientation and scale and has been used extensively in morphometric 
studies (Slice, 2005). A full GPA was performed (including scaling) since 
SPCA finds localized geometrical differences and is not appropriate for 
describing global properties such as size (Sjöstrand et al., 2007). Scale 
(or centroid size) is defined as the square root of the sum of squared 
coordinate values in all dimensions and is a descriptor of size for a given 
set of landmarks (Slice, 2005). GPA was performed using the Matlab 
function “procrustes” (MATLAB R2017b). 

2.4. Subject morphing 

Morphing the template model into each of the subject geometries 
was done by using the aligned landmark information as input to a Radial 
Basis Function with Thin-Plate-Splines (RBF-TPS) interpolation. In 
short, an RBF takes the form: 

s(x) = p(x)+
∑n

i=1
λiφ(‖x − xi‖) (1)  

where p(x) is a low order polynomial, λi is the weighting coefficient, φ is 
the basis function, and ‖x − xi‖ is the Euclidean distance between x and 
xi. In this study, a first-order polynomial for p(x) and the TPS basis 
function φ(r) = 2r2log(r) without smoothing was used, where r is the 
Euclidean distance in 3D. See Hu et al. (2016) for further details. 

2.5. Sparse principal component analysis 

With a corresponding set of nodes for each subject geometry, SPCA 
was performed on the nodal coordinates to determine the population 
variance. SPCA introduces penalty constraints to achieve sparse loading 
vectors, by formulating the PCA problem as a regression-type optimi
zation problem (Zou et al., 2006). Variable selection techniques from 

Table 2 
Multivariate linear regression models using overall anthropometric variables based on GPA and SPCA results. Coefficients are listed with their corresponding p-value 
(α = 0.05). *p-value from F-statistic to determine if response is significant or non-significant (NS) (α > 0.05).  

Response Intercept Independent variables p-val.* Adj. R2 

Sex Age Stature BMI Sex £ Sex £ Age £ Stature £
[M ¼ 1] [years] [m] [kg/m2] Stature BMI BMI BMI 

scale 1.823  0.038 − 0.001 − 0.464 – – – – – <0.001 0.48  
<0.001 <0.001 <0.001 

PC1 7121.2  549.8 – − 4184.5 − 222.3 – – – 125.5 <0.001 0.4  
<0.001 <0.001 <0.01 <0.01 

PC2 –  – – – – – – – – NS – 
PC3 − 80.7  − 279.3 3.6 – – – – – – <0.001 0.27  

<0.001 <0.001 
PC4 − 434.9  662.4 2.7 – – – – – – <0.001 0.65  

<0.001 <0.05 
PC5 5085.3  363.1 3.1 − 3144.8 − 140.1 – – – 80.8 <0.001 0.24  

<0.001 <0.05 <0.01 <0.05 <0.05 
PC6 –  – – – – – – – – NS – 
PC7 4088.8  − 1058.7 − 2.6 − 2387.3 − 128 922.5 − 22 – 77.5 <0.001 0.17  

>0.05 <0.01 <0.05 <0.05 <0.05 <0.01 <0.05 
PC8 –  – – – – – – – – NS – 
PC9 –  – – – – – – – – NS – 
PC10 5826.4  385.8 2.5 − 3427.5 − 214.4 – – – 119.8 <0.001 0.47  

<0.001 <0.05 <0.001 <0.001 <0.001 
PC11 − 973.8  109.2 1.6 795.7 – – – – – <0.001 0.34  

<0.05 <0.05 <0.05 
PC12 –  – – – – – – – – NS – 
PC13 –  – – – – – – – – NS – 
PC14 –  – – – – – – – – NS – 
PC15 233.6  251.9 − 6.3 – − 13.1 – – 0.24 – <0.001 0.47  

<0.001 <0.05 <0.05 <0.05  
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multiple linear regression, such as the LASSO or the elastic net, are then 
integrated into the regression criterion, resulting in PCs with sparse 
loadings. The general problem formulation can be expressed as: 
(

Â, B̂
)
= argmin

A,B

∑
‖X − ABTX‖

2
+ψ(B)

subject to ATA = I, (2)  

where B is a sparse weight matrix, A is an orthonormal matrix and ψ 
denotes a sparsity inducing regularization such as the LASSO or the 
elastic net (Zou et al., 2006). The principal components Z are formed as: 

Z = XB (3)  

and the original data can be approximately recreated using: 

X̃ = ZAT (4) 

To solve this optimization problem, the current study utilized a 
method developed by Erichson et al. (2020), implemented as an R- 
package “sparsepca” (Erichson et al., 2018). The function “rspca” was 
used with default settings, except maximum number of iterations which 
was increased from 1,000 to 10,000 to ensure convergence. 

