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Dirac Integral Equations for Dielectric
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Johan Helsing and Andreas Rosén

Abstract. A new integral equation formulation is presented for the
Maxwell transmission problem in Lipschitz domains. It builds on the
Cauchy integral for the Dirac equation, is free from false eigenwavenum-
bers for a wider range of permittivities than other known formulations,
can be used for magnetic materials, is applicable in both two and three
dimensions, and does not suffer from any low-frequency breakdown.
Numerical results for the two-dimensional version of the formulation,
including examples featuring surface plasmon waves, demonstrate com-
petitiveness relative to state-of-the-art integral formulations that are
constrained to two dimensions. However, our Dirac integral equation
performs equally well in three dimensions, as demonstrated in a com-
panion paper.
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1. Introduction

This paper introduces a new boundary integral equation (BIE) formulation
for solving the time-harmonic Maxwell transmission problem across interfaces
between domains of constant and isotropic, but otherwise general complex-
valued, permittivities and permeabilities. The main novelty of our BIE is that
it performs well for a very wide range of materials, including metamaterials
with negative permittivities. We provide not only numerical evidence of such
performance, but also rigorous proofs for general Lipschitz interfaces.

We refer to our new formulation as a Dirac integral equation, since
our point of departure is to embed Maxwell’s equations into a Dirac-type
equation by relaxing the constraints divE = 0 and divB = 0 on the electric
and magnetic fields E and B and introducing two auxiliary Dirac variables,
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which make the partial differential equation (PDE) elliptic also without these
divergence-free constraints. This means that our integral equation uses eight
unknown scalar densities in three dimensions (3D) and four unknown scalar
densities in two dimensions (2D), where eight and four, respectively, are the
dimensions of the Clifford algebra which is the algebraic structure behind the
Dirac equation and which we make use of in the analysis. This idea to write
Maxwell’s equations as a Dirac equation is old, and appears in the works of
M. Riesz and D. Hestenes. Even Maxwell himself formulated his equations
using Hamilton’s quaternions. Picard [33,34] elliptifies Maxwell’s equations
by embedding these into a Dirac equation, without using Clifford algebra but
writing it as a div-curl-grad matrix system. This Picard’s extended Maxwell
system is the basis for more recent works [38–40].

In harmonic analysis of non-smooth boundary value problems for
Maxwell’s equations, BIEs based on the Dirac equation were developed by
M. Mitrea, McIntosh et al., see [5,31]. Building on this, the second author
of the present paper further developed the theory of Dirac integral equations
for solving Maxwell’s equations in his PhD work [1–4,6] with Alan McIntosh.
Applications of these methods to scattering from perfect electric conductors
(PEC) are found in [35,36], and the spin integral equations there are pre-
cursors of the Dirac integral equations presented here. More recent results
on Dirac equations for Maxwell scattering problems with Lipschitz interfaces
are also [26,30], which deal with the Lp boundary topology, but only treat
the case of equal wave numbers in the two domains.

The focus in the present paper is on BIEs which are numerically good for
a very wide range of material combinations, including such where permittivity
ratios are negative real numbers. In this case, the relevant function space is
the trace space for the L2 topology in the domains, since this is where surface
plasmons waves may appear, as we approach purely negative permittivity
ratios. In particular, we seek BIEs without false eigenwavenumbers in this
plasmonic regime. In the simpler cases of scattering from PEC objects or from
dielectric objects with less permissible restrictions on their permittivities, and
also on the genus of the domains, there are many good formulations available.
See, for example, [15] for a BIE with six scalar unknowns containing only
weakly singular integral operators and extending results from the pioneering
work [40]. However, for metamaterials in plasmonic scattering, we are only
aware of two BIEs without false eigenwavenumbers, namely the Dirac integral
equations presented here and the BIE in [23]. Both these works seem to
indicate that eight is the number of scalar densities needed to construct a
Maxwell BIE in 3D that is free from false eigenwavenumbers for all complex-
valued choices of material constants.

Turning to the description of the present work, the main objective is to
design the integral equations so that not only the operator has good Fredholm
properties, but also so that no false eigenwavenumbers appear. This problem
may be best explained by the relation

PDE ◦ Ansatz = BIE .
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The PDE problem, Helmholtz or Maxwell, is to invert a map (F+, F−) �→ g,
where g is boundary datum, and F± are the solutions, the sought fields in the
interior domain Ω+ and exterior domain Ω−, respectively. To obtain a BIE
we need to choose an appropriate ansatz, that is an integral representation
h �→ (F+, F−) of the fields in terms of a density function h on the interface
∂Ω between Ω+ and Ω−. From this we obtain a BIE as the composed map
h �→ g, via (F+, F−). A main objective is to use an invertible ansatz with
as good condition number as possible, so that the BIE is invertible whenever
the PDE problem is well posed.

Our main results, the Dirac integral equations for solving Maxwell’s
equations in R2 as well as in R3, are formulated in Sect. 2 and make use of
ansatzes which are invertible for all choices of material constants. At a more
technical level we make the following comments, where k± are wavenumbers
in Ω±, Im k± ≥ 0, and k̂ = k+/k−.

• Propositions 6.1 and 8.2 show sufficient conditions for the Helmholtz
and Maxwell transmission problems to have uniqueness of solutions.
For non-magnetic materials, our result is the hexagonal region shown
in Fig. 1, which strictly contains the regions earlier obtained for the
Helmholtz transmission problem in [27,28]. See, however, the proof
of [23, Prop. 3.1] for a comment on a minor flaw in [28]. When also
the PDE problem defines a Fredholm map, something that can fail in
the hexagon only when | arg(k+) − arg(k−)| = π/2, then we also have
existence of solutions. Outside this region of existence and uniqueness,
and for a given k−, the uniqueness of solutions fails only for a discrete
set of k+.

• The Dirac BIE, presented in Sect. 2, is only one possible choice from
a family of Dirac BIEs derived in Sects. 7 and 8. In R2, these BIEs
depend on four Dirac parameters r, β, α′, β′. The choice for r is criti-
cal for numerical performance, whereas the precise choices for the other
parameters seem to be of lesser importance as long as they are chosen so
that no false eigenwavenumbers appear. In R3, there are two additional
parameters γ, γ′.
The Dirac BIE is constructed in Propositions 7.3 and 8.5 using a dual
PDE problem as ansatz. Our choice of dual PDE problem giving the
Dirac BIEs in Sect. 2, has to effect that these BIEs are invertible when-
ever the PDE problem is well posed.

• Propositions 6.2 and 8.3 show that the PDE problem defines a Fred-
holm map provided that the quotient ε̂ of the permittivities is not in
an interval [−C,−1/C] for some C ≥ 1 depending on the Lipschitz reg-
ularity of the interface. These estimates use Hodge potentials for the
fields and concern the physical energy norm, corresponding to a bound-
ary function space, H2 or H3, which roughly speaking is a suitable mix
of the function space H1/2(∂Ω) ⊂ L2(∂Ω) of traces to Sobolev H1(Ω)
functions and its dual space H−1/2(∂Ω) ⊃ L2(∂Ω). In the case of pure
metamaterials ε̂ < 0, the PDE problem to be solved may fail to be
a Fredholm map, and hence no integral equation for solving it can be
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Fredholm. However, when the PDE problem has unique solution we can
solve it by an injective Dirac integral equation, and when Fredholmness
fails we solve the PDE problem numerically for smooth boundary data
by taking a limit from Im ε̂ > 0. Numerical experiments indicate the
existence of this limit. Theoretically it should be possible to prove its
existence by analyzing the problem in slightly larger fractional Sobolev
spaces.
More precisely, in Rn, n ≥ 2, one can show that the PDE problem (4)
defines a Fredholm map when (ε̂ + 1)/(ε̂ − 1) is outside the essential
spectrum of the double layer potential operator

Kdf(x) :=
∫

∂Ω

〈ν(y), (∇Φ)(y − x)〉f(y)dσ(y), x ∈ ∂Ω, (1)

where Φ is the Laplace fundamental solution and ν is the outward unit
normal. Another basic operator for the Maxwell problem (14) in R3 is
the magnetic dipole operator

Kmf(x) := ν(x) ×
∫

∂Ω

(∇Φ)(y − x) × f(y)dσ(y), x ∈ ∂Ω, (2)

acting on tangential vector fields f . Compact perturbations of the oper-
ators Kd and Km, and their adjoints K∗

d and K∗
m with respect to the

standard L2 pairing on ∂Ω, appear along the diagonals of our basic
Cauchy integral operators (53) and (55). In particular, the (3:4,3:4) and
(7:8,7:8) size 2× 2 diagonal blocks in (55) are compact perturbations of
−K∗

m.
It is important to note that in the energy norm, the essential spectra
of Kd and Km are subsets of (−1, 1). If considering instead the L2(∂Ω)
norm, then on domains in R2 with one corner, the essential spectrum
of Kd is a lying “figure eight”, centered around 0. See Fabes, Jodeit and
Lewis [14] and the final comments and (137) in the present paper.

• Although our main concern is wavenumbers k± �= 0, it is important to
have a good behaviour of the BIEs as frequency ω → 0. Typical problems
which can occur are dense-mesh low-frequency breakdown and topolog-
ical low-frequency breakdown. We refer to [13,41] for a more detailed
discussion and for BIEs that are immune to such low-frequency break-
down, and remark that this immunity is shared by the Dirac BIEs pre-
sented in Sect. 2. One reason for this is that our four densities include
the gradient of the field in R2 and our eight densities include the elec-
tric and the magnetic fields in R3, so that no numerical differentiation
is needed. Moreover, if k± → 0 with k̂ constant in (10) or (20), then
P, P ′, N,N ′ are all constant whereas the Cauchy singular integral oper-
ators Ek± converge to E0 in operator norm. That the limit Dirac BIE
does not have any false eigenwavenumbers, for fixed 0 < |k̂| < ∞ as
k± → 0, is shown in [24, Sec. 7].
We remark that BIEs derived from the Picard system [39,40] do not suf-
fer from dense-mesh low-frequency breakdown, but are known to have
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Figure 1. The hexagonal region of (arg(k−), arg(k+))
where the uniqueness condition from Proposition 6.1 holds,
in the case of non-magnetic materials. For such, the con-
dition reads k̂ ∈ WP (k−, k+), with notation from Defini-
tion 2.1

false/near-false eigenwavenumbers. See [41, p. 163] for an excellent sur-
vey of such “charge-current formulations”. Note that the Picard equa-
tion [39, Eq. (45)] is the Dirac equation (41) written in matrix form,
and that the BIEs [39, Eqs. (43),(44)] are 8 × 8 systems of the second
kind with single and double potential type operator blocks. Thus there
is much formal resemblance with the Dirac BIE, but the real difference
lies in the precise choice of parameters made in the present paper.

The paper ends with Sect. 9, where the numerical performance of the
Dirac integral equations is studied in R2. Among other things, the perfor-
mance is compared to that of a state-of-the-art system of integral equations
of direct (Green’s theorem method) type [23,27] which is only applicable in
R2, which involves only two unknown scalar densities, and which for certain
k± coincides with a 2D version of the classic Müller system [32, p. 319]. Not
surprisingly this special-purpose system performs best, but the new 4 × 4
Dirac system is not far behind. In particular it performs well under compu-
tationally challenging plasmonic conditions, that is when ε̂ is negative and
real.

In the companion paper [24] by the authors joint with A. Karlsson, we
test the new 8 × 8 Dirac system for the Maxwell transmission problem in R3

using the numerical techniques in [20]. All BIE systems that we are aware of
in the literature, with size less than 8 × 8, exhibit false eigenwavenumbers –
primarily at the left middle corner point in Fig. 1. Our Theorem 2.3 gives very
weak sufficient conditions for our Dirac integral equation (20) not to have false
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eigenwavenumbers. When these conditions fail, notably at the bottom middle
corner point in Fig. 1, it is still possible to avoid false eigenwavenumbers with
other choices of Dirac parameters in Sect. 8.

2. Matrix Dirac Integrals

This section states, in classical vector and matrix notation, the integral equa-
tions which we propose for solving the Maxwell transmission problems. The
derivation of these equations in later sections makes use of multivector alge-
bra. We consider a bounded interior domain Ω+, separated by the interface
∂Ω from the exterior domain Ω− := Rn \ Ω+. Fix a large R < ∞ and define
Ω−

R := {x ∈ Ω− ; |x| < R}. For simplicity we assume throughout this paper
that Ω− is connected, although many results do not need this assumption.

