
Probabilistic Random Forest improves bioactivity predictions close to the
classification threshold by taking into account experimental uncertainty

Downloaded from: https://research.chalmers.se, 2025-06-18 03:35 UTC

Citation for the original published paper (version of record):
Mervin, L., Trapotsi, M., Afzal, A. et al (2021). Probabilistic Random Forest improves bioactivity
predictions close to the classification
threshold by taking into account experimental uncertainty. Journal of Cheminformatics, 13(1).
http://dx.doi.org/10.1186/s13321-021-00539-7

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Mervin et al. J Cheminform           (2021) 13:62  
https://doi.org/10.1186/s13321-021-00539-7

RESEARCH ARTICLE

Probabilistic Random Forest improves 
bioactivity predictions close to the classification 
threshold by taking into account experimental 
uncertainty
Lewis H. Mervin1*† , Maria‑Anna Trapotsi2†, Avid M. Afzal3, Ian P. Barrett3, Andreas Bender2 and Ola Engkvist4,5 

Abstract 

Measurements of protein–ligand interactions have reproducibility limits due to experimental errors. Any model based 
on such assays will consequentially have such unavoidable errors influencing their performance which should ideally 
be factored into modelling and output predictions, such as the actual standard deviation of experimental measure‑
ments (σ) or the associated comparability of activity values between the aggregated heterogenous activity units 
(i.e.,  Ki versus  IC50 values) during dataset assimilation. However, experimental errors are usually a neglected aspect 
of model generation. In order to improve upon the current state‑of‑the‑art, we herein present a novel approach 
toward predicting protein–ligand interactions using a Probabilistic Random Forest (PRF) classifier. The PRF algorithm 
was applied toward in silico protein target prediction across ~ 550 tasks from ChEMBL and PubChem. Predictions 
were evaluated by taking into account various scenarios of experimental standard deviations in both training and 
test sets and performance was assessed using fivefold stratified shuffled splits for validation. The largest benefit in 
incorporating the experimental deviation in PRF was observed for data points close to the binary threshold bound‑
ary, when such information was not considered in any way in the original RF algorithm. For example, in cases when 
σ ranged between 0.4–0.6 log units and when ideal probability estimates between 0.4–0.6, the PRF outperformed RF 
with a median absolute error margin of ~ 17%. In comparison, the baseline RF outperformed PRF for cases with high 
confidence to belong to the active class (far from the binary decision threshold), although the RF models gave errors 
smaller than the experimental uncertainty, which could indicate that they were overtrained and/or over-confident. 
Finally, the PRF models trained with putative inactives decreased the performance compared to PRF models without 
putative inactives and this could be because putative inactives were not assigned an experimental  pXC50 value, and 
therefore they were considered inactives with a low uncertainty (which in practice might not be true). In conclusion, 
PRF can be useful for target prediction models in particular for data where class boundaries overlap with the measure‑
ment uncertainty, and where a substantial part of the training data is located close to the classification threshold.
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Introduction
The application of Machine Learning (ML) and Artifi-
cial Intelligence (AI) to the drug development process 
has increased in recent years [1–3], but the majority of 
research toward small molecule property prediction itself 
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has predominantly focused on improving the reported 
accuracy of base algorithms, rather than factoring the 
experimental error into predictions [4]. Currently, uncer-
tainty estimation as a field is gaining traction due to the 
application of predictive models toward autonomous 
decision making within the design-make-test-analyse 
(DMTA) cycle [5, 6]. Various methodologies have been 
developed and applied in molecular property prediction 
models to account for the uncertainty in prediction and/
or reliability of prediction [7]. The conformal, calibra-
tion and Bayesian procedures, shown in Table  1, have 
historically focused on the behavioural characteristics of 
the base estimator itself (or variants thereof ) after initial 
data processing, and so provide limited consideration 
toward the true uncertainty in the underlying biologi-
cal data used to train the algorithm. In reality, the maxi-
mum achievable accuracy of in silico models depends on 
the quality of the experimental data (i.e. when models 
approximate experimental error) [8].

Since experimental error influences dataset generation 
and performance, it is important to investigate methods 
capable of accommodating experimental variability dur-
ing training. This is particularly important for binary 
classification tasks due to imposing arbitrary cut-off(s) 
to the activity scale. Such architectures are frequently 
applied toward biological tasks with poor regression 
predictivity, as is the case for in silico target prediction 
approaches, where binding probabilities for orphan com-
pounds are calculated at one or more activity thresholds 
[9–12]. Structure activity relationship (SAR) landscapes 
are highly discontinuous (e.g., presence of activity cliffs) 
and  IC50/EC50/Ki/Kd activities are often heteroscedas-
tic (i.e., the measurement error is unequally distributed 
across the range of activity values) so regression is not 
favourable for in silico target prediction. The main caveat 
of binary classification approaches is that they weight 
minority cases close to the threshold boundary equiva-
lently in distinguishing between activity classes. For 
example,  pXC50 activity values of 5.1 or 4.9 are treated 
equally important in contributing to the opposing activ-
ity (e.g., classification threshold of 5), even though 
experimental error may not afford such discriminatory 
accuracy. This is detrimental in practice and therefore it 
is equally important to evaluate the presence of experi-
mental error in databases and apply methodologies to 
account for variability in experiments.

One potential option to remove uncertainty near the 
classification threshold is the removal of edge cases (i.e., 
classification marginals), for compounds with activity or 
property values close to the cut-off value used for clas-
sification. This however results in the removal of valu-
able minority class instances (compounds belonging to 
the active label) and is likely to hinder the predictivity or 

applicability of models. For this reason, the removal of 
“edge cases” of highly imbalanced datasets is not com-
mon practice within the field [13] and is considered out-
side the scope of this work.

