Resilient Shield: Reinforcing the Resilience of Vehicles Against Security Threats

Downloaded from: https://research.chalmers.se, 2021-08-31 14:16 UTC

Citation for the original published paper (version of record):
Resilient Shield: Reinforcing the Resilience of Vehicles Against Security Threats
IEEE Vehicular Technology Conference, 2021-April
http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9449029

N.B. When citing this work, cite the original published paper.
Resilient Shield: Reinforcing the Resilience of Vehicles Against Security Threats

Kim Strandberg∗†, Thomas Rosenstatter∗, Rodi Jolak‡, Nasser Nowdehi†, Tomas Olovsson∗
∗Chalmers University of Technology, Sweden, {firstname.lastname}@chalmers.se
†Volvo Car Corporation, Sweden, {firstname.lastname}@volvocars.com
‡Chalmers | Gothenburg University, Sweden, {firstname.lastname}@cse.gu.se

Abstract—Vehicles have become complex computer systems with multiple communication interfaces. In the future, vehicles will have even more connections to e.g., infrastructure, pedestrian smartphones, cloud, road-side-units and the Internet. External and physical interfaces, as well as internal communication busses have shown to have potential to be exploited for attack purposes. As a consequence, there is an increase in regulations which demand compliance with vehicle cyber resilience requirements. However, there is currently no clear guidance on how to comply with these regulations from a technical perspective.

To address this issue, we have performed a comprehensive threat and risk analysis based on published attacks against vehicles from the past 10 years, from which we further derive necessary security and resilience techniques. The work is done using the SPMT methodology where we identify vital vehicle assets, threat actors, their motivations and objectives, and develop a comprehensive threat model. Moreover, we develop a comprehensive attack model by analyzing the identified threats and attacks. These attacks are filtered and categorized based on attack type, probability, and consequence criteria. Additionally, we perform an exhaustive mapping between asset, attack, threat actor, threat category, and required mitigation mechanism for each attack, resulting in a presentation of a secure and resilient vehicle design. Ultimately, we present the Resilient Shield a novel and imperative framework to justify and ensure security and resilience within the automotive domain.

Index Terms—cyber resilience, security, vehicular systems, automotive systems

I. INTRODUCTION

The complexity of vehicles is increasing. Consequently, vulnerabilities which might be exploited increase as well. Attacks to vehicular systems can be realized: (i) indirectly via compromised devices e.g., phones, dongles, or workshop computers connected to vehicle interfaces; (ii) directly via physical interfaces e.g., debug ports and the OBD-II connector; and (iii) remotely via various malicious sources, such as rogue access points and compromised servers. It has been demonstrated that vehicle cyber attacks e.g., physical attacks [1] and remote attacks [2] are potential threats that have to be taken seriously. As a case in point, Miller and Valasek [3] performed a successful remote attack on a Jeep Cherokee via the Internet taking control of its primary functions by exploiting an open port via a cellular channel, an attack that led to a recall of 1.4 million vehicles. In [4], researchers managed to get remote access to the CAN bus of a BMW by compromising its infotainment system, allowing them to execute arbitrary diagnostic requests. Vulnerabilities in phone applications paired to vehicles have been exploited by adversaries to track vehicles, unlock the doors and to start their ignitions [5]–[7].

Motivation. Securing a vehicle as an afterthought is cumbersome, considering both the complexity which constantly increases and the existing dependencies on current architectural design. Hence, it is imperative to consider security during the vehicle’s complete life cycle from idea to cessation. There are increased requirements towards ensuring a resilient vehicle design, in a way that a vehicle should be able to withstand various types of cyber attacks, malfunctioning units, and other external disturbances. Consequently, the resilient design should be able to prevent, detect, and respond to cyber attacks, something which is also in line with the UNECE regulation [8] and the upcoming standard for automotive cyber security ISO 21434 [9]. In short, prevention is accomplished with security controls, detection by identifying faults and attacks, and response are mechanisms related to handling the detected anomalies with the ability to restore and maintain operation. However, there is currently no clear guidance how to comply with the aforementioned regulations and standards from a technical perspective. The start, predict, mitigate, and test (SPMT) is a systematic approach for identification and mitigation of vulnerabilities in vehicles [10]. The aim of SPMT is to ultimately enhance the security of vehicles through their entire life cycle. In this paper, we use and extend the SPMT methodology to establish an in-depth resilient design model with imperative mitigation mechanisms.