The parameters that we use for problem description in the transmission
problems (4) and (14), that we aim to solve, are wavenumbers k+ and k− in
Ω+ and Ω− respectively, and a jump parameter ε̂. We assume that Im k± ≥ 0,
but unless otherwise stated we do not assume any relation between k+, k− and
ε̂. We denote the ratio between the wavenumbers by k̂ = k+/k−. Our main
interest is in scattering for non-magnetic materials where ε̂ = k̂2. In applica-
tions, the parameter ε̂ appears as the ratio ε̂ = ε+/ε− of the permittivities ε±
in Ω±. Similarly for magnetic materials, we have a ratio μ̂ = μ+/μ− of the
permeabilities μ± in Ω±. In this general case, we have the relation ε̂ = k̂2/μ̂.

We remark that in what follows, E± denotes the standard electric fields,
but we have rescaled the magnetic fields B± so that what we here call B±,
in standard notation reads B±/

√
ε±μ±.

To formulate our results, we need the following conical subsets of C. We
use the argument −π < arg(z) ≤ π.

Definition 2.1. Let k−, k+ ∈ C \ {0} be such that Im k− ≥ 0 and Im k+ ≥ 0.
Define φ± := | arg(k±/i)|. Let WP (k−, k+) ⊂ C\{0} be the set of z ∈ C\{0}
satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

| arg(z)| ≤ π − φ+ − φ−, if φ+ < π/2, φ+ + φ− > 0,

| arg(z)| < π, if φ+ = φ− = 0,

min(| arg(z)|, | arg(−z)|) ≤ π/2 − φ−, if φ+ = π/2, 0 < φ− ≤ π/2,

Re z �= 0, if φ+ = π/2, φ− = 0.

(3)

Our notation is to denote fields in the domains by F,U, . . ., with suitable
superscript ±, and to write f, u, . . . for respective boundary traces. On ∂Ω
we denote by ν the unit normal vector pointing into the exterior domain Ω−.
Furthermore {ν, τ} and {ν, τ, θ} denote positive ON-frames on ∂Ω depending
on dimension, so that τ is the counter-clockwise tangent on curves ∂Ω ⊂
R2. On surfaces ∂Ω ⊂ R3, the theory we develop works for any choice of
tangent ON-frame {τ, θ}. We denote the directional derivative in direction v
by ∂v, and with slight abuse of notation, ∂νu denotes normal derivative on
∂Ω although this use values of U in a neighbourhood of ∂Ω.
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Our main result for 2D scattering concerns the Helmholtz transmission
problem ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u+ = u− + u0, x ∈ ∂Ω,

∂νu+ = ε̂∂ν(u− + u0), x ∈ ∂Ω,

ΔU+ + k2
+U+ = 0, x ∈ Ω+,

ΔU− + k2
−U− = 0, x ∈ Ω−,

∂x/|x|U− − ik−U− = o(|x|−(n−1)/2eIm k−|x|), x → ∞,

(4)

where Ω+ ⊂ R2, n = 2, and with u0 ∈ H1/2(∂Ω) being the trace of an incom-
ing wave U0, and we want to solve for U+ ∈ H1(Ω+) and U− ∈ H1(Ω−

R).
We remark that for Im k− > 0, this not so well-known sufficient radiation
condition of exponential growth entails a necessary condition of exponential
decay. See [37, Prop. 9.3.6] for proofs.

Let diag D denote the square diagonal matrix with diagonal D, and let
AT denote the transpose of a matrix A. Define

P = diag
[
(k̂ + |k̂|)−1/2 (k̂ + |k̂|)−1/2 (ε̂ + 1)−1 1

]
, (5)

P ′ = diag
[
(k̂ + |k̂|)−1/2 (k̂ + |k̂|)−1/2 1 |k̂|(k̂ + |k̂|)−1

]
, (6)

N = diag
[
k̂(k̂ + |k̂|)−1/2 |k̂|(k̂ + |k̂|)−1/2 ε̂(ε̂ + 1)−1 1

]
, (7)

N ′ = diag
[|k̂|(k̂ + |k̂|)−1/2 k̂(k̂ + |k̂|)−1/2 1 k̂(k̂ + |k̂|)−1

]
. (8)

Theorem 2.2. Let Ω+ ⊂ R2 be a bounded Lipschitz domain, with Ω− being
connected and notation as above. Then there exists a constant 1 ≤ C(∂Ω) <
∞ depending on the Lipschitz constants of the parametrizations of Ω+ by
smooth domains, so the following holds.

The transmission problem (4) is well posed if

ε̂ ∈ C \ [−C(∂Ω),−1/C(∂Ω)] and ε̂/k̂ ∈ WP(k−, k+). (9)

For its solution, consider the Dirac integral equation

(I + PEk+N ′ − NEk−P ′)h = 2Nf0 (10)

for four scalar functions h = [h1 h2 h3 h4]T, where Ek is the singular integral
operator (53) which we introduce in Sect. 4, P, P ′, N,N ′ are the constant
diagonal matrices (5)–(8), and

f0 =
[
ik−u0 0 ∂νu0 ∂τu0

]T
. (11)

The operator in (10) is invertible on the energy trace space H2 from (63),
introduced in Sect. 7, whenever (9) holds and k̂ ∈ C \ (−∞, 0]. Moreover, the
solution to (4) in Ω± is obtained from h+ = N ′h and h− = P ′h as

U± = 1
2ik±

[
−K̃ν′

k± −K̃τ ′
k± S̃1

k± 0
]
h± (12)

and

∇U± = 1
2

[
S̃ν′

k± S̃τ ′
k± −K̃I

k± −K̃J
k±

]
h±, (13)
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with notation as in Sect. 4, where K̃ and S̃ denote layer potentials, ν′ and τ ′

denote the normal and tangential vector at the point of integration y ∈ ∂Ω,

and I =
[
1 0
0 1

]
and J =

[
0 −1
1 0

]
.

Proof. This result is derived in Sects. 6 and 7, where we arrive at equation
(103) with α = ε̂. We precondition (103) by multiplying from the left by
P and writing h̃ = P ′h to obtain (10) with N = PM , N ′ = k̂M ′P ′ and
P (k̂M ′ + M)P ′ = I. We remark that the parameter ratios k̂ < 0 and ε̂ = −1
must be excluded for P and P ′ to be well-defined. However, the only problem
when k̂ < 0 is that we cannot precondition (103) with P and P ′ to achieve a
non-integral term I in (10).

In applications of the Dirac problem (58) to the Helmholtz problem (4),
as in Example 7.1, we have f0 = ik−u0 + ∇u0, that is (11). Equations (12)
and (13) for the fields are seen from the first row and the last two rows in (53)
respectively, and the expressions for h± are seen from the right and middle
factors in (95). Note that h− happens to coincide with the density h̃, which
is introduced in (98) in a different context. �

We remark that it is our experience that the precise choice of P and
P ′ for Theorem 2.2, as well as for Theorem 2.3, is less important as long as
they satisfy P (k̂M ′ + M)P ′ = I. With the choices made, our aim has been
to minimize the growth of P , P ′, N and N ′ as we vary |k|.

We next formulate the analogous result for the Maxwell transmission
problem in R3. Our transmission problem is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν × E+ = ν × (E− + E0), x ∈ ∂Ω,

ν × B+ = (k̂/ε̂)ν × (B− + B0), x ∈ ∂Ω,

∇ × E+ = ik+B+,∇ × B+ = −ik+E+, x ∈ Ω+,

∇ × E− = ik−B−,∇ × B− = −ik−E−, x ∈ Ω−,

x/|x| × E− − B− = o(|x|−1eIm k−|x|), x → ∞,

x/|x| × B− − E− = o(|x|−1eIm k−|x|), x → ∞,

(14)

where E0 and B0 are the incoming electric and magnetic fields, and we want
to solve for E± and B±. All fields are assumed to be L2 integrable in a
neighbourhood of ∂Ω.

Define matrices (where we write ĉ = 1/k̂ and μ̂ = k̂2/ε̂)

P = diag
[

1
ĉ+1

1√
ĉ+ |ĉ|

1
μ̂+1

1√
ĉ

1
μ̂+1

1√
ĉ

|ĉ|
ĉ+|ĉ|

ε̂
ε̂+1

1 1
]
,(15)

P ′ = diag
[
1 1√

ĉ+|ĉ|
1√
ĉ

1√
ĉ

1 1 1
ĉ+1

1
ĉ+1

]
,(16)

N = diag
[

ĉ
ĉ+1

ĉ√
ĉ+|ĉ|

μ̂
μ̂+1

√
ĉ μ̂

μ̂+1

√
ĉ ĉ

ĉ+|ĉ|
1

ε̂+1
1 1

]
,(17)

N ′ = diag
[
1 |ĉ|√

ĉ+|ĉ|
√
ĉ

√
ĉ 1 1 ĉ

ĉ+1
ĉ

ĉ+1

]
.(18)
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Theorem 2.3. Let Ω+ ⊂ R3 be a bounded Lipschitz domain, with Ω− being
connected and notation as above. Then there exists a constant 1 ≤ C(∂Ω) <
∞ depending on the Lipschitz constants of the parametrizations of Ω+ by
smooth domains, so the following holds.

The transmission problem (14) is well posed if

ε̂ ∈ C \ [−C(∂Ω),−1/C(∂Ω)] and ε̂/k̂ ∈ WP(k−, k+). (19)

For its solution, consider the Dirac integral equation

(I + PEk+N ′ − NEk−P ′)h = 2Nf0 (20)

for eight scalar functions h = [h1 h2 h3 h4 h5 h6 h7 h8]T, where Ek is the
singular integral operator (55) which we introduce in Sect. 4, P, P ′, N,N ′ are
the constant diagonal matrices (15)–(18), and

f0 =
[
0 B0

ν B0
τ B0

θ 0 E0
ν E0

τ E0
θ

]T
, (21)

with field components in the frame {ν, τ, θ}. The operator in (20) is invertible
on the energy trace space H3 from (64), introduced in Sect. 8, whenever (19),
k̂2/ ˆε ∈C \ [−C(∂Ω),−1/C(∂Ω)] and k̂ ∈ C \ (−∞, 0] holds. Moreover, the
solution to (14) in Ω± is obtained from h+ = N ′h and h− = P ′h as

B± = 1
2

[
K̃ν′×·

k± −K̃I
k± −K̃θ′×·

k± K̃τ ′×·
k± S̃ν′

k± 0 S̃θ′
k± −S̃τ ′

k±

]
h±

(22)

and

E± = 1
2

[
S̃ν′

k± 0 −S̃θ′
k± S̃τ ′

k± −K̃ν′×·
k± −K̃I

k± −K̃θ′×·
k± K̃τ ′×·

k±

]
h±,

(23)

with notation as in Sect. 4, where K̃ and S̃ denote layer potentials, ν′, τ ′, θ′

denote the frame vectors at the point of integration y ∈ ∂Ω, I =
[
1 0
0 1

]
, and

v × · denotes the map x �→ v × x.

Proof. This result is derived in Sect. 8, where we arrive at Eq. (133) with
α = ε̂. We precondition (133) by multiplying from the left by P and writing
h̃ = P ′h to obtain (20) with N = PM , N ′ = k̂−1M ′P ′ and P (k̂−1M ′ +
M)P ′ = I. We remark that the parameter ratios k̂ < 0, μ̂ = k̂2/ε̂ = −1 and
ε̂ = −1 must be excluded for P and P ′ to be well-defined. However, the only
problem when k̂ < 0 is that we cannot precondition (133) with P and P ′ to
achieve a non-integral term I in (20).

In applications of the Dirac problem (58) to the Maxwell problem (14),
or in multivector notation (107), we have F 0 = E0 + B0, that is (21). Equa-
tions (22) and (23) for the fields are seen from the second to fourth rows and
last three rows in (55) respectively. �
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3. Multivector Algebra

This section contains the basics of multivector algebra which we need. For a
complete account of the theory of multivector algebra and Dirac equations
which we use, we refer to [37]. For our purposes, multivectors are the same
objects as Cartan’s alternating forms, and multivector fields are the same as
differential forms, and amounts to an algebra of not only the one-dimensional
vectors but also j-dimensional algebraic objects for 0 ≤ j ≤ n in Rn. Con-
cretely, multivectors in Rn are the following type of objects, where our inter-
est is in n = 2, 3. Denote by {e1, . . . , en} the standard vector basis for Rn.
We write ∧Rn for the complex 2n dimensional space of multivectors in Rn,
which is spanned by basis multivectors es, where s ⊂ n = {1, 2, . . . , n}. We
write ∧jRn for the subspace spanned by those es with j number of elements
in the index set s, so that

∧ Rn = ∧0Rn ⊕ ∧1Rn ⊕ ∧2Rn ⊕ · · · ⊕ ∧nRn. (24)

We identify ∧0Rn = C and ∧1Rn = Cn with the scalars and vectors respec-
tively. Objects in ∧2Rn are referred to as bivectors.