Firstly, in order to better understand the deviation of 
activity values across the different protein targets to be 
modelled, one must first explore the experimental vari-
ability of bioactivity data in chemogenomic repositories. 
One such study of public bioactivity data was performed 
by Kramer et al. [14] who analyzed the biological activity 
data deposited in ChEMBL [15] (version 12) for repro-
ducibility (i.e., the experimental uncertainty of independ-
ent measurements). The experimental uncertainty was 
estimated to yield a mean error of 0.44  pKi units, a stand-
ard deviation of 0.54  pKi units, and a median error of 0.34 
 pKi units. The maximum possible squared Pearson cor-
relation coefficient  (R2) on large data sets was estimated 
to be 0.81. Further, the heterogenous use of public bio-
chemical  IC50 data was shown to be problematic, because 
they are assay specific and comparable only under certain 
conditions [16]. This phenomenon is particularly relevant 
for large scale datasets used in target prediction, since it 
is not feasible to check each data entry manually and it 
is commonplace to mix available  IC50 values from pub-
lic databases even if assay information is not reported. 
In a similar manner, Kalliokoski et al. [16], analyzed the 
types of errors, redundancy and variability in ChEMBL. 
 IC50 variability was assessed comparing all pairs of inde-
pendent  IC50 measurements on identical protein–ligand 
systems. The standard deviation of  pIC50 data (equal to 
0.68) was only 25% larger than the standard deviation 
of  Ki data, suggesting that mixing  IC50 data from differ-
ent assays without knowledge of assay conditions adds a 
moderate amount of noise to the overall data. The stand-
ard deviation of public ChEMBL  IC50 data, as expected, 
resulted greater than the standard deviation of in-house 
intra-laboratory/inter-day  IC50 data, which showed a 
standard deviation of  pIC50 values equal to 0.22 and 0.17 
for two different drug-target combinations. Augmenting 
mixed public  IC50 data by public  Ki data was not found 
to deteriorate the quality of the mixed  IC50 data, if the 
 Ki is corrected by an offset. For the ChEMBL database, a 
 Ki-IC50 conversion factor of 2 was suggested.

Another study reported a median discordance (margin 
between  pXC50 values) of 0.48 between laboratory meas-
urements for proteins within the same organism, and 
0.42 after discriminating between assay type [17]. Fur-
ther aggregation of bioactivities observed in human and 
related (orthologue) biological systems (a common prac-
tice during data assimilation to increase data quantity 
[18, 19]), also increased the median standard deviation to 
0.51, respectively. Experimental variability is also preva-
lent for other biological endpoints. One study explored 
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the experimental uncertainty of cytotoxicity data from 
ChEMBL and calculated that the maximum achievable 
Pearson correlation coefficient of in-silico models trained 
on cytotoxicity data from different laboratories ranged 
between 0.51–0.85, which is considerably different to a 
1.0 coefficient corresponding to perfect reproducibil-
ity [20]. Experimental error has also been analysed for 
proprietary datasets, where a recent AstraZeneca study 
focused on a systematic evaluation of biological assay 
variability of all biological assays between 2005 and 2014 
[21]. The authors found less than a two-fold difference in 
the average experimental uncertainty, where  EC50 and 
 IC50 measurements tend to have lower standard devia-
tions (with a standard deviation above 0.5), compared to 
 Kd and  Ki measurements. Novartis analysed randomly 
picked (repeatedly measured) samples of typical assay 
endpoints over several years, and calculated a standard 
 pIC50 deviation of ~ 0.2 log units [16]. Hence, experimen-
tal error is also observed within the same laboratories.

Another factor affecting the deviation of results in bio-
activity data is the inconsistent mining and preparation 
of data for structure–activity modelling. For example, 
Fourches, et  al. [22] emphasised the need for standard-
ised chemical data curation strategies (e.g. curation of 
chemical structures and biological data) that should be 
followed at the onset of any molecular modelling investi-
gation to avoid discrepancies. Another study highlighted 
the importance of data selection and extraction, and pro-
posed the combined application of various query param-
eters available to any user of the ChEMBL database and 
other selection criteria (such as common compound 
promiscuity) to harmonize data retrieval [23]. Moreover, 
discrepancies between bioactivity data in public data-
bases could arise from errors in the data curation and 
Tiikkainen, et  al. [24] raised awareness on the frequen-
cies and types of errors in bioactivity data. Error rates 
for three large bioactivity databases, namely ChEMBL 
(version 14), Liceptor (version 2012_03) and WOMBAT 
(version 2012.01) were calculated. The authors observed 
that the ligand structures showed the highest probability 
of being discrepant followed by the protein target, activ-
ity value, and finally the activity type. Errors in activity 
values mainly arose due to unit conversion issues (e.g., 
micromolar affinities curated as nanomolar) and the 
activity type (e.g.,  IC50,  Ki, etc.) are usually clearly stated 
in the source articles. Hence, curation-related errors 
increase the possibilities of non-systematic error in pub-
lic bioactivity datasets and consequently increase uncer-
tainty for ligand-target annotations. The possibility of 
experimental annotation error should also be accounted 
for during modelling.

Given the above studies, one can expect a large vari-
ation in the range of observed standard deviations 

between experiments, which should be considered when 
assimilating a training set dependent on the measure-
ment units and method of aggregation across heterog-
enous assays. However, there are relatively few previous 
studies that have framed experimental uncertainty as the 
natural upper limit of the predictive performance possi-
ble, closely monitoring when the maximal performance 
of a model has been reached [25, 26]. For example, an 
analysis by Brown, Muchmore and Hajduk [25] explored 
the influence of assay and prediction errors in predic-
tive modelling for drug discovery. The authors calculated 
the upper performance limit of a model (i.e. correla-
tion between experimental and predicted value), which 
is likely to be ~ 80%, given a standard deviation of ~ 0.3 
and the dataset comprised a potency range of only 2 log 
units. The authors suggested levels of toleration based on 
the requirements of a particular model application. For 
example, an upper limit of five standard deviations in pre-
diction errors was suggested for prioritising compounds 
for HTS, versus an upper limit of one standard deviation 
for lead optimisation models to ensure a degree of “dis-
covery productivity”. Another study took into account the 
uncertainty in bioactivity data in a systematic analysis of 
the effect of random experimental errors in the predictive 
ability of QSAR models. The analysis aimed to evaluate 
the influence of experimental variability in target pre-
diction models by simulating experimental error on 12 
Machine Learning algorithms in bioactivity modelling 
using 12 diverse data sets (15,840 models in total) from 
ChEMBL (version 19) [27]. Noise was artificially defined 
(which may not reflect real-world situations, where sys-
tematic differences between labs etc. exist) by sampling 
a Gaussian distribution with zero mean and a variance 
value (defined as a function of the range of bioactivities 
considered in each data set). Model performance on the 
test set was used as a proxy to monitor the relative noise 
sensitivity of these algorithms as function of the level 
of noise added to the bioactivities from the training set. 
Overall, Gradient Boosting Machines (GBMs) showed a 
low tolerance to noisy bioactivities although its perfor-
mance was comparable to RF, Support Vector Machines 
(SVM) and Gaussian Process (GP) for low noise levels. 
The other algorithms showed comparable noise toler-
ance and a linear decrease of model performance by 
increasing the level of noise. Therefore, the presence of 
error in the training data affected the performance of 
all the algorithms tested and hence should be taken into 
consideration.

