
Twee: An Equational Theorem Prover

Downloaded from: https://research.chalmers.se, 2024-03-13 10:53 UTC

Citation for the original published paper (version of record):
Smallbone, N. (2021). Twee: An Equational Theorem Prover. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
12699 LNAI: 602-613. http://dx.doi.org/10.1007/978-3-030-79876-5_35

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Twee: An Equational Theorem Prover

Department of Computer Science and Engineering,
Chalmers University of Technology, Gothenburg, Sweden

nicsma@chalmers.se

Abstract. Twee is an automated theorem prover for equational logic. It
implements unfailing Knuth-Bendix completion with ground joinability
testing and a connectedness-based redundancy criterion. It came second
in the UEQ division of CASC-J10, solving some problems that no other
system solved. This paper describes Twee’s design and implementation.

Keywords: Automated theorem proving · unit equality · completion

1 Introduction

Twee is an automated theorem prover for equational logic, available as open-
source software [17]. It features good performance (coming second in the UEQ
division of CASC-J10), low memory use, and human-readable proof output.

Twee’s general architecture is quite traditional: it uses a DISCOUNT loop
[7] implementing unfailing Knuth-Bendix completion [3]. However, it has a few
characteristics which are unusual in a high-performance theorem prover:

Fixed heuristics. Twee does not adjust its strategy based on the input problem.
It uses a fixed term order, a fixed critical pair scoring function, and so on. Rather
than detecting the kind of problem, Twee uses general-purpose strategies that
work for all sorts of problems (Section 2).

Strong redundancy tests. Rather than using special strategies for associative-
commutative functions, Twee builds in strong redundancy tests, based on ground
joinability and connectedness (Section 3). These handle not just AC functions
but many kinds of unorientable equations, in particular permutative ones (where
both sides are almost the same but with variables in a different order).

A high-level language. Twee consists of 5300 lines of Haskell code, whereas for
example Waldmeister [12] is 65000 lines of C. As such, it is easy to experiment
with. Despite the choice of programming language, Twee is quite fast at raw
deduction steps, thanks to careful coding of low-level term operations (Section 4).

Despite the fixed heuristics and high-level language, Twee comes close in
performance to E [14] and Waldmeister [12]. It is strong in many problem classes,

c© The Author(s) 2021
A. Platzer and G. Sutcliffe (Eds.): CADE 2021, LNAI 12699, pp.
https://doi.org/10.1007/978-3-030-79876-5 35

Nicholas Smallbone

602–61 , 2021.3

http://crossmark.crossref.org/dialog/?doi=10.1007/10.1007/978-3-030-79876-5_35&domain=pdf
https://doi.org/10.1007/978-3-030-79876-5_35
http://orcid.org/0000-0003-2880-6121


Twee: An Equational Theorem Prover 603

including LAT (lattices) and REL (relation algebra) from TPTP, which feature
many commutative operators where Twee’s redundancy tests shine, and on
unusual problems, where no prover has special heuristics. Twee is however poor
at RNG (rings), where it seems important to choose a good term order. The rest of
the paper describes Twee’s design in detail, focusing on the three aspects above.

Notation. We use t ” u to mean that t and u are syntactically equal.

2 Architecture

Twee natively supports only unit equality problems with ground goals, but the
frontend also supports arbitrary quantification, Horn formulas, and many-sorted
logic. These features are eliminated using the external tool Jukebox [16], which:

– Clausifies the problem to eliminate conjunction and quantifiers.
– Encodes Horn clauses as equations [5].
– Encodes sorts using extra functions [4].

At this point, the goal can still contain existentially-quantified variables, which
must be eliminated. To do so, we use an old trick, also used by Waldmeister: if
the goal t “ u is non-ground, we add new function symbols eq , true and false,
and two axioms @X. eqpX,Xq “ true and eqpt, uq “ false, and replace the goal
with true “ false. Now we have a unit equality problem with a ground goal.

