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On testing and automatic mending of safety PLC code

Adnan Khan, Martin Fabian

Chalmers University of Technology, Department of Electrical Engineering, 41296 Göteborg, Sweden

Abstract

This paper presents an approach to automatically amend an erroneous model of an implementation
using a safety specification as the basis to ensure safety. Industrially, safety PLCs are common to
ensure safe operations. However, before its commissioning, the implemented safety code must be
tested for faults caused by spurious transitions and missing safety transitions. Spurious transitions are
implemented events that are not prescribed by the safety specification, while missing safety transitions
are unimplemented safety events that are prescribed by the safety specification. The presence of
these faults can result in material or human damage. The proposed approach requires the model of
an implementation to be trace equivalent with the given safety specification only in terms of traces
composed of safety events, which is captured by the notion of safe-IOCOS. If the implementation
emits other than the specified safety events then the implementation is not safe-IOCOS and requires
amendment. This is achieved by removing the spurious transitions and adding the missing safety
events in the implementation using synthesis techniques from the supervisory control theory. The
infimal controllable superlanguage is used to compute the infimal safety extension, which adds the
missing safety transitions. It is shown how the resulting model of an implementation after amendment
is both safe-IOCOS and controllable with respect to the specification.

Keywords:
Automata, Supervisory control theory, Input-output conformance testing, infimial controllable
super-language, Safety, Discrete event system

1. Introduction

Computer controlled machines are increasingly
being introduced for commercial purposes to im-
prove efficiency and precision of manufacturing
and production systems. This has resulted in fac-
tory environments where humans work in collab-
oration with robots, as well as products like self
driving cars. These machines pose a significant
threat to humans if proper safety measures are
not implemented.

In production systems, most of the control is
event-based and the nature of these events are
typically discrete, which enables them to be mod-
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elled as discrete event systems [1]. In produc-
tion systems, valve open, motor-off, robot-stop
are some examples of discrete events, and these
events are typically executed by programmable logic
controllers (PLCs) synchronously.

Discrete event systems evolve with respect to
occurring events asynchronously, while occupying
a specific state at each time instant, where certain
conditions are valid. Formally, the interaction of
such systems can be described by different vari-
ants of synchronous composition [2].

The application of synchronous composition
can be seen in the framework of supervisory con-
trol theory (SCT) [3]. In SCT, supervisors are
synthesized automatically based on an uncontrolled
model of the plant and a given specification such
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that, the property of controllability must be sat-
isfied.

Critical scenarios in automated systems occur
as consequences of events, e.g. pressing the emer-
gency stop button in a production setup, tripping
of a production system due to high boiler pres-
sure etc. As inputs, these safety events trigger ac-
tions typically implemented in a safety PLC, and
as a consequence generate output safety events
to guarantee safe system behavior. For instance,
pressing the emergency stop should immediately
activate the emergency stop sequence.

However, during non-critical scenarios, the no-
minal behavior, as represented by sequences of
nominal events, should be active. This behavior
is typically implemented in a standard PLC that
does not have as strict requirements on its cor-
rectness as the safety PLC.

The partition between nominal events and safe-
ty events is not as clear-cut as might seem at first,
though. Some events take both roles as they are
necessary for the safety PLC to determine when a
critical situation is about to arise. For example, if
a boiler trips on high pressure, the pressure value
under normal conditions acts as a nominal event.
However, at the same time the pressure value is
being monitored by the safety PLC to ensure that
the boiler trips if it exceeds the set point. Such
events we call semi-nominal, and they are typi-
cally shared between by standard PLC and safety
PLC.

After the implementation of an actual physi-
cal system, testing is typically carried out. One
of the approaches frequently used in the formal
methods community is called model-based testing
(MBT) [4]. The term model-based testing is in-
terpreted and used in a variety of manner in the
formal methods community for the generation of
test cases. One of the interpretations deals with
black-box testing that subjects an implementa-
tion to undergo various tests with respect to a
given specification model. These test runs reveal
the model of the implementation, which is then
compared with the given specification to iden-
tify faults. A version of this approach is called
the input-output conformance simulation relation
(IOCOS) [5].

IOCOS is a finer relation compared to the
input-output conformance (IOCO) [6], due to an
extra requirement on the input events in addition
to the requirement on the output events posed by
IOCO. For the implementation to be IOCOS with
respect to the specification, the implementation is
required to have a subset of the specified outputs
and a superset of the specified inputs.

However, [7] concluded that IOCOS is not de-
tailed enough for testing safety as some behav-
iors can go untested due to the subset require-
ment on the implemented outputs and the super-
set requirement on the implemented inputs. This
gave rise to a even stronger relation called safe-
IOCOS [8].

The safe-IOCOS relation requires the imple-
mentation to emit exactly the same safety events
(both inputs and outputs) prescribed by the spec-
ification. If the implementation emits less than
the specified safety events or safety events that
are not specified then the implementation is not
safe-IOCOS and needs to be amended.

Compared to model-checking [9], where cer-
tain properties of a system are verified for cor-
rectness, testing does not guarantee absence of
faults. And it is carried out to raise the con-
fidence of the implementer on the implemented
system. Furthermore, in testing we test an actual
system, which is typically a black-box and builds
the model based on the executed tests. However,
in model-checking, typically we test the model of
the system and not a physical system.

