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A B S T R A C T

The mobility of a Brownian particle diffusing in a micro-channel is heterogeneous and spatially dependent
on the surrounding hydrodynamic resistance fields. The positional asymmetry of such a diffusing particle
leads to anisotropies in the observed diffusive behavior. In this paper, we probe such directionally varying
diffusive behavior of a spherical nanoparticle diffusing at a location off-set from the centerline of a square
micro-channel in a quiescent fluid. This investigation is carried out over varying degrees of intermediate
hydrodynamic confinements. A coupled Langevin-immersed boundary method is used for these assessments.
We observe that the co-axial diffusivity may be slightly enhanced during off-axis hindered diffusion when
compared with a corresponding centerline diffusive behavior. We attribute this increased particle diffusivity
to a reduced co-axial fluid resistance through a hydrodynamic basis derived using steady-state CFD solutions to
the corresponding Stokes problem. For co-axial motion, the particle creates a recirculating flow pattern around
itself when moving along the centerline, whereas it drags along the fluid in between itself and the wall when in
close proximity to the latter. These contrasting flow behaviors are responsible for the unexpected enhancement
of the co-axial diffusivity for some off-axis positions under intermediate hydrodynamic confinements.
1. Introduction

The diffusion of Brownian particles in confined environments is
a well-explored problem (Happel and Brenner, 1983). An in-depth
understanding of the hindered transport of such nanoparticles can aid
in developing novel nanoengineering-based concepts for a wide range
of applications. Some typical examples include designing filters for the
entrapment of particulate matter (Kannan et al., 2019), evaluating the
performance of nano-electrofuels in redox flow batteries (Sokolov et al.,
2016), bio-engineering applications involving transport of magnetized
nano-particles in lab-on-a-chip devices (Derks et al., 2008), surface-
based biosensors (Squires et al., 2008) and targeted drug delivery using
functionalized nanocarriers (Ayyaswamy et al., 2013). In optimizing
these applications, the ability to predict the behavior of individual
nanoparticles in confined environments is of utmost importance. Such
predictions are challenging as the non-equilibrium thermal fluctuations
in the system render the relationship between the characteristics of the
particle (and its surrounding environment) and its observable behavior
stochastic. These challenges are further aggravated by the fact that
under tight confinements, the hydrodynamic effect on the particle from
the surrounding fluid changes nature — it is no longer a monotonous
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function of the particle–wall distance as the balance between parallel
and normal hydrodynamic resistances is shifted (Kannan et al., 2021).

It is well established that the mobility (defined as the ratio of the
particle terminal velocity to the hydrodynamic frictional force) of a
Brownian particle in a confined system is reduced in relation to the
free (or unbounded) diffusion case (MacKay and Mason, 1961; Bevan
and Prieve, 2000; Dufresne et al., 2000; Choi et al., 2007; Gentile
et al., 2015; Mo and Raizen, 2019). This effect is due to the increased
drag from the alteration of the hydrodynamic interaction between the
particle and the fluid due to external boundaries (Brenner, 1961).
Correspondingly, the mobility and (consequently) diffusivity of the
particle are functions of the position of the Brownian particle in relation
to the boundary walls, implying that the mobility is heterogeneous
and spatially dependent (Skaug et al., 2015). It follows that these
quantities can be corrected by a factor 𝜆 (also termed as the reduction
in mobility), which represents the extent of the deviation from the
analytical unbounded behavior (Brenner, 1961; Happel and Brenner,
1983; Bevan and Prieve, 2000; Dufresne et al., 2000; Kihm et al., 2004;
Choi et al., 2007), in order to accurately represent hindered diffusion.
vailable online 9 August 2021
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For a more detailed account of related hindered diffusion theories, the
reader is referred to the reviews by Deen (1987), Burada et al. (2009),
Radhakrishnan et al. (2019) and Mo and Raizen (2019) and to the
classical books by Happel and Brenner (1983) and Kim and Karrila
(1991).

Correspondingly, for a particle that is small in relation to the
bounding geometry, well-established rules of thumb indicate that the
hydrodynamic resistance to motion increases as the particle is posi-
tioned closer to the wall and that this effect is larger for wall-normal
motion than for parallel motion. However, it is noticeable in the
mobility data of Gubbiotti et al. (2019) that as the confinement
increases, the hydrodynamic effect for parallel motion will eventually
surpass wall-normal motion in the central region of a small duct,
as the minimum in the hydrodynamic influence on the wall-parallel
particle motion shifts from the centerline to an off-axis position. In a
recent paper Kannan et al. (2021), we identified a similar bias in the
hydrodynamic resistances along the co-axial and wall-normal directions
on a Brownian particle diffusing in a square micro-channel. We noted
that the former was greater than the latter for a particle diffusing co-
axially along the centerline of the micro-channel. Such effects have not
yet been fully understood or characterized previously. Consequently,
in this work, we analyze the impact of such tight confinements on the
Brownian motion of a spherical particle by further extending the range
of confinements and by focusing on the pure hydrodynamic effect of
confinement (without the action of any external field). Fully under-
standing this hydrodynamic bias is relevant when assessing Brownian
transport in micro-channels with nanoparticles that are not negligible
in size when compared with the channel width.

The existing body of work in this field mainly extends the hydro-
dynamic theories of Brenner and others (Brenner, 1961; Happel and
Brenner, 1983; Felderhof, 2005; Michaelides, 2016) for a spherical
Brownian particle moving co-axially in a cylindrical channel towards
off-axis diffusion. Mavrovouniotis and Brenner (1988) achieved this
by including an extra dispersion contribution (due to the positional
asymmetry) in addition to the direct hindered-diffusion effect of the
tube walls upon the mean co-axial diffusivity. Further, Dechadilok
and Deen (2006) presented an improved correlation based on the
off-axis hydrodynamic results of Higdon and Muldowney (1995) and
Mavrovouniotis and Brenner (1988). A hydrodynamic basis cannot be
derived from the expressions presented in that work (Dechadilok and
Deen, 2006) since all directional information is contained within a
single scalar expression for 𝜆, whereas 𝜆 is a function of both the posi-
tion and direction of motion of the particle. More recently, Uma et al.
(2011) used an iterative fluctuating hydrodynamics (FH) approach to
estimate the dependence of the co-axial and wall-normal estimates of
𝜆 as a function of the distance from the walls of a circular vessel
in a quiescent medium. Gubbiotti et al. (2019) used the dissipative
particle dynamics (DPD) framework (a kinetic-theory-based approach)
to construct a spatial mobility field for a Brownian particle diffusing in
a cylindrical channel.

