
Quasi-Optical Beamforming Network for Millimeter-Wave Electronically
Scanned Array Antennas with 1-Bit Phase Resolution

Downloaded from: https://research.chalmers.se, 2025-06-18 03:20 UTC

Citation for the original published paper (version of record):
Vilenskiy, A., Galesloot, E., Zhang, Y. et al (2021). Quasi-Optical Beamforming Network for
Millimeter-Wave Electronically Scanned Array Antennas
with 1-Bit Phase Resolution. 15th European Conference on Antennas and Propagation, EuCAP 2021:
1-5. http://dx.doi.org/10.23919/EuCAP51087.2021.9410922

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Quasi-Optical Beamforming Network for
Millimeter-Wave Electronically Scanned Array

Antennas with 1-Bit Phase Resolution
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Abstract—State-of-the-art design solutions for electronically
scanned array antennas are mostly limited to microwave to low
mm-wave frequency bands, while the demand for new designs at
higher frequencies (i.e. frequencies beyond 100 GHz) is rapidly
growing. We attempt to fill in this knowledge gap by presenting a
new linear array antenna architecture as a building block of 2D
arrays that can enable efficient beam steering and a simplified
array design. This concept is based on the combination of a
low-loss quasi-optical (QO) feed, providing predefined antenna
port excitation, with 1-bit phase shifters which are co-integrated
with the array antenna elements. In this study, we formulate the
array design problem as minimization of the sidelobe level (SLL)
through an optimum quasi-randomization of phase errors. An
analytical expression for the optimum focal ratio of the QO feed
has been derived to establish the relationships between the key
design parameters. These results are validated through numerical
simulations revealing that the optimum focal ratio leads to the
minimum SLL.

Index Terms—phased array antenna, quasi-optical beamform-
ing network, 1-bit phase quantization, phase errors.

I. INTRODUCTION

An increasing demand in millimeter-wave (mm-wave) ra-
dio systems for wireless communication and sensing drives
the development of high-performance mm-wave phased array
antennas (PAAs) with beam-steering capabilities. In particular,
E-, W-, and D-bands have already been widely allocated for
communication and radar applications and are being consid-
ered for future (e.g. beyond 5G) networks deployment [1].
However, high dissipation losses, components cost, and tight
manufacturing tolerances at these frequencies severely restrict
suitability of the existing design solutions and manufacturing
technologies. These complexities steer the research towards
non-conventional PAA architectures, where specific design
trade-offs can provide relatively high electrical performance
with a simple PAA structure.

Recently, the concept of low-order (1- and 2-bit) phase
control was applied to beam-steerable PAAs to realize compact
and energy-efficient designs at < 30 GHz bands [2]–[5].
This approach is especially promising for higher frequencies.
In fact, at high mm-wave frequencies, the state-of-the-art

monolithic digital phase shifters (PSs) typically provide 2.5–
3 dB insertion loss per bit [6]. At the same, the PAA gain loss
due to 1-bit phase quantization errors is around 3.8 dB and
almost 1 dB for 2-bit quantization [7]. Thus, at W-band, 1-
bit and 2-bit based architectures demonstrate similar antenna
gain and efficiency, while the 1-bit PAAs have an advantage
of a simpler and more compact design. The key challenge of
such designs is phase quantization sidelobes appearing due to
periodic PAA aperture phase errors [8], which are especially
severe for the 1-bit PAAs. As studied in [7], parasitic mirror
lobes occur during beam-steering when a 1-bit PAA is exited
with a linear phase and a simple rounding-off method is used
to set the PS phase. This effect can be reduced via phase
quantization error randomization, as demonstrated in [9].

In this work, we investigate the 1-bit PAA concept for the
applications at ∼100 GHz bands. A new linear array antenna
architecture is proposed as a building block of 2D arrays which
can enable efficient beam steering, while overcoming the major
physical constraints and power loss at these frequencies.

