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Abstract: Electromobility has gained significance over recent years and the requirements on the
performance and efficiency of electric vehicles are growing. Lithium-ion batteries are the primary
source of energy in electric vehicles and their performance is highly dependent on the operating
temperature. There is a compelling need to create a robust modeling framework to drive the design
of vehicle batteries in the ever-competitive market. This paper presents a system-level modeling
methodology for thermal simulations of large battery packs for electric trucks under real-world
operating conditions. The battery pack was developed in GT-SUITE, where module-to-module
discretization was performed to study the thermal behavior and temperature distribution within
the pack. The heat generated from each module was estimated using Bernardi’s expression and the
pack model was calibrated for thermal interface material properties under a heat-up test. The model
evaluation was performed for four charging/discharging and cooling scenarios typical for truck
operations. The results show that the model accurately predicts the average pack temperature, the
outlet coolant temperature and the state of charge of the battery pack. The methodology developed
can be integrated with the powertrain and passenger cabin cooling systems to study complete vehicle
thermal management and/or analyze different battery design choices.

Keywords: lithium-ion battery; battery pack modeling; module discretized thermal simulation;
electric truck

1. Introduction

With global demand for energy resources increasing due to economic growth, the risk
of energy crisis and environmental pollution is on the rise as the majority of energy for the
transport sector is still derived from fossil fuels [1,2]. Over the last decade, the automobile
industry has been intensifying its efforts towards battery electric vehicles (BEVs) to comply
with new regulations and the public awareness to combat the negative effects of climate
change. The emission cap for road vehicles has decreased with each new regulation and
this limit is expected to reduce even further in the coming years [3]. The development
of Lithium-ion (Li-ion) batteries has made it possible for BEVs to emerge as a promising
means of transportation where the electricity from them is used to power the vehicle instead
of fossil fuels. BEVs also have low operational costs, high performance and are efficient,
which helps gratify the stakeholders and propel the technology into the market [4].

Large battery packs are required for vehicle applications to meet the high power
demand. A battery pack is a complex system consisting of a number of battery modules
(which contain cells that are connected in series and parallel), battery management sys-
tem and cooling/heating circuits. For BEVs, battery packs not only provide energy to
power the propulsion system, but also acclimatize the entire powertrain and the passenger
compartment. Therefore, the performance of the battery pack is crucial to the operation,
reliability and safety of the vehicle.
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Batteries are electrochemical systems and their performance is highly dependent on
the thermal operating environment. During the battery pack operations, heat is generated
by the battery cells and other electronic components due to current flow and internal
resistances. However, temperature levels and uniformity significantly influence the perfor-
mance, safety and lifespan of the battery [5]. At high temperatures, the cells experience
high impedance, accelerated ageing or even thermal runaway [6,7]. At low temperatures,
their efficiency drops considerably, leaving the discharge capacity minimal [8–10]. This
effect is important to address since, in cold climates, a large portion of the energy from the
battery is spent on heating itself and the cabin, thus shortening the driving range by more
than 30–40% [11,12]. Moreover, non-uniform temperature distribution within the pack
leads to unbalanced charging/discharging in modules, thereby reducing the performance
utilization of the pack. It is therefore important to maintain the optimum operating temper-
ature range for all the modules and minimize module-to-module temperature variations.
Hence, efficient battery thermal management strategies (BTMSs) to improve the thermal
efficiency of batteries are crucial.

Battery heat generation is a complex phenomenon which requires knowledge from
different disciplines to understand the governing physics behind it. There exist several
categories of battery models that can predict battery behavior with different levels of
accuracy. The two most common categories are the electrochemical and equivalent circuit
models. The electrochemical models are typically employed to describe the electrochemical
reactions, transport phenomena and heat dissipation at the cell level [13,14]. While being
the most detailed and accurate, they are time-consuming and hence not suitable for the
analysis of BTMS in large battery packs. Equivalent circuit models, which use empirical
equations modeled using experimental data, perform well for highly dynamic simulations
and run faster than electrochemical models [15].

