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Abstract

This paper presents a novel DSO support tool with visualisation capability for forecasting
network congestion in distribution systems with a high level of renewables. To incorporate
the uncertainties in the distribution systems, the probabilistic power flow framework has
been utilised. An advanced photovoltaic production forecast based on sky images and a
load forecast using an artificial neural network is used as the input to the tool. In addition,
advanced load models and operating modes of photovoltaic inverters have been incorpo-
rated into the tool. The tool has been applied in case studies to perform congestion fore-
casts for two real distribution systems to validate its usability and scalability. The results
from case studies demonstrated that the tool performs satisfactorily for both small and
large networks and is able to visualise the cumulative probabilities of nodes voltage devi-
ation and network components (branches and transformers) congestion for a variety of
forecast horizons as desired by the DSO. The results have also shown that explicit inclusion
of load-voltage dependency models would improve the accuracy of the congestion fore-
cast. For demonstrating the applicability of the tool, it has been integrated into an existing
distribution management system via the IoT platform of a DMS vendor, Atos Worldgrid.

1 INTRODUCTION

1.1 Motivation

Global warming concern leads the transition from fossil fuels
to renewable energy sources (RES) for the generation of
electricity. The European Green Deal envisions Europe to be
climate-neutral by 2050 through maximising the deployment of
renewables and fully decarbonising the energy supply [1]. The
International Renewable Energy Agency (IRENA) and Euro-
pean Commission in their REmap analysis in ref. [2] have iden-
tified that the European Union has the potential to generate
50% of the total electricity generation from renewables by 2030.
Under this scenario, wind power would account for 21% (783
TWh) and solar photovoltaics (PV) for 8% (281 TWh) of the
total generation. Similar trends for increasing renewables share
could be seen for other countries as well.

Across the globe, multiple incidents related to network con-
gestion are reported in refs. [3–5] due to the higher penetra-
tion of RES. A study on congestion events in the distribution
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systems caused due to RES in Germany is presented in ref. [6].
The study further presents that due to increasing RES pene-
tration the total amount of energy curtailment in 2014 was the
same as the aggregated amount from 2009 to 2013 and it is
growing further. It mentions that the German Federal Network
Agency reported that the majority of this curtailment (92.2%)
was on the distribution grid side as most of the RES is con-
nected here. The work presented in ref. [7] shows how the bat-
tery energy storage systems (BESS) could aggravate the network
congestion issues. It occurs when BESS starts charging as soon
as the surplus power (after self-consumption) is available, lead-
ing to full-charge before the peak PV production occurs in the
day. Thus, during the peak PV production, the power is being
fed into the grid and which causes network congestion.

Due to the anticipated increased penetration of RES in dis-
tribution systems and more uncertain loads such as heat pumps,
electric vehicles etc., the distribution system operators (DSOs)
are expected to face increasing component congestion and volt-
age variation issues in their networks [8]. In addition to such
operational problems, the DSOs are also likely to face issues
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such as loss of life of the network components (transform-
ers, distribution lines, and cables), the need for grid reinforce-
ment and/or flexibility services, RES generation curtailments
due to network constraints, generation scheduling [9, 10] etc.
A study presented in ref. [11] has estimated that Sweden, Ger-
many, and the UK with their current grid capacity can supply
24%, 60%, and 21% respectively, of the annual net electricity
consumption from residential solar PV. Thus, if the PV genera-
tion exceeds the anticipated amount then it could lead to oper-
ational challenges like network congestion etc., as mentioned
before.

There has been extensive ongoing research for congestion
management in distribution systems. For instance, in ref. [12], a
real-time congestion management method based on the flexibil-
ity services from electric vehicles and heat pumps is proposed.
The method expects that the DSO has the ability to forecast net-
work congestion. The need for such forecasts is also emphasised
in ref. [13], which mentions that with regard to market-based
congestion management models relying on flexibility, forecast-
ing the volume of congestion would require load forecasting and
state estimation of the distribution system. In ref. [14], a dis-
tributed optimisation-based dynamic tariff method is proposed
for congestion management, which requires the inputs of the
congestion forecast, but the method and the characteristics of
such a congestion forecast are not presented in detail. Simi-
larly, a multi-objective congestion management approach is pro-
posed in ref. [15] which utilises the generation rescheduling and
load shedding along with the inclusion of voltage-dependent
load models.

Most of these works have either mentioned the need for the
congestion forecast or have simply assumed that the DSOs have
the capability to forecast the congestion. From these discus-
sions, it is evident that there is an emerging interest in a solution
for a fast and accurate congestion forecast which can forecast
congestion in different time horizons. An accurate congestion
forecast would allow the DSOs to efficiently manage the net-
work congestion by employing their desired congestion man-
agement methods.

A few research works have addressed the congestion fore-
cast issue, e.g. ref. [16], in which a probabilistic method is devel-
oped for detecting and ranking the congested lines to help net-
work operators. A congestion forecast framework is proposed
in ref. [17], which considers only snapshot data of system uncer-
tainties with limited visualisation of network congestion. How-
ever, what is expected to be primarily needed by the DSOs in
the coming years is a compact tool that can forecast network
congestion on different timescales and has interactive visualisa-
tion capabilities. Further, the inclusion of other operating con-
ditions such as PV-inverter operating modes and load models
within such congestion forecast tool would be an enhancement
for the DSOs.

The probabilistic approach is widely accepted for modelling
uncertainties. Several research works have used this approach
for different applications. As in ref. [18], a probabilistic algo-
rithm is developed to evaluate the capacity of power reserve
for a system with high PV penetration. The authors in ref. [19]
used it for the evaluation of the maximum integration limits for

distributed generations with voltage constraints. A simplified
version of the backward-forward sweep (BFS) method, which
employs a Gaussian mixture distribution, is proposed to solve
probabilistic power flow (PPF) more efficiently to be used for
the planning of LV networks in ref. [20]. Similarly, a new prob-
abilistic method is proposed in ref. [21], which is based on
quasi-static time-series analysis in combination with the golden
section search algorithm to prevent reverse power flow in distri-
bution systems due to PV integration. The impact of uncertainty
associated with distributed energy resources (DERs) is analysed
in ref. [22], and the benefits of installing microgrids to address
such challenges are also demonstrated. Thus, the probabilistic
approach is utilised for addressing several research problems in
the distribution systems; however, most of the existing works
have not addressed the research problem associated with the
forecasting of network congestion.