The main proof loop is shown in Algorithm 1. It implements unfailing com-
pletion [3] using a DISCOUNT loop [7]. The state consists of R, a set of rewrite
rules and unorientable equations (the active set, initially empty); Q, the set of
unprocessed critical pairs formed from R (the passive set, initially containing all
the axioms); J , a set of ground joinable equations used for subsumption checking
(following [1]); and the goal. The main loop removes the best critical pair from Q
(see below), and if it is not redundant, adds it to R (oriented if possible) and adds
all its critical pairs to Q. Every so often, the rules in R are reduced with respect
to one another and redundant rules are removed. The goal is kept normalised
with respect to R and the prover succeeds if the goal becomes trivial.1

The passive set is normally quadratic in the size of the active set: typical
numbers are |R| « 10, 000 and |Q| « 10, 000, 000. Hence we must process each
passive critical pair at high speed, but can spend time on each new rewrite rule.

Term ordering. We always use KBO, with all functions having weight 1, and
ordered so that more frequently-occuring functions are smaller.

Critical pair selection. When a critical pair is added to Q, it is first normalised
and then assigned a score; the proof loop selects the critical pair with the lowest
score. The score function’s job is to pick out promising critical pairs, and the
choice of score function can make or break the prover. However, as it is applied
to every critical pair, it also needs to be fast. We compute scores as follows:

1 An equation is considered trivial if it is of the form t “ t.



604 N. Smallbone

Algorithm 1 The main proof loop

pR, J,Qq “ pH,H, Aq
while Q ‰ H do
P “ remove lowest-scoring element of Q
if P ’s parent rules are still present in R then

normalise P using R to get t “ u
if t ı u and t “ u is not connected and t “ u is not subsumed by J then

if t “ u is ground joinable then
add t “ u to J

else
orient t “ u and add it to R
for all critical pairs cp of t “ u and R do

normalise cp using only the oriented rules in R
if cp is non-trivial then add cp to Q end if

end for
normalise goal using R
if goal is trivial then return “theorem” end if
simplify rules in R wrt each other, but limit this step to 5% of total runtime

end if
end if

end if
end while
return “countersatisfiable”

– We start with a weighted sum of the size of the two terms. By default we take
4 weightptq`weightpuq, where t is the bigger term and u the smaller. In other
words, the size of the bigger term is most important. Variables are weighted
slightly less than function symbols, to encourage finding more general rules.

– To encourage Twee to use all the axioms, we add the critical pair’s depth,
where axioms have depth 0, critical pairs of the axioms have depth 1, etc.

– If a term contains the same subterm multiple times, only one occurrence of
that subterm is counted; the other occurrences get a nominal weight of one
symbol. In effect we measure the weight as if the term was a DAG rather
than a tree. The idea is that identical subterms form the same critical pairs,
and tend to get rewritten at the same time: they come and go together.

– Finally, any critical pair of the form eqpv, wq “ false (where eq is the function
used to encode existential goals) with v and w unifiable is given a fixed cost
of 1, because selecting it will immediately prove the goal. This trick is also
used by Waldmeister, and is vital in practice for existential goals.

Proof production and checking. Twee uses an LCF-style kernel [9] to guarantee
soundness. Every member of the active set comes with a proof object, which
is verified by a trusted proof checker (consisting of about a page of code). The
proofs are low-level and thus easy to check: the only proof steps allowed are
reflexivity, symmetry, transitivity, congruence and applying an axiom or lemma.
It is not possible to add a rule to the active set without supplying a proof, and



605

any invalid proof step causes a fatal runtime error. The key to making this fast
is that only the active set, not the passive set, includes proof objects.

Once the goal is proved, we transform the proof object into a human-readable
proof, consisting of a flat sequence of rewrite steps. We also introduce lemmas,
to avoid exponentially-sized proofs: any active rewrite rule is a candidate lemma.
Our approach is similar to [8], but simpler as our proof steps are smaller; but
their lemma selection strategy is smarter than ours and produces fewer lemmas.

Goal transformation. Twee’s frontend can optionally transform the problem to
make the prover more goal-directed. The transformation is simple, but strange.
For every function term fp. . .q appearing in the goal, we introduce a fresh
constant symbol a and add the axiom fp. . .q “ a. For example, if the goal is
fpgpaq, bq “ hpcq, we add the axioms fpgpaq, bq “ d1, gpaq “ d2, and hpcq “ d3.
Simplification will rewrite the first axiom to fpd2, bq “ d1 and the goal to d1 “ d3.