II. PROPOSED 1-BIT PAA ARCHITECTURE

The proposed linear PAA architecture is illustrated in Fig.1.
It includes an array of Nx radiating antenna elements with
inter-element spacing dx. The elements are excited through a
planar quasi-optical (QO) beamforming network. This network
comprises a QO feed – representing a low-loss alternative
to conventional corporate feed networks for mm-wave large-
scale arrays (Nx > 10) – and Nx 1-bit PSs which can be
co-integrated with the individual array elements. The PS’s
states differ from element to element between 0 and 180◦

values depending on a beam-steering direction. The QO feed
is a crucial component for efficient feeding that also realizes
a beam-steering functionality in conjunction with the 1-bit
PSs. The design principle of such a hybrid (QO feed + PSs)
beamforming network can be described in the following way.
Due to the 1-bit phase quantization, it is necessary to have a
certain nonlinear initial phase distribution at the array ports
(see the reference plane at the input ports of the PSs in
Fig. 1). This nonlinear distribution is essential to eliminate
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Fig. 1. A 1D sub-array building block of the proposed 1-bit beam-steering
phased array architecture at W-band.

the 1-bit parasitic mirror lobes [4], [7]. It can be considered
as a phase error quasi-randomization method realizing the
performance close to the phase-added method [9]. In hardware,
this initial excitation can be implemented by feeding the sub-
array through a tapered waveguide section with the focal ratio
F/(Nxdx) (cf. [10]), where F is the focal length (see Fig. 1).

The main advantage of this architecture is its highly-
integrated and simple design, which can be manufactured in a
standard waveguide technology and, as opposed to corporate
feed PAAs, conveniently realizes the nonlinear initial phase
distribution for high Nx. In fact, using the space (optical)
PAA feeding to deliberately destroy the periodicity of phase
quantization errors was proposed a long time ago in [11] and is
used in 1- and 2-bit transmitarrays with a focal source [3], [5].
Nevertheless, there are still open questions that we address in
this study: (i) What is the optimum initial phase distribution in
terms of the lowest 1-bit PAA sidelobe level (SLL)? (ii) What
is the optimum QO feed design realizing the latter?

In [7], these questions were addressed for 1-bit PAAs with
a uniform amplitude distribution. In this paper, we extend this
approach to non-uniform amplitude distributions and provide
an in-depth analysis of the SLL performance showing that
the maximum SLL can be effectively reduced by using the
optimum QO feed focal ratio.

III. 1-BIT ARRAY FAR FIELD

A. Radiation Model

We consider a linear array of Nx elements (Fig. 1). Neglect-
ing the edge effects, the array far field can be represented as

EFF (θ) = Fe(θ)
Nx∑
i=1

Aiexp(j[Φi + ϕΣ
i ]), (1)

where Fe is the embedded element pattern (azimuthal depen-
dence is omitted); Φi = k0xisin(θ), xi = [i− (Nx + 1)/2]dx,
k0 = 2π/λ0 is the wavenumber, λ0 is the free-space wave-
length; Ai and ϕΣ

i are the i-th element excitation amplitude
and phase. The latter can be expressed through the output
phase ϕQOi at the reference plane and the 1-bit PS phase ϕPSi :

ϕΣ
i = ϕQOi + ϕPSi . (2)

On the other hand, ϕΣ
i = Φ0

i + δϕi, where Φ0
i =

−k0xisin(θs) is an ideal element phase, θs is a beam-steering
angle, δϕi is a phase quantization error. The excitation through
the QO feed is approximated by a cylindrical phase front
emanating from the focal center at the distance F from the
reference plane (Fig. 1):

ϕQOi = −k0

(√
x2
i + F 2 − F

)
. (3)

In (3), we assume the QO feed propagation constant equals
k0. At the same time, the amplitude distribution is modeled as
the cosine-on-a-pedestal function [8] (with the taper parameter
C), which was found to be a reasonable approximation for the
QO feed with y-oriented E-field (Fig. 1):

Ai = C + (1− C)cos
(
πxi/(Nxdx)

)
. (4)

Since we are dealing with the 1-bit phase quantization, ϕPSi
switches between 0 and 180◦ values during beam steering [7],
and thus we need to find an optimum value of F that will
provide “the best” δϕi randomization over the PAA aperture.

B. Optimum Quasi-Optical Feed Design

Let us consider the AF, which is given by the summation
factor in (1). Following the procedure used in [7], [12],
we can represent the PAA AF in the spectral domain as
a superposition of radiation from the continuous apertures
with phase distributions Φmh(x). Indices m and h denote
the grating lobe and phase quantization orders, respectively.
Thus, each spectral term Fmh, h 6= 0, gives the contribution
to the AF due to the phase quantization errors. We will herein
refer to these terms as phase quantization lobes (PQLs). For
electrically large PAAs with Nxdx >> λ0, the stationary
phase method can be used to estimate PQL values [7]:

Fmh(θ) =
(−1)m(Nx−1)

√
2π√

−jd2Φmh(x0)/dx2

A(x0)

1 +Mh
ejΦmh(x0), (5)