While, on the commercial side, among the available solution’s
for the advanced distribution management system (ADMS)
such as Network Manager by Hitachi ABB [23], Spectrum
Power by Siemens [24], EcoStruxure by Schneider Electric [25]
etc., provide functionalities such as DERs production forecast,
demand forecast, state estimation, load flow, protection etc. In
general, most of the ADMS solutions have several advanced
functionalities which are associated with the evolution of dis-
tribution systems. However, the congestion forecasting func-
tionality is not explicitly included or addressed in these ADMS
solutions.

1.2 Contributions

Today, the DSOs are not equipped with similar congestion fore-
cast tools, at least at an operational level. However, some DSOs
may have already invested in research approaches to develop
similar tools, driven by the expected increased congestion inci-
dents. Thus, keeping in mind today’s and future need of the
DSO related to the accurate forecast of congestion levels in their
network, a novel congestion forecast tool has been developed
and demonstrated in this paper.

The main contributions of the paper can be summarised as
follows:

∙ Development of a congestion forecast framework using
probabilistic power flow incorporating advanced PV produc-
tion and load forecasts.

∙ Incorporation of the load-voltage dependency models in
congestion forecast framework for enhanced accuracy of
power flow solution and probable operating modes of PV
inverters for a realistic reactive power support capability from
PV inverters.

∙ Development of customised visualisation functionality in the
ADMS for presenting the congestion forecast results to the
DSO.

∙ Integration of the developed congestion forecast tool to
the existing distribution management system (DMS) via an
IoT platform Codex Smart Edge of a DMS vendor, Atos
Worldgrid.
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∙ Demonstration of the use of the tool using real network data
as well as in the real environment with system integration of
Atos DMS’s to the real demonstration site of SOREA, a small
French DSO.

The rest of the paper is organised as follows; Section 2
describes the functionalities of the congestion forecast tool. The
modelling of the different components in the tool is presented
in Section 3. Section 4 presents the details of the case studies,
while the results and discussions are presented in Section 5.
The scalability and accuracy of the tool are discussed in Sec-
tion 6. The details of the tool integration and demonstration are
presented in Section 7. The concluding remarks are outlined in
Section 8.

2 CONGESTION FORECAST TOOL
DESCRIPTION

This section presents an overall description and features of the
proposed congestion forecast tool including the inputs, visuali-
sation of forecast results and discusses the possible applications
of the tool from the DSO’s perspective. The modelling of the
probabilistic power flow framework and other associated ele-
ments are discussed in Section 3.

2.1 Inputs

The various inputs required for the congestion forecast tool are
as follows:

2.1.1 System data

It includes the network parameters, branches ampacity, and
transformers rated capacity. It can be provided in different
data formats as separate input files by the DSO. For the inte-
gration of the tool with the DMS of the DSO, it can be
provided through existing SCADA/DMS. Also, the updated
network configuration is provided by the DSO in real-time as
an input to the tool. In case of network reconfiguration, the tool
needs to be re-run with the new network topology over all the
forecast horizons because as the network configuration changes,
the power flow results would change which will have an impact
on the congestion forecast results.

2.1.2 Forecast of PV production and load

It includes the forecasts of PV production and load, load model
parameters. The forecasts errors are also inputs to the tool and
should be made available to the DSO through the PV produc-
tion and load forecasts services.

2.1.3 DSO preferences

It includes the number of Monte-Carlo simulations (MCS), node
voltage limits, PV-inverter operating mode, and tolerance limits.

FIGURE 1 Flow chart of the congestion forecast tool

These preferences are set as a default value but can be altered
by the DSO.

The flow chart of the congestion forecast tool along with the
preferences is presented in Figure 1.

2.2 Visualisation of congestion forecast
results

The congestion forecast visualisation helps the DSO in identi-
fying the exact location and severity of congestion and assists
them in taking suitable mitigating actions such as market par-
ticipation, flexibility procurement etc. The main features of the
congestion forecast visualisation are:

2.2.1 Congestion forecast indicators

The following indicators are proposed for congestion forecast
visualisation:

∙ Cumulative probability-based contour plot: Cumulative prob-
ability (CP) denotes the probability of a variable reaching
a level equal to or greater than a threshold. Here, the CPs
are calculated with the desired threshold for all the chosen
congestion indicators such as nodes voltage and components
overloading. They are used for contour plots, which help the
DSO in understanding the congestion severity in a specific
node and component.

∙ Colour-map: Colour-map (CM) is the colour-based represen-
tation of the network, indicating the severity and the exact
location of the congestion.

2.2.2 Congestion forecast horizons selection

With the proposed congestion forecast tool, network conges-
tion forecast can be made with various forecasting horizons
depending on the needs and operation strategies of the DSO on
how they tackle the possible congestion in their network in dif-
ferent time-frames. The details of the possible forecast horizons,
along with the selection reasoning, are presented in Table 1.
For instance, 5-min ahead forecast horizon value is selected by
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TABLE 1 Congestion forecast horizons with selection reasoning

Sl.

no.

Forecast

horizons

Reason for

selection

Forecast value

selection

1 1-min ahead Evaluate real-time
congestion status

Next minute (0th–1st)
forecasted value

2 5, 10, and 15-min
ahead

Identify congestion
forecast in close
to real-time
conditions

Average of the
forecasted values for
0th–5th, 5th–10th,
and 10th–15th min

3 30, 45, and
60-min ahead

Set up a close to
real-time
congestion
management plan

Average of the
forecasted values for
15th–30th,
30th–45th, and
45th–60th min

4 2, 3, ⋯ 24-hour
ahead

Set up an intra-day
congestion
management plan

Peak value among the
average of forecasted
values for four
15-min time slots
between 1st–2nd,
2nd–3rd, ⋯ and
23rd–24th hour

FIGURE 2 Strategic selection of forecast horizons along with the
respective congestion management strategies

taking the average of five forecast values between the 0th and
5th min. It should be noted that these time-horizons can be
customised by the DSO. The possible congestion management
strategies with various time-horizons which can be taken by the
DSO are shown in Figure 2.