A good deal of modeling and simulation studies have been conducted to predict
and analyze the thermal behavior of battery packs. Several studies employed the three
dimensional (3D) computational fluid dynamics (CFD) approach for studying the ther-
mal behavior of battery modules and packs. Wang et al. [16] presented an overview of
the vast theoretical research on 3D modeling of batteries. Basu et al. proposed a novel
temperature correlation based on a coupled electrochemical 3D CFD model, which can
predict the temperature of all the cells in a battery pack based on the measurement of
one cell temperature [17]. Saqli et al. [18] presented the modeling methodology of a one-
dimensional (1D) electrochemical model coupled with 3D CFD approach to study the
thermal behavior of cylindrical cells and later built a thermal first-order equivalent cir-
cuit model. Various parametric studies in 3D have been used to improve the designs of
cooling strategies and understand the effect operating conditions have on the behavior of
different thermal management systems [19–21]. While 3D simulations are very accurate
and provide a high level of detail, they are extremely time-consuming and require a lot of
computational resources. System level modeling approach, on the other hand, is a fast and
useful technique to analyze a battery’s thermal behavior as compared to the 3D approach.
Alhanouti et al., in [22], proposed a new model to accurately estimate the reversible part of
heat generated in Bernardi’s model [23]. A lumped thermal model was implemented to
simulate the development of temperature in a cell and later extended it to a pack. Gao et al.,
in [24], used an equivalent circuit model in combination with a convective thermal model
to estimate the electrical parameters and the temperature of the cells in a 12-cell battery
pack. Gottapu et al. [25] proposed a simplified electrochemical model and lumped thermal
model to analyze the thermal distribution at the pack level. Shabani et al., in [26], pre-
sented an overview of the different theoretical, numerical and analytical approaches to
thermal modeling in batteries. Recently, Astaneh et al. [27] presented a novel module-to-
module discretized modeling framework that employs electrochemical-thermally coupled
battery model. The proposed framework makes it possible to capture the temperature
non-uniformities with the purpose of performing studies that couple the cell properties to
the pack’s performance. The main challenges with battery modeling still remain when it
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comes to finding the trade-off between model complexity and fidelity on one side and the
computational speed on the other side to facilitate dynamic simulations at the pack level
and capture subsystem interaction at the vehicle level. The development of a comprehen-
sive simulation framework that makes it possible to understand and predict the behavior
of the battery pack and integrate it at the vehicle level is essential.

This work is a step towards developing such a vehicle-level simulation framework.
The study presents a modeling methodology for battery pack thermal simulations for an
electric truck under realistic operating conditions. A system-level modeling approach
was used to model the battery pack in GT-SUITE. Navier–Stokes equations in 1D and
analytical correlations were employed to capture the flow and heat transfer in the battery
pack, respectively. The battery pack was discretized at the module level and the heat
generated by each module was estimated using Bernardi’s model [23]. The experimental
data from physical tests performed on the battery pack were used for model calibration
and validation. Dynamic current profiles and coolant inlet characteristics were chosen to
ensure the robustness of the model.

This paper is organized as follows: Section 2 describes the battery pack modeling
framework, outlining the pack configuration and the theoretical background for computing
the fluid and heat flow. Section 3 presents the battery pack simulation methodology
comprising the model calibration to the experimental data and four representative test case
scenarios for model validation. Section 4 depicts the findings of the study by comparing
the simulation results with the experiments.

2. Battery Pack Modeling Framework

The geometry of the battery pack and its cooling system together with the analytical
and numerical methods used to describe and solve the underlying physics of the problem
are described in this section.

2.1. Battery Pack Configuration

The geometries of the battery pack and the cooling system are shown in Figure 1a.
The battery system has a 180s2p configuration (where s stands for series and p stands for
parallel) and uses indirect liquid cooling strategy. The pack consists of two trays, placed
one on top of the other. Each tray includes battery modules, an aluminium cooling plate
and thermal interface material between the module casings and the cooling plate as shown
in Figure 1b. Each module has several prismatic NMC-111 type Li-ion cells. The cooling
plates have two common railings, one connected to the inlet and the other connected to
the outlet. The railings are connected to rows of U-shaped channels. Every row consists of
three micro-channels that are used to cool the modules. The whole setup is enclosed in a
stainless steel casing (not shown in the figure).
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(a)

(b)

Figure 1. 3D representation of the battery pack: (a) isometric view; (b) Cross-sectional view of the module assembly.