2.6. Morphometric model 

Similar to previous work (Wang et al., 2016; Weaver et al., 2014), the 
pelvis bone geometry was separated into two components, scale and 

shape (described using PC scores). Multiple linear regression models, 
predicting the nodal coordinates of all surface points (n = 26,024) in the 
pelvis geometry, were created by relating scale and PC scores to overall 
anthropometry (sex, age, stature, BMI). Main terms and first order in
teractions were considered. Bonferroni adjusted p-values on F-statistics 
were used to exclude shape variations (PCs) not significantly related to 
the overall anthropometry (α = 0.05). Model selection was based on AIC 
ranking, computed by the “dredge” function from the R-package 
“MuMIn” (Barton, 2020). For each dependent variable (PC or scale), the 
highest-ranking model including only significant variables (α = 0.05) 
was selected. Main terms of significant interactions were kept regardless 
of significance level following the hierarchical principle (James et al., 
2017). The final morphometric model predicts a pelvis bone geometry 
according to Eq. (5): 

Subjectgeom
̅̅̅̅̅̅̅→

=
Averagegeom
̅̅̅̅̅̅̅̅→

+PC1×PC1
̅̅→

+PC2×PC2
̅̅→

+⋯+PC15×PC15
̅̅̅→

scale
(5)  

where scale and PC1-PC15 are scalar values predicted using the regres
sion models and PCx̅̅→ are the loading vectors of each PC from SPCA. 

2.7. Morphometric model quality evaluation 

Landmarking of six randomly selected subjects (three males and 
three females) was redone at a later occasion to evaluate intra-observer 
quality. The Euclidean distance of corresponding fixed anatomical and 
semi-landmarks, between original and control subjects, was calculated. 

Additionally, to evaluate morphing quality, six subject geometries 
were manually projected to the surface of the morphed geometry using 
ANSA 20.1.0. The Euclidean distance between the original nodes and the 
projected nodes was calculated to estimate the deviation. 

The variance explained by the morphometric model was evaluated 
by 10-fold cross-validation (CV). The intercept and slopes were re- 
calculated for each fold based on 90% of the data while predicting the 
remaining 10%. Predictability of the morphometric model was evalu
ated by R2 as: 

R2 = 1 −
SSres

SStot

SSres =
∑n

i=1
(yi − ŷi)

2

SStot =
∑n

i=1
(yi − yi)

2

(6)  

where SSres is the residual sum of squares, as calculated by the morphed 
subject coordinates (yi) and the predicted subject coordinates (ŷi), and 
SStot is the total sum of squares, as calculated by the morphed subject 
coordinates and the mean geometry coordinates (yi). 

For all quality measures, the average median and 90th percentile 
errors were calculated together with their 95% confidence interval (CI), 
estimated by a Student’s t-test. 

3. Results 

3.1. Landmarks and morphing 

The intra-observer quality check of the six tested subjects resulted in 
a right-skewed distribution of errors. The average median landmark 
error was 1.4 mm (95% CI ± 0.3 mm), while the average 90th percentile 
was 2.7 mm (95% CI ± 0.3 mm). 

The morphing error, as compared to the original geometries, also 
resulted in a right-skewed distribution of errors for the six tested sub
jects. The average median error was 0.7 mm (95% CI ± 0.1 mm), while 
the average 90th percentile was 2.2 mm (95% CI ± 0.3 mm). 

Fig. 4. Median nodal error [mm] for the 130 subjects predicted in 10-fold CV 
by the morphometric model using overall anthropometry. The error is calcu
lated by comparing the prediction with the subject-specific morphed tem
plate model. 
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These errors can be compared with the CT in-plane resolution of 
0.625–0.977 mm/pixel, with 1.25 mm between slices, and the average 
shell length of the extracted polygonal geometry of 5.4 mm. 