In R2, a multivector is of the form

w = a + v1e1 + v2e2 + be12, (25)

and so amounts to two scalars a, b and a vector v = v1e1 + v2e2. In R3, a
multivector is of the form

w = a + v1e1 + v2e2 + v3e3 + u1e23 + u2e13 + u3e12 + be123, (26)

and so amounts to two scalars a, b and two vectors v = v1e1 + v2e2 + v3e3

and u = u1e1 + u2e2 + u3e3 via Hodge duality (see below).
On this 2n dimensional space ∧Rn we use three products which, depend-

ing on dimension, generalize the classical vector operations: the exterior
product u ∧ w, the (left) interior product u � w and the Clifford product
uw. The last is the standard short hand notation for the Clifford prod-
uct, whereas the notation es � et was introduced in [37], for reasons which
are clear from (29). Products of basis multivectors es correspond to signed
unions, set differences and symmetric differences of index sets s respec-
tively. More precisely, for index sets s, t ⊂ n we define the permutation sign
ε(s, t) = (−1)|{(si,tj)∈s×t ; si>tj}|, that is the sign of the permutation that
rearranges s ∪ t in increasing order. Then

es ∧ et =

{
ε(s, t)es∪t, s ∩ t = ∅,

0, s ∩ t �= ∅,
(27)

es � et =

{
0, s �⊆ t,

ε(s, t \ s)et\s, s ⊆ t,
(28)

eset = ε(s, t)es�t, (29)

where s�t = (s ∪ t) \ (s ∩ t) is the symmetric difference of sets. The exterior
and Clifford products are associative, but the interior product is not. On
the one hand, orthogonal vectors in ∧1Rn anticommute both with respect to
the exterior and Clifford products. On the other hand, ej ∧ ej = 0 whereas
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ejej = 1, j = 1, . . . , n. An important special case of the interior product is
the Hodge star duality

∗w = w � en. (30)

The most important instance of the above three products is when the first fac-
tor is a vector, and not a general multivector. In this case, the three products
are related as

uw = u � w + u ∧ w, u ∈ ∧1Rn, w ∈ ∧Rn. (31)

A multivector w ∈ ∧Rn at a point x ∈ ∂Ω, with normal vector ν ∈ ∧1Rn, is
called tangential if ν � w = 0 and is called normal if ν ∧ w = 0.

Example 3.1. [R2 multivector algebra] A general multivector in R2 is of the
form w = a1 + v + ∗a2, where a1, a2 ∈ ∧0R2 and v ∈ ∧1R2. The three basic
multivector products with a vector u ∈ ∧1R2 can be written

u ∧ w = 0 + a1u + ∗((∗u) · v), (32)
u � w = u · v + a2(∗u) + 0, (33)

uw = u · v + (a1u + a2(∗u)) + ∗((∗u) · v). (34)

Note that on vectors u ∈ ∧1R2, the Hodge star ∗u is counter clockwise
rotation π/2.

Example 3.2. [R3 multivector algebra] A general multivector in R3 is of the
form w = a1 + v1 + ∗v2 + ∗a2, where a1, a2 ∈ ∧0R3 and v1, v2 ∈ ∧1R3. The
three basic multivector products with a vector u ∈ ∧1R3 can be written

u ∧ w = 0 + ua1 + ∗(u × v1) + ∗(u · v2), (35)
u � w = u · v1 − u × v2 + ∗(ua2) + 0, (36)

uw = u · v1 + (ua1 − u × v2) + ∗(u × v1 + ua2) + ∗(u · v2). (37)

We refer to [37, Chapters 2,3] for further details of multivector algebra.
In the same way that the scalar and vector products induce the diver-

gence ∇ · F and curl ∇ × F in vector calculus, the exterior, interior and
Clifford products induce the exterior, interior and Clifford/Dirac derivatives
in multivector calculus, and we write these as

dF (x) = ∇ ∧ F (x) =
n∑

j=1

ej ∧ ∂ej
F (x), (38)

δF (x) = ∇ � F (x) =
n∑

j=1

ej � ∂ej
F (x), (39)

DF (x) = ∇ � F (x) =
n∑

j=1

ej∂ej
F (x). (40)

Replacing u and w by ∇ and F (x) in Example 3.2, it follows how these
differential operators can be written in terms of divergence, curl and gradient
in R3. We refer to [37, Chapters 7,8] for further details of multivector calculus.
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The time-harmonic wave Dirac equation which we consider in this paper
is

DF (x) = ikF (x), (41)

for multivector fields F , and wave number k ∈ C. The main applications
are the Helmholtz and Maxwell equations. Given a scalar solution U to the
Helmholtz equation ΔU + k2U = 0, we define the multivector field

Fhelm = ∇U + ikU. (42)

It follows that F = Fhelm satisfies (41) since D2 = Δ.
For Maxwell’s equations, define the total electromagnetic (EM) field to

be the multivector field

Fem (x) = E1(x)e1 + E2(x)e2 + E3(x)e3 + B1(x)e23 − B2(x)e13 + B3(x)e12,

(43)

where E is the electric field and B is the magnetic field, and the ∧0R3 and
∧3R3 parts are zero. In this formalism, the Dirac equation (41) for F =
Fem given by (43) coincides with the time-harmonic Maxwell’s equations,
that is the PDE from (14). Indeed, the ∧0R3, ∧1R3, ∧2R3 and ∧3R3 parts
of (41) are the Gauss, Maxwell–Ampère, Faraday and magnetic Gauss law
respectively. See [37, Sec. 9.2].

4. The Rn Cauchy Integral

A main reason for using the Dirac framework is that it provides us with a
Cauchy-type reproducing formula, which allows for a generalization of com-
plex function theory to n ≥ 2 and k �= 0. See [37, Chapters 8,9] for further
details. More precisely, if F satisfies (41) in a domain Ω with boundary ∂Ω,
then a Cauchy-type reproducing formula

F (x) =
∫

∂Ω

Ψk(y − x)ν(y)f(y)dσ(y), x ∈ Ω, (44)

holds. We write dy and ν ∈ ∧1Rn for the standard measure and outward
pointing unit normal on ∂Ω respectively, and the integrand uses two Clifford
products. The first factor

Ψk(x) = − 1
2 (∇Φk(x) − ikΦk(x)) ∈ ∧1Rn ⊕ ∧0Rn ⊂ ∧Rn (45)

is a fundamental solution to the elliptic operator D + ik, as DΨk(x) +
ikΨk(x) = δ(x). Here Φk(x) ∈ ∧0Rn = C is the Helmholtz fundamental solu-
tion, and we use the normalization from [11] so that (Δ + k2)Φk = −2δ(x).
Hence the factor −1/2 in (45). In dimension n = 3 we have

Φk(x) = (2π|x|)−1eik|x|, (46)

and in dimension n = 2 we have in terms of the Hankel function H
(1)
0 (z) that

Φk(x) = (i/2)H(1)
0 (k|x|). (47)

The classical theory of complex Hardy spaces generalizes from complex
function theory to our Dirac setting. Our basic operator, acting on a suitable
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space H of functions h : ∂Ω → ∧Rn on ∂Ω, is the Cauchy principal value
integral

Ekh(x) = 2p.v.

∫
∂Ω

Ψk(y − x)ν(y)h(y)dσ(y), x ∈ ∂Ω, (48)

which reduces to the classical Cauchy integral when n = 2, k = 0. The basic
operator algebra is that E2

k = I, and

E±
k = (I ± Ek)/2 (49)

are two complementary projection operators, that is (E±
k )2 = E±

k . The oper-
ator E±

k projects onto its range, the subspace of H which we denote E±
k H

and consists of all traces F |∂Ω of fields satisfying DF = ikF in Ω±. For the
exterior domain Ω− these fields also satisfy a Dirac radiation condition; See
(58) below for its formulation.

For computations, we express the Cauchy singular operator Ek as a
matrix with entries being double and single layer potential-type operators,
using the notation

Kv
kh(x) = p.v.

∫
∂Ω

〈v(x, y), (∇Φk)(y − x)〉h(y)dσ(y), x ∈ ∂Ω, (50)

Sa
kh(x) = ik

∫
∂Ω

a(x, y)Φk(y − x)h(y)dσ(y), x ∈ ∂Ω, (51)

respectively. Here v(x, y) is a vector field and a(x, y) is a scalar function,
depending on x, y ∈ ∂Ω. The single layer Sa

k is a weakly singular integral
operator, and so is also Kv

k if ∂Ω is smooth and v = ν is the normal direction
at x or y. Otherwise Kv

k is a principal value singular integral, but is bounded
on many natural function spaces H, also for general Lipschitz interfaces ∂Ω.

Consider first dimension n = 2, with a curve ∂Ω and Φk given by (47).
Here we use a positively oriented frame {ν, τ} at x ∈ ∂Ω, with ν = ν(x)
being the normal vector into Ω− and τ = τ(x) the tangential vector counter
clock-wise from ν. The corresponding frame at y ∈ ∂Ω we write as ν′ = ν(y)
and τ ′ = τ(y). In the plane, the Clifford algebra ∧R2 is four dimensional and
spanned by {1, e1, e2, e12}. We prefer the ordering {1, e12, e1, e2}, since Clif-
ford multiplication by vectors then will be represented by block off-diagonal
matrices. At x ∈ ∂Ω, we write

h = h1 + h2ντ + h3ν + h4τ ≈ [
h1 h2 h3 h4

]T
, (52)

using instead the vector frame {ν, τ}. Here ντ = e12 ∈ ∧2R2 does not depend
on x, even though ν and τ do so. By writing out ∇Φk and the Clifford
products in (48), we obtain

Ek =

⎡
⎢⎢⎣

−Kν′
k −Kτ ′

k S1
k 0

Kτ ′
k −Kν′

k 0 S1
k

Sν·ν′
k Sν·τ ′

k −Kν
k Kτ

k

Sτ ·ν′
k Sτ ·τ ′

k −Kτ
k −Kν

k

⎤
⎥⎥⎦ , (53)

in the multivector frame {1, ντ, ν, τ}.
Next consider dimension n = 3, with a surface ∂Ω and Φk given by

(46). Here we use a positively oriented ON-frame {ν, τ, θ} at x ∈ ∂Ω, with
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ν = ν(x) being the normal vector into Ω− and τ = τ(x) and θ = θ(x) being
tangential vector fields. The frame vectors at y ∈ ∂Ω, we write as ν′ = ν(y),
τ ′ = τ(y) and θ′ = θ(y). A multivector field at x ∈ ∂Ω we write as

h = h1 + h2τθ + h3θν + h4ντ + h5ντθ + h6ν + h7τ + h8θ. (54)

Here ντθ = e123 ∈ ∧3R3 does not depend on x, although in general each of
the three vectors do so. Again, we prefer this ordering of the frame multivec-
tors since Clifford multiplication by vectors then is block off-diagonal. In the
multivector frame {1, τθ, θν, ντ, ντθ, ν, τ, θ}, we have

Ek =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Kν′
k 0 Kθ′

k −Kτ ′
k 0 S1

k 0 0

Kν×ν′
k −Kν

k −Kν×θ′
k Kν×τ ′

k Sν·ν′
k 0 Sν·θ′

k −Sν·τ ′
k

Kτ×ν′
k −Kτ

k −Kτ×θ′
k Kτ×τ ′

k Sτ·ν′
k 0 Sτ·θ′

k −Sτ·τ ′
k

Kθ×ν′
k −Kθ

k −Kθ×θ′
k Kθ×τ ′

k Sθ·ν′
k 0 Sθ·θ′

k −Sθ·τ ′
k

0 S1
k 0 0 −Kν′

k 0 −Kθ′
k Kτ ′

k

Sν·ν′
k 0 −Sν·θ′

k Sν·τ ′
k −Kν×ν′

k −Kν
k −Kν×θ′

k Kν×τ ′
k

Sτ·ν′
k 0 −Sτ·θ′

k Sτ·τ ′
k −Kτ×ν′

k −Kτ
k −Kτ×θ′

k Kτ×τ ′
k

Sθ·ν′
k 0 −Sθ·θ′

k Sθ·τ ′
k −Kθ×ν′

k −Kθ
k −Kθ×θ′

k Kθ×τ ′
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(55)

Finally we note that we similarly can write the Cauchy integral (44) for
the fields in Ω± , in matrix form. The only difference is the normalization
factor 2 and the fact that we choose the frame {e1, . . . , en} at the field point
x ∈ Ω±. We also allow for a general function h : ∂Ω → ∧Rn and not only
a trace f of a solution to the Dirac equation in (44). By the associativity
of the Clifford product, this still yields a field F solving the Dirac equation,
but h �= F |∂Ω in general. In this case, when x /∈ ∂Ω, we denote the layer
potentials by K̃v

k and S̃a
k , with v and a now only depending on y ∈ ∂Ω. The

field evaluation formulas (13), (22) and (23) also use vector versions

K̃A
k h(x) =

∫
∂Ω

A(y)(∇Φk)(y − x)h(y)dσ(y), x /∈ ∂Ω, (56)

S̃v
kh(x) = ik

∫
∂Ω

v(y)Φk(y − x)h(y)dσ(y), x /∈ ∂Ω, (57)

of K̃v
k and S̃a

k , where now A(y) : Rn → Rn is a matrix function and v(y) is
a vector field.