Testing an implementation to uncover faults
related to safety is important. The implementa-
tion can be faulty either due to missing safety
events or spurious events and to uncover them a
suitable testing approach must be used.

Industrially, these implementations are typi-
cally standard PLCs and safety PLCs in a closed-
loop setting with a physical production system.
These industrial implementations, are now increas-
ingly being tested using a simulation model [10,
11, 12] instead of a real physical system. How-
ever, in some cases black-box testing approaches
are still used [13].

Furthermore, the process of amending the im-
plementation after uncovering faults is an equally
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important step that is typically carried out man-
ually. This procedure of correction in itself is sus-
ceptible to mistakes made by engineers, which can
have devastating consequences for faults related
to safety properties.

1.1. Contribution

In this paper, it is shown how testing an imple-
mentation using safe-IOCOS is better for uncov-
ering faults compared to IOCOS to ensure safety.
Then, an approach to algorithmically amend a
faulty implementation, using the infimal safety
extension with respect to a specification is pre-
sented. The amendment is carried out to achieve
trace equivalence for the traces associated with
the safety events in both the implementation and
the specification. To show the efficiency of the
presented approach, an example modelled in the
tool Supremica [14] is given. Furthermore, the re-
lationship between controllability and safe-IOCOS
is established.

1.2. Outline

This paper is structured as follows. In Sec-
tion 2, the formal definitions required to describe
the IOCOS and safe-IOCOS are detailed. Sec-
tion 3 gives an overview of the IOCOS testing
relation and its shortcomings. Section 4 intro-
duces the safe-IOCOS relation. Section 5 gives
detail regarding the supervisory control theory.
Section 6 gives a brief overview on synthesis. In
Section 7, some preconditions for the amendment
of a faulty implementation is given. In Section 8,
the solution based on the infimal safety exten-
sion is presented. In Section 9, a formal proof for
the presented approach is detailed. Finally, Sec-
tion 10 concludes the paper and presents some
future work directions.

2. Preliminaries

In this section, some formalism and definitions
typically used to represent finite-state machine
(FSM), IOCOS, and safe-IOCOS are detailed.

Consider two disjoint sets of input actions I
and output actions O, I ∩ O = ∅. The out-
put actions consists of nominal actions On, semi-
nominal actions Osn, and safety actions Ox, such

that it holds, Osn ⊆ On, O = On ∪ Ox, and,
Ox ∩ On = ∅. These output actions are initi-
ated by the system under test and are expressed
with an exclamation mark, such as !x ∈ O. Sim-
ilar to output actions, input actions also consist
of nominal actions In, semi-nominal actions Isn,
and safety actions Ix such that it holds, Isn ⊆ In,
I = In ∪ Ix, and, Ix ∩ In = ∅. The input actions
are signals to the system such as a ∈ I.

The main modeling formalism used in this pa-
per is the finite-state machine.

Definition 1. A (deterministic) finite-state ma-
chine (FSM) is a 5-tuple, 〈Q,Σ, i,→,M〉 where

• Q is a finite non-empty set of states;

• Σ = I ∪O is a finite set of events, these repre-
sent observable actions of the FSM;

• i ∈ Q is the initial state;

• →⊆ Q× Σ×Q is the transition function;

• M ⊆ Q is the set of marked states.

In addition to Σ, we defined the sets of nom-
inal events Σn = In ∪ On, semi-nominal events
Σsn = Isn ∪Osn, and safety events Σx = Ix ∪Ox.

The transition function describes the possible
evolution of the FSM from a source state p ∈ Q
to a target state q ∈ Q associated with an event
a ∈ Σ. We use infix notation p

a−→ q to denote
that 〈p, a, q〉 ∈→.

The transition function is generally a partial
function, defined only for a subset of Q × Σ. An
event a ∈ Σ is said to be enabled in a state q ∈ Q
if p

a−→ q is defined for some q ∈ Q. We write p
a−→

to denote this.
Furthermore, a trace t is a finite sequence of

symbols of Σ, i.e. t ∈ Σ∗, including the empty
trace ε. We can extend the transition function to
traces in Σ∗ as p

ε−→ p ∀p ∈ Q, and p
t a−→ r if

p
t−→ q and q

a−→ r for some q ∈ Q and a ∈ Σ.

Definition 2. For an FSM S = 〈QS,Σ, iS,→S

,MS〉, its set of traces are the ones defined from
its initial state,

traces(S) = {t ∈ Σ∗ | iS
s−→} (1)
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Definition 3. For an FSM S = 〈QS,Σ, iS,→S

,MS〉 the state reached after a trace t is

after(S, t) = {q ∈ QS | iS
t−→ q}. (2)

Definition 4. For an FSM S = 〈QS,Σ, iS,→S

,MS〉, its set of marked traces are the ones de-
fined from its initial state reaching to the marked
states.

tracesm(S) = {t ∈ Σ∗ | iS
t−→ q ∈MS}. (3)

Definition 5. The set of all outgoing events en-
abled at a state q is

act(q) = {σ ∈ Σ | q σ−→}. (4)

The set of all outputs and inputs enabled at a
state q is then given by outs(q) = act(q)∩O and
ins(q) = act(q) ∩ I, respectively.

3. Input-output conformance simulation re-
lation

Testing is typically carried out to uncover faults
in an implementation with respect to a specifica-
tion model. During testing, a tester carries out
several experiments on the implementation that
is typically a black-box [15].

