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Article 1 
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Abstract: Influence of statistically stationary, homogeneous isotropic turbulence (i) on the mean 11 

area of a passive front propagating in a constant-density fluid and, hence, (ii) on the mean fluid 12 

consumption velocity �̅�𝑇 is explored in the case of asymptotically high turbulent Reynolds number 13 

and asymptotically high ratio of the Kolmogorov velocity to a constant speed 𝑢0 of the front. First, 14 

a short early transient stage is analyzed by assuming that the front remains close to a material sur- 15 

face that coincides with the front at the initial instant. Therefore, similarly to a material surface, the 16 

front area grows exponentially with time. This stage, whose duration is much less than an integral 17 

time scale of the turbulent flow, is argued to come to the end once the volume of fluid consumed by 18 

the front is equal to the volume embraced due to the turbulent dispersion of the front. The mean 19 

fluid consumption velocity averaged over this stage is shown to be proportional to the rms turbulent 20 

velocity 𝑢′. Second, a late statistically stationary regime of the front evolution is studied. A new 21 

length scale characterizing the smallest wrinkles of the front surface is introduced. Since this length 22 

scale is smaller than the Kolmogorov length scale 𝜂𝐾 under conditions of the present study, the 23 

front is hypothesized to be a bifractal with two different fractal dimensions for wrinkles larger and 24 

smaller than 𝜂𝐾. Finally, a simple scaling of �̅�𝑇 ∝ 𝑢′ is obtained for this late stage also. 25 

Keywords: self-propagating front; turbulent consumption velocity; front area; bifractal 26 

 27 

1. Introduction 28 

While turbulent combustion involves various multi-scale and highly non-linear phe- 29 

nomena [1-3] such as turbulence [4-6], complex chemistry [7,8], thermal expansion [9-12] 30 

and differential diffusion [13] effects, fundamentals of the influence of turbulence on a 31 

flame are often explored by a considering the classical problem of a passive front propa- 32 

gating locally normal to itself at a constant speed 𝑢0 in randomly/turbulent advected me- 33 

dia [14-16]. Historically, this problem attracted much attention since 1940s when signifi- 34 

cant acceleration of flame propagation by turbulence was found. The phenomenon was 35 

explained by Damköhler [17] and Shelkin [18] who highlighted random advection of a 36 

flame by turbulent flow and reduced the influence of the turbulence on the flame to an 37 

increase in the area of the flame surface wrinkled due to large-scale velocity fluctuations. 38 

Following those pioneering ideas, various models of flame propagation in a turbulent 39 

flow express the mean turbulent consumption velocity �̅�𝑇 (i.e., the mean mass rate of 40 

reactant consumption per unit area of the mean flame surface, normalized using the fluid 41 

density upstream of the flame) to be a function of the front speed 𝑢0 and the rms turbu- 42 

lent velocity 𝑢′, with a ratio of �̅�𝑇 𝑢0⁄  being controlled by the mean increase in the front 43 
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surface area. Moreover, recent Direct Numerical Simulation (DNS) study [19] of self-prop- 44 

agation of a passive interface in constant-density turbulence showed a linear relation be- 45 

tween �̅�𝑇 − 𝑢0 and 𝑢′ at least at 0.5 ≤ 𝑢′ 𝑢0⁄ ≤ 10.  46 

However, in spite of long-term investigations of propagation of a front (e.g., a flame) 47 

in randomly advected media (e.g., turbulence), physical mechanisms that result in the 48 

aforementioned linear relation do not seem to be fully clarified. To resolve the problem, 49 

turbulent entrainment, which is controlled by large-scale eddies is commonly highlighted, 50 

with small-scale characteristics of any surface (material or self-propagating) being as- 51 

sumed to be adjusted to the influence of large-scale turbulent eddies on the surface. Ac- 52 

cordingly, the fractal concept [20] is invoked to describe the surface characteristics at var- 53 

ious scales. In particular, for a moderately slow (𝑢𝐾 < 𝑢0 ≪ 𝑢′) front whose fractal dimen- 54 

sion 𝐷 = 7/3 and the Gibson length scale 𝐿𝐺 = 𝐿(𝑢0 𝑢′⁄ )3 ≪ 𝐿 is inside the inertial inter- 55 

val of turbulence spectrum [4,5], i.e. 𝜂𝐾 < 𝐿𝐺, the fractal concept yields �̅�𝑇 ∝ 𝑢′ [21,22]. 56 

