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Application of the Free Energy Principle to
Estimation and Control

Thijs van de Laar, Ayça Özçelikkale, Member, IEEE and Henk Wymeersch, Senior Member, IEEE

Abstract—Based on a generative model (GM) and beliefs over
hidden states, the free energy principle (FEP) enables an agent
to sense and act by minimizing a free energy bound on Bayesian
surprise, i.e., the negative logarithm of the marginal likelihood.
Inclusion of desired states in the form of prior beliefs in the
GM leads to active inference (ActInf). In this work, we aim to
reveal connections between ActInf and stochastic optimal control.
We reveal that, in contrast to standard cost and constraint-
based solutions, ActInf gives rise to a minimization problem
that includes both an information-theoretic surprise term and
a model-predictive control cost term. We further show under
which conditions both methodologies yield the same solution
for estimation and control. For a case with linear Gaussian
dynamics and a quadratic cost, we illustrate the performance of
ActInf under varying system parameters and compare to classical
solutions for estimation and control.

I. INTRODUCTION

Bayesian graphical models (BGMs) constitute an important
family of tools in signal processing, as they allow learning of
models as well as inference of hidden states in a unified way,
often with low complexity. BGMs have been widely applied
for a wide variety of estimation and detection problems in
signal processing [1], [2], with applications that include sensor
networks [3], surveillance [4], information-seeking control [5],
and uncertainty-robust inference [6]. They also naturally unify
several standard methods from statistical estimation theory,
such as the forward-backward algorithm [7], the Kalman filter
[8], the particle filter [9], and the Viterbi algorithm [8].

Beyond learning, estimation and detection, BGMs have
also found applications in stochastic control problems, which
involve not only estimation of the state of a system, but also
determination of suitable control actions in the presence of
uncertainty. Applications include control of vehicles, robots,
factories, or teams of agents. Often, the control problem and
inference/estimation problem are considered separate, whereby
the controller assumes an estimate of the state and the in-
ference occurs without knowledge of future control. Such a
separation principle is only valid in certain cases, such as the
celebrated linear quadratic Gaussian (LQG) control [10]. Over
the past decades, several approaches have been proposed to
unify inference and control [11]–[17], largely based on BGMs.
The core ideas of these approaches can already be found in
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the early work [11], which posed the role of a controller
as follows: “A controller of a stochastic system ‘shapes’ the
joint pdf describing the closed-loop behaviour. The ‘optimal’
controller should make this joint pdf as close as possible to
a desired pdf.” With this in mind, [11] poses an ideal state
distribution and control distribution, after which an optimized
controller can be found be minimizing a Kullback-Leibler
divergence (KLD). In terms of mathematical tractability, an
important improvement was the use of Bayesian graphical
models [2], which led to the methods in [13], [14], [17].
In [13], a similar idea as [11] was proposed, which allowed
the formulation of control cost as a KLD, which could be
solved by approximate inference on the corresponding graph-
ical model. In [14], a linear transformation of the control
cost function is replaced by a log-likelihood function and an
optimized controller is found by an expectation-maximization
procedure over the corresponding factor graph. A similar idea
was introduced in [15], [16] where an artificial observation and
associated likelihood was introduced so that state trajectories
with highest posterior probability also have lowest associated
control cost. In [14], [16] controllers similar to LQG were
found. In [17] the LQG control problem was targeted specif-
ically, and under perfect knowledge of the current state, the
exact LQG controller was recovered by an inference-based
controller. It should be noted that some of the above works aim
to find a policy (i.e. a mapping from state estimate to control)
while others aim to determine an optimal control sequence.

More generally, stochastic optimal control problems have
been solved using a diverse range of approaches, where model-
predictive control (MPC) [18] and reinforcement learning (RL)
[19] are arguably the most prominent approaches. When a
model of the system is available, the control problem becomes
a Markov decision process, which can, in principle, be solved
through dynamic programming [20]. In particular, with model-
predictive control, the model is used to predict the future
behavior of the system. A (convex) optimization problem is
then formulated and solved with a sliding horizon repeatedly
to determine the control input. If no model is available, RL can
provide model-free solutions that learn state-action mappings
from interactions with the system [21]. Recently, there has
been work combining these two approaches, originating either
from the control theory community [22] or the computer
science community [23].