This means that the tester gives different in-
puts to the implementation with respect to the
given specification and observes the outputs emit-
ted by the implementation. Based on the ob-
served behavior, the verdict of pass or fail is given.

Definition 6. For a given FSM G and K, a re-
lation R ⊆ (QG × QK) ∪ (QG × QK) is an iocos-
relation if for any 〈p, q〉 ∈ R it holds that:

1. ins(q) ⊆ ins(p)

2. ∀a ∈ ins(q) and ∀p′ : p a−→ p′, there ∃q′ : q a−→ q′

such that 〈p′, q′〉 ∈ R

3. ∀!x ∈ outs(p) and ∀p′ : p !x−→ p′, there ∃q′ : q !x−→
q′ such that 〈p′, q′〉 ∈ R

Definition 7. IOCOS simulation relation = ∪ {R
⊆ (QG×QK) ∪ (QG×QK) | R is an iocos-relation}.

Definitions 6 and 7 from [5] define IOCOS over
all pairs of states, even state-pairs that are in
practice unreachable. However, in a practical set-
ting, only the state-pairs that are actually reach-
able in the implementation and defined by the
specification are of interest. Thus below we give
a different definition of IOCOS, proven in [16] to
be equivalent to the original definition.

Definition 8. For an implementation G and a
specification K with initial states p0 ∈ QG and
q0 ∈ QK, respectively, we say that G is IOCOS
with respect to K, denoted G IOCOS K, if
〈p0, q0〉 ∈ IOCOS [16].

The above mentioned definitions for the sim-
ulation relation IOCOS from [5] are more general
than necessary for this paper, as we here deal with
deterministic FSM only. Therefore, an equivalent
definition of G IOCOS K for deterministic FSM
can be given.

Definition 9. For deterministic implementation
G and specification K, G is said to be IOCOS
with respect to K, denoted G IOCOS K, if

∀t ∈ traces(G) ∩ traces(K) : p0
t−→ p, q0

t−→ q :

outs(p) ⊆ outs(q) ∧ ins(q) ⊆ ins(p)

If IOCOS is used to test safety, there is a pos-
sibility that safety events that are missing in the
implementation but are prescribed by the specifi-
cation can go untested [8]. These faults are called
missing safety events that may typically occur in
cases where a safety action is required to be imple-
mented at several locations in a control program
e.g. in a PLC code.

Another possible problem is if some spurious
events (nominal or safety) that are not prescribed
by the specification are present in the implemen-
tation. These events can also go untested if the
IOCOS testing relation is used and can wreak
havoc by leading to unsafe situations in practi-
cal settings.

To highlight the above mentioned problems
of the IOCOS testing relation, an example illus-
trated in Fig. 1 with two implementationsG1, and
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Figure 1: Implementation with missing !Conveyor stop
event (G1, top left). Implementation with spurious Emer-
gency shut event (G2, top right). The specification K is
at the bottom.

G2 are tested individually with respect to a spec-
ification K. This example is based on a typical
production cell that contains a robot and a con-
veyor belt. In terms of operations, both machines
should be stopped when the emergency shutdown
is activated per the specification K.

First, the implementation G1 is tested with
respect to specification K. In G1, when the in-
put event Emergency shut is triggered, only the
!Robot stop output is activated. However, accord-
ing to the specification K, after the occurrence of
the input event Emergency shut, both !Robot stop
and !Conveyor stop should be activated. Thus,
based on the IOCOS testing relation, the imple-
mentation G1 is IOCOS with respect to the spec-
ification K as the implementation emits a subset
of the specified outputs. Thus, the missing output
!Conveyor stop remains covered in G1.

Now, the second implementation G2 is tested
with respect to K. The input event Emergency
shut after getting triggered activates the !Robot
stop and !Conveyor stop outputs. After assess-

ing each state of G2, the IOCOS testing relation
is valid with respect to K as each state emits a
subset of the specified outputs and a superset of
the inputs. However, if we analyze G2, the event

Emergency shut in state S6 is a spurious event
as it is no specified by the specification K. This
event is not uncovered by the IOCOS testing re-
lation and can lead to safety critical situations.

4. Testing with safe-IOCOS

The problems with the IOCOS relation high-
lighted in Sec. 3 gives rise to a new relation called
safe-IOCOS is proposed [8]. The safe-IOCOS sim-
ulation relation requires the implementation to be
trace equivalent only for the traces composed of
safety events. However, in terms nominal events,
the implementation does not have any restrictions.

Definition 10. For two deterministic FSMs G
and K with equal set of events, G is said to be
safe-IOCOS with respect to K if

∀t ∈ traces(G||K) :

act(after(G, t)) ∩ Σx = act(after(K, t)) ∩ Σx
(5)

For an implementation G and specification K,
the safe-IOCOS definition (Def. 10) is interpreted
as the implementation G conforms to a specifica-
tion K, if for all common traces between the spec-
ification and implementation, the safety inputs
and the safety outputs possible from the state
reached by the implementation after a trace are
equal to the possible safety inputs and safety out-
puts events from the state reached by the specifi-
cation after the same trace. If this equality rela-
tion between the respective sets of inputs and the
outputs exist, the implementation is safe-IOCOS
with respect to the specification for the executed
trace.

Now, we apply safe-IOCOS on the example in
Fig. 1 to test G1 and G2 with respect to K.