Here, 𝐿 is an integral length scale of the turbulence, 𝑢𝐾 = (𝜈𝜀̄)1 4⁄  and 𝜂𝐾 = (𝜈3 𝜀̄⁄ )1 4⁄  57 

designate Kolmogorov velocity and length scales [4], respectively, 𝜈 is the kinematic vis- 58 

cosity of the fluid, and 𝜀̄ is the mean rate of viscous dissipation of turbulent kinetic en- 59 

ergy. What happens when 𝑢0 𝑢𝐾⁄ → 0 and, consequently, the Gibson length scale is inside 60 

the viscous (dissipation) interval, i.e. 𝜂𝐾 > 𝐿𝐺 , is an open question. Accordingly, the pri- 61 

mary goal of the present communication is to hypothesize a specific physical mechanism 62 

that reconciles (i) a scaling of �̅�𝑇 ∝ 𝑢′ at 𝑢0 ≪ 𝑢𝐾, (ii) the concept of turbulent entrain- 63 

ment, and (iii) a well-recognized paradigm that reduces the influence of turbulence on a 64 

front to an increase in the front area by turbulent eddies characterized within the frame- 65 

work of the Kolmogorov theory [4,5,23]. 66 

The present study addresses two limiting stages of front area evolution: (i) an early 67 

transient stage, whose duration is much less than an eddy-turn-over time scale 𝜏𝑇 = 𝐿 𝑢′⁄ , 68 

and (ii) a late fully-developed stage when the front area reaches a statistically stationary 69 

state. During the late stage, growth of the front surface area due to turbulent straining is 70 

counterbalanced by reduction of the front surface area due to joint actions of (i) folding of 71 

finite-length front elements, caused by strong advection, and (ii) subsequent collisions of 72 

self-propagating fronts.  73 

2. Analysis and Results 74 

2.1. Earlier transit stage 75 

Let us consider an infinitely thin front that propagates locally normal to itself at a 76 

constant speed 𝑢0 in statistically stationary, homogeneous, isotropic turbulence, which  77 

(i) is not affected by the front, (ii) is characterized by a high turbulent Reynolds number   78 

𝑅𝑒𝐿 = 𝑢′𝐿 𝜈⁄ ≫ 1  and, therefore, (iii) is described by the Kolmogorov theory [4,5,23]. 79 

Moreover, in order to obtain analytical results, let us assume that the Kolmogorov velocity   80 

𝑢𝐾 is much larger than 𝑢0. In this section we consider the early transient stage, i.e. 𝑡 ≪ 81 

𝜏𝑇, of the growth of the surface of an initially planar front embedded into the turbulence 82 

at 𝑡 = 0.  83 

The following analysis is based on (i) the theory of surface area growth, developed 84 

by Batchelor [24] for an infinitesimal element of a material surface in the Kolmogorov tur- 85 

bulence, (ii) results of DNS studies [25,26] of the same phenomenon, (iii) theoretical and 86 

DNS results [27] on the growth of the area of a finite-length element of a material surface, 87 

i.e., an element whose area is much larger than 𝐿2, and (iv) the theory of turbulent diffu- 88 

sion, developed by Taylor [28]. As we will see later, the earlier transit stage takes a time 89 

interval much shorter than the eddy turnover time 𝜏𝑇. During such a short time interval, 90 

the area growth rates are almost the same for the infinitesimal and finite-length elements 91 

of a material surface [27], because folding of the finite-length elements, caused by large- 92 

scale eddies, is relatively slow process. 93 

Therefore, on the one hand, if a planar material surface is embedded into the Kolmo- 94 

gorov turbulence normally to the 𝑥-axis (streamwise direction in the following), then, 95 
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after a short transient time interval of 𝑡 ≥ 𝑡𝑖 ≈ (2.5 − 3)𝜏𝐾  during that the surface adapts 96 

itself to the turbulent field, the mean (ensemble-averaged) surface area 𝐴𝑀(𝑡) is well 97 

known to grow exponentially with time [24-27], i.e., 98 

𝐴𝑀(𝑡) = 𝐴0 exp (
𝜉𝑡

𝜏𝐾
), (1) 

where 𝜏𝐾 = (𝜈 𝜀̄⁄ )1 2⁄   is the Kolmogorov time scale, 𝜉 is a constant close to 0.28 [25,26], 99 

and 𝐴0 ≫ 𝐿2 is the area of the element of the initial planar material surface at 𝑡 = 0. It is 100 

worth noting that a subsequent DNS study by Goto and Kida [27] indicates that, due to 101 

folding of finite-length material surface elements during a later stage, 𝜉 = 0.345 + 102 