In addition to MPC and RL, a third and more recent path
is the free energy principle (FEP), which originates from
cognitive neuroscience as a way to explain biological behavior
[24], [25]. The main hypothesis is that agents (i) internalize a
generative model (GM) of the system, and (ii) perceive and act
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in such a way as to minimize a free-energy bound on surprise
relative to the GM. Interestingly, free-energy minimization is
a concept that is also used in RL to encourage exploration
and model building [26]. Objective functions for any kind
of system or application can be included in the GM in the
form of a goal prior, which results in formulations of active
inference (ActInf) [27]. Despite a large number of publications
in the ActInf field including applications in robotics [28] and
synthesis with reinforcement learning [29], there have been
only few efforts, e.g., [17], [30]–[34], to apply it to more
traditional stochastic control settings, such as linear quadratic
Gaussian (LQG) control.

In this paper, our main aim is to reveal the connections
between inference and control over BGM from an ActInf
perspective. Specifically, we have the following contributions:

1) We propose an ActInf joint inference and control for-
mulation that casts the control problem as an inference
problem and explicitly encodes the control cost in the
FEP framework;

2) We show under which conditions the ActInf-based joint
inference and control method yields the solution to the
original stochastic optimal control problem;

3) We prove that LQG can be expressed as a special case of
the proposed ActInf joint inference and control method.

One of the main contributions of our work is to reveal a
connection between ActInf and classical stochastic control,
relying on signal processing in general and signal processing
over graphs in particular. To the best of our knowledge, there
are no works that directly tackle this problem. A limited
number of recent contributions either solely focus on casting
the control problem as input inference problem [14] without
explicit connection to free energy minimization; or appeared
as a concurrent short general exposition of the control problem
for an audience in ActInf [34].

The article is structured as follows: In the remainder of
this section, we provide an overview of the notation. Sec. II
introduces the model and optimal control objective. Sec. III
introduces the ActInf objective and further notation related to
probabilistic model formulations. Sec. IV formally relates the
objective function of ActInf with stochastic optimal control.
Sec. V then applies these formulations to a LQG control
problem, which is illustrated by the numerical results in
Sec. VI. We conclude with Sec. VII.

Notation

We write a sequence of variables as st1:t2 = {st1 , . . . , st2}.
At any current time t, we consider a sequence of states,
observations and controls as x = x0:t+T , y = y1:t+T ,
u = u0:t+T−1, with xk ∈ Rnx , controls uk ∈ Rnu , and
observations yk ∈ Rny respectively, with a time horizon of T
time-steps into the future. Note that the start and the end points
between the state, observation and control sequence differ
slightly. When explicitly required, we denote the realizations
of the random variables, such as (past) observed values,
estimates and performed actions, by a bold script.

In order to easily distinguish between the past and future
variables, we adopt the following convention: we divide the

TABLE I
COMMON NOTATIONS FOR DISTRIBUTIONS AND FUNCTIONS.

Short Description Normalized
p joint distribution yes
pt generative model at time t yes
p̃ goal priors yes
ft goal-constrained generative model no
pp posterior distribution of hidden variables yes
q belief / variational posterior yes
πt stochastic policy mapping yes

observations y into past (including present) variables y
t

=
y1:t and future variables yt = yt+1:t+T . Similarly, the state
sequence x consists of xt = x0:t and xt = xt+1:t+T . The
control sequence u consists of ut = u0:t−1 and ut = ut:t+T−1
(with present control included). For notational convenience,
we drop the dependence on the current time t. For instance,
we use x instead of xt. We use s\t to denote the sequence
obtained by removing st from s.

Similar to the notation for the sequences, some of the
probability density functions (pdfs) are expressed using the
notation p(.) and pt(.) to emphasize functions of past and fu-
ture variables, respectively. As usual, marginal and conditional
pdfs associated with a given joint pdf are denoted using the
same letter/subscript. For instance, the marginal obtained by
marginalizing (i.e., integrating) pa(s1, s2) over s2 is denoted
by pa(s1) =

∫
pa(s1, s2) ds2. To avoid clutter, we drop the

distribution arguments (i.e., we write pa instead of pa(s1, s2))
whenever these dependencies are clear from the context.