A different approach to account for experimental 
uncertainty is to explore methodologies that are able to 
deal with experimental variability. One such method is 
the Bayesian developed “sum-of-trees” model (BART) 
[28], where each tree is constrained by a regularization 
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prior to be a weak learner, and fitting and inference 
are accomplished via an iterative Bayesian backfitting 
MCMC algorithm that generates samples from a pos-
terior. Effectively, BART is a nonparametric Bayesian 
regression approach using dimensionally adaptive ran-
dom basis elements. Motivated by ensemble methods 
and boosting algorithms in particular, BART is defined 
by a statistical model using a prior and a likelihood. This 
approach enables posterior inference including point or 
interval estimates of the unknown regression function 
as well as the marginal effects of potential predictors. 
Although this algorithm presents an interesting com-
parison, MCMC is slow to perform on larger datasets (as 
in the case of the many millions of inactive bioactivities 
held in repositories such as PubChem [29]). Another, 
more computationally efficient option is the probabilistic 
random forest (PRF) [30], which is a modification of the 
long-established Random Forest (RF) algorithm, which 
can take into account uncertainties in the measurements 
(i.e., features) as well as in the assigned classes (i.e., activ-
ity labels). It is an algorithm recently released for dealing 
with noisy astronomical data and the scope of this paper 
is to use this novel methodology for target prediction [30, 
31].

We present an approach to utilize the standard devia-
tion of experimental measurements of bioactivity data 
from the ChEMBL and PubChem repositories, by using 
the PRF algorithm. The workflow employed in this analy-
sis can be divided into three main steps (see Fig. 1). Step 
1 is the extraction of bioactivity data from ChEMBL and 
PubChem databases. Step 2 is the training of models with 
two different types of algorithms. The first is the classic 
Random Forest (RF) and the second a modified version 

of the original RF, namely the Probabilistic Random For-
est (PRF), which is able to take into account uncertain-
ties in assigned classes (i.e., y-labels). The main difference 
between the two algorithms is that RF uses discrete vari-
ables for the activity label (y-label), which is defined by 
applying a bioactivity threshold in the bioactivity data for 
each target modelled. On the other hand, PRF algorithm 
treats the labels as probability distribution functions, 
rather than deterministic quantities (and we refer to as 
“ideal y-label”). We train multiple PRF models where we 
inject different types of noise into bioactivity data. Finally, 
Step 3 of this work includes the comparison between the 
probabilities returned from RF and PRF algorithms. With 
this approach, we present, to our knowledge, for the first 
time an application of probabilistic modelling of activity 
data for target prediction using a novel algorithm, which 
is a modification of the well-established RF algorithm.

Methods
Bioactivity data set
The ChEMBL (version 27) database [32] was filtered 
for compounds with a reported pChEMBL (normal-
ized −  log10) activity value from ‘binding’  (IC50/EC50/Ki/
Kd) human protein assays. Confidence scores of 5 and 8 
were employed for the reproducibility comparison when 
activity values were aggregated at protein complexes or 
for specific individual proteins, respectively. Compounds 
were subsequently filtered for a confidence score of 8 
for modelling purposes. Targets were also subsequently 
filtered for greater or equal to 50 active compounds 
across the activity thresholds for the pChEMBL activ-
ity bins 5, 6 and 7 (corresponding to activity values 10, 1 
and 0.1  μM) to ensure that only proteins encompassing 

Step 1:
Extraction of
Bioactivity
data from

ChEMBL and
PubChem

Bioactivity threshold to
define y-label for active
and inactive compounds

Use cumulative
distribution to define ideal

y-label by taking into
account uncertainty
around the bioactivity

threshold

Train
Probabilistic
Random
Forest

models with
ideal y-label

RF
probabilities

PRF
probabilities

Step 3: Compare
RF and PRF
probabilities

Step 2

Train Random
Forest models
with y-label

Fig. 1 Summary of the analysis performed in this work. Random Forest and Probabilistic Random Forest are used to train models and their output 
probabilities are compared
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sufficient chemical space across the activity thresholds 
were retained for the training set. Models were trained 
for 559 targets and Additional file  1: Figure S1 sum-
marizes the number of active and inactive data points 
for each model and for which a large variance between 
the amount of bioactivity data available per target was 
observed. For example, there was a median of 389, 375, 
and 386 active compounds per-target for the pChEMBL 
classification thresholds of 5, 6 and 7, respectively. A 
median of 1000 inactive compound datapoints was cal-
culated across targets and thresholds, with a median 
ratio of 0.4 active compounds to inactive compounds (see 
Additional file  1: Figure S1 for details). The dataset for 
putative inactives per target is available for download as 
zip files here: https:// pidgi nv3. readt hedocs. io/ en/ latest/ 
insta ll. html.

Compound pre‑processing
Compound structures were standardized using the IMI 
eTox molecular structure standardizer (https:// github. 
com/ flatk inson/ stand ardis er), with settings to remove 
salts, waters, solvents, normalize charges, tautomerize 
(to the most favourable form) and to remove duplicates. 
RDKit [33] (Version 2019.03.4) was employed to remove 
structures without carbon, and to retain only compounds 
with atomic numbers between 21–32, 36–52, and greater 
than 53, and with a molecular weight between 100 and 
1000  Da, to retain small organic molecule chemical 
space.

Calculating uncertainty values for ChEMBL activity labels
Prior to the application of the PRF algorithm, the calcu-
lation of uncertainty in bioactivity labels was required. 
Since uncertainty originates from the hypothesis that bio-
activity data extracted from public bioactivity databases 
have a degree of uncertainty, we introduced uncertainty 
into the labels. Thereby, labels were treated as probabil-
ity distribution functions, rather than deterministic val-
ues by “injecting noise” in the following way. Bioactivity 
training data were converted into an uncertainty-based 
scale on a per-threshold basis ( pActivityT ), across a 
range of arbitrary standard deviation (σ) thresholds rang-
ing between 0.0 and 0.6, at increments of 0.2. By varying 
the standard deviation, σ , we evaluated model behaviour 
over a range of uncertainties.