5. The Energy Trace Space

We define in this section the appropriate norms and function spaces for the
Dirac equation (41). Let Ω+ ⊂ Rn be a bounded Lipschitz domain. The
general Dirac transmission problem that we consider reads

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f+ = M(f− + f0), x ∈ ∂Ω,

DF+ = ik+F+, x ∈ Ω+,

DF− = ik−F−, x ∈ Ω−,

(x/|x| − 1)F− = o(|x|−(n−1)/2eIm k−|x|), x → ∞.

(58)
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This is our master transmission problem, into which we embed the Helmholtz
and Maxwell transmission problems in Sects. 7 and 8, where the multiplier
M will be specified. The radiation condition stated here for the Dirac equa-
tion reduces to the classical Sommerfeld and Silver–Müller conditions for
Helmholtz and Maxwell solutions Fhelm and Fem respectively. See [37, Sec.
9.3].

For F = F+ in Ω+, we use the norm
(∫

Ω+
(|F (x)|2 + |∇ ∧ F (x)|2)dx

)1/2

. (59)

It is important to note that for both Helmholtz and Maxwell fields Fhelm and
Fem , the second term ∇ ∧ F is bounded by the first term F , and the norm
reduces to the L2 norm of F . In Ω− we use the corresponding norm, but
integrate only over the bounded set Ω−

R. Different choices of R yield equiv-
alent norms for solutions to the Dirac equation which satisfy the radiation
condition. See [37, Sec. 9.3].

It was shown in [4] that there exists a unique Hilbert space H (although
it does not come with a canonical norm) of multivector fields on the Lipschitz
interface ∂Ω, which is the trace space corresponding to the above norms on
F± in Ω±, with the following properties. It splits into closed subspaces in
two ways as

H = E+
k H ⊕ E−

k H and H = H� ⊕ H⊥, (60)

where � means tangential and ⊥ means normal. There is a one-to-one cor-
respondence F+ ↔ f+ between Dirac solutions F+ in Ω+ and their traces
f+ ∈ E+

k H, with inverse given by the Cauchy integral (44). Similarly, there
is a one-to-one correspondence F− ↔ f− between Dirac solutions F− in Ω−

satisfying the radiation condition, and their traces f− ∈ E−
k H, with inverse

given by the Cauchy integral.
The subspace H� denotes the subspace of tangential multivector fields,

and there is a bounded and surjective tangential trace map

F �→ ν � (ν ∧ f) ∈ H�, (61)

of multivector fields F in a neighbourhood U of ∂Ω with norm (
∫

U
(|F (x)|2 +

|∇ ∧ F (x)|2)dx)1/2 < ∞. The subspace H⊥ denotes the subspace of normal
multivector fields, and there is a bounded and surjective normal trace map

F �→ ν ∧ (ν � f) ∈ H⊥, (62)

of multivector fields F in a neighbourhood U of ∂Ω with norm (
∫

U
(|F (x)|2 +

|∇ � F (x)|2)dx)1/2 < ∞.
For smooth interfaces ∂Ω, the trace space H consists of all f ∈

H−1/2(∂Ω;∧Rn) such that d�f� ∈ H−1/2(∂Ω;∧Rn) and δ�(ν � f) ∈
H−1/2(∂Ω;∧Rn), with d� and δ� denoting the tangential exterior and inte-
rior derivatives along ∂Ω. Here f� denotes the tangential part of f and ν � f
is the normal part of f with the factor ν removed.
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To characterize H in terms of fractional Sobolev-type spaces on non-
smooth Lipschitz interfaces ∂Ω is a non-trivial problem. Such a characteri-
zation was achieved for polyhedra in [7,8], for general Lipschitz interfaces in
[9] in R3, and extended to general multivector traces in [42]. For the energy
trace space space H on Lipschitz interfaces, this shows the following. For 2D
domains, using the frame (52), our boundary function space is

H2 = H = H1/2(∂Ω) ⊕ H1/2(∂Ω) ⊕ H−1/2(∂Ω) ⊕ H−1/2(∂Ω). (63)

It is for 3D domains that the non-trivial result from [9, Thm. 4.1] is needed,
which shows that in the frame (54), we have

H3 = H = H1/2(∂Ω) ⊕ H−1/2(∂Ω) ⊕ ∗H−1/2(curl, ∂Ω)

⊕H1/2(∂Ω) ⊕ H−1/2(∂Ω) ⊕ H−1/2(curl, ∂Ω). (64)

Here ∗ is the 3D Hodge star and the space of tangential vector fields is defined
as

H−1/2(curl, ∂Ω) = {f ∈ (ν × H1/2(∂Ω)3)∗ ; curl�f ∈ H−1/2(∂Ω)}, (65)

where curl� denotes tangential surface curl on ∂Ω and (ν × H1/2(∂Ω)3)∗

denotes the dual space of ν × H1/2(∂Ω)3. One should note that the test
functions ν×H1/2(∂Ω)3 will not be H1/2 smooth on general Lipschitz regular
∂Ω, since ν is in general only measurable. To summarize, the conditions
on h3, h4, h7, h8 are that h3τ + h4θ ∈ H−1/2(curl, ∂Ω) and h7τ + h8θ ∈
H−1/2(curl, ∂Ω).

We remark that there is no canonical norm on H2 or H3, but this does
not present a problem and it should be clear from the context in the estimates
to come, which choice among equivalent norms is used when such needs to
be fixed.

Throughout this paper X � Y means that there exists C < ∞ indepen-
dent of relevant variables so that X ≤ CY , and X ≈ Y means that X � Y
and Y � X.

6. Helmholtz Existence and Uniqueness

This section surveys basic solvability results for the Helmholtz transmission
problem (4), which are valid in any dimension n ≥ 2. The proofs follow [4],
with a translation from the Dirac to the Helmholtz framework. Consider first
uniqueness of solutions U±.

Proposition 6.1. Let Ω+ ⊂ Rn be a bounded Lipschitz domain with connected
exterior Ω−, and consider a solution U± to (4). Assume that the incoming
wave vanishes so that u0 = 0. If ε̂ from (4) satisfies

ε̂/k̂ ∈ WP(k−, k+), (66)

recalling that k̂ = k+/k− and Definition 2.1, then U+ = U− = 0 identically.

Proof. From the jump relations we have∫
∂Ω

u+∂νu+dσ = ε̂

∫
∂Ω

u−∂νu−dσ. (67)
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Figure 2. Sectors and lines appearing, depending on φ±

Apply Green’s first identity for Ω+ and Ω−
R, use the Helmholtz equation for

U± and the radiation condition for U−, and multiply the equation by ε̂k−/i
to obtain

ε̂k−
k+

(
1
i

∫
Ω+

(k+|∇U+|2 − k+|k+U+|2)dx

)

+|ε̂|2
(

1
i

∫
Ω−

R

(k−|∇U−|2 − k−|k−U−|2)dx +
∫

|x|=R

|k−U−|2dσ

)
→ 0,

(68)

as R → ∞. Denote the three integrals appearing in (68) by I+, I−
R and IR

respectively, including i−1 in the first two, and set φ± := | arg(k±/i)| as in
Definition 2.1, let z := ε̂k−/k+, and define the sector

Sφ := {z ∈ C \ {0} ; | arg(z)| ≤ φ} ∪ {0}. (69)

We note that

I+ = Im k+

∫
Ω+

(|∇U+|2 + |k+U+|2)dx

−iRe k+

∫
Ω+

(|∇U+|2 − |k+U+|2)dx, (70)

and similarly for I−
R .

We verify that the condition (66) implies U± = 0, by examining (68) in
the nine cases φ± = 0, 0 < φ± < π/2 and φ± = π/2 as follows.

(i) Assume 0 < φ− < π/2 and 0 < φ+ < π/2. Then U− decays expo-
nentially as R → ∞. Setting R = ∞ in (68), we have the equation
zI++|ε̂|2I−

∞ = 0, where I+ ∈ Sφ+ and I−
∞ ∈ Sφ− . If | arg(z)|+φ−+φ+ <

π, then this is possible only if I+ = I−
∞ = 0. See Fig. 2i. Indeed, the

sectors zSφ+ and −Sφ− intersect only at 0. We conclude in particular
that Re I+ = 0 = Re I−

∞, and therefore U+ = U− = 0 according to
(70).
If | arg(z)| + φ− + φ+ = π, then the rotated sectors zSφ+ and −Sφ−
touch and we observe that I+ and I−

∞ lie on the boundary of respective
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sector Sφ± . From (70), we conclude that
∫
Ω+(|∇U+|2 − |k+U+|2)dx =

± ∫
Ω+(|∇U+|2 + |k+U+|2)dx. This forces either U+ = 0 or ∇U+ = 0.

We conclude from the Helmholtz equation that U+ = 0. A similar argu-
ment shows that U− = 0.

(ii) Assume φ± < π/2 and either φ+ = 0 or φ− = 0. When | arg(z)| + φ− +
φ+ < π, the argument in (i) applies. When | arg(z)| + φ− + φ+ = π and
φ+ �= 0, the argument in (i) shows that U+ = 0. The jump condition
then shows that U− = 0. If instead | arg(z)|+φ− +φ+ = π and φ− �= 0,
a similar argument shows that U− = 0, from which U+ = 0 follows from
the jump conditions.

(iii) Assume φ− < π/2 and φ+ = π/2. We now have the equation zI+ +
|ε̂|2I−

∞ = 0, with Re I+ = 0 and I−
∞ ∈ Sφ− . If min(| arg(z)|, | arg(−z)|) <

π/2 − φ−, then the line zSφ+ intersects the sector −Sφ− only at the
origin, which shows that I+ = I−

∞ = 0. See Fig. 2iii. From the exterior
(Ω−) analogue of (70), we conclude U− = 0, and jump conditions imply
U+ = 0.
If min(| arg(z)|, | arg(−z)|) = π/2 − φ− and if φ− > 0, then it follows
that I−

∞ lies on the boundary of Sφ− . As in (i), this shows that U− = 0,
and by jump conditions that U+ = 0.

(iv) Assume φ− = π/2. Then Re I−
R = 0, and (68) reduces to Re(zI+) +

limR→∞ IR = 0. If | arg(z)| + φ+ ≤ π/2, then Re(zI+) ≥ 0 and
limR→∞ IR = 0 follows. See Fig. 2iv. By Rellich’s lemma this implies
that U− = 0. The jump relations then shows that U+ = 0.
If also φ+ = π/2 then Re I+ = 0, and we conclude that limR→∞ IR = 0
also when z < 0, and can in the same way conclude that U− = 0 = U+.

�

Next consider the existence of solutions U±. The following result is
essentially from [4], where more details and background can be found. For a
short survey of the Fredholm theory that we apply, we refer to [37, Sec. 6.4].