The statistical expectation with respect to the pdf pa(·) is
denoted by Epa [·]. The mode of a pdf, the point at which the
pdf attains its maximum value, is denoted by mode(·), where
ties between multiple modes (if any) are resolved by uniform
random selection. The transpose of a vector x is denoted by
xT. We denote the positive semi-definite ordering for matrices
by �.

II. SYSTEM MODEL

A. Dynamical System Model

We consider the following dynamical system with the state-
space model (SSM):

xt+1 ∼ p(xt+1|xt, ut), t ≥ 0 , (1a)
yt ∼ p(yt|xt), t ≥ 1 , (1b)

where x0 ∼ p(x0) and u0 = 0. Using the system definition in
(1), the probabilistic system model for the state and outcome
sequence for a given control sequence over a time window of
k ∈ [0, t+ T ] can be expressed as follows

p(y, x|u) = p(x0)

t+T−1∏
k=0

p(yk+1|xk+1)p(xk+1|xk, uk). (2)

At time t, we have the probabilistic system model

pt(y, x|u) =
p(y

t
= y

t
, yt, x|ut = ut, ut)∫

p(y
t

= y
t
, yt, x|ut = ut, ut) dyt dx

, (3)

where y
t

and ut are set to their realizations (y
t

and ut). We
will generally omit the explicit dependence on y

t
and ut and
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instead rely on the sub-script t to indicate that past controls and
observations are fixed in pt. Since pt is obtained by plugging
in the values of the realizations, we re-normalize. An overview
of the common distributions used in this paper together with
their normalization status is provided in Table I.

B. Control Objective

We consider stochastic policy mappings in the form of
πk(uk|y1:t) from the set of measurements (up to the current
time t) to the control at time k where k ∈ [t, t + T ]. The
objective is to find the mappings πk that minimize the expected
cost Jt over current and future states xk and controls uk,
defined as:

Jt =

t+T∑
k=t

Ept,πk
[`k(xk, uk)] , (4)

where pt is the probabilistic system model as expressed in
(3), and `k(xk, uk) ≥ 0 is the cost function at time-step k
that encodes the cost of being in state xk and applying the
control uk. The realization for the current control (action) is
then determined using the stochastic policy mapping πt.

In particular, the control is ut = u∗t,π , where

u∗t,π = g(π∗t ) (5)

with

π∗t = arg min
πt

Jt (6)

and where g(·) represents the mapping from the probability
distribution to a single action ut, which can be chosen, for
instance, as the mean or the mode of π∗t or as a sample
(i.e. realization) from π∗t [19], [31], [35], [36]. This article
considers a sliding horizon, i.e., after taking the action at the
current time instant t and obtaining the next observation, the
stochastic policies are again determined by looking T steps
ahead.

Example: A typical cost function is the quadratic cost:

`k(xk, uk) = `(xk, uk) = 1
2x

T
kQxk + 1

2u
T
kRuk , (7)

for Q ∈ Rnx×nx , Q � 0 and R ∈ Rnu×nu , R � 0.

III. ACTIVE INFERENCE

In this section, we describe the ActInf approach and the FEP.
The concepts and approaches in this section have similarities
to the control as inference literature [13], [14], [17], but are
here presented from the ActInf perspective. The main idea
of ActInf is that at each time t, the controller minimizes the
free energy functional Ft[q], defined as [24] Ft[q] = D[q||ft],
where D[q||ft] is the Kullback-Leibler divergence, q represents
a variational distribution (the optimization variable) and ft
represents the known generative model pt with substituted ob-
servations or with modifications with more general constraints.
Minimization of the free energy, and the well-established
framework of minimization of Bayesian surprise are closely
connected. We further discuss this relationship in Remark 1.
Each of the above concepts will now be explained in detail.
In particular, Sec. III-A presents the central ActInf concept of

Fig. 1. An overview of the ActInf framework together with an illustration of
a LQG setup, which we will detail in Section V. Here, ‘BP’ stands for belief
propagation message passing.

a goal prior, together with its relationship with the generative
model. The free energy functional is defined in Sec. III-B.
The optimization problem ActInf solves to determine the
control sequence is formulated in Sec. III-C. In Sec. III-D,
preliminaries for the message passing approach adopted for
the solution of this optimization problem are presented.

In Figure 1, an overview of ActInf framework together with
an illustration of a LQG setup, which we will detail in our
results in Section V, is provided.