While these recent efforts have in principle probed the anisotropy
in the hydrodynamic resistances, similar studies on hindered diffusion
in arbitrary geometries and under asymmetric conditions are scarce.
Moreover, the origin of the anisotropy in the hydrodynamic resistances
felt by a Brownian particle under confinement has not been adequately
probed. Thus, with this paper we aim at providing fresh insights
into such systems. We present the relevant hydrodynamic basis for
off-axis hindered diffusion in a square micro-channel under interme-
diate confinement (i.e. the particle size is non-negligible in relation to
the channel size while still smaller than the hydraulic diameter) for
small Reynolds numbers. We use a previously developed and validated
multiphase direct numerical simulation (DNS) technique, a Langevin-
immersed Boundary method or LaIBM (Kannan et al., 2019, 2021), to
probe the relevant hydrodynamic fields around the Brownian particle.
We evaluate the hindered diffusion initiated along the centerline (co-
2

axial) of the channel as well as at a location that is off-set from this
centerline (midway between the center and walls), under different
confinements or blockage ratios (𝐵 given as 𝑎∕𝑑𝑝, where 𝑎 is the side
f the square duct and 𝑑𝑝 the diameter of the spherical particle).
he obtained results are compared with continuum-resolved (steady-
tate) simulations for the single particle hydrodynamics using a settling
article in a channel. This is done in order to establish the necessary
ydrodynamic basis for the observed hindered diffusion phenomena at
igh resolutions.

. Methodology

We combine two separate computational frameworks for the cur-
ent analysis: LaIBM (for the hindered Brownian diffusion simulations)
nd steady-state CFD simulations (for in-depth analysis of the hy-
rodynamic fields). This is done in order to establish the relevant
ydrodynamic basis for hindered diffusion. These are both introduced
n the following.

.1. Langevin-immersed boundary method (LaIBM )

The LaIBM framework handles the particle in the Lagrangian frame
f reference and the fluid in the Eulerian one, respectively. The im-
ersed boundary method (IBM) (Peskin, 1982; Mittal and Iaccarino,
005) is used to couple these descriptions. In this method, the Navier–
tokes equations are discretized on a Cartesian grid and the presence
f the particle is modeled using boundary conditions or source terms.
urthermore, LaIBM utilizes a dynamic octree grid for the necessary
efinements (around the IB) and a second-order accurate mirroring
mmersed boundary method (Mark and van Wachem, 2008; Mark et al.,
011; Kannan et al., 2019, 2021) to implicitly impose the necessary
o-slip boundary condition at the IB surface. This unique and stable
econd-order accurate implicitly formulated immersed-boundary con-
ition (IBC) is central to the efficiency and accuracy of this framework.

The Eulerian (or continuum) description of the fluid around the
mmersed particle is given by the Navier–Stokes equations:

𝑓

( 𝜕𝒗
𝜕𝑡

+ 𝒗 ⋅ 𝛁𝒗
)

= −𝛁𝑃 + 𝜇𝑓𝛁2𝒗 + 𝑓𝑖,

𝛁 ⋅ 𝒗 = 0, (1)

here, 𝜌𝑓 , 𝜇𝑓 , 𝒗 and 𝑃 represent the fluid density, dynamic viscosity,
elocity and pressure, respectively. The term 𝑓𝑖 represents any external
ource term. This set of equations is solved together with an implicit
irichlet IB condition. A more detailed description of the method is
vailable in Mark and van Wachem (2008), Mark et al. (2011). The
luid force acting on the IB, 𝐅𝐈𝐁, is calculated by integrating the fluid
tresses over the surface of the IB as:

𝐈𝐁 = ∫𝐼𝐵
̄̄𝝈 ⋅ 𝐧𝑑𝑆 = ∫𝐼𝐵

[

−𝑃𝐧 + ̄̄𝝉 ⋅ 𝐧
]

𝑑𝑆

= ∫𝐼𝐵

[

−𝑃𝐧 +
(

𝜇𝑓 {𝛁𝒗 + (𝛁𝒗)𝑇 }
)

⋅ 𝐧
]

𝑑𝑆, (2)

here ̄̄𝝈 is the total fluid stress tensor, ̄̄𝝉 the shear stress tensor, and
denotes a surface with normal 𝐧. The corresponding torque, 𝐓𝐈𝐁, on

he IB with a position vector 𝐫 is calculated using:

𝐈𝐁 = ∫𝐼𝐵
𝐫 × 𝝈 ⋅ 𝐧𝑑𝑆. (3)

he particulate phase in the LaIBM framework is governed by the
agrangian Langevin equation of motion (Langevin, 1908; Uhlenbeck
nd Ornstein, 1930; Chandrasekhar, 1943; Ounis and Ahmadi, 1990b;
i and Ahmadi, 1992). This equation balances the macro-scale hy-
rodynamic drag on the particle with the molecular-scale Brownian
luctuations. For the hindered diffusion of a particle with mass 𝑚𝑝,
ranslational velocity 𝐮𝐩, angular velocity 𝝎𝒑 and moment of inertia
, the corresponding Langevin equation is described as:
d𝐮𝐩 = 𝐅 + 𝐅 , (4)
𝑝 d𝑡 𝐈𝐁 𝐁𝐫𝐨𝐰𝐧𝐢𝐚𝐧
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d𝑡
= 𝐓𝐈𝐁 − 𝝎𝒑 × 𝐉 ⋅ 𝝎𝒑. (5)

In Eqs. (4) and (5), note that the continuum resolved translational
(𝐅𝐈𝐁) and rotational (𝐓𝐈𝐁) hydrodynamic fields are directly used in the
Langevin equation, enforcing a direct coupling of the Eulerian solution
with the corresponding Langevin equation of motion. In the presence
of walls and/or other particles, the friction coefficient (𝛾𝐼𝐵 = 𝐅𝐈𝐁∕𝐮𝐩)
ecomes spatially dependent, which is thus inherently captured by the
urrent framework. We also note that accounting for the particle inertia
nd integrating the particle equation of motion using a mid-point rule
lgorithm (Newmark, 1959; Kannan et al., 2021) invalidates the need
or adding an artificial drift velocity to the Langevin equation, as may
therwise be needed for position-dependent friction (Grassia et al.,
995; Farago and Grønbech-Jensen, 2014).