For each bioactivity value ( pActivity ), we used the 
cumulative distribution function (cdf ) of a normal distri-
bution (Eq. 1) with a mean equal to the bioactivity thresh-
old for each pActivityT . More concretely, assuming only 
the mean and variance of activity values is known, the 
maximum entropy distribution to represent these values 
is a normal distribution [34]. One can set the mean and 
variance parameters of this distribution to a threshold 

value (e.g., 10  µM), and experimental error (e.g., σ of 
0.3) and compute the probability of activity values with 
the cdf. Each pActivity value was converted to a y-label 
probability (∆y), a value representing the uncertainty 
in the measurement which was used for PRF training. 
We refer to this as the ‘ideal y-label’ or simply ‘y-ideal’, 
because it represents the ideal case, where experimental 
error is taken into account when training a target predic-
tion model. For the calculation of ∆y, the stats.norm.cdf() 
function was used from scipy [35] library in python as in 
Eq. 1:

where ∆y were the y-label probabilities, �c = (C1, . . . ,Cn) 
represented the compounds in the training set, −−−−−→pThreshold 
described the pre-defined binding affinity thresholds for −−−−→
pActivity (−  log10) values, and σ was the standard devia-
tion defined in this work using arbitrary defined cut-
offs (which could also be set as required to the deviation 
across replicates within or between experiments, screen-
ing platforms or activity unit aggregation methods).

Values of �y hence captured the likelihood that a 
given compound Cn had binding affinity that falls within 
the boundary of the active class at the pThreshold given 
pActivity and given the assumption that most bioactiv-
ity data is homoscedastic (which is not always true in 
practice). Hence, a compound with a pChEMBL value 
of e.g., 5.1 (8 μM) was assigned a new ∆y of ~ 0.63 for a 
pChEMBL activity threshold of 5.0 (10 μM) and a user-
defined standard deviation σ of 0.3 (Fig. 2), i.e., there is 
a 63% chance for that compound to belong to the active 
class given those parameters compared to traditional RF 
classifier which assumes that it is 100% active. This ena-
bled representing the activity in a framework in-between 
the classification and regression architecture, with philo-
sophical differences from either approach. Compared to 
classification, this approach enables better representation 
of factors increasing/decreasing inactivity. Conversely, 
one can utilize all data (even delimited/operand/censored 
data far from a cut-off) at the same time as taking into 
account the granularity around the cut-off, compared to 
a classical regression framework. Thereby, PRF combines 
characteristics from both classification and regression 
settings.

Supplemental inactive data
In order to ensure sufficient chemical space of com-
pounds not binding to targets (hence assigned a 
constant [ pActivity = 0] across all test-train standard 
deviations) an inactive dataset of compounds from 
PubChem was used as published in Mervin, et al. [36] 

(1)�y(�c) = 1

2

[

1+ erf

(−−−−→
pActivity −−−−−−→

pThreshold

σ
√
2

)]

https://pidginv3.readthedocs.io/en/latest/install.html
https://pidginv3.readthedocs.io/en/latest/install.html
https://github.com/flatkinson/standardiser
https://github.com/flatkinson/standardiser
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and available at https:// github. com/ lhm30/ PIDGI Nv3. 
These supplemental inactive compounds were ran-
domly sampled from PubChem with a Tanimoto coef-
ficient fingerprint similarity to actives lower than 0.4 to 
obtain the desired number of compounds, which could 
reasonably be assumed to be inactive against a given 
target. The dataset included 38,902,310 inactive labelled 
compound annotations across the full complement 
of targets. For these inactive datapoints, ∆y remained 
constant across test-train σ thresholds (i.e., only bio-
activity data points from ChEMBL were assigned ∆y 
probabilities greater than zero). In more detail, out of 
a total of 557 models trained (e.g., with a  pXC50 thresh-
old equal to 5), 310 models (~ 56%) included at least 1 
SE datapoint in the inactive set of compounds and the 

percentage of SE data included in the inactive data of 
the 310 models is shown in Fig. 3. As we observe, 183 
models (33% of total models) were trained with a small 
number of SE data of about 20% of the total inactive 
compounds and 116 models (21% of total models) were 
trained with a high number of SE data points (more 
than 80% SE data in the inactive compound set).

Machine learning modelling and benchmarking
Random Forest
The Probabilistic Random Forest (PRF) is a modifica-
tion to the original RF algorithm; hence we first outline 
the RF concept followed by the modifications to enable 
uncertainty estimation via the PRF.

Fig. 2 Schematic representation of how pChEMBL value is converted into the ideal y‑label probability using cdf with different bioactivity thresholds 
and standard deviation (SD) values. The case when SD is 0 corresponds to traditional RF

https://github.com/lhm30/PIDGINv3
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RF is an ensemble method using a number of decision 
trees during training. Each decision tree is described via a 
tree-like graph relating the relationships between (chemi-
cal) features and target (activity) variables in a series 
of conjoined conditions arranged in a top-to-bottom 
“tree-like” structure. For binary classification, trees are 
constructed via nodes searching for the ‘best split’; the 
combinations of features and thresholds providing the 
best separation between classes [37]. Gini impurity, the 
probability that a randomly selected object (compound) 
will be misclassified if assigned a randomly selected label 
(i.e., active or inactive), is frequently employed for this 
purpose.. Let Pn,A and Pn,B denote the fractions of objects 
of classes A and B within the group in the node n (class 
probabilities), hence the Gini impurity Gn is:

The algorithm iterates over features and thresholds 
dividing training data “left” or “right” corresponding to 
objects left or right of the threshold, respectively. The 
splitting threshold resulting in the minimal combined 
impurity of the groups is defined as:

where  Gright,  Gleft in node n are Gini impurities and  fright, 
 fleft are the fractions of objects in each group. This itera-
tion process over features and thresholds is repeated 
recursively (so long as groups have a lower combined 
impurity compared to the impurity of the node) until 
ending in a terminal node (which assigns probabili-
ties according to the distribution of compounds in the 
classes). Novel predictions are propagated through the 

(2)Gn = 1−
(

P2
n,A + P2

n,B

)

(3)Gn,rightxfn,right + Gn,leftxfn,left

tree with predictions assigned via the largest fraction of 
samples in terminal nodes.

Individual decision trees are prone to overfitting since 
they are engineered so as to perfectly fit all samples in the 
training data set. To combat this, a RF is a set of many 
decision trees, with randomness introduced via: (1) ran-
domly sampled subsets of the full dataset, and (2) random 
subsets of the features in each node of the trees. Aggre-
gation across the randomised decision trees reduces the 
tendency of overfitting. An unlabelled object is propa-
gated through the trees in the forest, and the predicted 
class probability for an input sample computed as the 
mean predicted fraction of samples of the same class in 
the terminal nodes across the trees. Both (a) the fraction 
of the trees voting for a predicted class and (b) deviation 
of the fraction of samples in the terminal nodes across 
the forest can serve as certainty measures for predictions.