By doing this transformation, (1) any subterm of the goal gets normalised to
a constant, so critical pairs containing goal terms get a lower score, and (2) new
critical pairs involving these constants appear, which are likely to be relevant to
the goal. We evaluate this transformation in Section 5.

Weak rewrite rules. Completion sometimes deduces equations where both sides
have a variable not occurring on the other side, such as fpx, yq “ gpx, zq. Such
equations are awkward for rewriting: suppose we want to use this equation to
rewrite the term fpt, uq—what value should we choose for z?

Twee splits this equation into nicely-behaved rewrite rules instead. To do so,
we introduce the concept of a weak rewrite rule. A weak rewrite rule t ù u is
like an ordinary rewrite rule, except that it only satisfies t ě u, not t ą u.2 Weak
rewrite rules form critical pairs and participate in rewriting just like any other
rewrite rule, except that to ensure termination, we may only perform the rewrite
step tσ ù uσ if tσ ı uσ, i.e. tσ and uσ are syntactically different terms.3

Using weak rewrite rules, Twee splits fpx, yq “ gpx, zq into the two rules
fpx, yq Ñ gpx,Kq and gpx, zq ù gpx,Kq, where K is the minimal term in the
term ordering. Note that gpx, zq ù gpx,Kq is a valid weak rewrite rule because
gpx, zq ě gpx,Kq, with equality exactly when z ” K.

As another example, the equation fpx, x, y, zq “ gpx, y, y, wq is split into
fpx, x, y,Kq “ gpx, y, y,Kq, fpx, x, y, zq ù fpx, x, y,Kq and gpx, y, y, wq ù

gpx, y, y,Kq. In this case, we are still left with an unorientable rule afterwards,
but since it has the same variables on both sides it is unproblematic for rewriting.

It is always possible and safe to split an equation into an equivalent set of:

– ordinary rewrite rules tÑ u with t ą u,
– weak rewrite rules t ù u with t ě u, and
– unorientable equations t “ u where both sides have the same set of variables.

Twee does this whenever an equation is about to be added to R.

2 t ě u means: for all grounding substitutions σ, either tσ ą uσ or tσ ” uσ.
3 This is different from e.g. constrained rewriting: we can perform the rewrite even if t

and u are unifiable, as long as they are not the same term right now.

Twee: An Equational Theorem Prover



606 N. Smallbone

3 Redundancy Criteria

The basic redundancy criterion of Knuth-Bendix completion is joinability : a
critical pair can be discarded if both sides normalise to the same term. Joinability
runs into problems when we have unorientable equations. For example, consider
a rewrite system for an associative-commutative operator “`”:

x` y “ y ` x (1)

px` yq ` z Ñ x` py ` zq (2)

x` py ` zq “ y ` px` zq (3)

From (1) and (2) we get the critical pair x`py`zq
(2)
ÐÝÝ px`yq`z

(1)
ÝÝÑ z`px`yq,

which cannot be rewritten any further so it is not joinable. However, the critical
pair is redundant, because the above rewrite system is ground confluent. We
would like to detect redundant but non-joinable critical pairs.

This section presents the redundancy criteria that Twee uses to handle
unorientable equations: our take on the well-known approach of ground joinability
testing [6], and a novel (we believe) approach based on connectedness [2]. Unlike
the standard techniques for associative-commutative functions [1], our criteria
handle any kind of permutative equation; we evaluate our approach in Section 5.

3.1 Ground Joinability Testing

Although the critical pair x` py` zq Ð px` yq ` z Ñ z` px` yq is not joinable,
all ground instances of it are joinable, and we say that the critical pair is ground
joinable. For example, the instance a` pb` cq Ð pa` bq ` cÑ c` pa` bq, with

a ă b ă c, can be joined since c ` pa ` bq
(3)
ÝÝÑ a ` pc ` bq

(1)
ÝÝÑ a ` pb ` cq. Any

ground joinable critical pair is redundant.
Martin and Nipkow [13] suggest an approach for checking ground joinability:

– Consider all possible orderings between the variables of the critical pair, such
as x ă y ă z, y ă x ” z, x ” y ă z, and so on.