2.3 Real application from industry
perspective

The congestion forecast tool will assist the DSO in the daily
congestion management and network planning, depending on
the forecast horizons. In short forecast horizons, the DSO will
be enabled with timely congestion management by employing
market and tariff-based flexibility solutions [26]. It would result
in enhancement of the system’s resilience, mitigation of equip-
ment ageing due to overloading, reducing the high additional
congestion cost, and other economic benefits. While, long-term
forecast horizons (e.g. several months or years ahead) will allow
the DSO to procure flexibility for avoiding costly grid reinforce-
ment. The visualisation platform provided by the tool will facil-
itate the effective supervision of the desired network operation
via an on-time and user-friendly indication of the expected net-
work congestions. Therefore, the implementation of the devel-

FIGURE 3 Fisheye lens camera and its installation at Sorea’s site in
France

oped tool will result in reduced cost for grid reinforcement and
purchasing flexibility resources for the DSOs. The integration
of the congestion forecast tool in the commercial ADMS solu-
tions would provide them a competing edge over other existing
ADMS solutions. This paper explores the possibility for com-
mercialisation of the developed tool through integration with
the Codex Smart Edge solution of Atos Worldgrid.

3 MODELLING

This section presents the modelling approach associated with
the different components in the congestion forecast tool.

3.1 PV production and load forecasts
modelling

This subsection presents the details of the forecast techniques
used for PV production and load forecasts. Due to increasing
PV penetration and intermittent loads in the distribution sys-
tems, their modelling is an important aspect of the congestion
forecast tool. The modelling employs different methods for the
PV production and load forecasts. Also, the time-horizon of the
two forecasts are different. The PV production forecast is done
with a very short time horizon, i.e. a minute ahead, by employing
machine learning techniques that use sky-images and fine mod-
elling of the cloud cover motion and the built-in combination
with the on-site all-sky imager, while the load forecast is done
in relatively long time horizon, i.e. 1 hour, through an artificial
neural network model.

3.1.1 PV production forecast

A near-real-time (1 min-ahead) PV production forecast solution
is used in this work. The choice of the acquisition system is
focused on a camera equipped with a fisheye lens whose view-
ing angle is 180◦ (horizon to horizon coverage). Figure 3 shows
the fisheye camera used for the acquisition and its installation at
Sorea’s site in France [27].

This acquisition system works on the principle of observing
the cloud cover by taking periodic images of the sky, followed by
processing these images, and then integrate the PV forecast into
the forecast tool. This system generates a new forecast every
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FIGURE 4 Functional diagram for ANN-based load forecast method

minute with a resolution of 1 min until the 24th hour of the
concerned day. The description of the different steps involved
in the algorithm used for the PV production forecast is as fol-
lows:

Step 1. Pre-treatment: The sky images captured by the cam-
era are not fully adapted to this application and hence
require treatment before being processed. The resolu-
tion of the captured images plays an important role in
the forecast. Interestingly, the low-resolution images do
not have a significant impact on the output, as cloud
movements (and their deformations) are not perfectly
predictable. Thus, one of the pre-treatment includes
reducing the resolution of the captured images.

Step 2. Cloud detection and motion estimation: The next step
is the processing of sky images to perform the area seg-
mentation for cloud detection and motion (speed) esti-
mation. Sometimes, the algorithm could also select the
unwanted reflections and thus performs post-treatment
to eliminate them.

Step 3. Cloudy weather forecast: After estimating the seg-
mented clouds and their displacements, the prediction
of their future displacement could be easily done. This
step helps in understanding the future path of clouds
and how the clouds will cover the sun over the next
minutes.

Step 4. Forecast of PV production: The clouds movement pre-
diction information along with the PV plant character-
istics is used for forecasting the amount of radiation
received and hence the forecast of PV power produc-
tion.

3.1.2 Load forecast

An artificial neural network (ANN) based short-term (1 hour-
ahead) load forecasting is used in this work. The model is imple-
mented using the Neural Networks Toolbox in MATLAB. The
functional diagram for the ANN-based load forecast method is
shown in Figure 4. Multiple tests cases are realised to obtain the
best ANN architecture in terms of the number of hidden lay-

TABLE 2 Input data for the ANN-based algorithm

Category Variable Type

Weather Temperature Actual value

Calendar Hour of day Actual value (0-23)

Day of week Monday = 0, Tuesday = 1, … , Sunday = 6

Type of day Non-working day = 0, working day = 1

Month January = 0, February = 1, … December = 11

Load Growth rate Actual value

Power Actual value

ers and number of neurons in each layer. A feed-forward model
and back-propagation learning algorithm are used for the ANN
model and weights adjustment. The transfer functions used are
the step and sigmoid. The load forecasting model takes into
account the different inputs categories such as weather, calen-
dar, and load, which are presented in Table 2. The load forecast
is generated every hour with a resolution of 1 hour until the 24th
hour of the concerned day. Since the load forecast technique has
an hourly resolution, the load forecast values for horizons less
than an hour are taken as forecast values for that hour.

It should be noted that the load forecast implicitly consid-
ers the charging and discharging of energy storage. The load
forecast is based on the measurement data of aggregated loads
which include energy storage devices. Thus, the charging and
discharging of energy storage will not have a direct impact on
the load forecast results presented in this paper. However, the
explicit inclusion of charging and discharging of energy storage
as the input signal in the load forecast would further enhance
the accuracy of the results.