0.00525𝑅𝑒𝐿
1 2⁄

 in a range of 10 < 𝑅𝑒𝐿
1 2⁄

< 25 when 𝑡 ≈ 𝜏𝑇.  103 

On the other hand, the streamwise dispersion ∆𝑀(𝑡) of a material surface grows lin- 104 

early with time [28] 105 

∆𝑀(𝑡) = 𝑢′𝑡 (2) 

at 0 < 𝑡 ≪ 𝜏𝑇, with a similar linear dependence of a mean turbulent flame brush thickness 106 

on flame-development time being documented in various experiments reviewed else- 107 

where [29]. It is worth noting that constraints of 𝑡 ≥ 𝑡𝑖 ≈ (2.5 − 3)𝜏𝐾  and 𝑡 ≪ 𝜏𝑇 are con- 108 

sistent with one another in the considered case of 𝑅𝑒𝐿 ≫ 1. 109 

As argued by Yeung et al. [26], Eq. (1), which holds for an infinitesimal element of a 110 

material surface, describes also the growth of the area 𝐴𝐹(𝑡) of an infinitesimal element 111 

of a dynamically passive self-propagating front provided that 𝑢0 ≪ 𝑢𝐾  and 𝑡 ≥ 𝑡𝑖 ≈ 112 
(2.5 − 3)𝜏𝐾. Moreover, during the studied short earlier stage (𝑡 ≪ 𝜏𝑇), the same equation 113 

holds for finite-length surface elements [27], as already noted earlier. Thus, at 𝑢0 ≪ 𝑢𝐾 114 

and 𝑡𝑖 < 𝑡 ≪ 𝜏𝑇, the following two equations 115 

𝐴𝐹(𝑡) = 𝐴0 exp (
𝜉𝑡

𝜏𝐾
), (3) 

∆𝐹(𝑡) = 𝑢′𝑡 (4) 

are assumed to hold simultaneously. Comparison of Eqs. (1)-(2) with Eqs. (3)-(4) shows 116 

that material and self-propagating surfaces that coincide at 𝑡 = 0 remain to be close to 117 

one another at 0 < 𝑡 ≪ 𝜏𝑇, with the distance between them being smaller than the Kolmo- 118 

gorov length scale 𝜂𝐾 with a high probability [26]. 119 

This feature could be attributed to the well-known statistical dominance of positive 120 

rates of strain of a material surface in the Kolmogorov turbulence. Because (i) the magni- 121 

tude of the local velocity normal to a material surface is increased with distance from the 122 

surface in the case of a positive local strain rate and (ii) the normal velocity vector 𝐮𝑛  123 

points to the surface, the velocity |𝐮𝑛| can be much larger than 𝑢0 ≪ 𝑢𝐾  at a small dis- 124 

tance from the surface, thus, impeding further divergence of the material and self-propa- 125 

gating surfaces. 126 

However, there are fundamental differences between the two surfaces. Indeed, first, 127 

there is no cusp formation at the material surface and, second, the neighboring/adjoining 128 

elements of folded (folds are produced by strong advection) material surface never col- 129 

lide. Therefore, the area of the material surface grows exponentially and the distance 𝑑 130 

between different elements of the surface can be very small, as small as we wish. For in- 131 

stance, DNS data by Yeung et al. [26] show that the distance 𝑑 is randomly distributed in 132 

a wide interval of length scales, see Fig. 6 in the cited paper. On the contrary, the cusp 133 

formation and collisions of elements of a self-propagating surface result in the local sur- 134 

face annihilation if the local distance between the elements is sufficiently small. However, 135 

during the studied short earlier stage, both effects may be neglected, as discussed earlier. 136 

Let us compare the fluid volume consumed by the front at instant 𝑡 with the volume 137 

of the streamwise turbulent dispersion of the front, i.e., a volume bounded by the leading 138 

and trailing edges of the front. The former volume can be estimated as follows  139 
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𝑉𝐹(𝑡) = 𝑢0 ∫ 𝐴𝐹(𝜃)𝑑
𝑡