Probabilistic Random Forest
RFs receive a sample of observed random pairs 
of random variables, 

(

x1, y1
)

, . . . ,
(

xn, yn
)

 describ-
ing the relation: h : X → Y  used to predict y for a 
given value of x . On the other hand, the PRF receives 
(

x1, y1,�x1,�y1
)

, . . . ,
(

xn, yn,�xn,�yn
)

 , where ∆x and 
∆y represent uncertainty in features and labels, respec-
tively. Naturally, the focus of this work is concerned 
with (activity) label uncertainties, and (chemical) feature 
uncertainties are not specified.

To account for uncertainty, the PRF treats labels as 
normal distributions, rather than deterministic values. 
Labels become probability mass functions (PMFs) where 
each object has a label assigned to it with some prob-
ability and the relationship between RF and PRF follow 
naturally from this concept, since the PRF converges 
toward a RF when there are low or no (zero) uncertain-
ties in ∆y (see Fig.  2). Another difference between the 
two algorithms is that randomness of a RF is induced 
epistemically (i.e., from the model itself ) by training dif-
ferent decision trees on randomly selected subgroups of 
the data and by using random subsets of features in each 
node of each decision tree. On the other hand, PRF intro-
duces randomness allosterically; since it is not drawn 
from a defined distribution, but rather the underlying 
uncertainty (experimental deviation) relevant for classi-
fication. Label uncertainties propagate through the split-
ting criterion during the construction of the tree. Similar 
to a standard tree, nodes are split left and right, such that 
resulting subsets are more homogeneous than the set in 
the parent node. A cost function for minimization is used 
for this purpose since the transition from y to ∆y means 
that labels now become random variables. Instead of cal-
culating the fraction of objects in node, n, the expectancy 
value ( πi(n)) is calculated:

Fig. 3 Percentage of sphere excluded inactive molecules included 
in the inactive molecule datasets of models across the three different 
bioactivity thresholds. Statistics show that the putative inactive 
compounds (calculated with sphere exclusion) account for up to 20% 
of the total inactive compounds for the majority of the targets that 
contain putative inactive compounds
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Hence, Gini impurity is transformed to:

The cost function (weighted average of the modified 
impurities of the two nodes) is then:

The modified propagation scheme and cost functions 
are the two major conceptual changes separating PRFs and 
RFs. After training, the PRF classifies new objects which is 
identical for both training and prediction. Once an object 
reaches a terminal node the class probability can be used 
to provide the prediction as in the classical RF, since each 
object reaches all the terminal nodes a probability. Hence, 
all the predictions given by all the terminal nodes should 
be taken into account to obtain the prediction of the tree, 
which is given by the following equations:

Computational details
The PRF implementation in Reis, Baron and Shahaf [30] 
was employed for this work as provided via https:// github. 
com/ ireis/ PRF. The algorithm was fit with the RDKit fin-
gerprints and the corresponding ∆y labels on a per stand-
ard deviation (σ) basis, with a lower propagation probability 
limit (“keep_proba”) of 0.05, to ensure that a given object 
did not propagate to branches with a low probability 
(reducing runtime without impairing performance). The 
output of the PRF was recorded as the number of probabil-
istic decision trees in the forest predicting the label. The RF 
was implemented using the RandomForestClassifer func-
tion from Scikit-Learn.

Two different metrics were used to compare the PRF and 
RF prediction probabilities. The first metric is the error 
margin as described in Eq. 9:

(4)
Pn,A → Pn,A =

∑

i∈n πi(η)xpi,A
∑

i∈n πi(η)

Pn,B → Pn,B =
∑

i∈n πi(η)xpi,B
∑

i∈n πi(η)

(5)Gn → Gn = 1−
(

P
2

n,A + P
2

n,B

)

(6)G(n,r)x

∑

i∈(n,r) πi(η, r)
∑

i∈n πi(η)
+ G(n,l)x

∑

i∈(n,l) πi(η, l)
∑

i∈n πi(η)

(7)PrA →
∑

terminalnodes

π(n)xPn,A

(8)PrB →
∑

terminalnodes

π(n)xPn,B

(9)

Error margin =
[ (

ideal ylabel − RF probabilities
)

−
(

ideal ylabel − PRF probabilities
)

]

In addition to the error margin, when two scores are 
compared (y-probability from 1. RF and 2. PRF) rather 
than comparing only the absolute values, it is also pos-
sible to compare the scores relative to each other. This is 
achieved by calculating the relative increase toward the 
potential optimum (i.e., the ideal y-label) as shown in 
Eq. 10:

The rationale behind this calculation is that for a met-
ric with an ideal y-label e.g., equal to 0.65 a difference 
between RF and PRF y-probabilities from 0.75 to 0.70 
is more meaningful than a difference from 0.85 to 0.80. 
In terms of relative score, the latter and the former dif-
ference in y-probabilities correspond to 50% and 25% 
change respectively.

Evaluation of Sphere Exclusion effect on the fraction 
of improved models by PRF
The effect of including sphere excluded putative inactives 
on the error margins by Probabilistic RF was evaluated. 
In this comparison, we selected (a) targets that did not 
contain any putative inactives (models without SE data) 
and (b) targets that 80% of their inactive datapoints were 
putative inactives (models with SE data) across the three 
different bioactivity thresholds and different emulated 
test-train standard deviations. We calculated the error 
margin between the two algorithms (as described in the 
section above) separately for models without SE data 
and models with SE data across different standard devia-
tions. As a result, we derived two error margin distribu-
tions and sought to compare their means to understand 
if there is a statistically significant difference. Firstly, a 
Kolmogorov Smirnov (KS) test in scipy (scipy.stats.kst-
est) was applied to confirm if the data in error margin 
distributions are normally distributed. Next, an unpaired 
t-test (scipy.stats.ttest_ind, with ‘equal_var’ parameter 
equal to False) was applied to statistically compare the 
distributions.