3.2 Load modelling

This subsection presents the details of the inclusion of load
models into the tool. Usually, the constant power load model is
considered where the loads are assumed to remain independent
of the system voltage. The active and reactive load characteris-
tics for a combination of constant power (P ), constant current
(I ), and constant impedance (Z ), called as ZIP load model, can
be expressed as a function of voltage [28]:

P = P0

[
kPP

+ kPI

(
V
V0

)
+ kPZ

(
V
V0

)2]
(1)

Q = Q0

[
kQP

+ kQI

(
V
V0

)
+ kQZ

(
V
V0

)2]
(2)

where V0 represents the nominal voltage, kPP
and kQP

are con-
stants representing the proportion of P load, kPI

and kQI
are

constants representing the proportion of I load, kPZ
and kQZ

are constants representing the proportion of Z load, for active
and reactive power load, respectively. The different load model
parameters are considered in this work and presented in Table 3.
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TABLE 3 Load model parameters for different cases

Sl. no. Load type Active power coefficients Reactive power coefficients

kPP
kPi

kPz
kQP

kQi
kQz

1 Constant power 1 0 0 1 0 0

2 Residential feeder 0.10 0.85 0.05 0.00 0.65 0.35

3 Constant impedance 0 0 1 0 0 1

4 Equal proportion of ZIP load 0.33 0.33 0.33 0.33 0.33 0.33

The following steps are iterated to include the load models in
the probabilistic power flow calculation [29]:

Step 1: Initial values of voltage at all the system nodes are taken
as one p.u.

Step 2: Calculate load values with the inclusion of load models.
Step 3: Calculate branch currents and new node voltages.
Step 4: Update the values of both active and reactive loads with

new node voltages.

3.3 Operating modes of PV-inverter

Due to increased DERs penetration, there are stricter require-
ments in new standards for DERs interconnection with the
distribution grid when compared to previous ones. Some of
these interconnection requirements are mentioned in the recent
IEEE standard on the interconnection and interoperability of
DERs [30]. The two most common operating modes of PV-
inverter are constant power factor and voltage-reactive power.
In this paper, it is assumed that PV-inverter operates in both
modes. These modes are incorporated into the tool to mimic
the interconnection requirements as follows:

3.3.1 Constant power factor mode (constant-pf)

In this mode, all the nodes except the slack node are modelled
as P-Q nodes. The PV production at all the nodes is modelled
as a negative load and with a constant power factor. The step-
wise formulation of the BFS algorithm in this mode for the pth
iteration, are as follows:

Step 1: A flat voltage profile is taken for all nodes except the
slack node, which is kept constant.

Step 2: Calculate current injection at node r , as:

Ar
(p) =

[
Sr

Vr
(p−1)

]∗
−YrVr

(p−1) ∀ r = 1, 2, … ,N

(3)
Step 3: Calculate branch currents (in branch q) in the backward

direction starting from the last node, as:

Iq
(p) = An

(p) +

t∑
h=1

Ih
(p) ∀ q = br, … , 2, 1 (4)

Step 4: Update node voltages (at node n) in the forward direc-
tion starting from the slack node, as:

Vn
(p) = Vm

(p) − ZqIq
(p) ∀q = 1, 2, … , br (5)

where N , br, t , and Zq represent the total number of nodes,
total number of branches, total number of branches connected
at node n, and the impedance of branch q, respectively.

These steps are iterated until the convergence criterion
is reached.

3.3.2 Voltage-reactive power mode (constant-V)

In this mode, the PV production nodes are modelled as P-V
nodes and load nodes are modelled as P-Q nodes. A compensa-
tion method is used for the elimination of voltage mismatches
from their specified values at P-V nodes [31]. The step-wise
formulation of voltage mismatch compensation in addition to
the BFS algorithm for k P-V nodes in the system and pth iter-
ation are as follows:

Step 1: Calculate voltage magnitude mismatch at r th node, as:

�Vr
(p)
=
|||Vr

(s)||| − |||Vr
(p)||| ∀ r = 1, 2, … , k (6)

Step 2: Calculate the reactive current injection at r th node, as:

IrQ
(p) = j |||Zr

−1�V
(p)

r
||| ∀ r = 1, 2, … , k (7)

Step 3: Calculate the total reactive power requirement QrR at
r th node, as:

QrR
(p) = Qr

(p) + QrL

Qr
(p) = Im[Vr I

′

rQ

∗
]
(p)

∀ r = 1, 2, … , k (8)

Step 4: Check whether the calculated QrR (=Qinj) satisfies:

Pinj
2 + Qinj

2
≤ Srated

2 ∀ r = 1, 2, … , k (9)

Otherwise, calculate the new value of Pinj and Qinj [17].



SRIVASTAVA ET AL. 7

where Vr
(s), Z , QkL, and I

′

kQ represents the specified voltage
value at node r , a real and constant impedance matrix, reactive
power load at node k, and the sum of the required reactive cur-
rent and load current injection.

These steps are iterated until the voltage mismatches for all
P-V nodes reach within the tolerance limit.

3.4 Probabilistic power flow method

The probabilistic approach is used to model the uncertainties
in the proposed congestion forecast tool. MCS is employed
to run a large number of scenarios to incorporate PV pro-
duction and load forecasts in the system. BFS method is used
for solving the power flow algorithm. This work considers the
Gaussian probability density function (PDF) which is a com-
monly used for generating MCS values using the values obtained
from PV production and load forecasts [22], as described by
Equation (10):

PDF =
1√

2𝜋𝜎2
e−

(x − 𝜇)2

2𝜎2
(10)

where mean (𝜇) is the value of PV production and load fore-
casts, while standard deviation (𝜎) depends on forecast type and
horizon.

3.5 Results of congestion forecast

The congestion results are extracted from the power flow results
of MCS presented in Section 3.4. To visualise the congestion
forecast results, the following indicators are chosen:

∙ Node voltage: It refers to the node voltage and deviation
from its nominal value.

∙ Branch loading: It refers to the loading of a branch relative to
its rated ampacity.

∙ Transformer loading: It refers to the loading of a transformer
relative to its rated capacity.

4 CASE STUDIES DESCRIPTION

4.1 7-bus feeder of Sorea’s distribution
system in France

The considered system, as shown in Figure 5, has a radial
structure with seven nodes, including both medium- and low-
voltage (MV and LV) nodes, five branches, and one MV-
LV transformer (20/0.4 kV). The ampacity of all branches is
assumed to be 350 A, while the rated capacity of the trans-
former is 250 kVA. Presently, the system has two PV installa-
tions at nodes 5 and 7 with the maximum capacity of 74 and
82 kWp (kilowatt peak), respectively. A camera-based acquisi-
tion system is installed at node 6 to be used for the PV pro-

FIGURE 5 Single-line diagram of a part of Sorea’s distribution system

FIGURE 6 The PV production and load forecasts profile at 00:00 hour
on 11th October 2018 over the next 24-hours for Sorea’s site in France

duction forecast. The network parameters are provided by the
UNITED-GRID [32] project partner Sorea and presented in
Appendix.