𝑡𝑖
𝜃 = 𝑢0𝐴0 ∫ exp (𝜉

𝜃

𝜏𝐾
) 𝑑

𝑡

𝑡𝑖
𝜃 = 𝑢0𝜏𝐾𝜉−1𝐴0 [exp (𝜉

𝑡

𝜏𝐾
) − exp (𝜉

𝑡𝑖

𝜏𝐾
)], (5) 

where 𝑢0𝐴𝐹(𝜃) is the volume rate of the fluid consumption at instant 𝜃. 140 

If 𝑡𝑖 ≪ 𝑡, the second term in square brackets may be neglected and we arrive at 141 

𝑉𝐹(𝑡) = 𝑢0 𝜏𝐾𝜉−1𝐴0exp (
𝜉𝑡

𝜏𝐾
), (6) 

i.e., the volume of the consumed fluid is controlled by the small-scale turbulence and 142 

grows exponentially with time.  143 

By virtue of Eq. (4), the volume of the streamwise dispersion of the front is equal to 144 

𝑉𝑇(𝑡) = 𝐴0∆𝐹(𝑡) ∝ 𝐴0𝑢′𝑡 (7) 

and, consequently, is controlled by large-scale turbulent eddies. This volume grows line- 145 

arly with time at 0 < 𝑡 ≪ 𝜏𝑇, contrary to the exponential growth of 𝑉𝐹(𝑡). Therefore, in 146 

spite of 𝑉𝐹(𝑡) ≪ 𝑉𝑇(𝑡) at 𝜉𝑡 𝜏𝐾 = O(1)⁄ , because 𝑢0 ≪ 𝑢𝐾 ≪ 𝑢′, the exponentially grow- 147 

ing volume 𝑉𝐹(𝑡) and the linearly growing volume 𝑉𝑇(𝑡) should become equal to one 148 

another at certain instant 𝑡∗. In other words, at instant 𝑡∗, the fluid consumed by the front 149 

fills the volume formed by the streamwise dispersion of the front.  150 

This instant could be estimated invoking the following criterion 151 

𝑉𝐹(𝑡∗) = 𝑉𝑇(𝑡∗). (8) 

Henceforth, numerical factors are skipped for simplicity. 152 

It is worth noting that the criterion given by Eq. (8) can be rewritten in the following 153 

way 154 

𝑉𝐹(𝑡∗)

𝐴𝐹(𝑡∗)
= 𝑙(𝑡∗) = �̄�(𝑡∗) =

𝑉𝑇(𝑡∗)

𝐴𝐹(𝑡∗)
, (9) 

where 𝑙(𝑡∗) is the mean distance between neighboring elements of the material and self- 155 

propagating surfaces and �̄�(𝑡∗) is the mean distance between opposed elements of either 156 

the material or the self-propagating surface. The mean distance 𝑙(𝑡∗) = 𝑉𝐹(𝑡∗) 𝐴𝐹(𝑡∗)⁄  157 

given by Eqs. (3) and (6) is simply equal to  158 

𝑙(𝑡∗) = 𝜉−1ℓ0, (10a) 

ℓ0 = 𝑢0𝜏𝐾 =
𝑢0

𝑢𝐾

𝜂𝐾 ≪ 𝜂𝐾 . (10b) 

Both the distance 𝑙(𝑡∗) and the microscale ℓ0 are much less than the Kolmogorov length 159 

scale, i.e., they are inside the dissipation subrange of the turbulence spectrum. This esti- 160 

mate agrees with the DNS data by Yeung et al. [26], thus, indicating consistency of the 161 

present analysis. Note that the microscale ℓ0 will also play an important role in an anal- 162 

ysis of statistically stationary state of the front evolution, discussed in the next subsection. 163 

Substitution of Eqs. (6) and (7) into Eq. (8) or substitution of Eqs. (1), (3), (6), and (7) 164 

into Eq. (9) yields 165 

(
𝑢′

𝑢0
) (

𝜉𝑡∗

𝜏𝐾
) ≈ exp (𝜉

𝑡∗

𝜏𝐾
). (11) 