Proposition 6.2. Let Ω+ ⊂ Rn be a bounded Lipschitz domain with connected
exterior Ω−. Then there exists 1 ≤ C(∂Ω) < ∞ such that if

ε̂ ∈ C \ [−C(∂Ω),−1/C(∂Ω)] and ε̂/k̂ ∈ WP(k−, k+), (71)

recalling that k̂ = k+/k− and Definition 2.1, then there exists a unique solu-
tion U+ ∈ H1(Ω+), U− ∈ H1(Ω−

R) to the Helmholtz transmission problem
(4) in Rn, n ≥ 2, depending continuously on the datum u0 ∈ H1/2(∂Ω).

Proof. (i) We first use Fredholm theory to reduce the problem to an esti-
mate of ∫

Ω+
|∇U+|2dx +

∫
Ω−

R

|∇U−|2dx (72)

by the H norm of u0 and compact terms. To this end, it is convenient to
consider the multivector fields F± = ∇U± + ik±U± and F 0 = ∇U0 +
ik−U0 as in (42). For fixed k±, we define function spaces H̃1,±

k± of such
F± in Ω±, with potentials U± solving ΔU± + k2

±U± = 0, and U−
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satisfying the radiation condition in Ω−. The norm of F+ ∈ H̃1,+
k+

is

‖F+‖L2(Ω+) and the norm of F− ∈ H̃1,−
k− is ‖F−‖L2(Ω

−
R), with a fixed

large R. For the data/right-hand sides, we define the subspace H1
k− ⊂ H

consisting of f = f0 + f1� + f1⊥, with f0 scalar and f1�, f1⊥ tangential
and normal vector fields respectively, satisfying the constraint ∇�f0 =
ik−f1�. The traces of incoming waves F 0 all belong to H1

k− .
The transmission problem (4) amounts to inverting a bounded linear
map

Tε̂,k+,k− : H̃1,+
k+

⊕ H̃1,−
k− → H1

k− . (73)

Assume first that k+ = k− and that ε̂ = 1. In this case the jump con-
dition in (4) reduces to f+ − f− = f0, and it follows that Tε̂,k+,k−
is invertible since the Cauchy integrals (44), with x ∈ Ω±, provide an
explicit inverse.
Next consider general parameters ε̂, k+, k− satisfying (71). It suffices
to show that Tε̂,k+,k− is a Fredholm operator with index zero. Indeed,
Proposition 6.1 shows injectivity, from which surjectivity then follows.
To prove index zero, we note that C \ [−C(∂Ω),−1/C(∂Ω)] is an open
connected set, and aim to apply Fredholm perturbation theory, perturb-
ing ε̂ to 1 and k+ to k−. We prove in (ii) below that the operator Tε̂,k+,k−

is semi-Fredholm whenever ˆε /∈[−C(∂Ω),−1/C(∂Ω)], so it remains to
verify that the operator and function spaces depend continuously on
the parameters.
From Hodge decompositions of the space H, see [4], it follows that for
k− �= 0 there are projections H → H1

k− onto these subspaces, depending
continuously on k−. This uses the Hodge projections not for the exte-
rior and interior derivatives, but for zero order perturbations of these
defined by the wave number k− (c.f. (74) below). The crucial observa-
tion is that for all k− �= 0, the cohomology for this perturbed Hodge
decomposition vanishes. This implies that the perturbed Hodge projec-
tions depend continuously on k−.
For the domain spaces H̃1,±

k± , we note that the trace map and the

Cauchy integral give an isomorphism between F± ∈ H̃1,±
k± and f± ∈

H1,±
k± ⊂ E±

k H ⊂ H. Like for H1
k− , it follows from Hodge decomposi-

tions of H that for k± �= 0 there are projections H → H1,±
k± onto these

trace spaces for Helmholtz fields, depending continuously on k±. Since
Tε̂,k+,k− clearly depend continuously on ε̂, perturbation theory applies
to show index zero, provided we show the estimate (72).

(ii) To establish the estimate of (72), we construct certain auxiliary poten-
tials V ± to the gradient vector fields ∇U±. In Ω−

R, we simply use
the given scalar potential V − = U−. In Ω+, we find a bivector field
V + : Ω+ → ∧2Rn and a vector field Ṽ + : Ω+ → ∧1Rn such that{

∇U+ = ∇ � V + + ik+Ṽ +,

ik+U+ = ∇ � Ṽ +.
(74)



   48 Page 20 of 41 J. Helsing, A. Rosén IEOT

(Modulo the term Ṽ +, this means that V + is a conjugate function when
n = 2 and a vector potential when n = 3.) The existence and compact-
ness of the map H1(Ω+) → L2(Ω+)2 : U+ �→ (V +, Ṽ +) follows from
Hodge decompositions as in [6], after translation from the spacetime
framework using [37, Sec. 9.1]. To complete the construction of V ±, we
extend the potentials V ± to compactly supported functions on Rn, with
∇V − and ∇ � V + belonging to L2(Rn).
Pairing the jump relations with v±, we have{∫

∂Ω
〈ν ∧ ∇u+, v+〉dσ =

∫
∂Ω

(〈ν ∧ ∇u−, v+〉 + 〈ν ∧ ∇u0, v+〉)dσ,∫
∂Ω

〈v−, ν � ∇u+〉dσ = ε̂
∫

∂Ω
(〈v−, ν � ∇u−〉 + 〈v−, ν � ∇u0〉)dσ.

(75)

Using the general Stokes theorem, see [37, Sec. 7.3], we have modulo
compact terms∫

∂Ω

〈ν ∧ ∇u+, v+〉dσ ≈
∫

Ω+
|∇U+|2dx, (76)

∫
∂Ω

〈v−, ν � ∇u−〉dσ ≈ −
∫

Ω−
R

|∇U−|2dx, (77)

and ∫
∂Ω

〈v−, ν � ∇u+〉dσ −
∫

∂Ω

〈ν ∧ ∇u−, v+〉dσ

≈
∫

Ω+
〈∇V −,∇U+〉dx +

∫
Ω−

R

〈∇U−,∇ � V +〉dx

≈
∫
Rn

〈∇V −,∇ � V +〉dx = 0. (78)

Therefore, adding the equations (75) yields an estimate of (72) whenever
we do not have ε̂ < 0. When ε̂ is negative and close to ∞, we instead
subtract the equations to conclude. When ε̂ is negative and close to 0, we
can also obtain an estimate of (72) by instead starting with a bivector
potential V + in Ω+, and a scalar potential V − in Ω−.

�

7. The 2D Dirac Integral

In this section, we derive the Dirac integral equation (10) in 2D by combining
two Helmholtz problems, and using a duality ansatz. We start by recalling
how 2D Maxwell transmission problems reduce to Helmholtz transmission
problems. We end by optimizing the Dirac parameters r, β, α′, β′, which is a
main step in the construction of the Dirac BIE (10).

Example 7.1. [Transverse magnetic (TM) scattering] We consider applica-
tions of the Dirac equation to the scattering of EM fields as in (43), but
independent of the e3-coordinate and polarized so that

Fem (x) = E1(x)e1 + E2(x)e2 + B3(x)e12, x ∈ R2. (79)
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To write a Helmholtz equation for this EM field, we normalize by a left
Clifford multiplication and define the field

F = Fem (−iεe12), (80)

where ± is suppressed. Since the Clifford product is associative, we have

(D − ik)F = ((D − ik)Fem )(−iεe12) = 0. (81)

Writing F = ikU + V1e1 + V2e2, the Dirac equation DF = ikF amounts to
V = ∇U and divV = −k2U , that is the Helmholtz equation ΔU + k2U = 0
for the scalar function U . We have

F = ikU + ∇U, (82)
E = (iε)−1(∇U)e12, (83)

B3 = (k/ε)U. (84)

With this setup for both domains Ω±, jump relations for the electromagnetic
field specify the jump matrix

M = diag
[
k̂ a ε̂ 1

]
(85)

for F± in the frame {1, ντ, ν, τ}. The parameter a can be chosen freely since
F2 = 0 for the field F .

The following Dirac well-posedness result exploits that the Dirac equa-
tion in the plane consists of two coupled Helmholtz equations.

Proposition 7.2. Consider the Dirac transmission problem (58) for a bounded
Lipschitz domain Ω+ ⊂ R2 with connected exterior Ω−. Let

M = diag
[
k̂ k̂/β α 1

]
, (86)

with parameters β, α ∈ C \ {0}. Assume that

α, β ∈ C \ [−C(∂Ω), −1/C(∂Ω)] and α/k̂, β/k̂ ∈ WP (k−, k+),

(87)

recalling that k̂ = k+/k− and Definition 2.1. Then the operator B2 : E+
k+

H2⊕
E−

k−H2 → H2 given by

B2(f+, f−) := f+ − Mf− (88)

is invertible, where we as in Sect. 5 denote the spaces of traces of solutions
on ∂Ω by E±

k±H2.

Proof. Consider the equation

f+ = Mf− + Mf0 (89)

with a given source f0, and write f+ = f+
0 +f+

1 +f+
2 e12 with scalar functions

f+
0 and f+

2 and a vector field f+
1 , and similarly for f− and f0. We first prove

uniqueness in two steps as follows. To this end we assume that f0 = 0.
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(i) The scalar functions F±
2 solve the Helmholtz equation as a consequence

of F± solving the Dirac equation, with wavenumbers k± respectively.
Moreover, the vector part of DF± = ik±F± shows that

∇F±
2 = (∇F±

0 − ik±F±
1 )e12. (90)

From the assumed jump relations for f± it therefore follows that f+
2 =

k̂f−
2 /β and ∂νf+

2 = β∂ν(k̂f−
2 /β), and hence Proposition 6.1 with ε̂ = β

shows that f±
2 = 0.

(ii) Next consider the scalar functions F±
0 , which also solve the Helmholtz

equation. Since F±
2 = 0 by (i), we have ∇F±

0 = ik±F±
1 and obtain

jump relations f+
0 = k̂f−

0 and ∂νf+
0 = α∂ν(k̂f−

0 ). Again Proposition 6.1
applies, now with ε̂ = α, and shows that f±

0 = 0. From (90) we conclude
f±
1 = 0 and in total f± = 0.

To show existence, it suffices by perturbation theory for Fredholm oper-
ators to prove an estimate

‖f+‖H2 + ‖f−‖H2 � ‖f0‖H2 . (91)

This follows as in steps (i) and (ii) but instead appealing to Proposi-
tion 6.2. In this case, we obtain in step (i) that ‖f+

2 ‖H2 + ‖f−
2 ‖H2 �

‖f0‖H2 , which in step (ii) is used to estimate f±
0 and f±

1 .
�

The next result is central to this paper, where we derive Dirac integral
equations by using an ansatz obtained from an auxiliary Dirac transmission
problem via duality.