The PV production and load forecasts data used in this case
study are for 11th October 2018, as shown in Figure 6. The data
shows that the PV production is forecasted to vary between 0
to 40.91 kW, while the load is forecasted to vary between 0 to
7.8 kW.

4.2 141-bus distribution system of Caracas
metropolitan area

The considered system is a real distribution system in the
metropolitan area of Caracas [33]. The system has a nominal
voltage of 12.47 kV with 140 branches and 84 load buses. The
system has been modified to include PV installations at all the
load buses. The same PV production profile (without affecting
the generality of the results), as shown in Figure 6, is consid-
ered at all the PV nodes. For a realistic load scenario, the feeders
in the considered system are randomly divided into residential,
commercial, and industrial areas. Further, the hourly load pro-
files at different nodes for these areas are presented in Figure 7,
which are obtained from the real load data of a local DSO in
Sweden. The single-line diagram for the 141-bus distribution

FIGURE 7 Residential, commercial, and industrial load profiles used in
the 141-bus distribution system
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FIGURE 8 Single-line diagram of the 141-bus real distribution system in the metropolitan area of Caracas with PV installations

TABLE 4 PV production and load forecasts errors over different forecast horizons (in %)

Forecast error Forecast type Forecast horizons

1-min ahead 5, 10, and 30, 45, and 2, 3, … 7, 8,…

15-min ahead 60-min ahead 6-hour ahead 24-hour ahead

Case 1 PV 1.0 3.0 5.0 8.0 10.0

Load 5.0 5.0 5.0 5.0 8.0

Case 2 PV 1.5 4.0 6.0 9.0 12.0

Load 6.0 6.0 6.0 6.0 10.0

system is shown in Figure 8. The branches’ ampacity is assumed
to be 1500 A.

To analyse the impact of load models on the congestion fore-
cast accuracy, different cases are studied, which are presented in
Table 3. These cases include constant P load, constant Z load,
an equal proportion of ZIP load, and load model for a typical
residential feeder. The coefficients of the load model for a res-
idential feeder have been obtained using the real measurement
data provided by a DSO in Sweden. The data include time-series
measurement of active power (P ), reactive power ( Q ), and volt-
age (V ) from customers connected to a residential feeder [34].
From the data, the coefficients for the load model are obtained
through a standard linear regression using least squares fit tech-
niques. Subsequently, P and Q are represented as a function of
voltage V using a polynomial model structure, as given by Equa-
tions (1) and (2).

As explained in Section 2.2.2, the congestion forecast is per-
formed continuously on a rolling horizon. The PV production
and load forecasts errors depend on the forecast horizon, and
hence different errors are considered, as shown in Table 4. The
PV production and forecast errors are considered as zero during
the evening and night hours.

The proposed congestion forecast tool has been imple-
mented using MATLAB R2019b and Python. The number of
MCS is considered 10 000 [22], and the power flow convergence
criterion is taken as 0.00001 p.u.

5 RESULTS AND DISCUSSIONS

5.1 7-bus feeder of Sorea’s distribution
system in France

The visualisation of the congestion forecast over a day is pre-
sented through both CP-based contour plot and colour-map.
The simulation is done with PV production and load forecasts
data for 00:00 hour of 11th October 2018 under a constant-pf
mode of PV-inverter.

5.1.1 Cumulative probability-based contour plot

To illustrate the results of the congestion forecast, the CP for
the voltage at node 5 is shown in Figure 9. The contour plot
shows the difference over various forecast horizons. The CP
for node voltage deviation remains low (green area) from 1-min
to 7-hour ahead and then starts increasing (towards yellow area)
until 13-hour ahead and subsequently starts decreasing. For the
13-hour ahead, the CP for node voltage to be above 1.04 p.u.
is 0.7 (or 70% of the times). The colour bar in the contour plot
represents the severity of congestion.

It is evident from Figure 9 that the network is subjected to
different congestion levels over the considered forecast hori-
zons. These changes in the congestion levels occur mainly due
to varying PV production and load demand during the day. This
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FIGURE 9 CP-based contour plot for visualisation of the congestion
forecast at node 5, simulated with a constant-pf mode for Sorea’s 7-bus system

FIGURE 10 Colour-map visualising congestion forecast for 13-hour
ahead simulated with a constant-pf mode for Sorea’s 7-bus system. (a) Node
voltages, (b) branches loading, (c) transformer loading

simulation uses the forecasted data for an entire day, starting
from 00:00 hour. As the sun rises, the PV production increases,
reaching its peak value around noon and decreasing after that.
Thus, mainly the higher PV production level leads to an increase
in the node voltages and vice-versa while the load has a negligi-
ble effect due to the small proportion.

5.1.2 Colour-map

The colour-map is useful for evaluating the overall picture and
the exact locations of the network congestion. The colourbar
here represents the CP for congestion. For illustration purposes,
the congestion threshold for the node voltage is taken as 1.03
p.u., for branches and transformer loading as 0.5 and 0.3 p.u.,
respectively. The DSO can specify its thresholds as desired.

It can be seen from Figure 10(a) that for a 13-hour ahead
forecast, nodes 5 and 7 have high CP for voltage deviation; node
4 has medium CP while the rest nodes have low CP for voltage
deviation. Similarly, Figure 10(b) shows that branches 2–3 and
3–4 have high CP for congestion, and the rest of the branches
have low CP for congestion. Furthermore, Figure 10(c) shows

FIGURE 11 CP-based contour plots for visualisation of congestion
forecast simulated with a constant-pf mode for the 141-bus distribution system
with no PV production. (a) The voltage at node 141, (b) the loading level of
branch 3–4

that the transformer has a high CP for overloading. Due to space
limits, the colour-map for only one time horizon is presented
here while the animated version of colour-map over different
forecast horizons can be found at ref. [35].