Results & discussion
ChEMBL experimental variability
We first evaluated the standard deviation across various 
aggregation schemes for the bioactivity data in ChEMBL 
27, as outlined in Additional file  2: Table  S1, to better 
understand the influence of different approaches toward 
aggregation as a product of the observed standard devia-
tion between replicate measurements for the same com-
pound-protein target pair. Results from this analysis are 

(10)

Relative score

=
∣

∣

∣

∣error margin RF
∣

∣−
∣

∣error margin PRF
∣

∣

∣

∣

error margin
(

worst performing classifier
) × 100

https://github.com/ireis/PRF
https://github.com/ireis/PRF
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presented in Fig. 4. It can be seen that there is a standard 
deviation between 0.22–0.41 depending on method of 
bioactivity data aggregation between the different group-
ing schemes. For example, two replicates with pChEMBL 
values of 5.6 and 6.3 have a standard deviation of 0.40 
and if we train a model with a threshold equal to 6, then 
there is a degree of uncertainty whether we should con-
sider the compound as active or inactive. As expected, 
the smallest median deviation in experimental values of 
0.04 was observed within the same experiment (replicate) 
for “intra-assay” aggregation, when compound-target 
pair replicates were compared within the same experi-
ment. On the other hand, we observed a high standard 
deviation (0.41) in experimental values across different 
assay ids and the main reason is that different assay pro-
tocols were being used. Though there is an effort to bet-
ter document and report experimental details regarding 
assays [38], significant variability was observed between 
measurements taken in different labs even when assay 
conditions appear to be the same. In addition, as previ-
ously outlined in the work of Kalliokoski et al. [16], aggre-
gation across  IC50 values was problematic and produced 
one of the highest median standard deviations of 0.37 for 
the “Intra  IC50 type” bin. This is because  IC50 values are 
assay-specific and comparable only under certain condi-
tions, which also illustrates the danger of pooling  IC50 
values from different experiments, as is frequently done 
in the literature (mostly due to lack of alternatives).

From our observation we conclude that decisions 
should be taken when aggregating data from data-
bases because of trade-off between increasing data set 
size versus increasing the discrepancies between the 
assay technologies and reported activity types  (Ki vs 
 IC50). Therefore, one needs to vary the standard devia-
tion depending on the data that is being modelled and 

how stringent the aggregation function that has been 
employed.

Probabilistic random forest (PRF) performance
In a first step toward benchmarking the PRF, we first 
evaluated which method (RF or PRF) performs better 
by taking into account uncertainty around the bioactiv-
ity threshold. The difference of performance between 
PRF and RF was defined as the difference between 
RF error margin and PRF error margin. Error margin 
was the difference of each classifier’s predicted prob-
ability to the ‘ideal’ y-label probability calculated with 
the cumulative distribution function (which takes into 
account both bioactivity threshold and a range of pre-
defined values of σ for both test and train sets). Results 
of this analysis for a pChEMBL cut-off of 5 (0.1  μM) 
are outlined in Fig.  5 (complete analysis of  pXC50 5, 
6 and 7 with different combination of SD in train and 
test set are included in Additional file 1: Figure S2–S4, 
respectively).

Figure 5 shows that PRF outperformed RF when there 
was a degree of uncertainty in the data (i.e., a σ greater 
or equal to 0.2). For example, when the σ = 0, the 
median error margin between the two algorithms was 
close to 0 (− 0.010 to 0.005) across all y-ideal probabili-
ties. However, we observed that as the standard devia-
tion in the data increased, the absolute error margin 
between the two algorithms was increasing too. When 
e.g., σ = 0.4 and σ = 0.6 the median error margin ranged 
from − 0.029 to 0.005 and from − 0.039 to 0.004 respec-
tively. Therefore, these results indicated that when σ of 
training data is 0, there were no substantial differences 
in the predictions between algorithms and this was not 
true as the standard deviation increased. This obser-
vation is in agreement with previous benchmarking 
of PRF in a different type of noisy data (astronomical 

Fig. 4 Standard deviation of replicate affinity measurements  (IC50/EC50/Ki/Kd) across different aggregation types. Standard deviations range 
between a median of ~ 0.04 to 0.41 depending on the method of aggregation used for cross‑comparison. The median values are shown in each 
box
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data) [30] and the difference in classification accuracy 
between the two algorithms (RF and PRF) increased 
with increasing noise level and complexity.

Moreover, Fig.  5 highlights areas in the y-ideal prob-
ability ranges, where PRF outperformed RF. For exam-
ple, when there was an uncertainty in the data and σ was 
equal to 0.2, 0.4 and 0.6, PRF outperformed RF with an 
average absolute error margin equal to 0.011, 0.024 and 
0.037 for y-ideal probability ranges of 0.4–0.6. How-
ever, when y-ideal probability ranged from 0.7 to 1, the 
absolute error margin between the two algorithms was 
smaller and equal to 0.005, 0.009 and 0.011 for σ equal 
to 0.2, 0.4 and 0.6 respectively. A similar trend was 
observed when the y-ideal probability ranged from 0.0 
to 0.3 and the absolute error margin was equal to 0.012, 
− 0.015, 0.015. Therefore, PRF showed a highest abso-
lute error margin and thus was outperforming RF for the 
y-ideal probabilities closer to midpoint. Therefore, the 
PRF exhibited the largest benefit over the RF (defined as 
the lowest delta between PRF error and Scikit-Learn RF 

error) toward the midpoint of the probability scale, for 
marginal cases on the binary threshold boundary. This 
is because the original RF weights the marginal cases as 
equivalent in distinguishing between activity classes. In 
this case the PRF classifier was able to better model the 
granularity around the activity threshold cut-off, as in a 
regression.

The findings reported above are specific to an analy-
sis using the Scikit-Learn implementation RF. In order 
to check that the above findings are robust and not due 
to differences between packages, a similar analysis was 
conducted emulating a classical RF (i.e., when the binary 
labels are supplied rather than the probabilities) via the 
PRF package, as described in the methods. A high over-
all  R2 correlation between Scikit-Learn RF and the PRF 
(σ = 0) ranging between ~ 0.97–0.98 across the standard 
deviation test sets was observed (as presented in Addi-
tional file  1: Figure S5), hence the returned predictions 
from both RF approaches were overall comparable and 

Fig. 5 Ideal probabilities as a function of the delta of PRF versus RF error margins across emulated train‑test standard deviations. Overall, results 
shown here for a threshold of pChEMBL value of 5 (0.1 µM) highlight the most optimal PRF probability estimates were observed in cases when 
standard deviation in the test set most closely resembled that in the training set. It can also be seen that the largest benefit in terms of error 
margin for the PRF (lower values on the y‑axis) are observed toward the midpoint of the ideal ∆y scale, particularly for higher training set standard 
deviations. This is when the original RF weights the marginal cases equivalent in distinguishing between activity classes. The same observation was 
observed for pChEMBL thresholds of 6 and 7, as shown in Additional file 1: Figure S3, S4, respectively
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the findings presented in this study are robust between 
packages.