The directional reduction in mobility, 𝝀, is required in the stochastic
orcing term 𝐅𝐁𝐫𝐨𝐰𝐧𝐢𝐚𝐧, and it is here estimated on-the-fly by normalizing

the magnitude of the hydrodynamic force on the confined Brownian
particle (𝐅𝐈𝐁) with the corresponding Stokes drag on the same particle
when diffusing in an unbounded domain. This is given as:

𝜆𝑖 =
‖FIB,1‖

𝛾‖up,i‖
. (6)

ere, the Stokes friction factor 𝛾 is defined for a fluid with the dynamic
iscosity 𝜇𝑓 as 𝛾 = 3𝜋𝜇𝑓𝑑𝑝, and 𝑑𝑝 is the particle diameter. The particle
esponse time in the unbounded limit, 𝜏𝑝, is used as the characteristic
ime scale, and it is given as:

𝜏𝑝 = 𝑚𝑝∕𝛾. (7)

he force 𝐅𝐁𝐫𝐨𝐰𝐧𝐢𝐚𝐧 represents the Brownian fluctuations in the particle
otion. In the case of a position-dependent friction (or, equivalently,
osition-dependent diffusion coefficient) as in the current work, this
ultiplicative noise term becomes a product of a state-dependent pre-

actor proportional to the square root of the diffusion coefficient and
state-independent Gaussian white noise function (Lau and Lubensky,
007). We thus model this force as (Uhlenbeck and Ornstein, 1930;
unis and Ahmadi, 1990a,b; Li and Ahmadi, 1992):

FBrownian,i(𝑡) = G𝑖

√

2𝛾𝜆𝑖𝑘𝐵𝑇
𝛥𝑡

. (8)

ere, 𝐆 is a vector of normally distributed independent random num-
ers of zero mean and unit variance (Gaussian distribution), 𝛥𝑡 is the
uration during which the Brownian force is active, 𝑘𝐵 is the Boltzmann
onstant, and 𝑇 is the absolute temperature. This Brownian force
roduces a diffusive behavior characterized by the spatially dependent
rownian diffusivity 𝐷𝑖, which is a function of the system configuration
nd reflects the total hydrodynamic interactions as perceived by the
article in the current location at the current time:

𝐷𝑖 =
𝐷∞
𝜆𝑖

=
𝑘𝐵𝑇
𝛾𝜆𝑖

, (9)

here 𝐷∞ = 𝑘𝐵𝑇 ∕𝛾 is the Stokes–Einstein (bulk) diffusivity (Brenner,
982; Mavrovouniotis and Brenner, 1988; Dechadilok and Deen, 2006).

The linear and angular momentum conservation equations (Eqs. (4)
nd (5)) are integrated using the Newmark time-marching scheme
ith the constant average acceleration method (mid-point rule ap-
roach) (Newmark, 1959) and a time step 𝛿𝑡 < 𝛥𝑡 < 𝜏𝑝. It is reasonable
o assume that changes to the system configuration are small on the
ime scale 𝜏𝑝 in typical hindered diffusion problems (Batchelor, 1976).
he use of a small time step 𝛿𝑡 ensures a small displacement and
hus a close correspondence between the spatial and temporal averages
f the friction coefficient along the interval that the particle passes,
hich in turn ensures convergence of the integration irrespective of

he interpretation of the stochastic integral (Lau and Lubensky, 2007).
e note however that the employed scheme is compliant with the

tô interpretation (Itô, 1973). The time step 𝛿𝑡 is also used in the
ntegration of Eq. (1).
3

c

In conclusion, the variation in the mean-squared displacement,
𝑆𝐷𝑖, of the particle over sufficiently long times (𝑡 ≫ 𝜏𝑝) should

eproduce the spatially-dependent diffusivity, given as:

𝑀𝑆𝐷𝑖 =
1
𝑁

𝑁
∑

𝑛=1

[

xp,i,n(𝑡 + 𝑑𝑡) − xp,i,n(𝑡)
]2 = 2𝐷𝑖𝑡, (10)

long the ith direction, where xp,i,n is the particle position in the
th observation among a total of 𝑁 observations, and 𝑑𝑡 is a time
nterval (to be specified in Section 4). This result is dependent on the
ondition that the total hydrodynamic force on the particle can be
btained from the resolved force 𝐹𝐼𝐵,𝑖 with the current hydrodynamic
nteraction effect obtained from Eq. (6) (Kannan et al., 2021). We use
n in-house multiphase flow solver IPS IBOFlow, that utilizes the
irroring immersed-boundary method to handle the moving particles

fficiently (Rundqvist et al., 2010; Göhl et al., 2018; Göhl et al., 2018;
ark et al., 2013; Johnson et al., 2015; Wettervik et al., 2015; Ingelsten

t al., 2019, 2020). An overview of the 𝐿𝑎𝐼𝐵𝑀 framework is shown
n Fig. 1. For more details on the framework, as well as a thorough
alidation, the reader is referred to our previous works (Kannan et al.,
019, 2021).

.2. Steady-state computational fluid dynamics (CFD)

In addition to the continuum-based multiphase DNS framework
𝑎𝐼𝐵𝑀 , we also use a conventional steady-state computational fluid
ynamics (CFD) framework to establish a hydrodynamic basis for the
esults presented in this paper. This framework is chosen so as to off-set
he computational requirements of the proposed DNS method, thereby
ermitting a wider configuration space. Consequently, the steady-state
avier–Stokes equations are discretized within a finite-volume frame-
ork (Versteeg and Malalasekera, 1995) and solved using the pseudo-

ransient pressure-based solver available in ANSYS Fluent 2019 R3,
ith second-order accurate spatial discretization schemes used for all

nvolved terms.

𝑓 (𝒗 ⋅ 𝛁𝒗) = −𝛁𝑃 + 𝜇𝑓𝛁2𝒗,

𝛁 ⋅ 𝒗 = 0. (11)

The particulate phase is defined as a fixed volume wherein the de-
ired velocity is prescribed. The resulting hydrodynamic fields around
his boundary region are utilized to extract the necessary hydrodynamic
ases.