5.2 141-bus distribution system of Caracas
metropolitan area

5.2.1 Visualisation of congestion forecast over a
day

To visualise the congestion forecast over a day, the simulations
are carried out with a constant-pf mode using the PV produc-
tion and load forecasts profile, as shown in Figures 6 and 7,
respectively. To illustrate the functionalities of the proposed
tool, three different scenarios are considered, i.e. with no PV
production, 50% of the PV production forecast, and 100% of
the PV production forecast. With this tool, the node voltage and
branches loading can be forecasted at all the system nodes and
branches. Although, in this work, node 141 is chosen as it is one
of the weakest nodes in terms of voltage variation, and branch
3–4 is chosen as it is one of the most loaded branches in the
network.

∙ Scenario 1: No PV production
This scenario can be treated as a base case, i.e. same as the
original system without the consideration of any PV produc-
tion. The CP-based contour plots for the voltage at node 141
and branch 3–4 are presented in Figure 11. It can be seen
from Figure 11(a) that in the absence of any PV production,
the node voltage remains below 1 p.u. as only the conven-
tional loads are present in the system. It can also be observed
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FIGURE 12 CP-based contour plots for visualisation of congestion
forecast simulated with a constant-pf mode for the 141-bus distribution system
considering the PV installations with 50% of the PV production forecast. (a)
The voltage at node 141, (b) the loading level of branch 3–4

that in the beginning (for initial forecast horizons) which are
the mid-night hours, the contour plot remains green (close
to 1 p.u.) and eventually starts turning towards blue as the
morning hours approach and load starts increasing. Similarly,
from Figure 11(b), it can be seen that the loading level of
branch 3–4 largely remains around 50% during the initial
forecast horizons and then increases to around 60% from 7-
hour ahead until 22-hour ahead due to increased load demand
during the day. Thus, it is clearly visible from CP-based con-
tour plots (Figure 11) that the network is subjected to a differ-
ent level of congestion over the considered forecast horizons.
This scenario showcases the ability of the proposed tool in
interactively forecasting the under and overvoltage problems
in the network.

∙ Scenario 2: 50% of the PV production forecast
In this scenario, the system has been modified to include
PV installations at all the load buses. The same PV produc-
tion profile (without affecting the generality of the results),
as shown in Figure 6, is considered at all the load buses.
Although the PV production at each bus is taken as 50% of
the forecasted value and thus it varies between 0 to 204.5 kW.
The CP-based contour plots for the voltage at node 141 and
branch 3 − 4 are presented in Figure 12. It can be seen from
Figure 12(a) that for 12-hour ahead, the CP for voltage to be
above 1.05 p.u. at node 141 is approximately 0.95. Similarly,
from Figure 12(b), for 12-hour ahead the CP for loading level
of branch 3–4 to be above 0.5 p.u. is approximately 0.35. Fig-
ure 12(b) presents an interesting observation, that the loading
level of branch 3–4 from 12-hour ahead until 17-hour ahead
forecast horizons, is lesser as compared to the loading level
obtained from the scenario without any PV production. This
occurs because the PV production supplies the load locally
which relieves congestion in the network or leads to reduced

FIGURE 13 CP-based contour plots for visualisation of congestion
forecast simulated with a constant-pf mode for the 141-bus distribution system
considering PV installations with 100% of the PV production forecast. (a) The
voltage at node 141, (b) the loading level of branch 3–4

branch loading. Thus, the CP-based contour plots (Figure 12)
show that the network is subjected to an assorting level of
congestion over the considered forecast horizons mainly due
to varying PV production and load demand during the day.

∙ Scenario 3: 100% of the PV production forecast
In this scenario, the system has been modified to include
PV installations at all the load buses. The same PV produc-
tion profile (without affecting the generality of the results),
as shown in Figure 6, is considered at all the PV nodes vary-
ing between 0 to 409.1 kW. The CP-based contour plots for
the voltage at node 141 and branch 3–4 are presented in Fig-
ure 13. It can be seen from Figure 13(a) that for 12-hour
ahead, the CP for voltage to be above 1.1 p.u. at node 141
is approximately 0.85. Similarly, from Figure 13(b), for both
11 and 12-hour. ahead the CP for loading level of branch 3–4
to be above 1 p.u. is approximately 1. Thus, it is clearly visible
from CP-based contour plots (Figure 13) that the network
is subjected to a different level of congestion over the con-
sidered forecast horizons. These changes in the congestion
levels occur mainly due to varying PV production and load
demand during the day.

5.2.2 Impact of load models on congestion
forecast results

To assess the impact of load models, four simulations with dif-
ferent load model parameters are carried out. The load model
parameters for these simulations are presented in Table 3. The
simulations consider the PV installations at all the load buses
with the same PV production profile as shown in Figure 6,
varying between 0 to 409.1 kW. The CP for voltage at node 141
and loading level of branch 3–4 for 13-hour ahead (maximum
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FIGURE 14 CP-based congestion indicators showing the impact of load
models on congestion forecast for 13-hour ahead for the 141-bus distribution
system. (a) The node voltage at node 141, (b) the loading level of branch 3–4

PV production) with different load models are shown in
Figure 14(a,b), respectively.

It can be seen from Figure 14(a) that the node voltage devi-
ation is highest with load model 1 (P). This can be explained
using the “voltage drop” equation of a simple network. Assum-
ing an increase in the PV production at a node, there will be
an increase in the node voltage, and this change will not be
affected by the constant power load (the consumed power will
not change regardless of the change in voltage). While the node
voltage deviation is lowest with load model 3 (Z ) because the
increase in PV production will lead to a rise in voltage initially.
As the load is a constant-impedance load, the consumed power
will increase with increased voltage, which leads to a higher
line current and reduced node voltage. Hence, the node volt-
age deviation is lowest with load model 3 (Z ) and highest with
load model 1 (P). Further, with load models 2 and 3 (residential
feeder and constant impedance), the node voltage is higher with
the load model 2 because the voltage deviation will be higher
in constant current load (P ∝ V ) than in constant impedance
load (P ∝ V 2), as the voltage is proportional to the power in
I load while it is proportional to the square root of power in
Z load. Similar explanations can be applied for branch loading
with the different load models as shown in Figure 14(b). The
results have shown that it is important to have good load mod-
els to have a more accurate congestion forecast, i.e. not over-or
under-estimate the network’s congestion levels.