3.2. Analysis of population shape variance 

The first 15 PCs captured 83.6% of the shape variance, or 89.8% of 
the total variance when scaling was included, see Fig. 3, Appendix B and 
animations in supplementary online material. Substantial variance was 
found for the shape, position and orientation of sacrum with curvature 
(PC1 – 31.9%), length (PC2 – 15.2%), rotation of the sacral endplate 
(PC5 – 4.0%), inferior-superior position of sacral endplate (PC6 – 3.2%), 
and curvature and length of the lower sacrum (PC10 – 1.2%) covering 
55.5% of the variance. Shape variance, not relating to the sacrum, was 
found for a variety of pelvic dimensions, including pelvic height (su
perior edge of the iliac crest to the inferior point of the ischial tuberosity 
in the standing anatomical coordinate system) and transverse width of 
the pelvic inlet (PC3 – 11.5%) and width of the ischial tuberosities (PC4 
– 6.5%). Note that these are qualitative interpretations of the effects of 
the PCs on the geometry and that the direction of the PC effects is 
arbitrary. 

3.3. Morphometric model 

Of the 132 subjects, two were considered outliers and removed from 
the dataset for the statistical analysis, leaving 130 subjects for the 
morphometric model. The outliers were a man of 1.52 m stature and a 
woman of 1.83 m stature with wide and flat hip bones. 

The scaling component, PC1, PC3-PC5, PC7, PC10-PC11 and PC15 
were significantly related to the overall anthropometric variables. These 
explained 66.7% of the total variance. TABLE 2 presents the resulting 
regression models for each response. Evaluating the predictability of the 
morphometric model for all 130 subjects in 10-fold CV, according to Eq. 
(6), resulted in an R2 of 0.29, meaning that the morphometric model 
captures 29% of the total variance. 

The Euclidean nodal error of the predicted models compared to the 
subject specific models had an average median of 5.8 mm (95% CI ± 0.3 
mm) with an average 90th percentile of 10.5 mm (95% CI ± 0.5 mm). 
The maximum error for any subject was 33.6 mm, found at the tip of the 
coccyx. Fig. 4 shows the median error of each node for the 130 subjects 
distributed over the pelvic surface. In general, the overall anthropo
metric variables were poor predictors of the superior/inferior portion of 
sacrum and the anterior superior margins of the ilia. The sacrum error 
was primarily found in the sagittal plane while the main source of 
anterior superior iliac spine (ASIS) error was found in the lateral 
direction. 

Single variable effects were analysed: female vs male, age 20 vs 80 
years, stature 1.55 vs 1.85 m and BMI 20 vs 35 kg/m2. The morpho
metric model prediction obtained by changing each variable individu
ally show that sex mainly affects the shape of the inferior-anterior 
regions, age affects scale and shape along the iliac crest, stature mainly 
affects scale and BMI has almost no effect on the pelvic bone geometry, 
see Fig. 5. 

The effect of predicting the pelvis geometry of a female/male subject 
of average stature from the current dataset was also analysed, see Fig. 6. 
From TABLE 2 one can see that the significant effects included in this 
prediction are: scale, curvature of sacrum (PC1), pelvic height and 
transverse diameter of the inlet (PC3), width of the ischial tuberosities 
(PC4), rotation of the sacral endplate (PC5), antero-posterior diameter 
of the inlet and thickness of the pubic bones (PC7), curvature and length 
of lower sacrum (PC10), posterior bispinous breadth (PC11), and infe
rior position of the ischial tuberosities (PC15). 

4. Discussion 

In this study, a morphometric model capable of generating 
population-representative pelvic bone geometries from overall anthro
pometrics (sex, age, stature, BMI) was developed. The model was based 
on data from 74 females and 56 males. The ability to predict local 
geometrical features, as calculated by SPCA, was evaluated. To the 

Fig. 5. Effect of changing each of the independent variables while keeping the remaining constant. The first value in blue (reference) and the second value in orange 
(effect). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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authors’ knowledge, this is the first study to use SPCA to describe the 
local shape variations of the pelvic bone. 

The fact that the morphometric model only account for 29% of the 
overall variance is an important finding in relation to today’s state of the 
art FE-HBMs which are modelled from CT data of a single subject 
(Gayzik et al., 2011). The subject represents an average target but given 
the identified range of variability, and that overall anthropometrics 
were unable to capture most of the total variance, these single subjects 
should not be expected to be representative for the pelvis shape. Similar 
conclusions have been made for the clavicle (Lu and Untaroiu, 2013), 
the spleen (Yates et al., 2016), and the kidneys (Yates and Untaroiu, 
2018). In addition, the developed model enables parametric studies of 
shape variance to better understand the biomechanical coupling be
tween geometry and risk of injury for different loading scenarios. 