Contributions. By applying the SPMT methodology, we performed a comprehensive threat and risk analysis of 52 published attacks against vehicles from the past 10 years. 37 of these attacks were considered significant due to their high risk and were thus further mitigated with imperative security and resilience techniques. In this process, we have developed a threat model for securing vehicles by identifying vital vehicle assets and the related potential threat actors, their motivations and objectives. Moreover, we have developed a comprehensive attack model created from the analysis of the identified threats and attacks, further filtered and categorized based on attack type and risk criteria related to the probability and consequences of the attack. We present a comprehensive summery of the result from applying the SPMT methodology, an exhaustive mapping between asset, attack, threat actor, threat category and resilience mechanism for each attack. Ultimately, we define necessary security and resilience enhancements for vehicles, the Resilient Shield, which also validates the effectiveness of the methodology. To the best of our knowledge, our result is both novel and imperative to justify and ensure security and resilience within the automotive domain.
II. RELATED WORK

Good practices for security of smart cars [11], Cyber security and Resilience of smart cars [12], and The Cyber security guidebook for cyber physical vehicle systems, SAE J3061 [13], provide guidelines regarding threat and risk assessment. EVITA [14] proposed a method for security, safety, and risk analysis of in-vehicle networks, whereas HEAVENS [15] proposed a security model based on security objectives from EVITA and security attributes from Microsoft STRIDE [16]. Rosenstatter et al. [17] continue with the result from an analysis such as HEAVENS and map the identified security demands to security mechanisms. However, this mapping focuses only on securing the in-vehicle network.

The SPMT methodology builds on existing methods, models and security principles that are applicable to different phases in a vehicle’s life cycle. By adapting and incorporating relevant parts suitable for the vehicular domain, a comprehensive security and safety enhancement is achieved. Consequently, the SPMT methodology covers the vehicles entire life cycle, something which cannot be achieved with existing methodologies [10]. SPMT adopts Microsoft’s STRIDE categorization [16] which enables a mapping of attacks to a category with associated security attributes. Thus, mitigation mechanisms can be considered for the attribute and consequently mitigate more than one attack. Additionally in SPMT, a reduction analysis is performed for critical threats by creating attack trees to connect the vulnerability with the threat, i.e., an attacker wanders from a leaf node (condition) to the root of the tree (attacker objective). Consequently, the closer to the root a countermeasure is placed, the more conditions are mitigated. Moreover, some conditions can be attained by more than one attack, hence a countermeasure can mitigate several attacks.

The REMIND framework [18] for vehicular systems provides a taxonomy for resilience techniques identified from a review of existing work. In this paper we take advantage of previous knowledge and new results by applying the SPMT methodology. In the next sections we present the detailed approach followed by the results.

III. APPROACH

We use the aforementioned SPMT model to perform a comprehensive threat modelling and risk assessment of published attacks to further map these threats and attacks to imperative security and resilience mechanisms.

The SPMT methodology has 4 phases: Start, Predict, Mitigate and Test. In this paper, we perform the first three phases on a Target Of Evaluation (ToE) and analyze security threats and attacks as well as provide mechanisms for the mitigation thereof (see Figure 1).

In the Start Phase, we address the following questions. What are the threats requiring a resilient design? What are the entry points to the vehicle? Who are the actors, their motivators, and their objectives? The outcome of the Start Phase is a threat model and high-level goals for the enforcement of security and safety attributes.

In the Predict Phase, we address the following question. What are the potential attacks? The outcome of the Predict Phase is an attack model which contains relevant attacks categorized and filtered according to a stated criteria.

In the Mitigate Phase, we address the following question. What are the needed mechanisms to ensure a resilient design? The outcome of the Mitigate Phase is a resilient design framework, i.e., the Resilient Shield, which provides mechanisms and goals for detecting, preventing, and responding to security threats and attacks.