5.2.3 Influence of operating modes of
PV-inverter on congestion forecast results

To assess the impact of operating modes of PV-inverter, the
simulations are done with constant-pf and constant-V modes
of operation. The simulations consider the PV installations at all

FIGURE 15 CP-based contour plots showing the influence of operating
modes of PV-inverter on the congestion forecast for the 141-bus distribution
system. (a) The voltage at node 141 with constant-pf mode, (b) the voltage at
node 141 with constant-V mode

FIGURE 16 CP-based contour plots showing the influence of operating
modes of PV-inverter on the congestion forecast for the 141-bus distribution
system. (a) The loading level of branch 3–4 with constant-pf mode, (b) the
loading level of branch 3–4 with constant-V mode

the load buses with the same PV production profile as shown in
Figure 6, varying between 0 and 143.2 kW. The CP for voltage at
node 141 and loading level of branch 3–4 under the two modes
of operation are presented in Figures 15 and 16, respectively.

For 12-hour ahead, the CP for node voltage to be above 1.04
p.u. in constant-pf mode is 0.6 (Figure 15(a)) while in a constant-
V mode it is 0 (Figure 15(b)). Similarly, for 12-hour ahead,
the CP for branch loading to be above 0.8 p.u. in constant-V
mode (Figure 16(b)) is approximately 0.2 while it is almost 0 in
constant-pf mode (Figure 16(a)).
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TABLE 5 Computational time for congestion forecast tool with different test systems (in seconds)

Sl. no. Number of MCS Sorea’s 7-bus system 141-bus system

Tolerance limit Tolerance limit

0.001 p.u. 0.00001 p.u. 0.001 p.u. 0.00001 p.u.

1 100 0.93 1.01 5.98 7.60

2 1000 3.89 4.50 58.34 75.04

3 10000 39.81 46.23 1239.13 1411.29

It is evident from the results that in a constant-V mode, the
CP for nodes voltage has decreased but simultaneously the load-
ing level of branches has increased. The reason for the reduced
voltage deviation is due to the consideration of P-V nodes. In a
constant-V mode, the voltage is maintained at a specified value
through reactive power compensation by injection of higher
reactive current, which leads to higher current and MVA loading
in associated branches and transformers. Thus, the PV-inverter
operating mode is an important aspect to be considered in the
congestion forecast tool.

6 SCALABILITY AND ACCURACY OF
PROPOSED TOOL

The scalability of the proposed tool when applied to a large
distribution system, is an important feature, which is consid-
ered during tool development. The tool is applied to a 7-bus
feeder network of Sorea due to the availability of the physi-
cal solution for PV production and load forecasts. Further, the
tool is applied to the 141-bus real distribution system to eval-
uate the scalability. The computational time (for all time hori-
zons) for the two case studies in a constant-pf mode of oper-
ation is presented in Table 5. These results are obtained with
MATLAB (R2019b version) and the computer configuration as
Intel(R) Core(TM) i7-7700K CPU @4.20-GHz processor and
48 GB RAM.

The computational time of the algorithm depends on the
number of MCS and the tolerance limit. The higher number of
MCS and stricter tolerance limits would lead to a more accurate
determination of the CP for congestion indicators which is the
backbone for contour plots and colour-map. It can be seen from
Table 5 that the computational time increases with the increase
in the number of MCS and stricter tolerance limits. Thus, it is
a trade-off situation between computational time and accuracy
for the DSO. Like in the 141-bus system, with the given com-
puter configuration, the most optimal solution appears as 1000
MCS and 0.001 p.u. tolerance limit.

Another important aspect is the accuracy of the congestion
forecast, which mainly depends on the PV production and load
forecasts accuracy. The lesser PV production and load fore-
casts error would lead to more accurate scenarios generation
through MCS, and thus, the results of the congestion fore-
cast will be more accurate. To validate this aspect, two conges-
tion forecast simulations are performed with different forecast
errors of PV production and load. The PV production and load

FIGURE 17 Standard deviation of congestion indicators simulated with
different forecast errors for the 141-bus distribution system. (a) The node
voltage at node 141, (b) the loading level of branch 3–4

forecasts errors used in these two simulations are shown in
Table 4. For each congestion forecast, the mean and standard
deviation for the normal distribution is calculated for node volt-
ages and branch loading levels. The standard deviation for the
voltage at node 141 and the loading level of branch 3–4, are pre-
sented in Figure 17(a,b).

It can be seen from Figure 17 that higher PV production and
load forecasts errors lead to higher standard deviation of node
voltages (Figure 17(a)) and branch loading (Figure 17(b)) as the
forecast errors considered in Case 1 are lower as compared to
Case 2. However, there is no substantial difference in the mean
value of node voltages and branch loading in the two simula-
tions as the same mean (𝜇) obtained from PV production and
load forecasts is used in the Gaussian PDF for generating MCS
in the two simulations.

7 INTEGRATION AND
DEMONSTRATION WITH EXISTING
DISTRIBUTION MANAGEMENT SYSTEM

The integration and demonstration of the congestion forecast
tool are done using the Codex Smart Edge solution of Atos
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FIGURE 18 Functional diagram for tool integration and demonstration
with the DSO SCADA

Worldgrid, which is an adaptable software solution used to set
up an IoT and edge computing infrastructure [36]. The main
motivations behind the integration and demonstration of the
tool are validation on real test sites, compliance with the indus-
trial standards, and reduced launch time to market. The inte-
gration and demonstration are performed for the 7-bus feeder
of Sorea’s distribution system in France as presented in Sec-
tion 4.1. The solution which enables an integration of the con-
gestion forecast tool is referred to as the UNITED-GRID solu-
tion (UGS). In this paper, UGS refers to only the congestion
forecast tool while within the UNITED-GRID project it hosts
several other tools as well. The functional diagram for the tool
integration and demonstration with the existing DMS of the
DSO is presented in Figure 18. The PV production and load
forecasts solution as presented in Section 3.1 are also integrated
with the UGS which provides inputs to the congestion fore-
cast tool.