In G1, the application of safe-IOCOS with re-
spect to K uncovers the missing safety output
!Conveyor stop. As according to Def. 10, safe-
IOCOS require G1 to have equality for safety
events and it can be seen in Fig. 1 that K has two
safety outputs, !Robot stop and !Conveyor stop
after the input event Emergency shut. While, G1
has only !Robot stop. This means, the implemen-
tation G1 is not safe-IOCOS with respect to K.

Similarly, in G2, when safe-IOCOS is applied,
the spurious transition Emergency shut in state
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S6 in uncovered. Thus, G2 is not safe-IOCOS
with respect to K due to the equality require-
ments for safety events expressed in Def. 10.

The example illustrated in Fig. 1 and Def. 10 is
for a general case, where the specification K rep-
resents the given specification and contains safety
events only. However, in practice the event parti-
tioning in the specification differs from the stated
example, which needs to be explained in relation
to the implementation in physical setting.

In practice, the implementation G is a con-
trolled plant that consists of a real physical sys-
tem P and a controller S in a closed-loop set-
ting. The job of the controller is to keep the plant
within the global specification K that is a com-
position of nominal specification Kn and safety
specification Kx. The event partitioning of both
Kn and Kx that follows is inspired by the splitting
method of [17].

The nominal specification Kn deals with the
nominal behavior and contains only the nominal
events Σn. The implementation is allowed to exe-
cute various combinations of these nominal events
Σn.

Some of the nominal events in Kn are also re-
quired by the safety specification to ensure safety.
These events are called semi-nominal events such
that Σsn = Σn ∩ ΣKx . The role of the semi-
nominal events is to bind the nominal specifica-
tion Kn with the safety specification Kx to ensure
safety.

For the safety specification Kx, its event set
is ΣKx = Σx ∪ Σsn. Thus, the safety specifica-
tion shares the semi-nominal events Σsn with the
nominal specification, Kn.

The safety events, Σx only belong to the safety
specification i.e. Σx∩Σn = ∅ and requires careful
attention, because if the specified safety events are
missing in the implementation then it can either
lead to machine damage or human accidents.

Practically, the controller S is typically manu-
ally constructed, but could also be synthesized by
means of some formal approach, such as the Su-
pervisory Control Theory (SCT) [3]. This same
theoretical approach can, as will be shown, also
aid in amending an implementation when faults
have been uncovered by safe-IOCOS testing.

Figure 2: Asymmetric (left) and symmetric (right) super-
visor feedback loops.

5. Supervisory Control Theory

The SCT takes a control-theoretic approach
on discrete event systems. The main idea behind
this theory is the automatic synthesis of a con-
troller, called a supervisor S, for an uncontrolled
system, the plant P , so that the controlled system
G adheres to a given specification.

The plant models all the possible behavior of
the uncontrolled system, while the specification
models the desired controlled behavior. The task
of synthesis is now to automatically calculate a
supervisor, given the plant and the specification,
such that when this supervisor controls the plant
the closed-loop system exhibits a behavior that
is guaranteed to remain within the specification,
while always being able to complete some desired
task.

The supervisor effects its control on the plant
by dynamically disabling events from occurring.
Thus, there is an asymmetric feedback-loop be-
tween the plant and the supervisor, see Fig 2
(left), the plant generates events, while the super-
visor at each global state disables a subset of the
events to guarantee that the closed-loop system
never goes outside the specified behavior. How-
ever, not all events are subject to disablement
by the supervisor; controllable events can be dis-
abled, while uncontrollable events cannot. This
must be considered when synthesizing the super-
visor; the synthesis procedure must produce a su-
pervisor that is controllable with respect to the
plant and the uncontrollable events.

In addition, some global states are of signif-
icant interest, and are therefore marked by the
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specification. At least one of these marked states
must always be reachable from any state in the
closed-loop system,. This poses a requirement on
the supervisor to be non-blocking.

Furthermore, it is common to require that the
supervisor should disable events only when en-
abling such events would inevitably lead to violat-
ing the controllability or non-blocking properties.
This is captured by the requirement of the su-
pervisor to be minimally restrictive1. It is known
that a minimally restrictive, controllable and non-
blocking supervisor always exists, is computable
in the regular case, and is unique [3, 1].

Though [3] originally took a formal language-
theoretic viewpoint, for calculation purposes it is
beneficial to model the plant, the specification,
and the supervisor as finite-state machines [1].

In the following it is assumed that plant, spec-
ification, and supervisor all have the same event
set, Σ, and that the controllable and uncontrol-
lable events, Σc and Σu, respectively, partition Σ.

The interaction between the supervisor and
the plant can be modeled by synchronous com-
position, where an event can occur only if it is
simultaneously enabled in both.

Definition 11. For two FSMs A and B with the
same set of events, their synchronous composi-
tion is A||B = 〈QA ×QB,Σ, 〈iA, iB〉,→A||B,
MA ×MB〉, where

〈p, q〉 σ−→A||B= 〈p σ−→, q σ−→〉 (6)

if both p
σ−→ and q

σ−→ are defined, else undefined.

From Def. 11, it follows that:

∀t ∈ traces(A||B) = traces(A) ∩ traces(B).

Note that events that in either FSM label no
transitions will be globally disabled by the com-
position; that is, they are disabled from ever oc-
curring.