The Test Phase includes the implementation of the mitigation mechanisms followed by an execution of different security tests, such as fuzz, vulnerability, and penetration testing. In this paper, we do not perform the Test Phase; however, we plan to test the identified mitigation mechanisms within an industrial context in the future.

In the following sections, we perform and provide the outcomes of the first three phases of the SPMT methodology (see Figure 1) that are used to establish the Resilient Shield.

IV. THREAT MODEL

A threat model is created by considering: (i) the target of evaluation (ToE), and (ii) attackers as well as their motivators and objectives. First, our ToE is stated as the complete vehicle provided by the manufacturer, where we propose to include the following assets. As shown in Table I, the relevance of these assets is verified by the mapping to attacks.

| Internal and external communication: Automotive Bus technologies, e.g., CAN, FlexRay, LIN, MOST and Ethernet. Connection interfaces, e.g., OBD-II, USB, debug ports, Wi-Fi and Bluetooth. |
| Hardware: ECUs, e.g., sensor signal processing. Sensors, related to speed, position, temperature, airbag and object detection. Actuators, translate signals from ECUs into actions, e.g., braking, steering and engine control. |
| Software in transit, rest or running: Software update systems, e.g., over-the-air or workshop updates. Software installed or running in ECUs. |
| Data Storage: Sensitive data, e.g., cryptographic keys, forensics logs and reports. |

Second, we propose a simplification of threat actors (i.e., attackers) inspired by the work of Karahasanovic et al. [19] in relation to motivators and objectives.

Actors and Motivators. The Financial Actor is driven by financial gain in relation to a company (intellectual property), organization or individual. This actor can be the owner who

![Fig. 1. The first three phases of the SPMT methodology](image-url)
The resulting probability is on a scale of 1 to 3, where 3 indicates that the consequence is more severe. The highest value is chosen. **Risk Assessment.** Once we get the estimates of the attack probability and consequences, we estimate the overall risk by calculating the product of the probability and the consequence, which gives a risk value between 1 and 9 (see Figure 2).

To achieve a realistic balance between the financial cost for mitigation and its related complexity versus the risk and asset value, we consider only the most significant threats. These threats have a risk value of 6 or 9, which is in line with ISO 26262 and ASIL [20] and corresponds to high and critical risk.

V. ATTACK MODEL

We perform a qualitative risk assessment of published attacks covered in news media and research publications by estimating (i) the probability and (ii) the consequences of the attacks based on the following criteria. As shown in Table I, the affected assets, the threat actors and the STRIDE categories for each attack are considered during this assessment.

Attack Probability. The first step in this phase is to define attack probability where the three following estimates should be used:

- **E1:** Where, when, and in what situation can the attack be carried out?
- **E2:** What expertise is required of the attacker?
- **E3:** How much time does it take to perform the attack?

The resulting probability is on a scale of 1 to 3, where 3 indicates that an attack is more probable to take place. The highest value in E1-E3 is chosen.

Risk Calculation. In the second step, the consequences are defined by assessing the effect of the attack on the operational, safety, privacy, and financial aspects. The resulting consequence is on a scale from 1 to 3, where 3 indicates that the consequence is more severe. The highest value is chosen.

A. Disclosed Attacks

To create the attack model, we follow the SPMT recommendation for search criteria and query scopus and Google scholar for academic work, and common vulnerability databases (NVD, CVE) with keywords related to vehicle, attack and STRIDE categories (e.g., spoofing) or related terms (e.g., mitm). Moreover, we do query the Google search engine for media reports on attacks. Next, we classify the attacks according to STRIDE categories, followed by some examples. Attacks are considered and analyzed with respect to probability, consequence and risk within their respective category. Out of a total of 52 published attacks, we have identified 37 high and critical risk attacks which are further considered in this work.

1) **Spoofing Attacks - Authenticity, Freshness** [5], [21]–[38]. The goal of the attacker is to intercept, hijack, manipulate or replay the communication with a potential remote access persistence. Security flaws in mobile software, such as demonstrated in the OwnStar attack [5]. OwnStar intercepts communication after the OnStar user opens the application, whereas the OwnStar device gains the user’s credentials. Relay attacks, as in compromise of remote keyless entry systems as well as breaking poor authentication mechanisms [21]–[23]. GNSS spoofing considers broadcasting fake signals over authentic in order to trick a receiver, with the intention to get a vehicle off course [24]. In-vehicle protocol spoofing, can affect safety critical actuators, such as brake, steering and engine control. Protocols themselves might lack inherent mechanisms for security which makes active attacks possible such as malicious drop, modify, spoof, flood and replay of messages.