The description of the involved actors in the architecture of
UGS is as follows.

∙ External service provider refers to the external data sources
such as PV production forecast, load forecast, and other
input data.

∙ Toolbox (TB) executes and supervises the implementation
of the congestion forecast tool and the associated graphical
interface along with the data management.

∙ Open cross-platform (OCP) collects and provides the data
from/to the different actors. It also ensures the connectivity
between the TB and external service providers, as well as the
connectivity between the different instantiation of the UGS.
The OCP also ensures data sharing and storing within the
UGS.

∙ DSO SCADA platform refers to the existing SCADA system
of the DSO.

The UGS dashboard login page for Sorea’s demonstration
site is shown in Figure 19. DSOs can connect through their
account and get access to the UGS Dashboard.

The synoptic visualisation as presented in Figure 20 is based
on the cumulative probability of the associated congestion indi-
cators, i.e. nodes voltage or component’s loading level. The
colour code which has been assigned for the synoptic visu-
alisation of the congestion indicators is presented in Table 6.
Figure 20(a) represents an example of the synoptic visualisation
for all the nodes voltage where all the nodes are shown in red
colour which indicates that the CPnode for a threshold voltage
level (chosen by the DSO) is greater than 0.9 (or 90% of the

FIGURE 19 Dashboard login page for Sorea’s demonstration site in
France

FIGURE 20 An example of synoptic visualisation for 7-bus feeder of
Sorea’s distribution system using the Codex Smart Edge platform. (a) Nodes
voltage, (b) component’s loading

times). Similar synoptic visualisation is presented in Figure 20(b)
for branches and transformer. In the component visualisation,
the threshold is selected in terms of percentage loading of the
component, for instance, 60% or 80%.

The synoptic visualisation presents the implementation of the
colourmap (presented in Section 5.1.2) within the UGS. The
synoptic visualisation presents an overall picture of the network
before the DSO. Once the system operator identifies the exact
location of the congestion, then that specific node/component
could be selected (in the synoptic visualisation) which will
open the contour plot (presented in Section 5.1.1). Thus, the
synoptic visualisation helps the operator to understand the

TABLE 6 Colour coding for the synoptic visualisation

Cumulative probability Colour

CPnode∕component < 0.5 White

0.5 <CPnode∕component < 0.75 Green

0.75 <CPnode∕component < 0.9 Orange

CPnode∕component > 0.9 Red
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FIGURE 21 A snapshot of the synoptic visualisation for 7-bus feeder of
Sorea’s distribution system using the Codex Smart Edge platform

overall as well as component-specific network congestion pic-
ture. Further, the time slider empowers the system operator to
select the desired forecast horizon for taking corresponding pre-
ventive action (discussed in Section 2.2.2).

Further, a snapshot of the synoptic visualisation of the con-
gestion forecast tool for the 7-bus feeder of Sorea’s distribu-
tion system is presented in Figure 21. It also shows a time slider
through which the DSO can select a desired congestion forecast
horizon (specific date and time). By moving the time slider, the
synoptic is updated and then the operator can visualise the con-
gestion forecast for the desired horizons (both historical and
future). As can be seen from Figure 21, for the selected hori-
zon, the transformer connected between 1 − 2 is coloured as
red which signifies that CPtransformer must be greater than 0.9 for
the threshold percentage loading which is set as 40% of trans-
former rated capacity. While the branches are coloured as white
signifying that CPbranch of the branches must be less than 0.5 for
the threshold percentage loading which is set as 80% of branch
ampacity. It is important to highlight that these threshold lim-
its are chosen such that network congestion can be visualised
with the present limited amount of PV production at Sorea’s
site. However, the DSO can choose or vary these threshold
limits according to their network conditions as mentioned in
Section 2.

8 CONCLUSION

This paper presents a tool to assist the DSO to forecast the
congestion levels in their networks as per the preferences spec-
ified by the DSO. The tool is implemented using the proba-
bilistic power flow model which employs the backward-forward
sweep algorithm. The PV production forecast obtained by cap-
turing the fast movement of clouds and load forecast obtained
through an artificial neural network is provided as inputs to
the congestion forecast tool. The tool can present the cumu-
lative probability-based contour plots and colour-maps of the
network which visualise the network loading conditions for the
DSO and make it easy for the DSO to take necessary pre-
ventive or corrective actions. The tool has also incorporated
various important factors such as PV production and load

forecasts accuracy, load models, and PV-inverter operating
modes, which can impact the accuracy of network congestion
and their simulation results are presented in the paper. The
scalability of the proposed tool is studied by applying it to a
large size distribution system. The tool performs satisfactorily
in forecasting network congestion for various time-horizons
with acceptable calculation time and accuracy for a relatively
large network. The tool has been integrated via an IoT platform
Codex Smart Edge of Atos Worldgrid to be ready for market
exploitation for real-world applications. The tool will be used by
the DSOs to support their daily congestion management tasks
and better utilise their grids and thus reduce the need for expen-
sive network reinforcement. The electricity consumers will also
be benefitted from the tool as the distribution network will be
operated more securely and eventually incur lesser network con-
gestion costs.
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APPENDIX

The branches and transformer data for the part of Sorea’s sys-
tem are presented in Table A.1. The branches have different
lengths with the same per unit-length parameters. The branches’
ampacity and the transformer rating are also given.

TABLE A.1 Branches and transformer parameters for Sorea’s grid

Sl.

No.

Location Resistance

(m�)

Reactance

(m�)

Susceptance

(𝝁S)

Capacity

(kVA/Amp)

Transformer (LV-side)

1 1–2 3.0637 14.9269 - 250

Branches

2 2–3 9.4350 13.2418 0.1319 350

3 3–4 21.6376 30.3679 0.3026 350

4 4–5 23.2679 5.0894 0.1847 350

5 4–6 27.2495 4.4271 0 350

6 4–7 7.5420 4.1469 0.1150 350
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