Taking logarithm of Eq. (11), we arrive at 166 

𝜉
𝑡∗

𝜏𝐾
≈ ln (

𝑢′

𝑢0
) + ln (

𝜉𝑡∗

𝜏𝐾
). (12) 

Under the considered conditions of 𝑢0 ≪ 𝑢𝐾 ≪ 𝑢′ , term ln(𝑢′ 𝑢0⁄ ) ≫ 1 . Therefore, 167 

𝜉𝑡∗ 𝜏𝐾 ≫ 1⁄ , the last term on the right-hand side of Eq. (12) may be neglected when com- 168 

pared to the term on the left-hand side. Consequently, an approximate solution to the non- 169 

linear Eq. (11) reads 170 
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𝑡∗ ≈ 𝜉−1𝜏𝐾 ln (
𝑢′

𝑢0
) ≈ 𝜉−1𝜏𝐾 𝑅𝑒𝐿

−1 2⁄
ln (

𝑢′

𝑢0
). (13) 

In order for the time 𝑡∗ given by Eq. (13) to satisfy the constraint of 𝑡 ≪ 𝜏𝑇 , required 171 

for the validity of Eqs. (2) and (4), the following estimate should hold 172 

ln (
𝑢′

𝑢0
) ≪ 𝑅𝑒𝐿

1 2⁄ . (14) 

At instant 𝑡∗, the front area given by Eqs. (3) and (11) is equal to 173 

𝐴𝐹(𝑡∗)

𝐴0
= 𝜉 (

𝑢′

𝑢0
) (

𝑡∗

𝜏𝐾
) ≈ (

𝑢′

𝑢0
) ln (

𝑢′

𝑢0
), (15) 

the turbulent consumption velocity is equal to 174 

𝑢𝑇(𝑡∗) = 𝑢0
𝐴𝐹(𝑡∗)

𝐴0
= 𝜉 (

𝑡∗

𝜏𝐾
) 𝑢′ ≈ 𝑢′ ln (

𝑢′

𝑢0
), (16) 

and the volume of the consumed fluid, given by Eqs. (7) and (8), is equal to 175 

𝑉𝐹(𝑡∗) = 𝐴0𝑢′𝑡∗. (17) 

Finally, the mean consumption velocity averaged over the time interval of 0 < 𝑡 < 𝑡∗ is 176 

equal to 177 

�̅�𝑇 =
𝑉𝐹(𝑡∗)

𝑡∗ = 𝑢′. (18) 

Independence of the mean consumption velocity on the Kolmogorov scales does not 178 

mean that the Kolmogorov eddies are unimportant. On the contrary, it is the Kolmogorov 179 

eddies that create front surface within the framework of the above analysis. Nevertheless, 180 

the outcome, i.e., the mean �̅�𝑇, is independent of the Kolmogorov scales. This apparent 181 

paradox is basically similar to well-known independence of the mean dissipation rate on 182 

viscosity in the Kolmogorov turbulence at 𝑅𝑒𝐿 → ∞ or independence of the mean rate of 183 

entrainment of ambient irrotational fluid into turbulent fluid on viscosity in shear flows 184 

[30]. While both the dissipation and entrainment occur due to viscosity, the mean rates of 185 

the two processes are controlled by large-scale velocity fluctuations at 𝑅𝑒𝐿 → ∞, whereas 186 

small-scale phenomena adjust themselves to these mean rates. As noted by Tsinober [6], 187 

“small scales do the ‘work’, but the amount of work is fixed by the large scales in such a way that 188 

the outcome is independent of viscosity”. 189 

2.2. Statistically stationary state 190 

The method used in section 2.1 to analyze the early (𝑡 ≪ 𝜏𝑇) transient stage of front 191 

propagation under conditions of 𝑢0 ≪ 𝑢𝐾 ≪ 𝑢′ is based on the hypothesis that material 192 

and self-propagating surfaces that coincide at 𝑡 = 0 remain to be close to one another 193 

during a short (𝑡 ≪ 𝜏𝑇) time interval, with the distance between the two surfaces being 194 

smaller than the Kolmogorov length scale. This hypothesis allows us to model temporal 195 

growth of the front surface area by invoking results well known for material surfaces. 196 