2) **Tampering Attacks - Integrity** [2], [4], [36], [38]–[41]. Vulnerable USB/OBD-II dongles or compromised in-vehicle devices can potentially enable a hacker to control the communication. Devices can be compromised in various ways e.g., vulnerabilities in proprietary authentication mechanisms can enable the right to run sensitive diagnostics commands. Brute-force attacks can be used to retrieve cryptographic keys, with

1https://www.scopus.com/
potential to upload exploits to ECUs. Physical tampering of
ECUs or other connected devices. Manipulated firmware in
current ECUs, such as malicious code injection via firmware
update. Replacement of ECUs or new devices to eaves-
drop/inject messages or to manipulate software, modify or
compromise vehicle functions. Vulnerable connected devices
such as OBD and USB dongles can potentially provide remote
access to individual cars and vehicle fleets [40]. Moreover,
in [2] firmware was extracted and reverse engineered, man-
ipulated and injected directly into ECU firmware facilitating
persistent and bridging capabilities for attacks.

3) Repudiation Attacks - Non-repudiation, Freshness. An
attacker manipulates or removes forensic in-vehicle data, such
as GPS coordinates, speed, acceleration and brake patterns,
with the intention to hide traces of the attack. Despite our best
effort, we did not find attacks which can be clearly mapped
to this category; however, this type of attacks will likely be
more frequent in the future due to both increased number of
attacks and digital forensic investigations.

4) Information Disclosure Attacks - Confidentiality, Privacy
[7], [38], [39], [42]–[45]. An attacker may be able to exploit
cryptographic keys and consequently decrypt sensitive data by
e.g., reverse engineering software with hard-coded keys. Bad
routines for handling of replaced unit led to leaked sensitive
data such as owners home and work address, calendar and
call entries and Wi-Fi passwords [42]. A mobile application
for vehicle control contained hard-coded credentials, thus an
attacker may be able to retrieve sensitive data remotely by
recovering the key from the application [7]. A vulnerability
in an OBD-II dongle exposed all transferred data to the
public [43]. Vulnerabilities in automotive bus technologies
make various attacks possible, such as sniffing of CAN traffic
due to its broadcast transmission and lack of encryption [44].

5) Denial of Service (DoS) Attacks - Availability [34]–[37],
[46]–[49]. Many attacks focus on the in-vehicle network that
uses CAN as this technology suffers from fundamental vul-
nerabilities with respect to security (e.g., broadcast communi-
cation, lack of encryption/authentication). Other attacks range
from sending an indefinite amount of data to ECUs to make
them unresponsive or crash, exploiting error handling mecha-
nisms, or flooding the network with high priority messages
in order to block lower priority messages. A vulnerability
in the Bluetooth functionality supported unrestricted pairing
without a PIN, thus enabled the potential for sending remote
CAN commands affecting safety critical assets [48]. The Bus-
off attack made ECUs unresponsive or crash [49]. Murvay et
al. [47] managed to disable FlexRay nodes by exploitation of
the bus guardian, power saving functionality and by causing
loss of synchronization.

6) Elevation of Privilege Attacks - Authorization [3], [7],
[36], [38], [39], [41], [50]–[52]. In [36] two Bluetooth vulner-
abilities allowed remote code execution with root privileges.
Moreover, manipulation of the firmware of the infotainment
unit enabled injection of arbitrary CAN messages. In [50], they
were able to release the airbag by message injection due to a
vulnerable authentication mechanism. Lack of authentication
in the NissanConnect app allowed to retrieve personal data by
entering an URL with the vehicle identification number [52].
The outcome of this phase is applied to Table I and used in the
next phase in the following section.