Now controllability can be formally defined.

1This paper does not treat minimally restrictiveness, so
this property is not formally defined.

Definition 12. Given a plant P and uncontrol-
lable events Σu, a supervisor S is controllable
w.r.t. to P and Σu if

traces(P ||S)Σu ∩ traces(P ) ⊆ traces(P ||S)
(7)

Def. 12 says that the states reached after the
execution of a common trace in P and S, the un-
controllable events enabled by the plant P must
be a subset of the uncontrollable events enabled
by the supervisor. Put another way, S can never
disable an uncontrollable event enabled by P in a
state reached by a common trace.

Definition 13. Given a plant P and a supervisor
S, the supervisor is non-blocking if

tracesm(P ||S) = traces(P ||S). (8)

Def. 13 says that the generated controller S
is non-blocking if the closed-loop system of the
given plant P and the supervisor S is such that it
can always reach a marked state.

The authors in [18] re-interpret the original
supervisory control theory formulation into an in-
put/output interpretation, where Σu are regarded
as outputs from the plant and inputs to the su-
pervisor, while Σc are outputs from the supervisor
and inputs to the plant. This forms a symmetric
relation between the plant and the supervisor, see
Fig. 2 (right), which according to [18] is better
suitable to model real systems, where events do
not occur spontaneously but only as responses to
commands. This changes the role of a supervi-
sor from being a passive safety device that stops
bad things from happening (while allowing good
things), to being an active entity commanding ac-
tions of the plant.

It is shown by [18] that the input/output in-
terpretation does not really change anything when
it comes to synthesis and controllability, the same
requirements are still valid and it is only a matter
of interpretation. In this interpretation, control-
lability means that the supervisor must at each
global state be ready to accept as inputs the plant
outputs enabled in that state. Similarly, there
is an inverse controllability where the supervisor
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may not generate outputs (inputs to the plant)
that the plant cannot accept in its current state.
However, due to the way synthesis is performed,
inverse controllability is trivially satisfied, and need
not concern us further.

6. Synthesis to amend a faulty implemen-
tation

In the SCT, if the plant does not conform to
the specification then synthesis is carried out to
ensure the property of controllability and non-
blocking. Synthesis is an algorithmic process to
generate supervisors. The supervisor’s role is to
keep the plant safe by dynamically restricting the
events generated by the plant. This event re-
striction is modeled by synchronous composition,
where an event is enabled if and only if both the
plant and the supervisor simultaneously enable it.

Since the plant is considered immutable, syn-
thesis works by either constricting or expanding
the synchronous composition of the plant and spec-
ification models. In the former case this is done
by computing the supremal controllable sublan-
guage, sup C(G||K), and in the latter case by
computing the infimal controllable superlanguage,
inf C(G||K).

For computing sup C(G||K), transitions lead-
ing to unsafe states by uncontrollable events are
iteratively removed until a fix-point is reached. It
is known [3] that a minimally restrictive solution
to this always exists and is computable. However,
the result may be the degenerate null supervisor
that restricts the plant so much as to not allowing
it to do anything. This indicates that practically
no useful safe solution exists.

In the case of computing inf C(G||K), the
model of the plant and specification operating in
synchrony is instead expanded within the scope
of the plant. This allows more behavior while in
practice breaking the specification, though in a
minimal way.

Both computation approaches i.e. supremal
controllable sublanguage and the infimial control-
lable superlanguage basically alters the specifica-
tion and not plant. However, for the proposed
case, it is the implementation that is a controlled

plant and requires amendment. Therefore, the
specification should be kept intact and the syn-
thesis should compute the new modified imple-
mentation model. To achieve this, the roles of
the implementation and the specification needs
to be reversed so that the algorithm modifies the
implementation instead of the specification.

Now the question is, which computation ap-
proach should be used to amend the implemen-
tation model. The answer probably lies in the
very nature of the approaches discussed above.
The supremal controllable sublanguage computa-
tion can help in removing spurious transitions as
it basically constricts the specification. However,
as mentioned above, if no safe solution exist then
the resultant language will be null, which is not
of any use in practical settings.

Furthermore, for cases where a state has spuri-
ous events along with valid events, computing the
supremal controllable sublanguage is not suitable.
This so, since the state associated with the spu-
rious transition gets removed if the property of
controllability is compromised, which leads to the
elimination of valid transitions along with spuri-
ous ones.

This enables the use of infimial approach as it
can help in the case of missing transitions because
it expands the specification. And the last step of
the infimial approach i.e. FSC [2] can help in the
removal of spurious events. However, this requires
to be validated.

7. Preconditions for amendment

In a typical manufacturing system, there are
several production units working in parallel to
carry out the programmed tasks. Usually, each
machine in a production unit is involved in car-
rying out multiple operations [19]. For example a
robot is involved in pick and place operations, a
conveyor has start and stop operations etc. Now,
these operations can be implemented individually
or be a part of a larger segment in an implemented
PLC code along with other operations.

To amend specific segments of an implemen-
tation for faults related to safety, each segment
of the implementation must be amended with re-
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spect to the safety specification related to that
particular segment. This means that the safety
specification must contain the information related
to the safety behavior that should be implemented
in a particular faulty segment, along with the in-
formation of the associated nominal behavior.

For example, if a segment in an implementa-
tion requires amendment for the safety behavior
related to a proximity sensor, then each nomi-
nal operation associated with the proximity sen-
sor logic is required to be prescribed in the safety
specification.