Φmh(x) =Φ(x) + Φ0(x)+

Mh(Φ0(x)− ϕQO(x))− 2πmx

dx
,

(6)

Mh
dϕQO(x0)

dx
= k0sin(θ)−k0sin(θs)(1+Mh)− 2πm

dx
, (7)

where M = 2p, and p = 1 is the number of PS bits. In (5)–(7),
all continuous functions

(
A(x), ϕ(x)

)
are equal to the discrete

equivalents at array grid points xi. We can now require PQL
power values to remain constant and equal to K2

h for any m.
This leads to the differential equation

d2ϕQO(x)

dx2
= − 2πA2(x)

K2
hM |h|(1 +Mh)2

. (8)

It is now up to us to choose any value of K2
h. However,

from (7) and (8) we can find that decreasing K2
h leads to

the Fmh PQL widening. In [12], it was suggested that the
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PAA SLL can be minimized if PQLs do not overlap. We will
employ the same approach here. From (5), we can see that the
PQL width is determined by A(x0), which is non-zero only
for x0 ∈ [−Nxdx/2;Nxdx/2]. According to (7), PQLs are
equidistantly distributed in the u-space, where u = k0sin(θ)−
k0sin(θs)(1 + Mh), with the period 2π/dx. Thus, requiring
that the PQL width be equal 2π/dx we arrive at

M |h|
(
dϕQO(Nxdx/2)

dx
− dϕQO(−Nxdx/2)

dx

)
=

2π

dx
. (9)

Integrating (8) one time and employing (9), we find the
optimum K2

h opt:

K2
h opt =

Nxd
2
x

(1 +Mh)2

[
C2 +

4C(1− C)

π
+

(1− C)2

2

]
. (10)

Next, integrating twice both sides of (8) and setting integra-
tion constants to 0 we can find the sought-for optimum initial
phase distribution ϕQOopt :

ϕQOopt (x) = − 2π

K2
h optM |h|(1 +Mh)2

×[(
C2 +

(1− C)2

2

)
x2

2
− 2C(1− C)N2

xd
2
x

π2
cos
(

πx

Nxdx

)
− (1− C)2N2

xd
2
x

8π2
cos
(

2πx

Nxdx

)]
. (11)

The PQLs with lower |h| have the highest peak values and,
thus, affect the SLL to a greater extent. Therefore we consider
|h| = 1. Since the QO feed can physically realise ϕQO as
described by (3), we need to relate it to (11). To do this, we
first represent (3) as ϕQO(x) ≈ −k0x

2/(2F ), F/(Nxdx) >
0.5, and use the cosine function approximation cos(Θ) ≈ 1−
Θ2/2, Θ < 1. Then, from (11), we can find the approximate
value of the optimum focal distance Fopt:

Fopt ≈
MNxd

2
x

λ0

[
C2 +

4C(1− C)

π
+

(1− C)2

2

]
. (12)

It should be mentioned that the employed two-term co-
sine expansion gives a high error for Θ > 1. Therefore,
(12) tends to underestimate Fopt for small C. Finally, we
can find the normalized PQL power as Q2

h = K2
h opt/F

2
00,

where F00 is the main lobe field intensity (see (13) in [7])
F00 =

´ Nxdx/2

−Nxdx/2
A(x) dx = Nxdx(C + 2(1− C)/π).

Q2
h =

1

Nx(1 +Mh)2

[C2 + 4C(1−C)
π + (1−C)2

2 ]

(C + 2(1− C)/π)2
. (13)

The highest PQL power is observed for h = −1. It
determines the expected lower bound of the average SLL,
which was found to be similar to the average phase error
SLL of a PAA with phase errors uniformly distributed between
−π/M and +π/M [9]. Let us consider two special cases.

• Uniform amplitude distribution (C = 1):
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Fig. 2. Normalized embedded element radiation pattern.

Fopt ≈MNxd
2
x/λ0, Q2

−1 = 1/Nx. (14)

• Cosine amplitude distribution (C = 0):

Fopt ≈MNxd
2
x/(2λ0), Q2

−1 = π2/(8Nx). (15)

The last result evidences that the average SLL for the
tapered distribution is almost the same as for the uniform one.
This is due to the quasi-random nature of PQLs.