. Numerical setup

The particle–fluid system studied in this paper is specified in Ta-
le 1. The hydrodynamic confinements are represented in terms of
blockage ratio, 𝐵, given as 𝑎∕𝑑𝑝 (where 𝑎 and 𝑑𝑝 are the channel
idth and particle diameter, respectively). The assessments are carried
ut using a single spherical Brownian nanoparticle with a diameter of
00 nm. Further, the longitudinal extent of all the domains used in
he diffusion simulations of this study is 20𝑑𝑝, with periodic conditions
mposed along this direction. This length is chosen to minimize any
nlet/outlet effects due to the applied boundary conditions on the
article motion. The corresponding domain, along with the axis of
rientation (x is the co-axial direction while y and z are the wall-
ormal directions), is shown in Fig. 2. The locations of the particle
n relation to the z-height of the micro-channel are also indicated in
his figure with the off-axis diffusion carried out at a location midway
etween the centerline and the wall. These simulations are done at
low particle Reynolds number (𝑅𝑒𝑝 = 𝑑𝑝𝑉 ∞

𝑟𝑚𝑠𝜌𝑓∕𝜇𝑓 = 3 ⋅ 10−3,
here the root mean square velocity 𝑉 ∞

𝑟𝑚𝑠 =
√

𝑘𝐵𝑇 ∕𝑚𝑝 = 1 ⋅ 10−4

m∕s is for an equivalent unbounded Brownian motion of a 400 nm
particle) and at a particle–fluid density ratio of 1000, with 𝑘𝐵 and 𝑇 the

oltzmann constant and temperature of the fluid, respectively. These
hoices are made to maintain the validity of the current form of the
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Fig. 1. Overview of the 𝐿𝑎𝐼𝐵𝑀 framework: the particle dynamics are handled on a Lagrangian basis while the surrounding fluid is resolved in an Eulerian framework. Note that
the Lagrangian basis utilizes the resolved fluid stresses on the particle (from the Eulerian solution) to compute/correct the particle mobility. This framework is two-way coupled.
Fig. 2. Examples of the simulation domain: diffusion in the vicinity of the centerline (at 𝑎∕2) inside a straight square micro-channel (left panel) and diffusion originating from
an off-axis position (at 𝑎∕4) inside a straight square micro-channel (right panel). The dimensions are in terms of the particle diameter (𝑑𝑝). Note that x is the co-axial direction,
while z is the wall-normal direction under study here. The corresponding x–y planes at different z positions are depicted in the square micro-channel schematics.
Table 1
Simulation details for the hindered diffusion cases (both centerline and
off-axis).

Domain details+ Square micro-channel

𝑎, ℎ = 4.6, 𝑙 = 20
Size (in 𝑑𝑝) 𝑎, ℎ = 3.3, 𝑙 = 20

𝑎, ℎ = 2.3, 𝑙 = 20

Simulation details

Spatial resolution, in cells/𝑑𝑝 96
Temporal resolution 𝛿𝑡, in 𝜏𝑝 1∕200
Total duration 𝑇 , in 𝜏∗𝑝 100

+𝑙 is the length, 𝑎 is the width and ℎ is the height.

Langevin equation (i.e. in Eq. (4) — unsteady effects such as history
and added mass forces are negligible). In the simulation setup presented
(in Table 1) we use the particle response time 𝜏𝑝 (see Eq. (7)) and the
particle diameter 𝑑𝑝 for non-dimensionalizing the temporal and spatial
details, respectively. Further, since we deal with nanoparticle motion,
gravitational acceleration is deemed negligible. These simulations are
carried out under varying degrees of hydrodynamic confinement, to
gauge the impact of particle blockage in the channel.

We use steady-state continuum computational fluid dynamics sim-
ulations of a constant-velocity spherical particle in a square micro-
channel to establish a hydrodynamic basis for the hindered diffusion
studies. In these studies, we investigate several different locations
along the z-height of the channel for the spherical particle, from
the centerline to a 𝑧-location close to the wall. Furthermore, we run
simulations at blockage ratios (𝐵) 4.6, 3.3 and 2.3, in order to span
4

the requisite degree of intermediate confinements needed to establish
a relevant hydrodynamic basis. The Reynolds number (based on the
hydrodynamic radius of the duct) is maintained at 1⋅10−3 (Stokes flow).
Mesh convergence is obtained by successively refining a base mesh in
regions of large gradients of velocity and pressure, until the total force
on the spherical particle does not change more than a factor 10−3 with
further refinements. The base mesh uses a resolution of 1∕10th of the
particle radius in the region occupied by the particle and 1∕20th of the
duct radius in the far-field, which yields approximately 650,000 cells.
The total number of cells after refinement varied with the geometrical
configuration, but was within the range 1.5–5 million. The length of the
cylindrical duct is 20 times its hydrodynamic radius, with the particle
positioned in the middle along this co-axial coordinate direction. No-
slip boundary conditions are enforced along the duct walls and free-slip
conditions at the far-field ends. Note that since the Stokes problem is
being solved, the corresponding convective contributions in Eq. (11)
are negligible.

4. Validation of the numerical methods

The performance of the 𝐿𝑎𝐼𝐵𝑀 framework has been thoroughly
validated in our earlier work (Kannan et al., 2019, 2021). Corre-
spondingly, the simulations are carried out at these predetermined
spatial and temporal resolutions. Further, the Brownian forcing (see
Eq. (8)) is updated in intervals of 𝛥𝑡 = 𝜏𝑝∕10 to allow for an ad-
equate resolution of the particle acceleration. We have used a pure
one-way coupled Langevin point-particle unbounded diffusion case to
establish the minimum criteria in terms of simulation duration and
time-averaging interval. Other details on the statistical variability in the
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Table 2
Validation of the steady-state CFD methodology against the analytical solution of

aberman and Sayre (1958), 𝜆𝐻𝑆1958, for co-axial motion of a particle along the
enterline of a cylindrical duct. Also listed are comparisons with the DPD results of
ubbiotti et al. (2019), 𝜆𝐺2019.
Blockage ratio 𝜆𝐻𝑆1958 𝜆𝐶𝐹𝐷 𝜆𝐺2019

20.00 1.12 1.12
4.87 1.71 1.70 1.63
4.00 1.98 1.96
2.87 2.87 2.86 2.68
2.00 5.87 5.84

modeled stochastic process are available in our previous work (Kannan
et al., 2019, 2021). The final criteria chosen (based on this prior work)
are a total simulation duration (𝑇 ) of 100𝜏𝑝 and an interval of 5𝜏𝑝 for
he MSD calculations. These simulation settings are further listed in
able 1.