– For each ordering, show that the critical pair is joinable when the variables
have that order. Formally, this means showing that all ground instances
satisfying the ordering are joinable. For example, the rewrite proof above
shows our critical pair joinable for any ground instance satisfying x ă y ă z.

Their algorithm effectively does a case analysis on all possible variable order-
ings, but it is inefficient because there are so many possible orderings.

Our algorithm is similar, but tries to minimise the number of cases it considers.
It does so by allowing orderings that: (1) constrain only a subset of the variables,
such as x ă y, and (2) use ď, as in x ď y ă z. It works as follows:

1. Choose a strict total order on all the variables, using only ă; e.g., x ă y ă z.
2. Show that the critical pair is joinable under that ordering. Formally, we show

that all ground instances satisfying the ordering are joinable.



607

3. We have now shown that the critical pair is joinable in one specific case. Now
generalise that case, by: (1) removing variables from the ordering, and (2)
replacing ă with ď in the ordering, as long as the critical pair is joinable
under the resulting ordering. (This may e.g. generalise x ă y ă z to x ď z.)

4. Repeat, but pick an ordering that is not covered by any of the cases so far.
5. When all variable orderings involving only ă have been covered, all the ones

that remain must involve ”. For each such ordering, take the critical pair,
unify all equal variables, and recursively call the ground joinability check.

Example. Take the critical pair x`py`zq Ð px`yq`z Ñ z`px`yq and suppose
that we choose the ordering x ă y ă z. It can be joined when this order holds, as

for any instance where x ă y ă z, we have z`px`yq
(3)
ÝÝÑ x`pz`yq

(1)
ÝÝÑ x`py`zq.

Having joined the critical pair in one case, we now generalise the case. We
first try to remove each variable in turn, i.e. to join the critical pair in the three
cases x ă y, y ă z, and x ă z in turn. None of these attempts succeeds.

Now we try replacing a ă with a ď, to get x ă y ď z. We must check if all
ground instances satisfying x ă y ď z are joinable, but how? We might think of
splitting this into two cases x ă y ă z and x ă y ” z, but instead we are going
to find one rewrite proof that works for both.

Consider the rewrite proof above. In it, the step x` pz ` yq Ñ x` py ` zq is
fine if y ă z, but does not seem to be allowed if y ” z. But in fact it is fine: if
y ” z, the terms x`pz`yq and x`py`zq are identical, so this rewrite step does
nothing and can just be dropped. That is, the proof works both when x ă y ă z
and x ă y ” z, and shows joinability for the case x ă y ď z. We generalise the
other ă similarly, showing that the critical pair is joinable in the case x ď y ď z.

Next, we pick another total order on the variables, but not one in which
x ď y ď z. We might pick, for example, z ă y ă x. The process repeats: we show
ground joinability under this ordering, and generalise it to z ď y ď x. We repeat
until all cases are covered, and the ground joinability test succeeds.

Although our algorithm can be expensive in theory, in practice it needs to
consider only a few orderings, and a small number of variables. Step (5) can
occasionally be expensive, but by generalising ă to ď we can usually avoid it.

The general case. Here is how we test joinability under a given variable ordering.
First, we parameterise our term order. Given an ordering C, we define t ěC u to
mean that, for all grounding substitutions σ, if σ satisfies C then tσ ě uσ.

In the example, we weakened a ă to a ď. To do so, we used a rewrite step
that, in some ground instances, rewrote a term to the same term. To allow these
kind of steps, we loosen our definition of rewriting: we may perform a rewrite
tÑ u under C as long as t ěC u and t ı u. Rewriting terminates because given
a rewrite proof t ěC u ěC v ěC . . ., there is always a ground instance where
t1 ąC u1 ąC v1 ąC . . ., since C was constructed as a strict order in step (1).