4.1. Compared to previous research 

Other studies relating to SSMs of the pelvic bones have focused on 
the anatomical variance (Arand et al., 2018) or on subject-specific 3D 
geometries based on individual CT data for therapy or pre-operative 
planning (Audenaert et al., 2019a; Chu et al., 2015; Kainmueller et al., 

2009). A previous study using a subset of the current CT dataset 
developed a regression model of the pelvic bone geometry for popula
tion prediction, using age, BMI and bispinous breadth as independent 
variables for separate male/female models (Klein, 2015). The current 
study advances that prior work by using an improved landmarking 
technique, conducting the shape analysis on the entirety of the pelvis 
mesh rather than just the landmarks, creating a more refined regression 
model, and by employing SPCA to obtain better interpretability of the 
PCs with respect to local shape variance. 

Compared to models of other skeletal structures using overall an
thropometrics as independent variables, the predictability of the pelvic 
ring is relatively low. Results reported in the literature include 77%/ 
75% for a male/female femur (Klein, 2015), 68%/84% for a male/fe
male tibia (Klein, 2015) and 51% for a ribcage (Wang et al., 2016). The 
high-scoring models represent geometries that are more one- 
dimensional, e.g. long bones, with stature accounting for most the pre
dictive strength, while as the geometry includes more dimensional 
variability the predictability goes down. This suggests that more local 
variables might be needed to reliably capture the population variance in 
structures such as the pelvic bone geometry. 

4.2. Morphometric model 

The current study achieved a predictability of 29% of the population 
total variance, compared to 15%/18% for male/female pelvic bone 
models by Klein (2015). In both studies, the predicted model was 
compared with the subject-specific morphed model, not the subject CT 
scan. Klein (2015) estimated the mean distance error between observed 
landmarks and predicted landmarks to 15 mm/17 mm, for the male/ 
female models respectively. For the current study, the average median 
error of all nodes, measured between subject-specific morphed geometry 
and predicted geometry, was 5.8 mm. 

In this study, a single model was built, instead of separate male/fe
male models, since the interindividual difference was found to be more 
pronounced than the sex difference with many features overlapping. 
Combining the two allows for better quantification of how male and 
female pelves differ than if we were to create two separate models. In 
addition, splitting the model would not give identical sets of principal 
components between the two groups. Having one set makes future 
identification and interpretation of critical shape variations for different 
injury scenarios easier. 

The median nodal error plot presented in Fig. 4 shows that the model 
best predicted the geometry in the inferior-anterior regions and around 
the pelvic brim (except the sacral promontory). The strong coupling 
with sex for these areas partly explains this result (DelPrete, 2019; Luis 
and Carretero, 1994; Torimitsu et al., 2015). Notably, the anterior su
perior margins of the ilia and the inferior/superior ends of sacrum 
showed the largest errors, which was expected since neither of these 
shape variations were significantly related to overall anthropometry. 
These variations could have important implications for traffic safety 
analysis. For example, lap belt engagement with the pelvis could be 
affected by position and orientation of sacrum/ASIS, and impact timing 
and force transfer from lateral loading could be affected by the lateral 
position of the iliac wings relative to the trochanter. The possible 
coupling between sacrum position/orientation and lap belt engagement 
can be seen if one considers the attachment with the lumbar spine. If the 
spine is fixed while e.g. orientation of the sacral endplate is varied, a 
sagittal tilt of the pelvis that shifts the position of the anterior iliac spine 
will result. 

Single variable effects showed that, see Fig. 5, sex mainly affects the 
shape of the inferior-anterior regions, age affects scale and shape along 
the iliac crest, stature mainly affects scale and BMI has almost no effect 

Fig. 6. Predicting an average female of 1.62 m stature (blue) and an average 
male of 1.79 m stature (orange). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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on the pelvic bone geometry. Comparing the average female to the 
average male clear differences were identified, see Fig. 6. As example, 
significant difference (two-sample t-test, p < 0.001) was found between 
the male and female subjects for transverse diameter of the inlet (female 
mean = 134.1 mm (SD = 10.0), male mean = 127.5 mm (SD = 7.8)), 
bispinous breadth (female mean = 224.5 mm (SD = 21.3), male mean =
236.8 mm (SD = 18.5)), pelvic height (female mean = 198.5 (SD =
10.2), male mean = 217.6 mm (SD = 10.0)), and sub pubic angle (female 
mean = 126.1◦ (SD = 7.6), male mean = 104.7◦ (SD = 9.2)). However, 
by studying the total range of variability, see Fig. 3, one can note that 
interpersonal variation within each sex can be greater than the average 
difference between sexes. 