IV. NUMERICAL SIMULATIONS

In this section, we provide the far-field simulated results
for linear PAAs, as computed from (1). For all the consid-
ered cases of the PAAs, the inter-element spacing is chosen
dx = 0.6λ0 and the embedded element pattern has the shape
as shown in Fig. 2. The linear array radiating element has been
designed to enable grating lobe-free and impedance-matched
beam steering up to |θs| = 45◦. The amplitude taper has been
computed as −20log(A(x1)).

The simulated SLL performance for different array pa-
rameters is given in Fig. 3 versus the QO feed focal ratio
F/(Nxdx). Here, we consider: maximum SLL, first SLL, and
mean SLL. Each metric is computed first for each θs and
then averaged over the −40...40◦ beam-steering range. The
mean SLLs are relatively invariant with focal ratio variations,
and generally depend only on Nx, as predicted by (13). The
computed values, however, are slightly (1-2 dB) higher, which
is believed to be due to higher-order PQLs. For electrically
large array apertures (Nx > 10), the increase in the amplitude
taper from 0 to 10 dB effectively reduces the first SLL.
Nevertheless, the two above-mentioned trends are no longer
valid for small Nx with high taper values, when the PAA
aperture is electrically small and PQLs cannot be effectively
reduced. On the other hand, such configurations are rarely
used for 1-bit PAAs. An important observation in Fig. 3 is
that the maximum SLL curves demonstrate well-observable
local minima. Positions of these minima are quite close to
the expected values of optimum focal ratios (vertical dashed
lines) as obtained from (12). The computed optimum value
is underestimated for the tapered distributions, as we have
discussed in Section III-B. However, the demonstrated results
clearly indicate the existence of the optimum focal ratio in
terms of maximum SLL minimization. It is also important
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Fig. 3. Averaged (over |θs| ≤ 40◦ beam-steering range) SLL performance computed for different configurations of the 1-bit linear phased array antenna
versus the focal ratio F/(Nxdx) of the quasi-optical feed. Vertical dashed lines show the expected optimum focal ratio values as approximated by (12).
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that the SLL improvement is more significant for tapered
distributions, which is usually the case for the QO feeds.
Fig. 4 shows achievable minimized maximum SLL as was
found from numerical results analysis for different Nx and
tapers.

The array gain degradation due to the phase quantization
errors was estimated as |

∑Nx

i=1Ai|2/max(|AF (θ)|2). The av-
eraged results are shown in Fig. 5. With increasing of Nx, we
can observe that the degradation reaches its asymptotic value
sinc(π/2) (see (13) in [7]).

To illustrate the effect of the focal ratio on the far-field
performance, the computed PAA radiation patterns are given in
Fig. 6 for three configurations: Nx = 10, 20, 40 with Taper =
0, 10, 20 dB, respectively. Each configuration is considered
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Fig. 5. Averaged (over |θs| ≤ 40◦ beam-steering range) gain degradation
due to phase quantization errors for different array configurations versus the
focal ratio F/(Nxdx) of the quasi-optical feed.

for the optimum (left column, as found from Fig. 3), lower, and
higher F/(Nxdx). It can be observed that while the mean SLL
remains almost identical, the optimum focal ratios provide
balanced SLL distributions over the entire visible angular
space, and thus the maximum SLL is effectively reduced for
the optimum cases. We, therefore, can summarise that the QO
feed, providing the excitation phase distribution (3), indeed
has the optimum focal ratio that depends on the distribution
taper and realizes the lowest maximum SLL performance.

V. CONCLUSION

We have considered the optimum QO feed design for the lin-
ear PAA with the 1-bit phase resolution. The approach is based
on the array PQLs non-overlapped distribution that provides
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Fig. 6. Far-field patterns for different 1-bit phased array antennas within 0...40◦ beam-steering range (10◦ step). The left column corresponds to the optimum
focal ratios as obtained from Fig. 3 .

“the best” phase quantization error randomization and realizes
steerable radiation patterns with minimized maximum SLL.
The main design relations for the optimum QO feed focal ratio
were found analytically and verified numerically considering
array channels amplitude distribution with an arbitrary taper.
The proposed approach provides fairly accurate initial config-
uration of the QO feed. Further correction, of course, can be
required to compensate for the edge and coupling effects as
well as for non-perfect electrical performance of integrated
PSs. The latter is a subject of future work. The extension
of the method to the case of a 1-bit planar array (obtained
by stacking of Ny linear arrays) is quite straightforward if
the amplitude and phase distributions can be presented as
A(x, y) = Ax(x)Ay(y), ϕQO(x, y) = ϕQOx (x) + ϕQOy (y).
The average power SLL is then ∝ 1/(NxNy).
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