With this definition, normalising z`px`yq using the ordering C :“ x ď y ď z
yields z`px` yq Ñ x`pz` yq Ñ x`py` zq, where e.g. the first step is allowed
because z` x ěC x` z and z` x ı x` z. Thus we can join our example critical
pair under a given variable ordering just by normalising both sides, as we want.

Twee: An Equational Theorem Prover



608 N. Smallbone

The last ingredient is to implement a test for t ěC u, which we have done for
KBO. The tricky part is checking whether weightptq ě weightpuq, which can be
solved by taking the expression weightptq ´ weightpuq, a linear combination of
the weights of t’s and u’s variables, and computing its minimum possible value.

One nice property is that the rest of the ground joining code is independent
of the term order. To support e.g. LPO, one just needs to implement ěC for it.

Why not allow arbitrary ordering constraints? Some critical pairs can only be
ground joined by using ordering constraints on arbitrary terms (e.g. x` y ă z).
We do not support these, as they make everything enormously more complex:

– The number of possible orderings becomes infinite. You can get stuck enu-
merating more and more cases of a case split which never ends. In our design,
there are finitely many orderings and the algorithm clearly terminates.

– Computing ěC for KBO becomes NP-complete [10]. In our setting, it takes
polynomial time, and we expect it can be done in linear time following [11].

3.2 Connectedness

Ground joinability testing is rather heavyweight, constructing and analysing a
sometimes large case split, and sometimes it fails because it only supports case
splits on variables. Twee also supports a simpler, complementary method that
works well when an unorientable equation is applied under another function.

The method makes use of connectedness. A critical pair sÐ tÑ u is connected
if there is a rewrite proof s “ t1 “ . . . “ tn “ u such that each ti is strictly less
than t [2]. In Knuth-Bendix completion, any connected critical pair is redundant.
In other words, when joining sÐ tÑ u, we can do rewrite steps that increase
the term, as long as the result is always strictly less than t.

Here is how we use connectedness. Let σ be a substitution that grounds s
and u. When joining sÐ tÑ u, we may want to perform a rewrite step v Ñ w
using an unoriented equation, but we don’t know if v ě w. We allow the rewrite
step v Ñ w as long as: (1) w ă t, and (2) vσ ą wσ. Condition (1) ensures
connectedness, and condition (2) ensures that rewriting eventually terminates.

For example, suppose we take the earlier rules for “`” and add a function f :

fpx` y, z ` wq Ñ fpx, fpz, fpy, wqqq (4)

fpx, fpy, zqq “ fpy, fpx, zqq (5)

Assume KBO with both f and ` having weight 1. One critical pair is

fpy, fpz, fpx,wqqq
(4)
ÐÝÝ fpy`x, z`wq

(1)
ÐÝÝ fpx` y, z`wq

(4)
ÝÝÑ fpx, fpz, fpy, wqq.

We can show this to be connected using σ “ tx ÞÑ a, y ÞÑ b, z ÞÑ c, w ÞÑ du,
a ă b ă c ă d. The left term fpy, fpz, fpx,wqqq rewrites to fpy, fpx, fpz, wqqq
using (5), because fpy, fpx, fpz, wqqq ă fpx ` y, z ` wq (connectedness) and
fpb, fpc, fpa, dqqq ą fpb, fpa, fpc, dqqq (termination); and that rewrites to
fpx, fpy, fpz, wqqq similarly. The right term fpx, fpz, fpy, wqqq also rewrites to
fpx, fpy, fpz, wqqq. Thus the critical pair is redundant.



609

In general we try two choices of σ: one where the first variable in s “ u is
mapped to a1, the second to a2, and so on (with a1 ă . . . ă an); and another
where the variables are mapped in reverse order. The critical pair is redundant
if either choice of σ works. This is not a principled choice—most likely, some
critical pairs need a different σ—but we do not know how to find the “best” σ.

4 Implementation

Twee consists of 5300 lines of Haskell code, comprising: terms, unification etc.
(1150 lines); the frontend (850 lines); proof output (700 lines); general data
structures (700 lines); the main proof loop (600 lines); joining, ground joining
and connectedness (500 lines); critical pairs and the passive set (400 lines); term
indexing (250 lines); and KBO (150 lines). This does not include TPTP parsing,
clausification, etc., which are provided by the 4000-line Jukebox [16] program.