Proposition 7.3. Assume the hypothesis of Proposition 7.2, and further
assume that

M ′ = diag
[
α′ 1 1/k̂ 1/(β′k̂)

]
, (92)

with parameters satisfying

α′, β′ ∈ C \ [−C(∂Ω),−1/C(∂Ω)] and α′k̂, β′k̂ ∈ WP (k+, k−). (93)

Then the operator

rE+
k+

M ′ + ME−
k− (94)

is invertible on H2, for any r ∈ C \ {0}.
Proof. We factorize (94) via E+

k+
H2 ⊕ E−

k−H2 as

[
E+

k+
−ME−

k−

] [
r 0
0 1

][
E+

k+
M ′

−E−
k−

]
. (95)

By Proposition 7.2, the left factor is invertible, so it suffices to show that
the right factor also is invertible. To this end, we use the (non-Hermitean)
complex bi-linear duality

(f, g)H =
∫

∂Ω

〈ν(x)f̂(x), g(x)〉dσ(x)
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on H2, where ŵ =
∑

j(−1)jwj denotes the involution of a multivector w =∑
j wj , wj ∈ ∧jRn. It is readily verified that

(Ek±f, g)H = −(f,Ek±g)H, (96)

(M ′f, g)H = (f, M̃g)H, (97)

where M̃ = diag
[
1/k̂ (1/k̂)/β′ α′ 1

]
. This shows that in the natural

way E∓
k±H2 is the dual space of E±

k±H2. Hilbert space duality theory shows
that in (95), invertibility of the right factor is equivalent to invertibility of
the left factor, with M replaced by M̃ , and k− and k+ swapped. �

Consider the Dirac integral equation

(rE+
k+

M ′ + ME−
k−)h̃ = Mf0, (98)

involving the operator from (94), with right-hand side specified by the jump
condition in (58) and auxiliary density h̃ which we precondition as h̃ = P ′h
in the proof of Theorem 2.2. We optimize (98) by choosing the parameters
r, β, α′, β′. Recall that for EM fields α = ε̂, where our main interest is Im ˆε ≥0
and k̂ =

√
ε̂, so that Re k̂ ≥ 0. We therefore consider α as having a prescribed

value. Clearly

rE+
k+

M ′ + ME−
k− = 1

2 (rM ′ + M + rEk+M ′ − MEk−), (99)

where

rM ′ + M = diag
[
rα′ + k̂ r + k̂/β r/k̂ + α r/(β′k̂) + 1

]
. (100)

Let Kv and Sa be the static double and single layer type operators, that is
Kv = Kv

0 , and Sa is Sa
k without the factor ik at k = 0. Modulo operators of

the form Kv
k± − Kv, Sa

k+
− ik−k̂Sa and Sa

k− − ik−Sa, the integral operator
T = rEk+M ′ − MEk− from (99) is the entry-wise product of

⎡
⎢⎢⎣

rα′ − k̂ r − k̂ r − k̂ r/β′ − k̂

rα′ − k̂/β r − k̂/β r − k̂/β r/β′ − k̂/β

k̂rα′ − α k̂r − α r/k̂ − α r/(β′k̂) − α

k̂rα′ − 1 k̂r − 1 r/k̂ − 1 r/(β′k̂) − 1

⎤
⎥⎥⎦ . (101)

and Ek, with diagonal and off-diagonal 2 × 2 blocks replaced by Kv and
ik−Sa respectively. Indeed, under these approximations

T ≈

⎡
⎢⎢⎣

−Kν′ −Kτ ′
k̂(ik−S1) 0

Kτ ′ −Kν′
0 k̂(ik−S1)

k̂(ik−Sν·ν′
) k̂(ik−Sν·τ ′

) −Kν Kτ

k̂(ik−Sτ ·ν′
) k̂(ik−Sτ ·τ ′

) −Kτ −Kν

⎤
⎥⎥⎦ (rM ′)

−M

⎡
⎢⎢⎣

−Kν′ −Kτ ′
ik−S1 0

Kτ ′ −Kν′
0 ik−S1

ik−Sν·ν′
ik−Sν·τ ′ −Kν Kτ

ik−Sτ ·ν′
ik−Sτ ·τ ′ −Kτ −Kν

⎤
⎥⎥⎦ . (102)
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• Our first choice is to set r = k̂. This gives cancellation in the (1,2) and
(4,3) elements of the operator T , which for a smooth domain Ω yields
T 2 = 0 on H2 modulo compact operators. In particular the essential
spectrum of T is {0}.

• Our choices for β, β′, α′ are to set β = k̂/|k̂| and β′ = α′ = k̂/|k̂|.
These choices make β/k̂ > 0, β′k̂ > 0 and α′k̂ > 0. Therefore, if α ∈
C\[−C(∂Ω),−1/C(∂Ω)] and α/k̂ ∈ WP (k−, k+), then Propositions 7.2
and 7.3 guarantee invertibility of E+

k+
M ′ + ME−

k− .
Furthermore, the choice of β, β′, α′ yields diagonal (1,1), (2,2) and (4,4)
elements in (94) which are compact perturbations of invertible operators
on any Lipschitz domain, whenever k̂ ∈ C \ (−∞, 0]. Indeed, Kν

k± − Kν
0

is compact and the essential spectrum of Kν
0 is contained in (−1, 1).

Moreover, when Re k̂ ≥ 0 then the normalization |β| = |β′| = |α′| = 1
gives spectral points λ for Kν

0 on the imaginary axis with |λ| ≥ 1, since
λ = (1 + z)/(1 − z) maps {|z| = 1,Re z ≥ 0} onto {Re λ = 0, |λ| ≥ 1}.

To summarize, for solving the Helmholtz/TM Maxwell transmission
problem as described above, we have obtained the 2D Dirac integral equation

(k̂M ′ + M + Ek+(k̂M ′) − MEk−)h̃ = 2Mf0, (103)

with

M = diag
[
k̂ |k̂| ε̂ 1

]
, (104)

k̂M ′ = diag
[|k̂| k̂ 1 k̂/|k̂|] . (105)

8. The 3D Dirac Integral

In Sects. 6 and 7, we derived an integral equation for solving Dirac transmis-
sion problems in R2, which applies to Helmholtz/TM Maxwell scattering. We
here derive the completely analogous integral equation in R3, with applica-
tions to scattering for the full Maxwell equations and not only the Helmholtz
equation. This Dirac integral equation in 3D combines one Maxwell problem
and two Helmholtz problems, and uses a duality ansatz. We end this section
by optimizing the Dirac parameters r, β, γ, α′, β′, γ′, which is a main step in
the construction of the Dirac BIE (20).

Example 8.1. Maxwell’s equations correspond to an electromagnetic field F
with F0 = 0 = F3 as in (43). The energy norm that we consider is simply the
L2 norm of F± in Ω+ and Ω−

R, respectively, and the corresponding function
space H3 on ∂Ω is (H−1/2(∂Ω))6, with tangential curls of E and B belonging
to H−1/2(∂Ω).

In the 3D Dirac transmission problem (58), Maxwell scattering for the
field F = Fem from (43) specifies the jump matrix

M = diag
[
a 1/k̂ k̂/ε̂ k̂/ε̂ b ε̂−1 1 1

]
(106)

in the frame (54), by the jump relations for the electric and magnetic field.
The parameters a and b can be chosen freely since F0 = 0 = F3.
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Consider the Maxwell transmission problem (14), which we write in
multivector notation, with F±

1 = E± and F±
2 being the Hodge dual of B±,

as follows. ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ν ∧ f+
1 = ν ∧ (f−

1 + f0
1 ), x ∈ ∂Ω,

ν � f+
2 = (k̂/ε̂)ν � (f−

2 + f0
2 ), x ∈ ∂Ω,

DF+ = ik+F+, F+
0 = F+

3 = 0, x ∈ Ω+,

DF− = ik−F−, F−
0 = F−

3 = 0, x ∈ Ω−,

(x/|x| − 1)F− = o(|x|−1eIm k−|x|), x → ∞.

(107)

We require the following Maxwell versions of the results in Sect. 6.

Proposition 8.2. Consider the Maxwell transmission problem (107) for a
bounded Lipschitz domain Ω+ ⊂ R3 with connected exterior Ω−. Assume
that the incoming wave vanishes so that f0 = 0. If ε̂ from (107) satisfies

ε̂/k̂ ∈ WP(k−, k+), (108)

recalling that k̂ = k+/k− and Definition 2.1, then F+ = F− = 0 identically.

Proof. Similar to the proof of Proposition 6.1, we use the jump relations to
obtain ∫

∂Ω

〈f+
1 , ν � f+

2 〉dσ = k̂/ε̂

∫
∂Ω

〈f−
1 , ν � f−

2 〉dσ. (109)

We then apply a Stokes theorem for Ω+ and Ω−
R, to obtain

k̂

ε̂

(
1
i

∫
Ω+

(k+|F+
2 |2 − k+|F+

1 |2)dx

)

+
|k̂|2
|ε̂|2

(
1
i

∫
Ω−

R

(k−|F−
2 |2 − k−|F−

1 |2)dx + 1
2

∫
|x|=R

|F−|2dσ

)
→ 0,

(110)

as R → ∞. We here used that ∇�F±
2 = ik±F±

1 , ∇∧F±
1 = ik±F±

2 , and by the
radiation condition that 〈F−

1 , ν �F−
2 〉 ≈ |F−

1 |2 ≈ |F−
2 |2 ≈ 1

2 |F−|2 on |x| = R.
Using (110), the result follows similarly to the proof of Proposition 6.1. �

Proposition 8.3. Let Ω+ ⊂ R3 be a bounded Lipschitz domain with connected
exterior Ω−. Then there exists 1 ≤ C(∂Ω) < ∞ such that if ε̂ from (107)
satisfies

ε̂, k̂2/ε̂ ∈ C \ [−C(∂Ω),−1/C(∂Ω)] and ε̂/k̂ ∈ WP(k−, k+), (111)

recalling that k̂ = k+/k− and Definition 2.1, then there exists a unique solu-
tion F+ ∈ L2(Ω+), F− ∈ L2(Ω−

R) to the Maxwell transmission problem (107),
depending contiuously on the trace f0 ∈ H3 of the incoming electromagnetic
wave F 0.

Proof. (i) The proof is similar to that of Proposition 6.2, replacing the
scalar function ik±U± by the vector field F±

1 , and the vector field ∇U±
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by the bivector field F±
2 . We first use Fredholm theory to reduce the

problem to an estimate of∫
Ω+

|F+|2dx +
∫

Ω−
R

|F−|2dx (112)

by the norm of f0 and compact terms. We define function spaces H̃2,±
k±

of Maxwell fields F± = F±
1 + F±

2 in Ω± (F− satisfying the radiation
condition in Ω−). The norm of F+ ∈ H̃2,+

k+
is ‖F+‖L2(Ω+) and the

norm of F− ∈ H̃2,−
k− is ‖F−‖L2(Ω

−
R), with a fixed large R. Furthermore

we define the closed subspace H2
k− ⊂ H3, consisting of f = f1� +

f1⊥ +f2� +f2⊥, with f1�, f1⊥ being tangential and normal vector fields
and f2�, f2⊥ being tangential and normal bivector fields, satisfying the
constraints d�f1� = ik−f2� and δ�(ν � f2⊥) = −ik−ν � f1⊥. The traces
of incoming Maxwell fields F 0 all belong to H2

k− .
The transmission problem (107) defines a bounded linear map

Tε̂,k+,k− : H̃2,+
k+

⊕ H̃2,−
k− → H2

k− . (113)

Like in Proposition 6.2, we can continuously perturb the operator and
spaces to the case k+ = k− and that ε̂ = 1, and, given (ii) below,
conclude by Fredholm perturbation theory that Tε̂,k+,k− is a Fredholm
operator with index zero and hence an isomorphism whenever (111)
holds.

(ii) To establish the estimate of (112), in Ω−
R we construct potentials such

that {
F−

2 = ∇ ∧ U−
1 ,

F−
1 = ∇ ∧ U−

0 + ik−U−
1 ,

(114)

and in Ω+ we construct potentials such that{
F+

2 = ∇ � U+
3 + ik+U+

2 ,

F+
1 = ∇ � U+

2 ,
(115)

where subscript j refers to a ∧jR3 valued field. (In traditional termi-
nology, U−

0 is the scalar potential and U−
1 is the vector potential to the

electromagnetic field F−.) The existence and estimates of such poten-
tials follow from the Hodge decompositions in [6], by writing out the
homogeneous parts of the multivector fields.
We consider first F±

1 , where we pair the jump relation for ν ∧ f±
1 with

u+
2 . From the jump relation for ν � f±

2 and Maxwell’s equations, we
obtain

ν � f+
1 = ε̂−1ν � (f−

1 + f0
1 ), (116)

which we pair with u−
0 . We get{∫

∂Ω
〈ν ∧ f+

1 , u+
2 〉dσ =

∫
∂Ω

(〈ν ∧ f−
1 , u+

2 〉dσ + 〈ν ∧ f0
1 , u+

2 〉)dσ,∫
∂Ω

〈u−
0 , ν � f+

1 〉dσ = 1/ε̂
∫

∂Ω
(〈u−

0 , ν � f−
1 〉 + 〈u−

0 , ν � f0
1 〉)dσ.

(117)
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Next consider F±
2 , where we pair the jump relation for ν � f±

2 with u−
1 .

From the jump relation for ν ∧ f±
1 and Maxwell’s equations, we obtain

ν ∧ f+
2 = k̂−1ν ∧ (f−

2 + f0
2 ), (118)

which we pair with u+
3 . We get{∫

∂Ω
〈ν ∧ f+

2 , u+
3 〉dσ = (1/k̂)

∫
∂Ω

(〈ν ∧ f−
2 , u+

3 〉 + 〈ν ∧ f0
2 , u+

3 〉)dσ,∫
∂Ω

〈u−
1 , ν � f+

2 〉dσ = k̂/ε̂
∫

∂Ω
(〈u−

1 , ν � f−
2 〉 + 〈u−

1 , ν � f0
2 〉)dσ.