VI. RESILIENT SHIELD

In this section we present the Resilient Shield which consists of
high-level security goals emphasizing the overall design
requirements resulting from an analysis of the threat model
(Section IV). We further provide in Section VI-B detailed di-
rectives for fulfilling the high-level security goals for resilient
vehicles which are based on these goals and the attack model
(Section V). Table I summarizes the Resilient Shield. We
list automotive assets, associate them with high risk attacks,
potential threat actors and STRIDE threat categories, and link
these to suitable security and resilience techniques to show
how Resilient Shield can be used to mitigate these attacks.

A. High-level Security Goals (SGs)

The following high-level goals are the result of an analysis of
the threat model detailed in Section IV. Each SG is
associated with the relevant safety and security attributes they
enforce.

SG.1 Secure Communication. Integrity, authenticity and, in
specific cases, confidentiality need to be ensured for commu-
nication. Integrity and authenticity allow to verify the origin
of the message and protect the message from being altered
during transmission. Confidentiality can be achieved through
encryption of the message to prevent unauthorized read access.
Freshness, e.g., via counters or timestamps, can be used to
mitigate replay attacks.

SG.2 Readiness. Availability to authorized entities under
normal circumstances as well as disturbances. Even if an
adversary tries to disrupt the information flow, the integrity
and availability of correct information needs to be guaranteed.

SG.3 Separation of Duties is needed to limit access to
resources for authorized entities only. Authorization should
be combined with the principle of least privilege to limit the
number of entities having access to a resource to the minimum.

SG.4 Secure Software Techniques need to provide security
features to ensure that the executed software has not been
modified by an unauthorized entity (authenticity) and that the
software does not contain disclosed vulnerabilities.

SG.5 Separation/Segmentation on an architectural or process
level is necessary in order to limit access and reduce the sever-
ity in case of an intrusion (availability). Isolation techniques,
e.g., process isolation, should be considered where possible.

SG.6 Attack Detection and Mitigation is of utmost impor-
tance to enable the system to react and ideally prevent further
damage to the system.

SG.7 State Awareness should be ensured with the ability
to switch between various operational states, thus providing
reliability and maintainability.

SG.8 Forensics is necessary for post analysis of detected
malicious events and accordingly updating access control
policies and other preventive measures.
Physical security, such as vehicle locks, alarm system, and protecting infrastructure server rooms should be considered. Components must be extensively tested against requirements separately and when integrated into the vehicle, such as stated in the SPMT Test Phase. SPMT suggests to use both a qualitative and quantitative assessment; however, we focus on the qualitative assessment as the aim of Resilient Shield is to guide the resilient design of automotive systems. Moreover, a reduction analysis of attack trees is suggested to find commonalities in countermeasures; however this is not considered and is thus left as future work.

B. Detailed Directives

In this section, we list detailed techniques and patterns that contribute to the security and resilience of automotive systems based on the identified security goals, threat and attack model presented in this paper. First, we incorporate the identified patterns from the REMIND framework [18] in Resilient Shield and further extend them with security techniques to provide a comprehensive collection of both, security and resilience techniques for automotive systems. Second, we further discuss the security aspects of the identified resilience techniques. Next, we detail these techniques.

Authentication: Message authentication can be achieved through Message Authentication Codes (MACs) or signatures which ensure that the message: (i) is created by the claimed source and (ii) has not been altered during transmission. The authentication of devices can verify that the hardware, e.g., the head unit or a diagnostic device, is legit.

Encryption: Encryption of data ensures the protection of intellectual property, makes it more difficult to reverse engineer software, protects cryptographic material and the privacy of users and forensics data.

Redundancy/Diversity: A voting mechanism is used when comparing the output of two or more redundant systems or software functions. Redundancy increases the resilience against anomalies; however, from a security perspective it must be ensured that the voting process cannot be exploited by an attacker to perform DoS or spoofing attacks.

Access Control: Gateways with firewall capabilities allow filtering of messages between different networks in the vehicle. In addition, host-based firewalls on the ECUs can limit the exposure of open communication ports. Securing physical debug ports is vital to protect against unauthorized exploitation. Access control to resources such as files, computation, and diagnostic commands can be provided by the operating system or by e.g., challenge-response authentication.