The nominal behaviors that are not associated
with the faulty segment of the implementation
should be preserved. This means that the imple-
mentation is allowed to nominally do more com-
pared to the prescribed nominal behavior in the
safety specification.

Now to amend an implementation G with re-
spect to a safety specification Kx, where both G
and Kx are non-blocking, such that ΣKx ⊆ ΣG

by computing inf C(G||Kx) the following assump-
tions will be made.

The first assumption is that the semi-nominal
events in Kx are renamed if they are used in seg-
ments of the given implementation G that do not
require amendment for safety. For example if an
event !x1 is used in the segment of G that is un-
der scrutiny, then it is renamed to !x2 in other
segments of the implementation G.

Renaming of common semi-nominal events al-
lows to amend automatically just the faulty seg-
ments of the implementation G. Thus, the rest
of the implementation will remain in its original
form.

The second assumption is that the safety spec-
ification Kx has a subset of semi-nominal events
with respect to the implementationG. This means
that the semi-nominal events enabled by Kx can-
not be missing in G.

Definition 14. Given an implementation G and
a safety specification Kx, the semi-nominal events
of Kx cannot be missing from G, that is:

∀t ∈ traces(G||Kx) :

act(after(Kx, t)) ∩ Σsn ⊆ act(after(G, t)) ∩ Σsn

If the given G does not fulfill Def. 14, then
the computation of inf C(G||Kx) may result in
blocking. Due to this, missing safety events may
not get added to the faulty state in G.

With the above assumptions, now the goal is
to algorithmically amend a faulty implementation
G that does not fulfill Def. 10 with respect to the
safety specification Kx. However, to amend the
faulty G with respect to Kx, first K ′x is created by
adding the ΣG \ΣKx events to Kx. This addition
of events makes ΣK′

x
= ΣG.

Now, the amendment should be carried out
in such a manner that trace equivalence for the
traces associated with safety behaviors, i.e. Σx,
between the final amended modelG′′ and the safety
specification K ′x is achieved. This partial trace
equivalence for traces associated with Σx, makes
G′′ safe-IOCOS with respect to K ′x. In addition,
G′′ will be non-blocking, and controllable with re-
spect to the safety specification K ′x.

8. Infimal safety extension to amend a faulty
implementation

The general procedure for infimal controllable
superlanguage [1] for any two FSMs expands the
language of one FSM with respect to the other.
This procedure is typically used to expand an ar-
bitrary specification M with respect to an uncon-
trolled plant P . It consists of three steps.

In the first step of the procedure, a new state,
called DEAD is introduced in the specification
modelM . After the addition of DEAD, all the un-
defined uncontrollable events of the active event
set from each state are added to it.

In the second step, self-loops on all uncontrol-
lable events are added to the dead state. This
addition augments the original M to now have
the traces traces(M) Σ∗uc.

Finally, in the third step, intersection is car-
ried out between the traces of the newly gener-
ated specification, i.e. traces(M) Σ∗uc, with the
traces of the uncontrolled plant traces(P ), i.e.
traces(M) Σ∗uc ∩ traces(P ). This intersection of
traces is the infimial controllable superlanguage
of P and M , inf C(P ||M).
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Definition 15. Given a plant P , a specification
M , and uncontrollable events Σuc, the infimal con-
trollable superlanguage inf C(P ||M) is given as:

inf C(P ||M) = traces(M) Σ∗uc ∩ traces(P ).

Though the description of the inf C(P ||M)
computation is based on languages, the efficient
way to do it is to work on FSM. Thus, in practice
an FSM M ′ is generated such that traces(M ′) =
inf C(P ||M).

From Def. 15 we see that the traces of M ′

are the traces of M extended by uncontrollable
events that exist within the plant P . Thus, M ′ is
larger than M in terms of behavior, but control-
lably contained within P .

Now, to amend a faulty implementationG with
additional nominal behavior i.e. ΣKx ⊆ ΣG, the
computation of infimal controllable superlanguage
can be computed with respect to the safety spec-
ification Kx such that Σx ⊆ Σuc. However, this
time, it is the traces of the implementation G that
will be modified with respect to Kx. Thus, we will
compute the infimal safety extension of G with
respect to Kx, inf SE(G||Kx) as:

inf SE(G||Kx) = traces(G) Σ∗x ∩ traces(Kx)

An important thing to remember while com-
puting inf SE(G||Kx) is to preserve the segments
of the given implementation that do not require
amendment to ensure safety. Thus, the infimal
computation must be restricted only to the faulty
segments of the implementation denoted Gfaulty.
This modified procedure can, as will be shown,
help in amending the faulty segments, while keep-
ing the non-faulty segments of the given imple-
mentation in its original form.

8.1. Computation of the infimal safety extension

To selectively amend a given implementation
using the infimal controllable superlanguage such
that the non-faulty segments of the implemen-
tation are not disturbed, the computation needs
to be restricted to a particular set of states de-
noted Qaug ⊆ QG. As these states belong to the
faulty segment Gfaulty and require amendment.
The procedure for computing infimal safety ex-
tension is as follows.

Figure 3: Safety specification Kx.