We next investigated the significances of differences 
between the RF and PRF modelling uncertainties, based 
on the differences between output and expected values 
(y-ideal probability). To evaluate this, we applied the 
relative score calculation as described in the methods, 
to identify the percentage improvement for each algo-
rithm across different emulated train-test standard devia-
tions and different ranges of ideal y-label. As shown in 
Table  2, PRF showed the greatest percentage improve-
ment (~ 17%) when SD of train and test set ranged from 
0.4 to 0.6 and when the ideal y-label ranged from 0.4 to 
0.6 and thus the data were close to the bioactivity thresh-
old. Thus, the improvement of correct class assignments 
showed that PRF has an advantage compared to RF when 
there was a degree of uncertainty in the data and addi-
tionally PRF performed better for values toward the 
midpoint of the probability scale as also shown across 
algorithm error margins in Fig. 5.

Overall, we have shown in this section that PRFs were 
able to capture the experimental/aggregational variability 
in ChEMBL. We have shown that the maximum achiev-
able accuracy of PRF models was more closely related 
to the true reproducibility across the experimental data 
(in this case when aggregated across experiments and 
measurement data types). In comparison, the baseline 
RF (when σ = 0) yielded a reported performance smaller 
than the experimental uncertainty, which indicated cases 
of overfitting and/or over-confidence. Therefore, PRF is 
an algorithm that should be considered as an alternative 
to RF when we have a priori knowledge that our training 
data are noisy.

Effect of Sphere Exclusion, dataset imbalance and model 
set size
Previous studies link Sphere Exclusion (SE) with inflated 
model performance and poor model calibration (due to 
the artificial requirement for putative non-binding mol-
ecules to be dissimilar to their active counterparts [39, 
40]). Conversely, experimentally confirmed inactive com-
pounds are likely to be more skeletally similar to actives 
and this trend blurs the algorithm’s decision boundary 
between the active and inactive classes. Hence, we next 
sought to evaluate whether the presence of SE inactives 
influenced PRF performance by comparing the frac-
tion of targets improved by PRF with the classical RF, for 
models with/without putative inactives. We first explored 
the error margin between PRF and RF for target protein 
models that included a high number of putative inac-
tives in Fig. 6a (detailed comparison shown in Additional 
file 1: Figure S6) and for targets that did not include any 
putative inactives (Additional file  1: Figure S7). Overall, 
results showed that the PRF exhibited the largest benefit 
over the RF toward the midpoint of the probability scale, 
for marginal cases on the binary threshold boundary and 
when there was a degree of uncertainty in train and test 
set (otherwise for low SD PRF converged to classic RF). 
These observations are in agreement with the previous 
observations in Fig. 5, where we evaluated the error mar-
gin for all the models and thus the addition of putative 
inactive compounds did not affect the performance of 
PRF compared to RF.

In addition, we explored the effect of including sphere 
excluded putative inactive compounds on the error mar-
gins between the two algorithms separately for mod-
els without SE data and models with SE data across 
different standard deviations. By applying a Kolmogorov 
Smirnov (KS) test, the data in error margin distributions 
were normally distributed and therefore we applied an 

Table 2 Average percentage improvement between RF and PRF probabilities in relation to ideal y‑label values across different 
emulated train‑test standard deviations (SDs) when pChEMBL threshold equals 5

Standard deviation in train and test set y‑ideal range (N) Better‑ performing Algorithm % improvement

SD‑train: 0.0–0.4 & SD‑test: 0.0–0.4 0.0–0.2 (183,255) PRF 4.79

0.2–0.4 (79,890) PRF 3.83

0.4–0.6 (124,505) PRF 10.8

0.6–0.8 (166,210) PRF 5.76

0.8–1.0 (1,007,685) RF 6.57

SD‑train: 0.4–0.8 & SD‑test:0.4–0.8 0.0–0.2 (152,835) PRF 0.27

0.2–0.4 (194,300) PRF 9.27

0.4–0.6 (339,495) PRF 16.89

0.6–0.8
(592,575)

PRF 11.04

0.8–1.0 (5,624,495) RF 9.59
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unpaired t-test to compare them. The error margin dis-
tributions and the result of unpaired t-test are shown in 
Fig. 6b. Overall, results showed that there was no statis-
tically significant difference between models with and 
without SE data when SD was equal to 0. However, as 
the SD increased (0.2, 0.4 and 0.6), there was a statisti-
cally significant difference between the error margins of 
the models with and without SE data with p-values less 
than 0.05. The addition of SE data reduced the difference 
between PRF, and RF compared to models without SE 
data. The rationale behind this observation could be that 
for the putative inactives, we cannot assign a  pXC50 value 
and thus evaluate their uncertainty and therefore they are 
considered as inactives with a low uncertainty and i.e., far 
from the bioactivity threshold. Therefore, a large number 
of putative inactives could be problematic when com-
bined with PRF but on the other hand their inclusion can 
enlarge the models’ applicability Domain.

We next investigated how significant are the differences 
between RF and PRF in terms of how close they are to the 
real value (y-ideal probability). To this end, we applied 
the relative score (Eq. 10) calculation to identify the per-
centage improvement for each algorithm across different 
training conditions (standard deviation in train and test 
set) and different ranges of y-ideal range for the targets 
that included at least 1 SE datapoint in the inactive data-
set as shown in Table 3. The main observation is that PRF 
showed the greatest percentage improvement 11.58% 
and 14.68% when SD of train and test set ranged from 
0.0 to 0.4 and 0.4 to 0.6 respectively and when the ideal 
y-label ranged from 0.4 to 0.6 and thus the datapoints 
were located close to the bioactivity threshold. On the 
other hand, RF showed a ~ 12% improvement when ideal 
y-label ranged from 0.8 to 1.0 and therefore RF worked 
better for datapoints that were assigned as actives with a 
high confidence. Therefore, we observed that the inclu-
sion of SE data did not affect the percentage of improve-
ment in different SDs and y-ideal probability changes.

In a final analysis, we sought to evaluate the influence 
of dataset size on the performance difference of PRF 
versus traditional RF models. Our correlation analysis, 
(presented in Additional file 1: Figure S8) showed no dis-
cernible correlation between PRF versus RF performance 

and training size, since no significant Pearson correla-
tion exists across the four arbitrary standard deviations 
(σ) evaluated (Pearson r values ranged between − 0.22 to 
− 0.03). We can hence conclude that PRF can be used, 
regardless of dataset size, for cases when experimen-
tal uncertainty is large and where values are distributed 
around the classification threshold.