However, this hypothesis does not hold at 𝑡 ≫ 𝜏𝑇  when the front area reaches a statisti- 197 

cally stationary state. In this limit, the growth of the front surface area due to turbulent 198 

straining is counterbalanced by reduction of the front surface area due to joint actions of 199 

folding of finite-length front elements, caused by strong advection, and subsequent colli- 200 

sions of self-propagating fronts. As a result, neighboring front surface elements collide, 201 

and the front surface area is reduced. 202 

Here, to examine the statistically stationary regime of slow front propagation, we will 203 

show that smoothing of small-scale wrinkles occurs in the dissipation range of turbulence 204 

spectrum (i.e., at length scales smaller than the Kolmogorov scale). Accordingly, we will 205 

consider the front surface to be a bifractal, i.e., two fractals with different dimensions, 206 

associated with the dissipation and inertial ranges. A similar scenario was explored by 207 

Sreenevasan et al. [20] when discussing turbulent mixing for Schmidt numbers far greater 208 
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than unity, see Figs. 2a and 6 in the cited paper. Recently, such ideas were developed for 209 

flame of a finite thickness [31,32]. In the present communication, the bifractal concept is 210 

applied to an infinitely thin front. In particular, to explore the influence of turbulent ed- 211 

dies on the area of a slowly (𝑢0 ≪ 𝑢𝐾) propagating front, the area response to small-scale 212 

and large-scale turbulent eddies is modeled by invoking two different fractal submodels. 213 

More specifically, both large-scale and small-scale wrinkles of the front are considered to 214 

be fractals, but with different dimensions 𝐷𝑓,1 and 𝐷𝑓,2 and different cut-off scales. More- 215 

over, the outer cut-off scale for the small-scale fractal is considered to be equal to the inner 216 

cut-off scale for the large-scale fractal, with these two equal cut-off scales being called a 217 

crossover length scale in the following. Thus, the focus of the following discussion is 218 

placed on the two fractal dimensions, the crossover length scale, as well as the inner ℓ𝑖𝑛 219 

and outer ℓ𝑜𝑢𝑡 cut-off scales for small-scale and large-scale wrinkles of the front surface, 220 

respectively. 221 

First, following a common supposition [20-22], the large outer cut-off scale ℓ𝑜𝑢𝑡 is 222 

assumed to be proportional to a turbulent integral length scale 𝐿.  223 

Second, the crossover length scale is associated with the boundary between inertial 224 

and dissipation ranges of the turbulence spectrum. Therefore, the crossover length scale 225 

is proportional to the Kolmogorov length scale 𝜂𝐾. Thus, the large-scale fractal covers the 226 

following range 𝜂𝐾 < 𝑟 < 𝐿 of wrinkle scales 𝑟. It is worth noting that 𝜂𝐾 is considered 227 

to be the inner cut-off scale not only in single-fractal models of non-reacting turbulent 228 

flows [20] or a bifractal model of turbulent mixing at a large Schmidt number [20], but 229 

also in certain single-fractal models of highly turbulent flames [33]. Contrary to the latter 230 

models, the front is hypothesized to be another fractal even at smaller length scales ℓ𝑖𝑛 < 231 

𝑟 < 𝜂𝐾, rather than a smooth interface. The point if that, under the considered conditions 232 

of an infinitely thin and slowly propagating (i.e., 𝑢0 ≪ 𝑢𝐾) front there is no physical mech- 233 

anism that can smooth the front surface at scales larger than the Kolmogorov length scale. 234 

Indeed, third, the sole physical mechanism of smoothing small-scale wrinkles on the 235 

surface of an infinitely thin front consists of kinematic restoration due to self-propagation 236 

of the front [21,22]. This is the key difference between the present study and a recently 237 

developed bifractal model [32] of a highly turbulent reaction wave that has a mixing zone 238 

of a finite thickness. For such waves, the inner cut-off scale is controlled by molecular 239 

mixing [32]. For an infinitely thin front, the small inner cut-off scale ℓ𝑖𝑛 is identified as 240 

the Gibson scale corresponding to the front velocity 𝑢0. Therefore, the scale ℓ𝑖𝑛 is found 241 

using the following constraint 242 

|∆𝑢(ℓ𝑖𝑛)| = 𝑢0, (19) 

where ∆𝑢(ℓ𝑖𝑛) designates the velocity difference in two points separated by the distance 243 