1. In the first step, the states i.e. Qaug ⊆ QG

that requires augmentation are partitioned af-
ter creating K ′x by setting ΣKx = ΣG and com-
puting G||K ′x . Setting ΣKx = ΣG restricts the
events that are outside Kx from participating
in the computation of G||K ′x. Thus, states as-
sociated with the ΣG \ΣKx events do not show
up in the final result.

2. In the second step, Gaug is created by augment-
ing the states of Qaug. This is done by adding
a DEAD state in G with Σx self-looped. Then,
from each pi ∈ Qaug transitions on the unde-
fined safety events i.e. Σx are added from pi to
the DEAD state on the events σ ∈ Σx state.

3. The third step computes a new model of the
implementation G′ = Gaug||Kx.

4. In the fourth step, a model G′′ is generated
from G′ after merging each state labelled
(DEAD, qj) ∈ QG′ with any state (pi, qj) ∈
QG′ .

The process of merging basically re-directs the
in-going and out-going transitions of 〈DEAD, qj〉

10



Figure 4: Implementation G

to 〈pi, qj〉, which makes G′′ non-blocking. Now,
this G′′ fulfils Def. 10, and is controllable with
respect to K ′x.

8.2. Computational complexity

The overall computation complexity of the pro-
posed procedure is dominated by O(n2) and the
breakdown of each step is as follows. In the first
step synchronous composition is computed between
two machines. Thus the complexity of step 1 is
O(n2), where n is the number of states in the sys-
tem. Step 2 has an overall complexity of O(n).
In step 3 we again compute synchronous compo-
sition of two machines hence the complexity is
O(n2). For step 4, the worst case complexity is
O(n2) i.e. if all states are required to be merged
and for each state, all the other n− 1 states have
to be searched.

8.3. Example

Let us illustrate the infimal safety extension
procedure by applying it to the implementation
G given in Fig. 4. This implementation is not
safe-IOCOS with respect to Kx (see Fig. 3) as the

Figure 5: Faulty segment Gfaulty of the implementation.

safety event !Fl Sc prescribed by Kx in states q3
and q4 are missing. In addition there is a spurious
event Re load in state p1. To distinguish the im-
plementation from specification, implementation
states are labelled as pi, and specification states
are labelled as qi.

1. The first step is to partition the states Qaug ⊆
QG by computing computing G||K ′x. This is
done by creating K ′x after adding the events,
glue, Rob2pick, Rob2place, Rob2fin toKx. These
events also includes the renamed semi-nominal
events in G. Then G||K ′x is computed to iden-
tify all pi ∈ Qaug, which can be seen in Fig. 5.
The identified states that belong to Qaug are
p0, p1, p2, p3, p4, p11, and p12.

2. In the second step, Gaug is computed by aug-
menting the states of Qaug. This is done by
adding a DEAD state in G with Σx self-looped.
Then, from each identified state i.e. p0, p1, p2,
p3, p4, p11, and p12, the undefined safety events
Σx are added to the DEAD state. The result
of the computation can be seen in Fig. 6.

3. The third step computes the intermediate FSM
G′ = Gaug||Kx, given in Fig. 7.

4. In the fourth step, a model G′′ is generated
from G′ after merging the states 〈DEAD, q0〉,
〈DEAD, q5〉 and 〈DEAD, q6〉 to 〈p0, q0〉, 〈p11, q5〉,
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Figure 6: The augmented FSM Gaug of Step 2.

Figure 7: Intermediate FSM G′ of Step 3

Figure 8: Final result G′′ of Step 4, after merging states

and 〈p12, q6〉 respectively in G′. The final result
after merging is given in Fig. 8.

The process of merging is required to remove
the blocking caused by the state 〈DEAD, q0〉 in
G′. This means that tracesm(G′) 6= traces(G′).
To solve this issue, a states labeled 〈DEAD, qj〉
is merged with any state 〈pi, qj〉.

This is done by assigning semantics to the
state-labels in a similar way to Kripke-structures
[20]. The second element of the tuple 〈DEAD, qj〉
is matched to the second element of states 〈pi, qj〉,
and then these states are merged by re-directing
the incoming and outgoing transitions of 〈DEAD,
qj〉 to 〈pi, qj〉. And this is done for all states
〈DEAD, qj〉 and any 〈pi, qj〉.

For example, the state 〈DEAD, q0〉 at the bot-
tom of Fig. 7 is merged with the state (p0, q0).
Similarly, states 〈DEAD, q5〉 and 〈DEAD, q6〉 are
merged with states 〈p11, q5〉 and (p12, q6), respec-
tively. The final implementation model G′′ after
merging all related states is given in Fig. 8.

Now, the generatedG′′ in Fig. 8 is safe-IOCOS,
and controllable with respect to K ′x, because the
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missing safety events !Fl Sc is added to the states
p3 and p4. In addition, the spurious event !Re load
in state p1 is removed. This means that ∀t ∈
traces(G′′||K ′x) : act(after(G′′, t)) ∩ ΣK′

x
=

act(after(K ′x, t)) ∩ ΣK′
x
.

In the next section it is shown that the ap-
proach will always amend a given implementation
G with respect to a safety specification Kx such
that the computed model G′′ is safe-IOCOS, non-
blocking, and controllable with respect to K ′x.

9. Correctness

For G′′ computed by the above described in-
fimal safety extension procedure to be correct by
construction, it is required that the procedure adds
the missing safety events and removes spurious
events, in such a way that G′′ is controllable with
respect to the safety specification, non-blocking,
and safe-IOCOS. The following theorem proves
that G′′ is correct by construction.