2.2. Flow and Energy Modeling

Each coolant microchannel was discretized into seven tubes that the coolant, a 40–
60 mixture of glycol-water, flows through. The incompressible conservation equations,
namely continuity, momentum and energy as seen in Equations (1)–(3), respectively, were
solved numerically to compute the fluid and heat flow in the model:

Continuity equation: ∇ · ~U = 0 (1)

Momentum equation: ρ
D~U
Dt

= ∇P +∇ · (µ∇~U) (2)

Energy equation: ρcp
DT
Dt

= ∇ · (k∇T) (3)

where ~U is the velocity of the fluid, ρ is the density of the fluid, D
Dt is the total derivative of

the quantity ( D
Dt = ∂

∂t + (~U · ∇)),∇P is the pressure gradient, µ is the dynamic viscosity, cp is
the specific heat capacity of the fluid, T is the temperature and k is the thermal conductivity
of the fluid.
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The conservation equations were discretized using the control volume method on a
staggered grid. The transient simulations were solved implicitly with a timestep size of
0.1 s.

The scalar and vector quantities are solved only in the direction of fluid flow. In order
to couple the heat transfer between the fluid and solids, the heat transfer coefficient (h)
must be estimated. Since the boundary layer is not resolved in the wall normal direction,
the heat transfer coefficient between the wall of the cooling channel and the coolant was
calculated using an analytical heat transfer correlation for internal convection. It is worth
mentioning that several analytical correlations available in GT-SUITE were tested and they
all produced very similar results. Colburn analogy [28], as seen in Equation (4), was chosen
due to its wide usage and straightforward implementation:

jth =
NuD

ReDPr1/3 (4)

where jth is the j-factor, NuD and ReD are the Nusselt and Reynold’s numbers, respectively,
based on the channel’s diameter and Pr is the Prandtl number. Reynold’s number reads:

ReD =
UD

ν
(5)

where ν = µ/ρ is the kinematic viscosity of the fluid.
The Prandtl number is the ratio of the kinematic viscosity and the thermal diffusivity

(α = k
ρcp

):

Pr =
ν

α
(6)

and the Nusselt number is calculated as:

NuD =
hD
k

(7)

For pipe flows, the values of jth are typically around C f /2 [29], where C f is the Fanning
friction factor and defined for laminar flows (ReD < 2000) [28] as:

C f =
16

ReD
(8)

Hence, after computing Reynold’s number for the cooling channel, the j-factor and the
heat transfer coefficient were estimated. It should be noted that the usage of the Colburn
analogy relies on the assumption that the flow is fully developed both hydrodynamically
and thermally throughout the microchannels. This means that the variations of the heat
transfer coefficient in the entrance region were not captured in the model. The influence of
this assumption is further discussed in Section 4.2.

The heat transferred (Q) between the coolant and the cooling plate was then computed as:

Q = hA(Tw − Tf ) (9)

where A is the surface contact area between the cooling plate wall and the coolant, Tw is
the surface temperature of the cooling plate and Tf is the bulk coolant temperature.

The coolant’s volumetric flow rate and temperature were imposed at the inlet. The pres-
sure at the outlet was set to match the measured data. The Neumann boundary condition
was applied for the fluid temperature at the outlet.

The battery pack was discretized at the module level. Each battery module was
represented as a single thermal mass. The consequence is that all cells in the battery
module have the same temperature. This assumption holds for relatively low C-rates when
the cell temperatures are approximately constant.
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The battery modules were in contact with the module casing and heat transfer be-
tween the two was modeled through conduction. Each cooling plate was discretized into
20 lumped thermal masses and they were thermally connected with each other to account
for conduction. The temperature of each lumped mass at any instant is calculated using
the expression:

Q̇net = mcp
dT
dt

(10)

where Q̇net is the net rate of heat accumulation in the lumped mass, m is its mass, cp is
the specific capacity of the material and dT

dt is the rate of change in temperature of the
lumped mass.

The thermal interface material present between the module casing and the cooling
plate was modeled using a thermal resistance where the thickness and the thermal conduc-
tivity of the interface material, which are unknowns, can be represented as one variable.
The thermal resistance of the interface to the transfer of heat is then given by:

Rth =
tTIM
kAc

(11)

where tTIM is the thickness of the thermal interface material, k is its thermal conductivity
and Ac is the area of contact.

Finally, the battery casing, made of stainless steel, was modeled as a separate thermal
mass. The heat transfer between the battery casing and the environment was established
using a heat transfer coefficient and based on analytical correlations and CFD simulations,
it was estimated to 2.6 W/m2K. Table 1 shows the properties of the materials used in the
battery pack.