The steady state CFD framework is validated by comparing its
erformance for cylindrical ducts to the analytical results of Haberman
nd Sayre (1958). This analytical result is given (in terms of 𝐵) as:

𝜆𝐻𝑆1958 =

(

1 − 0.75857𝐵−5)

(

1 − 2.1050𝐵−1 + 2.0865𝐵−3 − 1.7068𝐵−5 + 0.72603𝐵−6
) .

(12)

The reduction in particle mobility due to hydrodynamic confinement is
deduced from the CFD results as:

𝜆𝑖𝐶𝐹𝐷 = 𝐹 𝑖

𝐹 𝑖
𝑆𝑡𝑜𝑘𝑒𝑠

, (13)

where 𝐹 𝑖 and 𝐹 𝑖
𝑆𝑡𝑜𝑘𝑒𝑠 are the total drag forces on the particle along

he 𝑖th direction under confinement and when unbounded, respectively.
e have confirmed that we are able to reproduce the analytical results

f Haberman and Sayre (1958) (Eq. (12)) within ±1% in a cylindrical
duct with this approach for 𝐵 ranging from 20 to 2. These results are
presented in Table 2. Furthermore, the DPD results of Gubbiotti et al.
(2019) are also listed in this table to demonstrate the accuracy attained
in the steady-state CFD framework.

5. Results and discussion

In this paper we assess the off-axis hindered diffusion behavior of a
spherical nanoparticle diffusing under intermediate confinements in a
square micro-channel. These assessments are undertaken to character-
ize and probe the relevant hydrodynamic behavior of such Brownian
particles. Furthermore, a hydrodynamic basis is derived using steady-
state CFD simulations in order to support the observed trends. These
results are elaborated in the following.

5.1. Off-axis hindered diffusion under intermediate confinements

The diffusion of a Brownian particle at a location off-set from
the centerline of a square micro-channel is assessed under the con-
ditions specified in Table 1. These assessments are carried out at a
non-dimensional location (along the z-axis) given as:

𝑋∗ =
2𝑝𝑧 − 𝑎
𝑎 − 𝑑𝑝

, (14)

where, 𝑝𝑧 is the location (along the wall-normal z-direction) of the
particle between the center of the channel and the walls (i.e. at 𝑋∗ = 0
the particle is located on the centerline, while at 𝑋∗ = 1 the particle
touches the wall). Note that the non-dimensional locations listed in
Table 3 correspond with the initial off-axis position midway between
the centerline and the wall as shown in Fig. 2b.

Fig. 3 summarizes the off-axis hindered diffusion assessments done,
5

showing both the particle drift/displacements (in the top panel) and t
Table 3
Non-dimensional location 𝑋∗, which corresponds to
the off-axis position 𝑎∕4 in Fig. 2b, at which the
𝐿𝑎𝐼𝐵𝑀 assessments are carried out (for each chosen
blockage ratio).

Blockage ratio 𝑋∗

4.60 0.638
3.30 0.717
2.30 0.882

the resulting directional mean-squared-displacements (𝑀𝑆𝐷𝑖) that are
calculated using Eq. (10) (bottom panel). We represent the drift of
the particle in terms of a non-dimensional displacement (along the ith
direction from the particle origin) as:

𝑃 𝑖∗ = 𝑝𝑖∗ − 𝑝𝑖∗𝑜𝑟𝑖𝑔𝑖𝑛, (15)

where, 𝑝𝑖∗ is the non-dimensional particle location given as 𝑝𝑖∗ =
𝑝𝑖∕𝑑𝑝. The mean-squared displacements are non-dimensionalized by the
diffusional length scale for unbounded diffusion as:

𝑀𝑆𝐷𝑖∗ = 𝑀𝑆𝐷𝑖

𝐷∞𝜏∞𝑝
, (16)

here, 𝜏∞𝑝 is the response time of an unbounded Brownian particle.
ote that the wall-normal motion is represented by the z-coordinate as

he particle is off-set along this direction (y-symmetric).
Under these intermediate confinements, there is a noticeable dif-

erence in the mean drift of the Brownian particle across different
lockage ratios as well as for the centerline and off-axis positions.
he displacement of a freely diffusing Brownian particle (𝜆 = 1) is
lso shown in Fig. 3 to appreciate the overall effect from the con-
inement. It is evident that the Brownian particle under confinement
s displaced lesser than a corresponding unbounded particle. This is
xpected since the confinement increases the hydrodynamic resistance
n the Brownian particle leading to its net lower drift (owing to
he enhanced particle drag). There is, however, an interesting trend
oticeable when comparing diffusion along the centerline with the
orresponding off-axis cases listed in Table 3 (at 𝑎∕4), under such
ntermediate confinements. In the co-axial direction, we can notice
hat a Brownian particle diffusing in the off-axis region is displaced
ore than the corresponding centerline case. Along the wall-normal
irection, however, the opposite trend is observed with the Brown-
an particle in the off-axis cases being displaced significantly lesser
han their corresponding centerline counterparts. These trends are also
eflected in the reported 𝑀𝑆𝐷𝑖∗.

We further summarize these anisotropic trends in terms of the re-
pective directional diffusivities in the non-dimensional form
𝑖∕𝐷∞ in Table 4. The particle diffusivity is estimated after the linear
tokes–Einstein regime is attained in the directional mean-squared-
isplacements (𝑀𝑆𝐷𝑖). All 𝐷𝑖∕𝐷∞ values decrease with blockage 𝐵
i.e. going downwards along the columns of Table 4), whereas the cor-
esponding difference between the centerline and the off-axis positions
t the same 𝐵 is characterized by an increase in co-axial motion but
decrease in wall-normal motion (looking sideways along the rows of
able 4). This enhancement along the co-axial direction is also listed

n Table 4. The hydrodynamic basis for this observed counter-intuitive
rend is explained in terms of particle mobility enhancement below
sing the steady-state CFD framework.