4.3. Sparse principal component analysis 

SPCA was chosen over PCA to achieve PCs with localized shape 
variations and improved interpretability. However, the need for user- 
defined solution parameters creates some drawbacks. In the case of 
PCA, 100% of the variance is always captured and the included level of 
variance can be decided a posteriori. In SPCA the number of PCs is set a 
priori and limits the variance captured. Furthermore, the number of PCs 
included can have some effect on all PCs calculated, not just the added 
ones. In addition, the sparsity controlling parameter of the solution 
routine will control the localization and hence affect the shape varia
tions captured. As a result, different settings could affect the shape 
variations captured and their significance level in the model. There is 
also a possibility that interesting features could be found in the ~10% of 
total variance not captured. Building the morphometric model from PCA 
achieved close to identical predictability indicating that these limita
tions does not affect the final prediction, only the interpretation of 
available shape components. 

5. Limitations 

The data used for this study comes from a single source. Based on 
overall anthropometry, the sample is representative of a modern US 
population (Fryar et al., 2016), but further generalization is not possible. 
This is a typical limitation for similar studies (Arand et al., 2018; 
Audenaert et al., 2019a). 

The SPCA was calculated using the CT scans of all 132 subjects. 
While this is a relatively large sample size compared with some other 
studies reporting SSMs of anatomical structures, capturing the tails of 
the population variance is not guaranteed. Audenaert et al. 2019a built 
an SSM on 271 subjects for the lower extremities, including the 
innominate bones of the pelvis but not sacrum. They concluded that 

population covering descriptive studies should aim to include 200 
training samples. 

Corresponding node sets for all subjects was achieved by morphing a 
template model with uniform mesh (n = 26,024) using a smaller set of 
manually defined landmarks (n = 286). The manual placement limits 
the repeatability of the study and is a source of uncertainty, as quantified 
by the intra-observer landmarking error. Automatic methods to achieve 
a dense correspondence map from CT scans are available and include e. 
g. segmentation through an SSM (Audenaert et al., 2019b; Chu et al., 
2015) or node matching from a template point cloud to a target node set 
(Lu and Untaroiu, 2013; Yates et al., 2016; Yates and Untaroiu, 2018). 
Given the varying quality of segmented surfaces, and the complex 3D 
geometry of the pelvic ring, an automated procedure was deemed un
feasible for the geometries available. A future study could explore the 
automated methods and use the current model as a starting point. 
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Appendix A 

An average geometry with a more uniform mesh distribution was 
developed for a couple of reasons. First, starting from an average ge
ometry will limit the distortion when morphing a future FE model based 
on the prediction of the morphometric model. Second, the shape vari
ance captured by a specific PC is in relation to how many nodes that are 
affected. This means that areas with high nodal densities will have 
greater weight than regions of the geometry with a sparser distribution. 
A more uniform mesh distribution was targeted to limit this effect. 

Fig. A1 describes the process of generating a template model 

Fig. A1. Schematic overview of template model generation. (1) Landmark subject geometries and temporary template model, (2) align subject geometries to the 
temporary template model using GPA on landmarks, (3) morph temporary template model to subject geometries using landmarks, (4) compute average geometry 
from the population, (5) build template model on average geometry by remeshing to a uniform mesh. 
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schematically. To generate the average geometry a high-resolution file 
in a polygonal format representing the pelvic bone geometry from a 
female subject (age 31 years, stature 162 cm, weight 61 kg) was used as 
a temporary template. This geometry was landmarked the same way as 
the subject geometries. To align the subjects with the temporary tem
plate partial GPA was performed (scaling effects excluded). Scaling ef
fects were excluded in this step since the aim was to extract an average- 
sized geometry rather than study the shape variance. The temporary 
template was then morphed using RBF-TPS to each subject geometry 
using the defined landmarks. An average geometry was finally 
computed as the mean coordinate value for each node. A uniform 

surface mesh was constructed on the exterior of the average geometry 
using quad elements with an average element size of 2.5 mm, referred to 
as the template model (total 26,024 nodes). 

Appendix B 

Resulting PCs from SPCA can be seen in Figs. B1–B3. The shape 
variations are shown as +/− 3 S.D. and a qualitative interpretation is 
included. 

Fig. B1. PC1-PC5 from SPCA at +3 S.D. (blue) and -3 S.D. (orange). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

E. Brynskog et al.                                                                                                                                                                                                                               



Journal of Biomechanics 126 (2021) 110633

10

Fig. B2. PC6-PC10 from SPCA at +3 S.D. (blue) and -3 S.D. (orange). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jbiomech.2021.110633. 
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