ℓ𝑖𝑛.  244 

The same constraint is adopted in the classical single-fractal models of turbulent 245 

flames [21,22], which address the case of 𝑢0 > 𝑢𝐾  and, accordingly, estimate the velocity 246 

difference following the Kolmogorov scaling for the inertial interval [4,5], i.e., |∆𝑢(ℓ𝑖𝑛)| ∝ 247 

𝑢𝐾(𝑟 𝜂𝐾⁄ )1 3⁄ > 𝑢𝐾 . However, under conditions of 𝑢0 ≪ 𝑢𝐾 examined here, the scale ℓ𝑖𝑛 248 

belongs to the viscous (dissipation) subrange of the turbulence spectrum. Therefore, the 249 

difference |∆𝑢(ℓ𝑖𝑛)| should be estimated using the Taylor expansion [4]. Consequently, 250 

by retaining the linear term in the expansion, we arrive at 251 

|∆𝑢(ℓ𝑖𝑛)| ≈ |∇𝐮|ℓ𝑖𝑛 ∝
ℓ𝑖𝑛

√𝜀̅ 𝜈⁄
=

ℓ𝑖𝑛

𝜏𝐾

. (20) 

Equations (19) and (20) yield 252 

ℓ𝑖𝑛 = 𝑢0𝜏𝐾 =
𝑢0

𝑢𝐾

𝜂𝐾 ≪ 𝜂𝐾 . (21) 

Comparison of Eqs. (10) and (21) shows that the inner cut-off scale ℓ𝑖𝑛 is equivalent to the 253 

microscale ℓ0 introduced in section 2.1. Obviously, the scales ℓ𝑖𝑛 and ℓ0 differ from the 254 
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common Gibson length scale 𝐿𝐺 = 𝐿(𝑢0 𝑢′⁄ )3 = 𝜂𝐾(𝑢0 𝑢𝐾⁄ )3 [21,22], which characterizes 255 

interaction of the front with turbulent eddies from the inertial range.  256 

Fourth, the area of a bifractal surface is evaluated as follows [20,32] 257 

𝐴𝑓,1 = 𝐴0 (
𝐿

𝜂𝐾

)
𝐷𝑓,1−2

, (22) 

𝐴𝑓 = 𝐴𝑓,1 (
𝜂𝐾

ℓ0

)
𝐷𝑓,2−2

, (23) 

where subscripts 1 and 2 refer to the large-scale interval of 𝜂𝐾 < 𝑟 < 𝐿 and the small-scale 258 

interval of ℓ0 < 𝑟 < 𝜂𝐾, respectively. In terminology by Sreenivasan et al. [20], 𝐴𝑓,1 is the 259 

area measured with resolution 𝜂𝐾, and 𝐴𝑓 is the true front surface area increased jointly 260 

by large-scale and small-scale wrinkles. 261 

Substitution of Eq. (22) into Eq. (23) yields 262 

𝐴𝑓 = 𝐴𝑓,1 (
𝜂𝐾

ℓ0

)
𝐷𝑓,2−2

= 𝐴0 (
𝐿

𝜂𝐾

)
𝐷𝑓,1−2

(
𝜂𝐾

ℓ0

)
𝐷𝑓,2−2

= 𝐴0𝑅𝑒𝐿

3(𝐷𝑓,1−2) 4⁄
(

𝑢𝐾

𝑢0

)
𝐷𝑓,2−2

. (24) 

The value of the fractal dimension 𝐷𝑓,2 of the small-scale wrinkles can be found by noting 263 

that the scales ℓ0 < 𝑟 < 𝜂𝐾 are inside the dissipation subrange. Accordingly, the small- 264 

scale wrinkles of the front surface fill the space between ℓ0 and 𝜂𝐾, and, hence, 𝐷𝑓,2 = 3 265 

[34], as proposed by E. Hawkes during discussion with the first author in Dubrovnik in 266 

April 2017 . For the fractal dimension 𝐷𝑓,1 of wrinkles whose scale is larger than 𝜂𝐾, the 267 

common value [20-22] of 𝐷𝑓,1 = 7/3 may be adopted.  268 

Subsequently, Eqs. (22) and (24) read 269 

𝐴𝑓,1 = 𝐴0𝑅𝑒𝐿
1 4⁄

, (25) 