.2. Mobility enhancement in the co-axial direction

The noted anisotropy in the diffusive behavior is explained using the
irectional reduction in mobility, 𝜆𝑖, of a non-Brownian spherical parti-
le moving under similar conditions (a quiescent fluid). The reduction
s deduced from the steady-state CFD simulations using Eq. (13). Owing

𝑖 𝑖
o the theoretical relationship between 𝐷 and 𝜆 (as shown in Eq. (9)),
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Fig. 3. Comparison of the centerline and off-axis hindered diffusion for a 400 nm Brownian particle under varying degrees of confinement (represented as the blockage ratios
(𝐵) 4.6, 3.3 and 2.3, respectively) along the co-axial (x) and wall-normal (z) directions. Top panel: the mean non-dimensional drift/displacement of the particle from the origin
(estimated as 𝑃 𝑖∗ = 𝑝𝑖∗ − 𝑝𝑖∗𝑜𝑟𝑖𝑔𝑖𝑛) over a 25 𝜏𝑝 period. Bottom panel: the non-dimensional directional MSDi* evaluated over 5𝜏𝑝 for a 100𝜏𝑝 period of motion. The purple solid lines
( ) represent the analytical non-dimensionalized Stokes–Einstein behavior for unbounded Brownian motion (Eq. (9)). The insets show the linear diffusive regimes attained
individually along each of these directions. Note the transition from a ballistic (𝑠𝑙𝑜𝑝𝑒 = 2) to a linear diffusive regime. All reported drifts are calculated using the same random
number sequence (𝐆).
Table 4
Anisotropy in the non-dimensional directional diffusivities of a 400 nm Brownian particle in the x (co-axial) and z (wall-
normal) directions after 5𝜏𝑝. Predictions of 𝐷𝑖∕𝐷∞ from LaIBM are compared with 1∕𝜆𝑖𝐶𝐹𝐷 , which is the mobility reduction
deduced from steady-state CFD simulations (non-Brownian). Notice the enhanced diffusivity (due to lower mobility reduction)
along the co-axial direction for the off-axis cases (at 𝑎∕4) in both scenarios. The results listed in this table are of the same
order of magnitude as those of Uma et al. (2011), Gentile et al. (2015) and Gubbiotti et al. (2019), that performed similar
assessments.

Blockage ratio Centerline Off-axis % enhancement

𝑥𝐿𝑎𝐼𝐵𝑀 𝑥𝐶𝐹𝐷 𝑧𝐿𝑎𝐼𝐵𝑀 𝑧𝐶𝐹𝐷 𝑥𝐿𝑎𝐼𝐵𝑀 𝑥𝐶𝐹𝐷 𝑧𝐿𝑎𝐼𝐵𝑀 𝑧𝐶𝐹𝐷 𝑥𝐿𝑎𝐼𝐵𝑀 𝑥𝐶𝐹𝐷

4.6 0.638 0.605 0.690 0.653 0.655 0.609 0.522 0.518 2.66% 0.72%
3.3 0.496 0.467 0.576 0.528 0.513 0.478 0.359 0.355 1.95% 2.34%
2.3 0.304 0.293 0.399 0.365 0.324 0.298 0.172 0.122 6.17% 1.76%

𝐷∞ is estimated from the corresponding unbounded Brownian diffusion simulations (𝜆 = 1).
the expected effect on the diffusivity (in the diffusion simulations) of
the Brownian particle can be directly estimated as:

𝐷𝑖

𝐷∞ = 1
𝜆𝑖𝐶𝐹𝐷

. (17)

Note that Eq. (17) is used to estimate the mobility reduction listed in
Table 4. We emphasize that the CFD results are valid at the off-axis
location 𝑎∕4 exactly, while the LaIBM results represent an averaged
behavior in the vicinity of this location due to the continuous motion
of the particle. We also note that this effect on the local diffusivity as
determined by LaIBM may vary with location in the channel, as the
spatial variation of the particle mobility is not uniform. To provide a
broader illustration of these mobility enhancement effects (along the
co-axial direction) from the CFD simulations, we also list the maximum
6

enhancement found and the corresponding location of these maxima
(in terms of 𝑋∗) in Table 5. In general, it is clear that a relatively
minor displacement towards the centerline from the off-axis location
(at 𝑎∕4) results in a noticeable increase in the enhancement of the
co-axial diffusivity, which may at least partly explain why the LaIBM
results (which depict a Brownian particle under continuous motion)
are higher than the corresponding CFD results (which depict a non-
Brownian particle) for two out of three blockage ratios in Table 4.
Moreover, as the diffusing particle in LaIBM is sampling the variations
in the particle mobility field in a region surrounding its initial location,
the influence of these variations on the estimated diffusivity will vary
with 𝐵. We furthermore stress that Table 5 does not necessarily reflect
the global maxima, but only the maximum enhancement found in the
locations probed in the CFD simulations.
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Fig. 4. Directional reduction in mobility, 𝜆𝑖, along the co-axial direction at the blockage ratios (𝐵) 4.6, 3.3 and 2.3, respectively, for the CFD simulations in a square micro-channel.
ere, 𝑋∗ is the non-dimensional z-location of the particle between the center of the channel and the walls. The inset shows the comparison between the DPD data of Gubbiotti
t al. (2019) and our steady state CFD results in a cylindrical channel. Also plotted are the mean 𝜆𝑖, extracted from the particle mean-squared behavior in the 𝐿𝑎𝐼𝐵𝑀 framework
ith an error bar indicating the span of 𝑋∗ visited by the particle in the simulation. Note the minimum in 𝜆𝑖 as the particle is shifted off-axis.
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Table 5
Maximum % enhancements in the co-axial mobility and their corre-
sponding positions when moving from a position on the centerline to
an off-center position as obtained from the steady-state CFD analyses.