(119)

Applying the general Stokes theorem, see [37, Sec. 7.3], to (117) and
(119) and summing the so obtained estimates yield an estimate of (112),
similar to the proof of Proposition 6.2. A main idea is that the potentials
U±

j depend compactly on the fields F±
j , and for details of the estimates

we refer to [4, Lem. 4.9, 4.17].
�

With this solvability result for Maxwell’s equations, we next derive solv-
ability results for the 3D Dirac equation similarly to what was done in 2D in
Sect. 7.

Proposition 8.4. Consider the Dirac transmission problem (58) for a bounded
Lipschitz domain Ω+ ⊂ R3 with connected exterior Ω−. Let

M = diag
[
k̂/(αβ) 1/k̂ k̂/α k̂/α 1/γ 1/α 1 1

]
, (120)

with parameters α, β, γ ∈ C \ {0}. Assume that

α, k̂2/α, β, γ ∈ C \ [−C(∂Ω), −1/C(∂Ω)] and α/k̂, β/k̂, γ/k̂ ∈ WP (k−, k+),

(121)

recalling that k̂ = k+/k− and Definition 2.1. Then the operator B3 : E+
k+

H3⊕
E−

k−H3 → H3 given by

B3(f+, f−) := f+ − Mf− (122)

is invertible, where we as in Sect. 5 denote the spaces of traces of solutions
on ∂Ω by E±

k±H3.

Proof. The proof is similar to that of Proposition 7.2, but now using that
in 3D the Dirac equation contains two Helmholtz equations along with
Maxwell’s equations. We write

F± = F±
0 + F±

1 + F±
2 + F±

3 (123)

and proceed in three steps. We first prove uniqueness.
(i) The scalar functions F±

0 solve the Helmholtz equation as a consequence
of F± solving the Dirac equation, which also shows

∇F±
0 = ik±F±

1 − ∇ � F±
2 . (124)

From this and (120), we conclude that ∂νf+
0 = β∂ν(k̂f−

0 /(αβ)) and
f+
0 = k̂f−

0 /(αβ) and hence Proposition 6.1 with ε̂ = β shows that
F±

0 = 0.



   48 Page 28 of 41 J. Helsing, A. Rosén IEOT

(ii) Writing F±
3 = U±

3 e123, as in (i) the scalar functions U±
3 solve the

Helmholtz equation. From the Dirac equation we have

∇ � F±
3 = ik±F±

2 − ∇ ∧ F±
1 . (125)

From this and (120), we conclude that ∂νu+
3 = γ∂ν(u−

3 /γ) and u+
3 =

u−
3 /γ and hence Proposition 6.1 with ε̂ = γ shows that F±

3 = 0 = U±
3 .

(iii) From (i) and (ii) we conclude that F± solve Maxwell’s equations (107)
with ε̂ = α, and Proposition 8.2 applies to show that F± = 0.
To show existence, it suffices by perturbation theory for Fredholm oper-
ators to prove an estimate

‖f+‖H3 + ‖f−‖H3 � ‖f0‖H3 . (126)

This follows similarly to steps (i)–(iii) by instead appealing to Proposi-
tions 6.2 and 8.3.

�

Proposition 8.5. Assume the hypothesis of Proposition 8.4, and further
assume that

M ′ =diag
[
1/α′ 1/γ′ 1 1 k̂ 1/(k̂α′β′) 1/(α′k̂) 1/(α′k̂)

]
, (127)

with parameters satisfying

α′, α′k̂2, β′, γ′ ∈ C \ [−C(∂Ω), −1/C(∂Ω)] and α′k̂, β′k̂, γ′k̂ ∈ WP (k+, k−).

(128)

Then the operator

rE+
k+

M ′ + ME−
k− (129)

is invertible on H3, for any r ∈ C \ {0}.
Proof. This follows by duality from Proposition 8.4, entirely analogously to
the proof of Proposition 7.3. �

Consider the 3D Dirac integral equation

(rE+
k+

M ′ + ME−
k−)h̃ = Mf0, (130)

involving the operator from (129), with right-hand side specified by the jump
condition in (58) and auxiliary density h̃ which we precondition as h̃ = P ′h
in the proof of Theorem 2.3. Similar to what we did for the 2D twin (98),
we optimize (130) by choosing the parameters r, β, γ, α′, β′, γ′. Recall that
for EM fields α = ε̂. We therefore consider α as having a prescribed value.
Writing (129) as in (99), we have in R3 that

rM ′ +M =

diag
[

r
α′ + k̂

αβ
r
γ′ +

1
k̂

r + k̂
α

r + k̂
α

rk̂ + 1
γ

r

k̂α′β′ + 1
α

r

α′k̂
+ 1 r

α′k̂
+ 1

]
.

(131)
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Modulo operators of the form Kv
k± −Kv, Sa

k+
− ik−k̂Sa and Sa

k− − ik−Sa, the
integral operator T = rEk+M ′ − MEk− from (99) is the entry-wise product
of
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r
α′ − k̂

αβ
r
γ′ − k̂

αβ r − k̂
αβ r − k̂

αβ rk̂2 − k̂
αβ

r
α′β′ − k̂

αβ
r
α′ − k̂

αβ
r
α′ − k̂

αβ
r
α′ − 1

k̂
r
γ′ − 1

k̂
r − 1

k̂
r − 1

k̂
rk̂2 − 1

k̂
r

α′β′ − 1
k̂

r
α′ − 1

k̂
r
α′ − 1

k̂
r
α′ − k̂

α
r
γ′ − k̂

α r − k̂
α r − k̂

α rk̂2 − k̂
α

r
α′β′ − k̂

α
r
α′ − k̂

α
r
α′ − k̂

α
r
α′ − k̂

α
r
γ′ − k̂

α r − k̂
α r − k̂

α rk̂2 − k̂
α

r
α′β′ − k̂

α
r
α′ − k̂

α
r
α′ − k̂

α
rk̂
α′ − 1

γ
rk̂
γ′ − 1

γ rk̂ − 1
γ rk̂ − 1

γ rk̂ − 1
γ

r
k̂α′β′ − 1

γ
r

α′k̂
− 1

γ
r

α′k̂
− 1

γ

rk̂
α′ − 1

α
rk̂
γ′ − 1

α rk̂ − 1
α rk̂ − 1

α rk̂ − 1
α

r
k̂α′β′ − 1

α
r

α′k̂
− 1

α
r

α′k̂
− 1

α

rk̂
α′ − 1 rk̂

γ′ − 1 rk̂ − 1 rk̂ − 1 rk̂ − 1 r
k̂α′β′ − 1 r

α′k̂
− 1 r

α′k̂
− 1

rk̂
α′ − 1 rk̂

γ′ − 1 rk̂ − 1 rk̂ − 1 rk̂ − 1 r
k̂α′β′ − 1 r

α′k̂
− 1 r

α′k̂
− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(132)

and Ek, with diagonal and off-diagonal 2 × 2 blocks replaced by Kv and
ik−Sa respectively. It is the diagonal 4 × 4 blocks in (132) which are our
main concern, within which we note that the diagonal 2×2 blocks are weakly
singular operators on smooth domains.

• Our first choice is to set r = 1/k̂, αβ = k̂2 and α′β′ = 1/k̂2. This gives
cancellation in the (1:2,3:4) and (7:8,5:6) size 2 × 2 blocks of T , which
for a smooth domain Ω yields a nilpotent operator T with essential
spectrum {0}, if H3 is replaced by a function space of fixed regularity.

• It remains to choose γ, α′, γ′. The choice of α′ concerns the diagonal
elements (1,1), (7,7) and (8,8). We set α′ = 1/k̂, and so β′ = 1/k̂. The
choices of γ, γ′ concern the diagonal elements (5,5) and (2,2). We set
γ = k̂/|k̂| and γ′ = k̂/|k̂|.
These choices make β/k̂ = (α/k̂)−1, α′k̂ = β′k̂ = 1, γ′k̂ > 0 and γ/k̂ >

0. Therefore, if α, k̂2/α ∈ C \ (−∞, 0] and α/k̂ ∈ WP(k−, k+), then
Propositions 8.4 and 8.5 guarantee invertibility of rE+

k+
M ′ + ME−

k− .

Note that for non-magnetic materials k̂2/α = β = μ̂ = 1. Similar to
the situation in R2, we also obtain good invertibility properties of the
(1,1), (2,2), (5,5) diagonal elements, as well as the (7:8,7:8) diagonal
block, on any Lipschitz domain in this way. Furthermore, with μ̂ = 1 we
also obtain good invertibility properties for the (3,3) and (4,4) diagonal
elements, so that it is only the (6,6) element which we do not control in
the sense that we may hit its essential spectrum for ε̂ < 0.

To summarize, for solving the Maxwell transmission problem (14), we
have obtained the 3D Dirac integral equation

(k̂−1M ′ + M + Ek+(k̂−1M ′) − MEk−)h̃ = 2Mf0, (133)

with

M = diag
[
1/k̂ 1/k̂ k̂/ε̂ k̂/ε̂ k̂/|k̂| 1/ε̂ 1 1

]
, (134)

k̂−1M ′ = diag
[
1 1/|k̂| 1/k̂ 1/k̂ 1 1 1/k̂ 1/k̂

]
. (135)
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9. Numerical Results for the 2D Dirac Integral Equation

This section shows how the 2D Dirac integral equation (10), along with the
field representation formula (12), performs numerically when applied to the
planar Helmholtz/TM Maxwell transmission problem. For comparison, we
also investigate the performance of the 4 × 4 system of integral equations
[23, Eq. (12.4)], along with its field representation formulas [23, Eqs. (12.2)
and (12.3)]. For simplicity, we refer to the system (10) as “Dirac” and to the
system [23, Eq. (12.4)] as “HK 4-dens”. The reason for comparing with “HK
4-dens” is that this system, just like “Dirac”, has a 8 × 8 counterpart in 3D
which applies to Maxwell’s equations.

We also compare to a state-of-the-art 2× 2 system of integral equations
[23, Eq. (12.7)] of Kleinman–Martin type [27] and to the 2D version of the
classic Müller system [32, p. 319], which also is a 2× 2 system [23, Sec. 14.1],
and refer to these systems as “best KM-type” and “2D Müller”. While “best
KM-type” is limited to planar problems it yields, in general, the best results.
For interior wavenumbers arg(k+) = 0, “best KM-type” coincides with “2D
Müller”.

We stress, at this point, that the purpose of the numerical tests is to
verify that “Dirac” has the properties claimed in the theoretical sections
of this paper. We perform these tests in 2D simply because we have not
yet access to a high-order accurate solver for “Dirac” in 3D. For example,
we monitor condition numbers under wavenumber sweeps in order to detect
eigenwavenumbers. For scattering problems, we investigate achievable field
accuracy and the convergence of iterative solvers. We are not trying to show
that “Dirac” is more efficient than “best KM-type” in 2D, because it is not.
Rather, we demonstrate that “Dirac” is almost as efficient as “best KM-type”
in 2D and often more efficient than “HK 4-dens”. This is of interest because
“Dirac” is also applicable in 3D, while “best KM-type” is not.

All systems of integral equations are discretized using Nyström dis-
cretization and underlying composite 16-point Gauss–Legendre quadrature.
The reason for using Nyström discretization, rather than the more common
Galerkin discretization (BEM or MoM), has to do with accuracy and speed.
High achievable accuracy and fast execution is, in our opinion, more eas-
ily obtained in a Nyström setting. This applies not only in 2D, but also to
scattering problems involving rotationally symmetric interfaces ∂Ω in 3D.
See, for example, [21, Sec. VII.A], where double-precision results, obtained
with a high-order Fourier–Nyström method, agree to almost 14 digits with
semi-analytical solutions given by Mie theory for an electromagnetic trans-
mission eigenproblem on the unit sphere. See also [13,29] for other recent
examples where authors prefer Nyström schemes over Galerkin for electro-
magnetic scattering. The discussion of Nyström versus Galerkin discretization
of integral equations in computational electromagnetics in [29, Sec. 1] is very
informative.