Table 1. Physical properties of the materials in the battery pack used in the model.

Material Aluminium Stainless Steel Coolant Li-ion Battery

Density (kg/m3) 2702 7900 1057 1827

Thermal conductivity (W/mK) 237 14.9 0.423 19.3

Specific heat (J/kgK) 903 477 3484 1145

Dynamic viscocity (Pa/s) - - 0.0023 -

2.3. Battery Module Modeling

Bernardi’s model of heat generation [23] was used to estimate the heat generated from
each module which reads:

Q̇ = Nmod

(
I2Rint + IT

(
dUocv

dT

))
(12)

where Q̇ is the heat generated, Nmod is the number of cells in a module, I is the current,
Rint is the internal resistance of the cells in the module, T is the temperature of the bat-
tery module and dUocv

dT is the entropic coefficient. Rint and dUocv
dT were obtained based on

measurements performed on the battery pack.
The first term on the right hand side of Equation (12) is the heat generated due to

irreversible ohmic loss and the second term on the right hand side is due to reversible
entropic heat loss. Rint is a function of the temperature of the module and its state of charge
(SoC), and dUocv

dT is a function of SoC. These quantities were interpolated accordingly during
the simulation. The SoC of the battery pack was estimated in the model as:

SoC = SoC0 +
1
C

∫ t

0
ηb Idt (13)
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where SoC0 is the initial SoC, C is the capacity of the battery and ηb is the efficiency of
the battery.

3. Simulation Methodology
3.1. Model Calibration Optimization

The resistance of the thermal interface material is often an unknown quantity while
modeling a battery pack as this information is withheld by the battery supplier. For this
reason, data from the heat-up test of the battery pack were used to estimate its value.
The battery pack with the initial temperature of 0.233T∗ (where T∗ = T/Tre f and Tre f is a
randomly chosen reference temperature) was heated by the coolant at 0.833T∗ flowing at
0.8 Q∗ (where Q∗ = Q/Qre f and Qre f is a randomly chosen reference volume flow rate) and
the average pack temperature was measured. The battery pack was inactive and so there
was no heat generated from it. The thermal resistance was optimized in the model using
the Nelder–Mead optimization approach [30] with the objective to minimize the difference
between the experimental and simulation values for the average pack temperature.

3.2. Case Studies for Model Validation

The developed battery pack model was validated using the experimental data from
four test scenarios herein referred to as Cases 1–4. The test scenarios depict the typical
real-world operating conditions for large battery packs in electric trucks.

Case 1 represents a discharging/charging cycle. Figure 2 illustrates the pack operation
under the scenario of Case 1. The transient current profile (Figure 2a) shows that the
C-rates were varied between −1.5 and 1 C followed by a constant current charging at
0.5 C. The volumetric flow of the coolant was kept nearly constant at the inlet and a small
variation in its temperature was observed as shown in Figure 2b.

(a) (b)

Figure 2. Case 1 test scenario: (a) Current profile and (b) inlet volumetric flow rate (Q∗) and temperature of the
coolant (T∗) .

Case 2 represents a similar discharging/charging profile as Case 1 (Figure 3a) with
the addition of a both coolant volumetric flow rate and temperature being varied at the
inlet of the battery pack as seen in Figure 3b. These variations were achieved by reducing
the power of the coolant pump in the cooling system and increasing the power of the fan
for the radiator cooling.

Case 3 is a discharge cycle with three approximately constant current rates (−0.25,
−1.5 and −0.75 C) as displayed in Figure 4a. The coolant volumetric flow rate and its
temperature at the inlet were maintained nearly constant (Figure 4b).

Finally, Case 4 depicts a cooling scenario when the battery pack is not operating
(Figure 5a). Here, the coolant flow rate at the inlet was decreased gradually throughout
the cycle by decreasing the power of the pump, as the temperature of the battery pack
decreased. This is reflected in the coolant’s temperature at the inlet as well, see Figure 5b.
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(a) (b)

Figure 3. Case 2 test scenario: (a) Current profile and (b) inlet volumetric flow rate (Q∗) and temperature of the
coolant (T∗) .