Blockage ratio % enhancement 𝑋∗
𝑚𝑎𝑥

4.60 1.38% 0.436
3.30 2.52% 0.428
2.87 2.92% 0.423
2.30 5.19% 0.823

Overall we find that, as 𝐵 decreases (i.e. the degree of confinement
increases), the corresponding 𝜆𝑖 along the co-axial direction reduces to

minimum value as the particle is shifted off-axis, before increasing
gain. This trend in 𝜆𝑖 is plotted in Fig. 4. We also note that the
xistence of a minimum is in agreement with the data presented by
ubbiotti et al. (2019) (see Table 5 and the inset in Fig. 4). The
oted enhancement along the co-axial direction is small enough to
ossibly be due to numerical uncertainties, however there could also
e a hydrodynamic basis for the observed behavior. A strong argument
or the latter hypothesis is that this trend is noticeable in both our
aIBM and steady-state CFD results for the square duct, as well as in
he DPD results of Gubbiotti et al. (2019) and our steady-state CFD
esults for a cylindrical duct — i.e. that the effect is observed in three
ndependent frameworks and in two different geometries. Moreover,
s this phenomenon is absent in the limits of 𝐵 → ∞ (point particle)
nd 𝐵 → 0 (particle touching the walls), it is also clear that it can
nly exist in some range of intermediate values of 𝐵, thus making it
ore difficult to observe by chance. Furthermore, since a Brownian
7

m

particle does not remain at an exact location as in the steady state
(non-Brownian) simulations, slight differences in the particle mobility
are expected. Despite these differences, the underlying hydrodynamic
basis is still reflected in a continuum multiphase DNS approach (such
as the LaIBM) as the hydrodynamic fields around the particle are
resolved to a reasonable degree of accuracy. Correspondingly, the mean
𝜆𝑖, extracted from the particle mean-squared behavior as the inverse
of the values listed in Table 4, is plotted in Fig. 4 as well (with
an error bar indicating the span of 𝑋∗ visited by the particle). This
comparison further confirms that the obtained particle mobilities are in
agreement with the established hydrodynamic bases (under the period
of observation). Furthermore, the steady-state CFD results are more
closer to the analytical solution of Haberman and Sayre (1958) than the
DPD results of Gubbiotti et al. (2019) (as shown in Table 2), which may
be due to that the DPD approach exhibits a finite slip even at no-slip
walls. Despite these differences, the appearance of the minima in both
the results of Gubbiotti et al. (2019) and our steady CFD simulations,
increases the plausibility of the described hydrodynamic basis.

Furthermore, it can be noted in Table 4 that the wall-normal diffu-
sivity is somewhat overpredicted with LaIBM in comparison to the CFD
esults, particularly at the lowest value of 𝐵. A sphere traveling parallel
o a wall may experience a lateral force attempting to move the particle
ither towards or away from the wall (Cox and Hsu, 1977; Takemura,
004). In the simulations performed here, the Reynolds number is small
nd these effects are therefore also small: in the steady CFD simulations,
he lateral force is three to four orders of magnitude smaller than the
orce in the direction of motion of the particle when the particle is

oving parallel to the wall. Experiments on particles settling parallel
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Fig. 5. Left panel: Re-circulation zones around a particle located at centerline and off-center positions. Contours of normalized co-axial fluid velocity (𝑉 ∗ = 𝑉
𝑉𝑝

) overlaid with
flow vectors along the same direction (from the steady-state CFD simulations) in an x–z plane at 6.5𝑑𝑝 < 𝑥 < 13.5𝑑𝑝 (i.e. a 6 𝑑𝑝 co-axial span around the particle), 𝑦 = 𝑤∕2 and
0 < 𝑧 < 𝑎. This normalization is done for a simplified visualization of the hydrodynamic zones. Right panel: 𝑉 ∗ over a line passing through the center of the particle (i.e. 𝑥 = 𝑙∕2,
𝑦 = 𝑤∕2 and 0 < 𝑧 < 𝑎) plotted as a function of the non-dimensional distance 𝑟∗ = 𝑟−𝑟(0)

𝑟𝑝
(𝑟∗ = 0 and 𝑟∗ = 1 represent the location of the walls along the z-direction) at 𝐵 = 4.6.

Note the lack of a flow reversal in the region between the particle and the wall in the off-axis configuration.
to walls at Re = 0.18 show that the lateral migration velocity is less
than 1% of the sedimentation velocity (Takemura, 2004). However, as
LaIBM fully resolves the flow around the particles, the effects of lateral
forces are inherently accounted for. Since the effect of lateral migration
would be most pronounced at the lowest value of 𝐵, it is possible that
a part of the discrepancy observed in Table 4 could be due to lateral
forces.

5.3. A hydrodynamic basis for the anisotropy

In the limit of high values of 𝐵 (not shown in this paper), the
particle is small in relation to the duct and interacts with the walls only
in its closest proximity. It is in this situation that 𝜆𝑖 is a monotonous
function of the particle–wall distance, with the wall-normal interac-
tions dominant over corresponding co-axial ones (as shown by Brenner
(1961)). However, as the confinement becomes more pronounced, the
walls around the entire duct perimeter start to influence the flow field
around the particle, implying that friction along all wall-bounded sides
contribute to the overall 𝜆𝑖. More specifically, the co-axial motion of
the particle necessitates that the fluid in its path is displaced in a
recirculating motion where it fills the region between the particle and
the confining walls due to continuity (see Fig. 5). These flows are
symmetric on the centerline and asymmetric for off-axis positions.

The cross-sectional area available for the displaced fluid to pass the
particle is independent of the particle position (in relation to the walls
closest to it), but the resistance to this flow varies with the geometrical
configuration. As the particle comes in close proximity to the wall,
there is no longer room for a re-circulation pattern to develop in the
narrow slit between the particle and the wall. The flow field asymmetry
is therefore significantly enhanced as the flow reversal between the
particle and the wall dies out and the sphere, instead, drags along the
fluid in this narrow region. This lack of flow-reversal in between the
particle and the wall is evident in the right panel of Fig. 5, which shows
the normalized co-axial fluid velocity over a line passing a through the
8

center of the particle across a centerline and off-axis motion at 𝐵 = 4.6.
Moving the particle off the centerline towards a wall increases the
effective hydraulic diameter of the cross-section available for the flow
without affecting the total flow rate, thus contributing to a lowering
of the overall resistance. At the same time, the velocity gradient at the
particle surface in the region between the particle and the wall goes to
infinity as the particle–wall distance reduces, eventually causing a steep
increase in the hydrodynamic resistance associated with the co-axial
motion at small particle–wall separations. However, before that, the
change of direction in the fluid motion within the narrow slit between
the particle and the wall gives rise to the noticed minimum in 𝜆𝑖.