Most of Twee is written in a high-level, Haskell-idiomatic, somewhat inefficient
style. Performance-critical parts (term manipulation, term indexing, and the
passive set) are coded more carefully, and are described below. The bottleneck is
usually normalising the many millions of critical pairs that are generated.

4.1 Terms

The simplest way to represent terms in Haskell, as trees, is not ideal: it creates
pressure on the garbage collector, and core operations such as matching and
unification become heavily recursive and needlessly slow.

Instead, we represent terms as flatterms—the term is flattened into a list of
symbols and stored in an array. In order to preserve the structure of the term,
each symbol is paired with a number giving the size of the subterm rooted at
that symbol. For example, the term fpx, gpx, yqq is represented as:

f : 5 x : 1 g : 3 x : 1 y : 1

where e.g. g : 3 indicates a subterm with root g that is 3 symbols long (g, x, y).
In addition, each function and variable has an ID number, and the term stores

those ID numbers, rather than a pointer to the function or variable. So, in the
array above, the “f” really means the ID number of f. Functions have positive ID
numbers, and variables negative, so they can be easily told apart, and there is a
separate global array which maps ID numbers to functions. This design allows us
to represent a term as a simple array of integers, so that pressure on the garbage
collector is reduced. Also, comparing two terms for equality just amounts to a
bytewise comparison of the arrays (a C memcmp). What’s more, by using array
slicing, we can view a term’s subterms as flatterms in their own right.

On top of this we build a higher-level API. There are two types, terms and
termlists, both implemented as flatterms. With the help of Haskell’s user-defined
patterns, they are exposed to the user as ordinary algebraic datatypes. We can
use normal pattern matching to e.g. check if a term is a function or variable,
access its children (as a termlist), iterate through it a symbol or subterm at a

Twee: An Equational Theorem Prover



610 N. Smallbone

time, etc. All these operations turn into a few machine instructions. Matching
and unification are implemented using this API as efficient tail-recursive loops.

4.2 Indexing

Rewriting uses a perfect discrimination tree [15], including Waldmeister’s refine-
ments [12]. The implementation takes care not to create backtracking points
unless needed. There is no unification index, since this is not usually a bottleneck.

4.3 The Passive Set

Early versions of Twee often ran out of memory after about 30 minutes. The
reason is the passive set—it grows quadratically in the number of active rules,
because any pair of rules can have a critical pair. In typical prover runs it contains
anywhere between a million and a hundred million critical pairs.

Twee now uses a space-efficient passive set representation adapted from
Waldmeister [12]. The main idea is to throw away all terms involved in the
critical pair, and only remember: (1) the ID numbers of the two rules involved,
(2) the position of the overlap, and (3) the score of the critical pair. When a
critical pair is selected, the ID numbers and position are used to reconstruct
the critical pair. This design uses about 12 bytes of memory per critical pair, so
Twee can run for many hours without running out of memory.

5 Evaluation

In this section we report on two evaluations: one investigating the effect of the
different redundancy criteria of Section 3, and one comparing the performance
of Twee against E 2.5 and Waldmeister. In both cases we ran Twee on all 981
unsatisfiable UEQ problems from TPTP 7.4.0, with a time limit of 5 minutes.

Redundancy criteria. Figure 1a shows how the performance of Twee varies
depending on which redundancy criteria are enabled. The x-axis shows the
number of problems solved (starting from problem 600) and the y-axis shows
the runtime for that problem. The combination of ground joinability testing and
connectedness is much stronger than either on their own—it seems that each
catches cases that the other misses. It is clearly best to have both switched on.

The figure also includes a variant of Twee which implements the heuristic
for AC functions described in [1] (and no other redundancy criterion), which
solves fewer problems than our approach. This is perhaps not surprising, as our
approach handles a wider class of functions.