Runtime Enforcement: Runtime verification is combined with reactive measures when safety properties are violated [18], [53].

Secure Storage: Cryptographic material needs to be protected against unauthorized modifications and read access. Data can be either stored encrypted in the regular file system or in a protected memory partition.

Secure Boot: A validation of the authenticity and integrity of the firmware to be loaded during the boot process [54].

Secure Programming: Secure programming guidelines such as MISRA C [55] are important to avoid common programming errors. Additionally, trusted execution environments may be necessary for isolating and securing applications.

Secure Software Update: The ability to update software is not only a necessity to improve and extend functionality, it is also essential for security, e.g., to mitigate vulnerabilities. In addition, the update process itself needs to be secure [56], during the distribution and installation process.

Verification & Validation: The Test Phase in SPMT focuses on the need for security testing and verification of each asset by doing fuzz, vulnerability and penetration testing. In addition to security testing, the verification and validation of functionality and safety is required [10], [18].

Separation: Architectural separation can be achieved through physical separation into smaller networks or through virtualization techniques allowing to allocate resources to specific functions or systems.

Specification-based Detection: Knowledge about abnormal behavior is used to detect anomalies and attempts to exploit known vulnerabilities. It also requires domain knowledge and needs to be updated regularly [18], [57].

Anomaly-based Detection: Is based on defining normal behavior and deviations trigger alerts and has the potential to detect unknown attacks. Anomaly-based detection can be categorized in statistical, information-theoretic, machine learning and localization techniques [18], [57].

Prediction of Faults/Attacks: Predicting the next step or the ultimate goal of an ongoing attack.

Adaptive Response: The function response may be temporarily adapted, e.g., through a model, while under attack [18].

Reconfiguration: Graceful degradation can be used to limit the impact of an attack when preventive measures failed.

Migration: The ability to migrate services to other nodes in order to maintain system functions when under attack [18].

Checkpoint & Rollback: Used to recover the system to a desired state. The state needs to be secured, e.g., through secure logging, to defend against possible attacks that aim at modifying a saved system state [18].

Rollforward Actions: Upon detecting an anomaly or error the system transitions back to the state immediately before the event happened. Similarly to rollback it needs to be ensured that this mechanism cannot be exploited [18].

Self-X: The system needs to be aware of its state and able to switch to other states when anomalies occur [18], [58].

Robustness: Employed mechanisms and functions need to be robust against anomalies [18].

Forensics: Secure logging is used to record events, e.g., detection of an ongoing attack, use of specific services or diagnostics. In addition, events with non-repudiation claims can be used as evidence of a crime.

Table I presents the Resilient Shield. Assets with high or critical risk threats are associated with appropriate security and resilience techniques demonstrating the ability of Resilient Shield to defend against these threats. For example,
TABLE I

RESILIENT SHIELD: A MAPPING FROM AUTOMOTIVE ASSETS TO IDENTIFIED ATTACKS, POTENTIAL THREAT ACTORS, STRIDE THREAT CATEGORIES AND ULTIMATELY TO APPROPRIATE SECURITY AND RESILIENCE TECHNIQUES, AND SECURITY GOALS (SGs).