On smooth ∂Ω we use a variant of the “Nyström scheme B” in [19].
In the presense of singular boundary points on ∂Ω such as corner vertices,
which would cause performance degradation in a naive implementation, the
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Nyström scheme is stabilized and accelerated using recursively compressed
inverse preconditioning (RCIP) [18]. We note, in passing, that RCIP is appli-
cable also to Fourier–Nyström discretization near sharp edges and singular
boundary points on rotationally symmetric ∂Ω in 3D [20,25]. Accurate eval-
uation of singular operators on ∂Ω and accurate field evaluation of layer
potentials at field points close to ∂Ω are accomplished using panel-wise prod-
uct integration. See [22, Sec. 4], and references therein, for details. See also
[22, Sec. 9.1] for a thorough test of the implementation of the integral oper-
ators needed in “Best KM-type” and “2D Müller” via Calderón identites
and see [19, Sec. 9] for a high-wavenumber test of the implementation of the
corresponding layer potentials needed for field evaluations. Large discretized
linear systems are solved iteratively using GMRES (without restart).

Our codes are implemented in Matlab, release 2018b, and executed
on a workstation equipped with an Intel Core i7-3930K CPU and 64 GB of
RAM. Fields are computed at 106 points on a rectangular Cartesian grid
in the computational domains shown. When assessing the accuracy of com-
puted fields we compare to a reference solution. The reference solution is
either obtained from a system deemed to give more accurate solutions, or
by overresolution using roughly 50% more points in the discretization of the
system under study. The absolute difference between the original solution
and the reference solution is called the estimated absolute error.

9.1. The Operators

We compute condition numbers of the discretized system matrices in the sys-
tems under study. The main purpose is to detect false eigenwavenumbers.
Another purpose is to compare the conditions number of the system matri-
ces with each other. The interface ∂Ω is the smooth starfish-like curve [22,
Eq. (92)], shown in Fig. 3a and originally suggested for scattering problems
in [16]. A number of 976 discretization points are placed on ∂Ω. We study
three cases of jumps k̂ where we vary k− or k+:

• The positive dielectric case. The exterior wavenumber is positive real,
0 < k− ≤ 20, and k̂ = k+/k− = 1.5 so that 0 < k+ ≤ 30 and ε̂ =
2.25. This corresponds to the lower left corner point in Fig. 1, where
Theorem 2.2 guarantees that no true eigenwavenumbers exist, as well
as no false eigenwavenumbers for “Dirac”.
Figure 3b shows that “Dirac” and “HK 4-dens” perform equally well,
except at low frequencies where the condition number of “Dirac” fares
better and is comparable to that of “2D Müller”.

• The plasmonic case. Again the exterior wavenumber is positive real, 0 <

k− ≤ 20, but k̂ = k+/k− = i
√

1.1838 so that 0 < k+/i ≤ 20
√

1.1838, k+

is imaginary, and ε̂ = −1.1838 is rather close to the essential spectrum
{−1}. This corresponds to the left middle corner point in Fig. 1, where
Theorem 2.2 guarantees that no true eigenwavenumbers exist, as well
as no false eigenwavenumbers for “Dirac”.
Figure 3c shows that the condition number of “Dirac” is closer to that of
“best KM-type” than to “HK 4-dens”, in particular at high frequencies.
“2D Müller” exhibits 12 false eigenwavenumbers.
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Figure 3. Condition numbers of the operators in “Dirac”,
in “HK 4-dens”, in “best KM-type”, and in “2D Müller”: a
the starfish-like interface ∂Ω; b the positive dielectric case;
c the plasmonic case; d the reverse plasmonic case

• The reverse plasmonic case. Now the interior wavenumber is posi-
tive real, 0 < k+ ≤ 20, and k̂ = k+/k− = (i

√
1.1838)−1 so that

0 < k−/i ≤ 20
√

1.1838, k− is imaginary, and ε̂ = −1/1.1838. This
corresponds to the lower middle corner point in Fig. 1, which does not
belong to the hexagon, and indeed Fig. 3d shows 37 true eigenwavenum-
bers. The different systems here have a relative performance similar to
that of the plasmonic case, with “Dirac” performing rather close to “2D
Müller”.

9.2. Field Computations

We solve the Dirac system (10) for h, compute interior and exterior fields U±

via (12), and compare with results from the other systems. Gradient fields
∇U± are not computed, but we remark that the representation formula (13)
for ∇U± uses layer potentials with the same type of (near-logarithmic and
near-Cauchy) singular kernels as the representation formula (12). The 2 × 2
systems, on the other hand, have accompanying representation formulas for
∇U± with layer potentials that contain near-hypersingular kernels. Evalua-
tion of these layer potentials at field points near ∂Ω may cause additional
loss of accuracy.
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Figure 4. Field computation in the positive dielectric case;
a the scattered fields Re U±; b log10 of the estimated abso-
lute error using “HK 4-dens”; c same using “Dirac”; d same
using “2D Müller”

The curve ∂Ω is chosen as the boundary of the one-corner drop-like
object [22, Eq. (92)], discernible in Fig. 4a. We let k− = 18 in the positive
dielectric and plasmonic cases, and k+ = 18 in the reverse plasmonic case.
The incoming wave is a plane wave from south-west, u0(x, y) = eik−(x+y)/

√
2,

and 800 discretization points are placed on ∂Ω. When ε̂ = −1.1838, then
±(ε̂+1)/(ε̂−1) is in the essential H1/2(∂Ω)-spectrum of (1) and a homotopy-
based numerical procedure is adopted where ε̂ = −1.1838 is approached from
above in the complex plane [17, Sec. 6.3].

• Figure 4 covers the positive dielectric case. The real parts of the scat-
tered fields U± are shown in Fig. 4a. There are propagating waves in
both Ω+ and Ω−. The remaining images show log10 of the estimated
absolute pointwise error in Re U±, computed from the different systems.
“Dirac” loses one digit of accuracy in some regions near ∂Ω compared
to the other systems. Most likely, this is because (12) does not exploit
null-fields in the near-field evaluation. See [23, Sec. 7].
The number of GMRES iterations needed to meet a stopping criterion
threshold of machine epsilon in the relative residual are 61, 65, and 44
for “HK 4-dens”, “Dirac”, and “2D Müller”, respectively. In this case
the operators in “HK 4-dens” and “Dirac” seem to have similar spectral
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Figure 5. Field computation in the plasmonic case; a the
scattered fields Re U±; b log10 of the estimated absolute
error using “HK 4-dens”; c same using “Dirac”; d same using
“best KM-type”

properties, while the spectral properties of the operator in “2D Müller”
are better.

• Fig. 5 covers the plasmonic case and is organized as Fig. 4. There are
propagating waves in Ω−, exponentially decaying waves into Ω+, and a
surface plasmon wave along ∂Ω. “Dirac” here performs almost on par
with “best KM-type” and gives two more accurate digits than “HK 4-
dens”.
The number of GMRES iterations needed are 266, 173, and 143 for
“HK 4-dens”, “Dirac”, and “best KM-type”, respectively. In this case
the operator in “Dirac” seems to have considerably better spectral prop-
erties than the operator in “HK 4-dens”.

• Figure 6 covers the reverse plasmonic case. The results are similar to
those of the plasmonic case, although a digit is lost with all systems and
we have propagating waves in Ω+ and exponentially decaying waves into
Ω−. “Dirac” performs almost on par with “2D Müller” and gives two
more accurate digits than than “HK 4-dens”.
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Figure 6. Field computation in the reverse plasmonic case;
a the scattered fields Re U±; b log10 of the estimated abso-
lute error using “HK 4-dens”; c same using “Dirac”; d same
using “2D Müller”

9.3. Densities and Function Spaces

We show asymptotics of the density h = [h1 h2 h3 h4]T obtained from the
Dirac integral equation (10). The computations relate to the three examples
for the drop-like object in Sect. 9.2.

• The positive dielectric case: Here the hypothesis on ε̂ and k̂ in Theo-
rem 2.2 is satisfied. Then h belongs to the energy function space H2

from (63), meaning that h1, h2 ∈ H1/2(∂Ω) and h3, h4 ∈ H−1/2(∂Ω).
The result is shown in Fig. 7, where indeed h1 and h2 are seen to be
continuous at the corner vertex (note that h2 ≈ 0). The only singular
density is h3, which is related to that it is only the (3, 3) diagonal ele-
ment in the 4 × 4 block-operator of (10) which we do not control by
the choices of parameters r, β, α′, β′ in Sect. 7. Using the automated
eigenvalue method of [18, Sec. 14], the asymptotic behaviour of h3 near
the corner is determined to be

h3(t) ∝ tη, (136)

where η = −0.12319432456634 and t is the arc length distance to the
corner vertex. So h3 is in fact in L2(∂Ω).
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Figure 7. The densities h1, h2, h3, h4 as functions of the arc
length distance to the corner vertex in the positive dielectric
case: a along the lower part of ∂Ω; b along the upper part of
∂Ω
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Figure 8. Same as Fig. 7, but for the plasmonic case
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Figure 9. Same as Fig. 7, but for the reverse plasmonic case
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• The plasmonic case: Here the hypothesis on ε̂ and k̂ in Theorem 2.2 is not
satisfied since ε̂ < 0 makes ±(ε̂+1)/(ε̂−1) hit the essential H−1/2(∂Ω)-
spectrum of (1). Nevertheless, the RCIP-accelerated Nyström scheme
manages to produce the limit solution h shown in Fig. 8. As in the
positive dielectric case, the densities h1, h2, h4 are good, although h4

exhibits an oscillatory behaviour. However h3 /∈ H−1/2(∂Ω). More
precisely, its asymptotics near the corner are as in (136) with η =
−1.00000000000000 − i1.57105873276994. So h3 ∈ H−s(∂Ω) for any
s > 1/2.

• The reverse plasmonic case: the results, shown in Fig. 9, are very similar
to those of the plasmonic case. The asymptotics of h3 are as in (136)
with η = −1.00000000000000 + i1.57105873276994.

We end with a remark on the densities h obtained in the plasmonic and
reverse plasmonic cases, which fall outside the energy trace space H2 from
(63). More generally, this energy trace space belongs to a family of function
spaces, where Sobolev regularity s = 1/2 and s − 1 = −1/2 is replaced by a
more general regularity index s. On Lipschitz domains, the possible range is
0 ≤ s ≤ 1. In the plasmonic cases, our computed densities h belong to the
larger spaces s < 1/2. For 0 ≤ s < 1, the corresponding norms of the fields
are weighted Sobolev norms using

∫ |∇U±(x)|2dist(x)1−2sdx, where dist(x)
denotes distance from x to ∂Ω, whereas for the endpoint s = 1, this must be
replaced by a norm involving a non-tangential maximal function. A reference
for the elementary results for 0 < s < 1 is Costabel [12]. The bounds on
double layer potential operators for the endpoints s = 0, 1 require harmonic
analysis and the Coifman–McIntosh–Meyer theorem [10].

The essential spectrum of the double layer potential operator (1)
depends on the choice of function space, that is on s. For the energy trace
space s = 1/2 this spectrum is a subset of the real interval (−1, 1), but in
the endpoint spaces s = 0, 1, as alluded to in the introduction, this spectrum
can be computed to be a lying “figure eight”, parametrized as

± sin(δπ(1 + iξ)/2)/ sin(π(1 + iξ)/2), ξ ∈ R, (137)

where δ = θ/π − 1 on a domain with a corner of opening angle θ.
The point of departure for the investigations reported on in this paper

was the spin integral equation proposed in [36, Sec. 5] for solving the Maxwell
transmission problem (14). However, it was soon realized that this was not
suitable for the plasmonic and reverse plasmonic cases. Indeed, the theory
developed for this spin integral equation makes use of non-diagonal matrices
P, P ′, N,N ′ in (10) which mix H±1/2(∂Ω) and is limited to the function space
L2(∂Ω)4, which is different from H2. As we have seen, surface plasmon waves
appear in the function space H2 or, in the case of pure meta materials, in
the larger function spaces s < 1/2. The numerical algorithm used here fails
for the spin integral equation when the “figure eight” of (137) is approached.
When ε̂ = −1.1838 is approached from above in the complex plane, this
happens near ε̂ = −1.1838 + i0.2168.
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Sweden
e-mail: andreas.rosen@chalmers.se

Received: October 8, 2020.

Revised: June 4, 2021.


	Dirac Integral Equations for Dielectric  and Plasmonic Scattering
	Abstract
	1. Introduction
	2. Matrix Dirac Integrals
	3. Multivector Algebra
	4. The Rn Cauchy Integral
	5. The Energy Trace Space
	6. Helmholtz Existence and Uniqueness
	7. The 2D Dirac Integral
	8. The 3D Dirac Integral
	9. Numerical Results for the 2D Dirac Integral Equation
	9.1. The Operators
	9.2. Field Computations
	9.3. Densities and Function Spaces

	Acknowledgements
	References