Twee, E, Waldmeister. Figure 1b compares Twee’s performance against E and
Waldmeister. Twee is run in three variations: with and without the goal-directed
transformation from Section 2, and as a timesliced version which runs the other
two versions for 150s each. By far the best choice for Twee is to timeslice, when
it comes close to Waldmeister’s performance. This suggests that Twee with and
without the goal transformation solve somewhat different sets of problems.



611

 0

 50

 100

 150

 200

 250

 300

 600  650  700  750  800  850  900
No connectedness, no ground joining

Connectedness only
Ground joining only

Connectedness + ground joining
Waldmeister-style AC heuristic

(a) Different redundancy criteria.

 0

 50

 100

 150

 200

 250

 300

 600  650  700  750  800  850  900
Twee

Twee with goal transformation
Twee with timeslicing

Waldmeister
E

(b) Compared against Waldmeister and E.

Fig. 1: Benchmarks.

6 Future Work

Knuth-Bendix completion pays little attention to the goal: it simply completes
the rewrite system until the goal becomes trivial. We plan to search for ways
to make Twee more goal-directed, for example by rewriting the goal backwards
somewhat in the style of [18]. The success of the goal transformation shows that
goal direction ought to be important.

Twee uses a fixed term ordering, which is clearly a weakness on certain
problem kinds such as RNG. We do not want to choose a term order based on
syntactic analysis of the problem, but would like to choose it dynamically based
on the state of the proof, perhaps by incorporating ideas from MædMax [19].

7 Conclusion

Twee is a unit equality prover implemented in 5300 lines of Haskell code. Its
performance is good, thanks to a careful implementation, strong redundancy
criteria and a transformation to help goal-directness. It performs particularly
strongly on problems involving permutative laws, such as those in LAT and REL.
Its main weaknesses are that it always uses a fixed term order, and has only weak
goal direction. We hope that a future version of Twee, with real goal direction
and a smart choice of term order, will be even stronger.

Acknowledgements. This work was supported by the Swedish Research Council
(VR) grant 2016-06204, Systematic Testing of Cyber-Physical Systems (SyTeC).

We thank the reviewers for their many helpful comments.

Twee: An Equational Theorem Prover



612 N. Smallbone

References

1. Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations
in equational theorem proving. Journal of Symbolic Computation 36(1), 217–233
(2003), https://doi.org/10.1016/S0747-7171(03)00024-5

2. Bachmair, L., Dershowitz, N.: Critical pair criteria for completion. Journal of
Symbolic Computation 6(1), 1–18 (1988), https://doi.org/10.1016/S0747-7171(88)
80018-X

3. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Aı̈t-
Kaci, H., Nivat, M. (eds.) Rewriting Techniques, pp. 1–30. Academic Press (1989),
https://doi.org/10.1016/B978-0-12-046371-8.50007-9

4. Claessen, K., Lillieström, A., Smallbone, N.: Sort it out with monotonicity. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) Automated Deduction – CADE-23.
Lecture Notes in Computer Science, vol. 6803, pp. 207–221. Springer (2011), https:
//doi.org/10.1007/978-3-642-22438-6 17

5. Claessen, K., Smallbone, N.: Efficient encodings of first-order Horn formulas in
equational logic. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) Automated
Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 10900, pp. 388–404. Springer (2018),
https://doi.org/10.1007/978-3-319-94205-6 26

6. Comon, H., Narendran, P., Nieuwenhuis, R., Rusinowitch, M.: Deciding the conflu-
ence of ordered term rewrite systems. ACM Transactions on Computational Logic
4(1), 33–55 (Jan 2003), https://doi.org/10.1145/601775.601777

7. Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT - a distributed and learning
equational prover. Journal of Automated Reasoning 18(2), 189–198 (Apr 1997),
https://doi.org/10.1023/A:1005879229581

8. Denzinger, J., Schulz, S.: Recording and analysing knowledge-based distributed
deduction processes. Journal of Symbolic Computation 21(4), 523–541 (1996),
https://doi.org/10.1006/jsco.1996.0029

9. Gordon, M.J., Milner, R., Wadsworth, C.P.: Edinburgh LCF. A mechanised logic
of computation. Springer, Berlin, Heidelberg (1979), https://doi.org/10.1007/
3-540-09724-4