𝐴𝑓 = 𝐴0𝑅𝑒𝐿
1 4⁄ 𝑢𝐾

𝑢0

= 𝐴0

𝑢′

𝑢0

. (26) 

Thus, the turbulent consumption velocity is equal to 270 

�̅�𝑇 = 𝑢0

𝐴𝑓

𝐴0

= 𝑢′. (27) 

Finally, it is worth noting the following point. If we consider the entire small-scale 271 

(ℓ0 < 𝑟 < 𝜂𝐾) fractal to be a broadened front propagating at an increased speed  272 

𝑢𝑓,2 = 𝑢0 (
𝜂𝐾

ℓ0

)
𝐷𝑓,2−2

= 𝑢0

𝜂𝐾

ℓ0

= 𝑢𝐾 , (28) 

then, the Gibson length scale for this front is equal to 𝜂𝐾, which, in its turn, is equal to the 273 

crossover length scale or the inner cut-off scale for the large-scale (𝜂𝐾 < 𝑟 < 𝐿) fractal. This 274 

example shows self-consistency of the present estimates of the two inner cut-off scales ℓ0 275 

and 𝜂𝐾, as they both are associated with Gibson scales obtained by comparing the front 276 

speed and velocity difference for the appropriate range of the turbulence spectrum. More- 277 

over, the turbulent consumption velocity is again equal to 𝑢′. Indeed, 278 

�̅�𝑇 = 𝑢𝐾

𝐴𝑓,1

𝐴0

= 𝑢′. (29) 

3. Discussion 279 

When small-scale turbulent eddies stretch a slowly (𝑢0 ≪ 𝑢𝐾) propagating front and 280 

increase its area, such an increase in the area cannot be continuous during a long time. 281 

Due to the exponential growth of the area, the front packing in a finite volume is limited 282 

by annihilation of the front elements in mutual collisions. Accordingly, a stage character- 283 

ized by rapidly growing front area and consumption velocity should be followed by a 284 
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stage during that the area partly disappears and the velocity drops. Due to this physical 285 

mechanism, transient effects (oscillations) could play a substantial role even during fully 286 

developed stage of the front propagation. Moreover, due to this physical mechanism and 287 

the transient effects caused by it, the mean turbulent consumption velocity �̅�𝑇 may adjust 288 

itself to the rate of turbulent entrainment, i.e., to the rms turbulent velocity 𝑢′, which char- 289 

acterizes large-scale eddies. The smallest eddies of the Kolmogorov scales do not affect 290 

the mean area of the front and the turbulent consumption velocity, respectively, in spite 291 

of the fact that an increase in the front area and, hence, an increase in a ratio of 𝑢𝑇(𝑡) 𝑢0⁄  292 

are mainly controlled by such eddies. In some sense, the Kolmogorov eddies behave like 293 

Cheshire cat from Alice in Wonderland. 294 

If the speed 𝑢0 of a self-propagating infinitely thin front is less than the Kolmogorov 295 

velocity 𝑢𝐾, the front surface should be wrinkled even by eddies smaller than the Kolmo- 296 

gorov ones, because the sole (for the infinitely thin front) mechanism of smoothing the 297 

surface wrinkle, i.e., kinematic restoration, can only be efficient at scales smaller than the 298 

Kolmogorov length scale 𝜂𝐾 under the considered conditions. Due to this mechanism, 299 

wrinkles with a length scale smaller than ℓ0 = 𝑢0𝜏𝐾 = 𝜂𝐾(𝑢0 𝑢𝐾⁄ ) ≪ 𝜂𝐾 are smoothed out. 300 

In other words, the newly introduced length scale ℓ0 characterizes the smallest possible 301 

wrinkles of the surface of a slowly propagating front. Since eddies from both inertial and 302 

dissipation ranges of turbulence spectrum wrinkle the front surface, the surface is ex- 303 

pected to be a bifractal with two different fractal dimensions for scales smaller (i.e., ℓ0 < 304 

𝑟 < 𝜂𝐾) and larger (i.e., 𝜂𝐾 < 𝑟 < 𝐿) than the crossover scale, which is equal to 𝜂𝐾 under 305 

the considered conditions. In spite of apparent complexity of the above scenario, the mean 306 

fluid consumption velocity is simply controlled by the rms turbulent velocity 𝑢′ ≫ 𝑢0 307 

during the late statistically stationary phase of the evolution of the front. 308 
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