(a) (b)

Figure 4. Case 3 test scenario: (a) Current profile and (b) inlet volumetric flow rate (Q∗) and temperature of the
coolant (T∗) .

(a) (b)

Figure 5. Case 4 test scenario: (a) Current profile and (b) inlet volumetric flow rate (Q∗) and temperature of the
coolant (T∗) .

4. Results and Discussion
4.1. Battery Pack Model Calibration

First, the battery pack model was calibrated using experimental data for the average
pack temperature during the heat-up test. The objective was to minimize the difference
between the experimental and the simulation results for the average temperature of the
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battery pack by varying the thermal resistance of the thermal interface material between the
cooling plates and the battery modules. Figure 6 shows the comparison between measured
and simulated temperature profiles for the heat-up test. The calibration yielded a thermal
resistance of 0.004252 m2K/W.

Figure 6. Average battery pack temperature during the heat-up test: Measured ; simulated
.

4.2. Case Studies for Model Validation

The battery pack model was validated using the experimental data for the average
pack temperature, the outlet temperature of the coolant and the average SoC of the pack
for four scenarios (Case 1–4) as described in Section 3.2. The validation results for Case 1
are presented in Figure 7.

It should be noted that the step profile in the experimental temperature values is due
to the resolution of the sensors used during the measurements. The sensors used for the
measurement of the average pack temperature were provided by the battery suppliers and
hence could not be accessed or modified. Nonetheless, the average temperature of the
battery pack predicted by the simulations is in good agreement with the measurements.
The average battery pack temperature was predicted well both during discharging (t∗ < 0.3)
and charging (t∗ > 0.4) but slightly underpredicted during the transition from discharging
at −1.5 C to charging at 1 C (0.3 < t∗ < 0.4). The temperature of the coolant at the outlet
and the average SoC of the battery pack were estimated well from the simulation.

For Case 2, the simulated average temperature of the battery pack, displayed in
Figure 8, was marginally overestimated compared to the measurements during the dis-
charge phase (t∗ < 0.5) with the maximum C-rate of −1.5 C, and underestimated during
the charging phase most of which was at 0.5 C, with lower coolant volumetric flow rate
and temperature. The outlet temperature of the coolant was slightly overpredicted from
t∗ = 0.75 until the end of the cycle. The average SoC for the battery pack was in very good
agreement with the measurements through the entire cycle.
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(a) (b)

(c)

Figure 7. Results for Case 1: (a) average battery pack temperature, (b) outlet coolant temperature and (c) average battery
pack SoC . Measured quantity ; simulated quantity .

(a) (b)

(c)

Figure 8. Results for Case 2: (a) average battery pack temperature, (b) outlet coolant temperature and (c) average battery
pack SoC. Measured quantity ; simulated quantity .
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The results for Case 3, which consists of three discrete discharge profiles, are seen
in Figure 9. The average temperature of the battery pack from the measurement and
simulation agreed well with each other. The outlet temperature of the coolant and the
average SoC were also estimated with very good accuracy.

The results for Case 4 that represents cool down of the battery pack with continuously
decreasing coolant volumetric flow rate are shown in Figure 10. The variations in the
average pack temperature are due to heat rejection from the pack to the coolant. The average
temperature of the battery pack and the outlet temperature of the coolant were marginally
overpredicted in the simulations as compared to the measurements.

(a) (b)

(c)

Figure 9. Results for Case 3: (a) average battery pack temperature, (b) outlet coolant temperature and (c) average battery
pack SoC. Measured quantity ; simulated quantity .

(a) (b)

Figure 10. Results for Case 4: (a) average battery pack temperature and (b) outlet coolant temperature. Measured quantity
; simulated quantity .
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The root mean square (RMS) errors in the estimation of the average battery pack
temperature, the outlet coolant temperature and the SoC of the battery pack are presented
in Table 2. As it was seen from the plots, the error in estimation was slightly higher when
the current profile and/or flow rate varied. Nevertheless, the magnitude of error is very
low and in the order of the resolution of the sensors used.

Table 2. RMS errors between simulated and measured quantities for the four cases.