A. Generative Model and Goal Priors

1) The Generative Model: The notation introduced earlier
allows us to concisely write the system model at time t (3) in
terms of a past and a future contribution:

pt(y, x|u) = pt(y, y, x, x|u, u), (8a)

= pt(y, x|u, u) pt(y, x|y, x, u, u), (8b)

= p
t
(y, x|u) pt(y, x|xt, u) . (8c)

We note that the first factor depends on past controls and the
second on the future controls. Both factors condition on the
controls, and pt does not incorporate the control cost Jt.

2) Goal Priors: The designer of the agent should govern
the system behaviour towards desirable system states, e.g. the
exit of a maze. In order to achieve this, ActInf introduces the
concept of a prior belief on the future outcomes [37]–[39]
(or equivalently referred as a goal prior) which constrains the
system model (2). This goal prior is set by the designer of the
agent and encodes the future states that are desirable, in other
words the states that we want to be unsurprising for the agent.
Actions selected as a result of free energy minimization will
then move the agent as close as possible to these unsurprising
(desired) states.

Example 1. Consider the control task of bringing a toy-car
to a certain location after a certain time t̄. Then, a plausible
choice for the goal prior is to use a vague prior for t ≤ t̄
(such as a Gaussian pdf with high variance) and an almost
deterministic prior from time t̄ onward (such as a Gaussian
pdf with a mean at the target location and low variance), see
[39, Sec. 5.2.2] for a precise illustration.
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Context-dependent and hierarchical models can also be
employed as goal priors [40], and goal priors as well as
generative models can be parametrized using neural networks
[30]. These constructs can improve flexibility and adaptability
for specification of the desired behaviour of the agent.

The goal prior is added as an additional factor to the system
model description [38], [39], leading to the goal-constrained
(unnormalized) GM:

ft(y, x, u|u) = pt(y, x|u)︸ ︷︷ ︸
generative

model

p̃(y, xt, x, u)︸ ︷︷ ︸
goal prior

. (9)

In order to relate the goal prior to the traditional control
cost, a natural choice is:

p̃(y, xt, x, u) =
1

Γ
exp

(
−λ

t+T∑
k=t

`k(xk, uk)

)
, (10)

where Γ the the normalization constant and λ ≥ 0 is the
scaling factor. For the quadratic cost of (7) the goal prior
factors into independent Gaussians (i.e., consists of factors
in the form ∝ exp(−λ 1

2x
T
kQxk) exp(−λ 1

2u
T
kRuk)), where

the weighting matrices Q and R take the role of (scaled)
precisions. A related probabilistic approach is described in
[16], where a binary reward is defined by using a cost function.

B. Free Energy Objective

Consider the latent (hidden) variables at time t: y, x, u. Note
that the state sequence x is unknown for both the future and
the past, whereas for the observations and the controls, only
the future variables are unknown. Let us consider a variational
posterior distribution q(y, x, u|y, u) defined over the latent
variables. Here, the label variational refers to the fact that
the objective function (11) is optimized by variations in the
conditional [41]. Note that q(y, x, u|y, u) is a posterior con-
ditioned on the past observations and controls. To avoid nota-
tional clutter, we adopt a mainstream notational convention in
probabilistic inference where conditioning is dropped from the
variational posterior distribution, and represent q(y, x, u|y, u)
as q(y, x, u) or simply as q.

The free energy Ft[q] is defined as follows [24]:

Ft[q] = D[q||ft] , (11)

where D[q||ft] ,
∫
q(s) log(q(s)/ft(s)) ds is the Kullback-

Leibler (KL) divergence (i.e., relative entropy). The KL di-
vergence is an information-theoretic concept that quantifies
how much one probability distribution differs from another
distribution [42]. By straightforward manipulation, the free
energy can be decomposed as follows:

Ft[q] = − logZ︸ ︷︷ ︸
surprise

+Eq
[
log

q(y, x, u)

pp(y, x, u|y, u)

]
︸ ︷︷ ︸

posterior divergence

, (12)

= − logZ + D[q||pp], (13)

where pp denoted the exact (Bayesian) posterior, and where
Z =

∫
ft(y, x, u|u) dy dxdu is also known as the marginal

likelihood, with substituted past observations y and controls

u; and pp(y, x, u|y, u) = 1
Z ft(y, x, u|u). Since the posterior

(KL) divergence term is always positive, the free energy
provides an upper bound on the exact (Bayesian) surprise.
This decomposition is often employed to justify the use of
free energy as a tool for (approximate) inference and model
selection [43].