10. Korovin, K., Voronkov, A.: A decision procedure for the existential theory of term
algebras with the Knuth-Bendix ordering. In: Proceedings of the 15th Annual IEEE
Symposium on Logic in Computer Science. pp. 291–302. LICS ’00, IEEE Computer
Society, Los Alamitos, CA, USA (2000), https://doi.org/10.1109/LICS.2000.855777

11. Löchner, B.: Things to know when implementing KBO. Journal of Automated
Reasoning 36(4), 289–310 (Apr 2006), https://doi.org/10.1007/s10817-006-9031-4

12. Löchner, B., Hillenbrand, T.: A phytography of WALDMEISTER. AI Communica-
tions 15(2,3), 127–133 (Aug 2002)

13. Martin, U., Nipkow, T.: Ordered rewriting and confluence. In: Stickel, M.E.
(ed.) 10th International Conference on Automated Deduction. pp. 366–380.
Springer Berlin Heidelberg, Berlin, Heidelberg (1990), https://doi.org/10.1007/
3-540-52885-7 100

14. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) Automated Deduction – CADE 27. pp. 495–507. Springer International
Publishing, Cham (2019), https://doi.org/10.1007/978-3-030-29436-6 29

https://doi.org/10.1016/S0747-7171(03)00024-5
https://doi.org/10.1016/S0747-7171(88)80018-X
https://doi.org/10.1016/S0747-7171(88)80018-X
https://doi.org/10.1016/B978-0-12-046371-8.50007-9
https://doi.org/10.1007/978-3-642-22438-6_17
https://doi.org/10.1007/978-3-642-22438-6_17
https://doi.org/10.1007/978-3-319-94205-6_26
https://doi.org/10.1145/601775.601777
https://doi.org/10.1023/A:1005879229581
https://doi.org/10.1006/jsco.1996.0029
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1109/LICS.2000.855777
https://doi.org/10.1007/s10817-006-9031-4
https://doi.org/10.1007/3-540-52885-7_100
https://doi.org/10.1007/3-540-52885-7_100
https://doi.org/10.1007/978-3-030-29436-6_29


613

15. Sekar, R., Ramakrishnan, I., Voronkov, A.: Chapter 26 - Term indexing. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1853–
1964. Handbook of Automated Reasoning, North-Holland, Amsterdam (2001),
https://doi.org/10.1016/B978-044450813-3/50028-X

16. Smallbone, N.: Jukebox. https://github.com/nick8325/jukebox/ (2018)
17. Smallbone, N.: Twee, an equational theorem prover. https://nick8325.github.io/

twee/ (2021)
18. Socher-Ambrosius, R.: A goal oriented strategy based on completion. In: Kirchner,

H., Levi, G. (eds.) Algebraic and Logic Programming. pp. 435–445. Springer Berlin
Heidelberg, Berlin, Heidelberg (1992), https://doi.org/10.1007/BFb0013842

19. Winkler, S., Moser, G.: MædMax: A maximal ordered completion tool. In: Galmiche,
D., Schulz, S., Sebastiani, R. (eds.) Automated Reasoning. pp. 472–480. Springer
International Publishing, Cham (2018), https://doi.org/10.1007/978-3-319-94205-6
31

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Twee: An Equational Theorem Prover

https://doi.org/10.1016/B978-044450813-3/50028-X
https://github.com/nick8325/jukebox/
https://nick8325.github.io/twee/
https://nick8325.github.io/twee/
https://doi.org/10.1007/BFb0013842
https://doi.org/10.1007/978-3-319-94205-6_31
https://doi.org/10.1007/978-3-319-94205-6_31
http://creativecommons.org/licenses/by/4.0/

	Twee: An Equational Theorem Prover 
	1 Introduction
	2 Architecture
	3 Redundancy Criteria
	3.1 Ground Joinability Testing
	3.2 Connectedness

	4 Implementation
	4.1 Terms
	4.2 Indexing
	4.3 The Passive Set

	5 Evaluation
	6 Future Work
	7 Conclusion
	References