Case Average Battery Pack Temperature (K) Outlet Coolant Temperature (K) SoC (%)

1 0.3291 0.0486 0.338

2 0.5474 0.1708 0.284

3 0.2405 0.0508 0.270

4 0.3576 0.2561 -

The transient profiles of the battery pack temperatures and the coolant outlet tempera-
tures were estimated very well for Cases 1 and 3 with nearly steady conditions for coolant
flow. Minor discrepancies were, however, observed for Cases 2 and 4 with dynamic coolant
flow rates and temperature. These deviations can be attributed to the usage of empirical
models for heat generation in the battery and heat transfer between the coolant and the
wall. While these empirical models perform well in steady-state operating conditions,
small deviations arise when the conditions are dynamic.

With the hydrodynamic entrance length around 1% of the total length of the microchan-
nel, the flow is considered hydrodynamically fully developed. The thermal entrance length
was estimated to be around 19% the total length of the microchannel. Nonetheless, the
Colburn analogy was applied to the entire microchannel primarily due to current limita-
tions in the software. While this is a shortcoming in the model, this simplification has a
negligible effect on capturing the thermal behavior of the battery pack, as seen from the
simulated and experimental results. The modeling framework relies on simplifying the
physics to capture the important underlying features of the battery pack system.

The main advantage of discretizing the battery pack to the module level is that the
temperature non-uniformity in the battery pack can be studied and monitored. The evolu-
tion of the maximum and minimum temperatures of the modules are plotted in Figure 11
for the four cases. They follow the same profiles as the average pack temperatures for
the respective scenarios. The difference between the maximum and minimum temper-
atures between the modules (dT∗ = dT/dTre f , where dTre f = 1/60 Tre f ) is also shown.
The temperature variations of the battery modules are due to differences in the rate of
heat accumulated leading to different rates of temperature change during the pack oper-
ation. In the discharging/charging scenarios (Cases 1–3), dT∗ changes at varying rates
due to variations in the heat generated by the modules and the coolant flow character-
istics. In Case 1, the increase in dT∗ slowed down when the pack shifted from transient
discharging to constant low current charging as the coolant flow was kept nearly constant.
The difference dT∗ increased at a higher rate in Case 2 due to the decrease in the coolant
flow rate when shifting to constant charge. In Case 3, dT∗ increased faster at the discharge
current 1.5 C compared to lower discharge currents while the coolant flow characteristics
were maintained constant throughout the test. In the cooling scenario (Case 4), however,
dT∗ increased logarithmically meaning that some modules were cooled better than others,
leading to a rapid increase in temperature difference at the beginning before it reaches
a plateau.
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(a) (b)

(c) (d)

Figure 11. Variation in the maximum, minimum temperatures of the modules and their difference for each case: (a) Case 1,
(b) Case 2, (c) Case 3 and (d) Case 4; T∗max , T∗min , dT∗ .

5. Conclusions

This work focused on developing the modeling methodology based on 1D system-
level approach to perform thermal simulations of large battery packs for electric truck
applications. The battery pack consisted of two trays, each comprising a cooling plate,
thermal interface material and Li-ion cells enclosed in a module casing. The pack was
discretized at the module level and the heat generated from each module was estimated
using Bernardi’s model. One-dimensional (1D) formulation of the Navier–Stokes equations
was used to solve the transport of flow and heat. An analytical Colburn correlation was
used to predict the heat transfer coefficient between the cooling channels and coolant.

The thermal resistance of the thermal interface material between the modules and
the cooling plates was used to calibrate the heat transfer between the battery modules
and the coolant. The objective was to minimize the difference between the measured and
simulated values for the pack average temperature during the heat-up test. The model was
validated using four test scenarios representing battery pack charging/discharging during
truck driving, as well as pack cooling after the truck was parked. The average temperature
of the battery pack, the outlet temperature of the coolant and the SoC of the battery pack
were estimated for each of these scenarios. The simulation results were in good agreement
with the experimental data with RMS error less than 0.55 K when estimating the battery
pack temperature, less than 0.26 K when estimating the outlet coolant temperature and less
than 0.4% in the estimation of the SoC of the pack.

The results demonstrate the feasibility of the developed model for studying the
thermal behavior of battery packs. The 1D modeling approach developed herein provides a
trade-off between accuracy and speed, making it possible to expand the model for studying
complete vehicle thermal management. Moreover, the model can be utilized to perform
design studies to further improve the efficiency of the cooling strategy.
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Finally, the work presented herein is highly relevant for different actors within electric
vehicle system modeling, comprising automobile industries, battery manufacturers and
other OEMs, as well as simulation software companies.
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