Further, as 𝐵 decreases, the particle fills up a larger portion of the
channel cross-section and thus creates a relatively larger fluid displace-
ment as it moves, leading to an increase in the overall hydrodynamic
resistance. An increase in the effective hydraulic diameter, as obtained
by moving the particle away from the centerline, therefore becomes
more influential on the resistance, while at the same time shifting the
location of minimal co-axial resistance further towards the wall as 𝐵
decreases (see Fig. 4). The wall-normal motion, on the other hand, does
not exhibit such a fundamental change of regimes, as the fluid in the
region between the particle and the wall always has to be squeezed
out irrespective of the wall–particle distance. Thus, these trends in the
hydrodynamic resistances are responsible for the unexpected increase
in co-axial diffusivity noted in the off-axis hindered diffusion of the
Brownian particle.

This possibility for the existence of a minimum in the spatially
varying friction can perhaps be even better understood by qualitative
analysis of a simplified problem, as illustrated in Fig. 6. Here, we visu-
alize the Stokes flow solutions to two similar flow problems formulated
for the geometry of a square duct, intersected by a cylinder that is
aligned with the main flow direction. The flow is either driven by a
pressure gradient or by imposing a constant velocity on the cylinder
wall. We then observe the different solutions depending on whether
the cylinder is situated on the centerline or placed eccentrically. In
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Fig. 6. Stokes flow solutions for fully developed flow in a square duct with a cylinder inside at 𝐵 = 2. Column A: pressure-driven flow. Column B: drag-induced flow. Row I:
cylinder placed on the centerline. Row II: cylinder placed eccentrically. The contours depict velocity magnitude in a plane perpendicular to the main flow direction, normalized
by the maximum velocity. In this example, the force on the cylinder is higher in A-I than in A-II for the same pressure gradient, whereas it is higher in B-II than in B-I for the
same velocity.
line with the above discussion for our case with the spherical particle,
we observe that for the drag-induced flow cases (column B in Fig. 6),
the force on the cylinder increases as the cylinder is brought closer
to the wall. Conversely, the force on the cylinder decreases for the
pressure-driven flow cases (column A in Fig. 6) when the cylinder is
put closer to the wall. Moreover, the increase is more significant for
the drag-induced flow cases than the decrease is for the pressure-driven
cases. The explanation for this observation lies in the fact that once the
cylinder is placed far enough away from the centerline in the pressure-
driven flow, moving it further away has little influence — the main part
of the flow already goes through the larger unaffected region below. For
the drag-induced flow, however, the cylinder must always drag along
the flow in between itself and the nearest wall, leading to an extreme
increase in the required force at small cylinder-wall separation.

As the Stokes equations are linear, it is possible to add different
solutions together to obtain new solutions to the same equations. More
specifically, a linear combination of the pressure-driven and drag-
induced flows will resemble the flow observed over the line passing
through the center of the spherical particle in Fig. 5. It then follows
naturally that such a linear combination of opposing mechanisms (of
either increasing or decreasing the force on the particle as it is placed
closer to the wall), together with the fact that these mechanisms differ
in their dependence on the radial position of the particle, is enough to
explain the appearance of a minimum in the force at some intermediate
off-axis position. In other words, it is the backflow of fluid created by
the motion of the particle that produces this minimum.

5.4. Implications for simulations of Brownian motion at intermediate con-
finements

The existence of an enhancement effect on the Brownian motion (of
a spherical particle in a micro-channel) at intermediate confinements
has several important implications for simulations of such phenomena
at varying levels of abstraction. For example, the application of wall
corrections to the hydrodynamics in non-interface resolving methods
9

must be done with great care, as these are generally derived in the
𝐵 → ∞ limit where enhancement effects are not present. It is also
still an open question as to how this enhancement effect may change
due to the presence of other Brownian particles or in a pressure-
driven flow through the channel. Further, one must expect that the
delicate balance between hydrodynamic effects, thermal fluctuations
and additional external fields not accounted for here (e.g. van der
Waals-interactions or electrostatic double-layer interactions) can be
very sensitive to the exact geometrical configuration in the near-wall
region of narrow channels, indicating that failure to correctly account
for the true hydrodynamic environment around the Brownian particle
will lead to erroneous predictions of the extent of particle–wall inter-
action. Such facets are very relevant in several reactive or biological
systems. In conclusion, these facts point to the importance of probing
Brownian motion at intermediate confinements with a numerical sim-
ulation model that can leverage the local hydrodynamic environment
on-the-fly to dictate the ensuing diffusion.

6. Conclusions

In this paper, we evaluate the off-axis diffusion of a spherical
Brownian particle in a square micro-channel, under intermediate hy-
drodynamic confinements (i.e. the particle size is non-negligible in
relation to the channel size while still not touching the walls). We
show that, under these conditions, the co-axial diffusivity of a particle
diffusing off-axis may be enhanced when compared with a corre-
sponding centerline diffusion. This effect is augmented as the particle
confinement increases. We attribute this increased particle diffusivity
to a reduced co-axial fluid resistance when the particle is displaced
off-center, through a hydrodynamic basis derived using steady-state
CFD simulations of a spherical particle moving in a channel. More
specifically, the direction of fluid motion in the narrow region between
the particle and the wall changes with the particle–wall distance at
low blockages 𝐵 (where 𝐵 = 𝑎∕𝑑𝑝, 𝑎 is the side of the duct and
𝑑𝑝 is the particle diameter), creating a position of minimum hydro-
dynamic resistance for co-axial motion at an off-axis location (which
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in turn is a function of 𝐵). Such a minimum was noted in both our
oupled continuum mechanics-Langevin multiphase DNS (𝐿𝑎𝐼𝐵𝑀) and
teady-state CFD results, as well as in the results reported in literature
the dissipative particle dynamics (DPD) results of Gubbiotti et al.
2019)). Thus, the noted enhancement along the co-axial direction for
ff-axis hindered diffusion – although small enough to blend-in with
umerical uncertainties at a coarser resolution – does seem to have
firm hydrodynamic basis. Consequently, we demonstrate how the
𝑎𝐼𝐵𝑀 framework, which incorporates the instantaneous hydrody-
amics into the Langevin equation of motion, can be used to probe such
nisotropies in hindered diffusion phenomena. These inferences open
p new avenues for advanced functional material design, where the
omplex influence of nano-structured system boundaries on the Brow-
ian behavior of nanoparticles can be probed and optimized in silico.
large number of applications in rapidly emerging nano-engineering

ields would significantly benefit from such capabilities.
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