Case study: PRF improves PDK1 model performance
After taking into account the learnings from the previ-
ous analyses, we concluded that PRF exhibited the largest 
benefit over the RF toward the midpoint of the probabil-
ity scale, i.e. for marginal cases on the binary threshold 
boundary. Therefore, we selected one particular target to 
highlight how PRF can be useful to predict compounds 
near the bioactivity threshold with higher confidence 
compared to classic RF.

The protein target selected for this analysis was Pyru-
vate dehydrogenase kinase isozyme 1, encoded by the 
PDK1 gene, which has been investigated as a potential 
drug target for breast cancer, due to its essential role in 
regulating cell migration [41]. This particular target was 
chosen due to the large proportion of reported activ-
ity data measured close to the bioactivity threshold, (i.e., 
~ 60% of the training labels for PRF ranged between 
0.3–0.6), as shown in Fig. 7a. This behaviour can be con-
trasted to the distribution of binary labels for the classical 
RF, where the majority of labels (1000 compounds) were 
assigned (0) for the “non-binding” class. We first per-
formed the replicate analysis (analogous to the one pre-
sented in “ChEMBL experimental variability” section). 
One replicate from the same assay showed a low stand-
ard deviation of 0.1 whilst the majority of other replicates 
(across assays and measurement types) showed higher 
deviations around ~ 0.3, as outlined in Fig.  7b. Hence, 
replicate aggregation is shown for this target to introduce 
uncertainty into the bioactivity labels in accordance with 
the global analysis previously outlined. Finally, using dif-
ferent thresholds on the raw probabilities (0.5, 0.6, 0.7) 
returned by PRF and RF, we observed that PRF outper-
formed the traditional RF and maintained a higher per-
formance compared to RF even when we used a higher 
threshold on probabilities (Fig. 7c–e). This illustrates the 

Fig. 6 a Ideal y‑probabilities as a function of the delta of PRF versus RF error margins across emulated train‑test standard deviations. Overall, 
results shown here for a threshold of pChEMBL value of 5 (10 µM) highlight the most optimal PRF probability estimates were observed in cases 
when standard deviation in the test set most closely resembled that in the training set. It can also be seen that the largest benefit in terms of 
error margin for the PRF (lower values on the y‑axis) are observed toward the midpoint of the ideal ∆y scale, particularly for higher training set 
standard deviations. This is when the original RF weights the marginal cases equivalent in distinguishing between activity classes. b Effect of Sphere 
Exclusion (SE) on the error margin between models with and without SE data across different emulated test‑train standard deviations. Overall results 
show that there is no clear advantage of including or excluding SE data when there is no SD in the data. When SD is greater or equal to 0.2, there is 
a statistically significant difference and hence the inclusion of SE data reduces performance of PRF

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Table 3 Average percentage improvement between RF and PRF probabilities in relation to ideal y‑label values across different 
emulated train‑test standard deviations (SDs) when pChEMBL threshold equals 5

Standard Deviation in train and test set y‑ideal range (N) Better‑performing 
Algorithm

% improvement Average 
Percentage of 
SE data

SD‑train: 0.0–0.4 & SD‑test: 0.0–0.4 0.0–0.2 (104,345) PRF 6.63 38.66

0.2–0.4 (42,075) PRF 5.19 34.03

0.4–0.6 (63,520) PRF 6.42 36.74

0.6–0.8 (86,27) PRF 3.19 36.01

0.8–1.0 (530,080) RF 6.96 31.57

SD‑train: 0.4–0.6 & SD‑test:0.4–0.6 0.0–0.2 (92,720) PRF 0.23 42.68

0.2–0.4 (106,755) PRF 11.65 35.82

0.4–0.6 (173,070) PRF 16.76 36.08

0.6–0.8 (314,270) PRF 11.60 33.52

0.8–1.0 (3,022,800) RF 9.48 29.99

Fig. 7 a Distribution of the y‑ideal label versus binary y‑labels for values close to bioactivity threshold. b Experimental error in ChEMBL for 
[Pyruvate dehydrogenase (acetyl‑transferring)] kinase isozyme. We observe that the error is high when data are derived from different assay IDs 
and  IC50 measurements. c–e Performance of the PRF versus RF classifier using different evaluation metrics and different thresholds on algorithms 
probabilities and y‑ideal labels
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benefit of taking experimental uncertainty into account 
using the PRF classifier, as opposed to a RF classifier, for 
protein targets where much of the data is located around 
the decision boundary on a concrete dataset.

Summary
In conclusion, the aim of this analysis was to investigate 
the performance of Probabilistic Random Forest (PRF) as 
a method able to take into account experimental errors, 
which are usually a neglected aspect of model generation. 
By evaluating the current experimental error in ChEMBL 
v27, we identified that it is very similar to those reported 
in previous versions of ChEMBL v14. The highest stand-
ard deviation in values for the same ligand-target inter-
action pairs observed for values derived from different 
assay types and the smallest deviation in experimental 
values is observed within the same assay id. By applying 
PRF in target prediction and comparing it to RF we iden-
tified cases where PRF outperforms RF and vice versa. 
Therefore, the choice should be based on (a) training data 
quality and (b) the area of data distribution (i.e., whether 
they are close to the classification threshold). Firstly, 
regarding the training data quality we observed that PRF 
showed a lower error compared to RF when there is a 
degree of uncertainty in training set (i.e., SD ≥ 0.2). For 
lower SD in the data (when the uncertainties are set to or 
close to zero), the PRF converges to the original RF algo-
rithm. When the standard deviation of training set is 0, 
there are no substantial differences in the prediction of 
the test set regardless of the standard deviation assigned 
in the test data. Secondly, PRF exhibits the largest benefit 
over the RF toward the midpoint of the probability scale, 
i.e. for marginal cases on the binary threshold boundary. 
In addition, we evaluated whether the addition of sphere 
excluded inactives affects PRF performance compared to 
RF and SE data did not affect the observations obtained 
from the comparison of RF vs PRF. Therefore, we con-
clude that PRF can be useful for target prediction and 
is not affected by the presence of SE data. Based on our 
observations, we particularly recommend using PRF for 
classification in cases where experimental uncertainty is 
large, and where values are distributed around the clas-
sification threshold.
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