<table>
<thead>
<tr>
<th>Hardware</th>
<th>STRIDE categories</th>
<th>Assets targeted by attacks with high or critical risk.</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensor:camera [34], [35]</td>
<td>(Spoofing)</td>
<td>FC, CT, HA, S, D</td>
</tr>
<tr>
<td>sensor:GNS [24], [26], [29], [30], [32]</td>
<td>(Denial of access)</td>
<td>FC, CT, HA, S, D</td>
</tr>
<tr>
<td>sensor:lidar [28], [34]</td>
<td>(Repudiation)</td>
<td>FC, CT, HA, S, D</td>
</tr>
<tr>
<td>sensor:ultrasonic [35]</td>
<td>(Tampering)</td>
<td>FC, CT, HA, S, D</td>
</tr>
<tr>
<td>Communication</td>
<td>(Replay)</td>
<td>FA, FC, CT, IN, HA, S, T, I, D</td>
</tr>
<tr>
<td>internal:flaxray [37]</td>
<td>(Spoofing)</td>
<td>FC, CT, HA, S, D</td>
</tr>
<tr>
<td>external:bluetooth [4], [36]</td>
<td>(Repudiation)</td>
<td>FC, CT, HA, S, T, D, E</td>
</tr>
<tr>
<td>external:usb [4]</td>
<td>(Tampering)</td>
<td>FC, CT, HA, S, T, E</td>
</tr>
<tr>
<td>external:keyfob [22], [23]</td>
<td>(Replay)</td>
<td>HA, SK</td>
</tr>
<tr>
<td>external:wifi [5], [33]</td>
<td>(Denial of service)</td>
<td>HA, SK</td>
</tr>
<tr>
<td>external:cellular [3], [4], [41], [45], [51], [52]</td>
<td>(Repudiation)</td>
<td>FC, CT, HA, SK, S, T, I, D, E</td>
</tr>
<tr>
<td>external:obdII [7], [27], [31], [38], [40], [43], [46], [48]</td>
<td>(Tampering)</td>
<td>CT, HA, S, T, I, D, E</td>
</tr>
<tr>
<td>external:debugport [3], [41]</td>
<td>(Replay)</td>
<td>HA, IN</td>
</tr>
<tr>
<td>Software</td>
<td>(Replay)</td>
<td>FC, CT, HA</td>
</tr>
<tr>
<td>running:state [25]</td>
<td>(Denial of service)</td>
<td>FC, CT, HA, S, D</td>
</tr>
<tr>
<td>running:firmware [3], [33], [36], [39], [41], [45], [50], [52]</td>
<td>(Repudiation)</td>
<td>FC, CT, HA, S, T, E</td>
</tr>
<tr>
<td>instorage:update [4], [36], [41]</td>
<td>(Tampering)</td>
<td>HA, SK</td>
</tr>
<tr>
<td>Data Storage</td>
<td>(Spoofing)</td>
<td>FC, CT, HA, S, T, E</td>
</tr>
<tr>
<td>cryptocertificate [41]</td>
<td>(Repudiation)</td>
<td>FC, CT, HA</td>
</tr>
<tr>
<td>hwreplaced [42]</td>
<td>(Denial of access)</td>
<td>HA, SK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Threat categories identified in REMIND [18]</th>
<th>STRIDE categories</th>
<th>Potential Threat Actors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Control</td>
<td>(Spoofing)</td>
<td>Financial Actor (FA)</td>
</tr>
<tr>
<td>Secure Boot</td>
<td>(Denial of access)</td>
<td>Foreign Country (FC)</td>
</tr>
<tr>
<td>Secure Software</td>
<td>(Replay)</td>
<td>Insider (IN)</td>
</tr>
<tr>
<td>Secure Programming</td>
<td>(Tampering)</td>
<td>Hacktivist (HA)</td>
</tr>
<tr>
<td>Security & Validation</td>
<td>(Repudiation)</td>
<td>Script Kiddie (SK)</td>
</tr>
</tbody>
</table>

VII. CONCLUSION

We have performed a comprehensive threat and risk analysis of published attacks against vehicles and derived imperative security and resilience mechanisms by applying the SPMT methodology. A threat model with vital vehicle assets and related potential threat actors, their motivations and objectives was developed. By an extensive analysis of threats and attacks, further filtered and categorized based on attack type, probability and consequence criteria, an attack model was developed based on the remaining high risk attacks. Based on the developed models, a comprehensive mapping between asset, attack, threat actor, threat category, and defense mechanisms was performed for all attacks and is presented in Table I. Table I summarizes the outcomes by applying SPMT, i.e. the Resilient Shield, a novel framework both justifying and defining imperative security and resilient mechanisms needed in a modern vehicle. Consequently, the Resilient Shield can be used as a vital baseline for protection against common security threats and attacks.

We believe our work is imperative for facilitating and guiding the design of resilient automotive systems; however, it still remains to be seen how large the coverage is in relation to future attacks. Moreover, testing and validation of the Resilient Shield within an industrial context is left as a future work.

Acknowledgment. This research was supported by the CyReV project (2019-03071) funded by VINNOVA, the Swedish Governmental Agency for Innovation Systems.

REFERENCES