Theorem 1. Given an implementation G with
event set ΣG, and a safety specification Kx with
event set ΣKx = Σx ∪ Σsn ⊆ ΣG, where the safety
events Σx ⊆ Σuc and the semi-nominal events
Σsn ⊆ Σn, with Σn the nominal events, and Σx ∩
Σn = ∅. Computation of the infimal safety ex-
tension G′′ of G with respect to Kx will make
G′′ controllable wrt K ′x, non-blocking, and ∀t ∈
traces(G′′||K ′x),act(after(G′′, t)) ∩ ΣK′

x
=

act(after(K ′x, t)) ∩ ΣK′
x
.

Proof. We show this by showing that
traces(G′′||K ′x) = traces(K ′x). Since ΣG′′ =
ΣK′

x
(= ΣG), we have that traces(G′′||K ′x) =

traces(G′′) ∩ traces(K ′x).
Take t ∈ traces(G′′||K ′x) = traces(G′′)

∩ traces(K ′x). Thus, t ∈ traces(K ′x).
Take t ∈ traces(K ′x) = traces(Kx). If t /∈

traces(G′′) ∩ traces(K ′x), then t /∈ traces(G′′),
which means that t /∈ traces(G′), which means
that t /∈ traces(Gaug). Let t = sσ, such that s ∈
traces(G′′). Obviously, s ∈ traces(K ′x). Now,
σ is either a semi-nominal event, or an uncontrol-
lable safety event. If σ ∈ Σsn then by the assump-
tion of no missing semi-nominal events Def. 14,
since sσ ∈ traces(Kx) also sσ ∈ traces(G), and

hence sσ ∈ traces(G′′). If σ ∈ Σx, then sσ ∈
traces(Gaug) and hence sσ ∈ traces(G′′), since
sσ ∈ traces(Kx). Thus, t ∈ traces(G′′||K ′x).

Now, since traces(G′′||K ′x) = traces(K ′x) the
claim is shown; traces(K ′x) is controllable wrt it-
self, K ′x is by assumption non-blocking, and after
each trace of t ∈ traces(G′′||K ′x) the continuation
tσ is in both traces(G′′) and traces(K ′x).

In Def. 10 it is assumed that the two FSM have
the same sets of events. This is why K ′x is used
in Theorem 1, instead of Kx. What happens in
the composition G′′||K ′x is that the segment that
should not be touched is disregarded. In the ex-
ample this is the “appendix” that begins with the
glue event. This is nominal behavior that should
go untreated. K ′x has these events in its alpha-
bet, but has no transitions on them, and so these
events are disabled in every state.

Based on the proof, for any given implementa-
tion model G and safety specification Kx, the new
modified implementation model G′′ computed via
the proposed infimal safety extension procedure
will be correct by construction related to spuri-
ous events and missing safety events.

In addition, the implementation model G′′ is
controllable with respect to the safety specifica-
tion Kx. This means that in a physical setting
the amendment prescribed by G′′ can be applied
by changing the existing controller S (and not
the physical plant P ); since G = P ||S, a new
controller S ′′ can be generated from G′′ so that
P ||S ′′ = G′′, precisely because G′′ is controllable.

Furthermore, the computed G′′ is free of spu-
rious semi-nominal events, that is:

∀t ∈ traces(G′′||K ′x) :

act(after(G′′, t)) ∩ Σsn = act(after(K ′x, t)) ∩ Σsn

(9)

Expression (9) means that if there is a semi-
nominal event prescribed by K ′x in a state then
there should exist the same semi-nominal event in
the corresponding state of G′′. This is required to
ensure safety, because if there is a spurious semi-
nominal event present in G′′, which is not pre-
scribed by K ′x, then that spurious semi-nominal
event can lead to an unsafe state. Since by the

13



proof of Theorem 1 traces(G′′||K ′x) = traces(K ′x),
G′′ obviously fulfills (9).

10. Conclusion

In this paper a new approach to automati-
cally amend an implementation with respect to
a safety specification is presented. The proposed
procedure computes the infimal safety extension,
which selectively amends the given implementa-
tion to ensure safety. The amendment is carried
out in such a manner that the other segment of
the implementation, which does not require any
amendment is preserved in its original form. The
infimal safety extension represents a new model
of an implementation G′′, eliminating faults as-
sociated with missing safety events and spurious
events. The computed model G′′ is safe-IOCOS,
controllable with respect to the safety specifica-
tion, and non-blocking. Furthermore, the pro-
posed approach is illustrated with an example to
show the infimal safety extension working dynam-
ics, and is substantiated with a formal proof.

In practical settings, the presented approach
can be used to amend the faulty segment of a
safety PLC code, because physically, it is the con-
troller that is amended, while the physical plant
remains untouched.

In terms of future work, the problem of scal-
ability needs to be handled. In this context, a
compositional approach would seem to be possi-
ble, where both the implementation and the safety
specification are given by several components that
interact (through synchronous composition) to
make up the global system, and advantage is taken
of the fact that these are distinct interacting com-
ponents, similar to [21].

Furthermore, the presented approach deals only
with discrete event systems. However, when it
comes to continuous safety behavior and timed
safety events, the presented approach has limita-
tions, which is planned to be captured in future
work.
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