Remark 1 (Relation between FEP and surprise). Generally,
the generative model p is a pdf over hidden states (say
x) and observations (say y), while q is a pdf only over
hidden states. Hence, p(x, y) = p(y|x)p(x), in which p(x)
represents a prior. Substituting an observation y = y in the
model, yields ft(x) = p(y = y|x)p(x), which represents the
product of a likelihood and the prior. We are interested in
obtaining a posterior belief pp(x) = ft(x)/Z. However, the
normalizing constant (Bayesian evidence) Z =

∫
ft(x) dx is

often intractable to compute, because it involves an integral
over all hidden state configurations. As a result, it is often
prohibitively expensive (in terms of computational power) to
obtain an exact solution for the posterior pp. Instead, posterior
inference is often cast as a free energy optimization problem,
where the free energy factorizes as Ft[q] = − logZ+D[q||pp]
as in (12)–(13). Minimization of Ft thus maximizes Bayesian
evidence, while minimizing posterior divergence, making q a
close approximation to the (usually intractable) posterior pp.

C. Control

At time t, the objective is to find the q that minimizes the
free energy, i.e.,

q∗t = arg min
q
Ft[q]. (14)

Looking at (9) and (11), we observe that after optimization,
the variational distribution q∗t simultaneously accounts for the
constraints enforced by the system model (2) and the goal
prior (10). The posterior for the current control is obtained by
marginalization, i.e., q∗t (ut) =

∫
·· ·
∫
q∗t (y, x, u) dy,dx, du\t,

where u\t denotes the sequence obtained by removing ut from
u. The current action is then chosen as

u∗t,q = g(q∗t ) , (15)

where g(.) is the same as in (5).

D. Free Energy Minimization by Message Passing on a
Forney-style factor graph

It is instructive to separate inference relating to the
past/present from the inference relating to the future. To this
end, we substitute the GM ft(y, x, u|u) of (9) into (11) and
use (8c) to factorize the free energy in the following form with
separate contributions from the present (Vt[q]) and (expected)
future (Gt[q]):

Ft[q] =

Vt[q]︷ ︸︸ ︷
Eq

[
log

q(x)

p
t
(y = y, x|u = u)

]
+

Eq
[
log

q(y, x, u|x)

pt(y, x|xt, u) p̃(y, xt, x, u)

]
︸ ︷︷ ︸

Gt[q]

. (16)
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. . . = = = . . . = =
xt−1

ut−1

yt

xt

ut

yt+1

xt+1 xt+T−1

ut+T−1

yt+T

xt+T

p(y, x|u)

p(y, x|xt, u)

p̃(y, xt, x, u)

Fig. 2. Forney-style factor graph representation of the goal-constrained generative model (9) with indicated factorizations. Observations are indicated by small
solid nodes.

. . . = = = . . . = =
xt−1

→

ut−1↓

→

↑

yt↑

xt

↓
→

ut

←
↑

yt+1↑

xt+1 xt+T−1
↓

←

ut+T−1↓

←
↑

yt+T↑

xt+T↓A
→

E ↓ D↑

B
←

C
←

Fig. 3. Forney-style factor graph specification of the inference algorithm on the goal-constrained generative model. Here, message A represents a state
estimate that summarizes past control and observations. The product of messages D and E yields a posterior belief over the current control, the mode of
which is taken as the present action.

In practice, the optimization of Ft is often intractable and
a specific choice for the factorization of q is made to aid
computation [44]. In our case, due to the factorization of
the GM, we can optimize Ft exactly by belief propagation
over the factor graph of the GM [45], [46]. To minimize Vt
and Gt, a Forney-style factor graph (FFG) offers a convenient
visual representation of a factorized function [47], and is
especially well-suited for representing probabilistic models
[48]. In an FFG, edges represent variables and nodes (factors)
represent relations between variables. The FFG representation
of the GM (9) with substituted factorizations (2) and included
goal priors (10) is drawn in Fig. 2. The free energy (11) is
then minimized by message passing [39], [45], [46], [49] on
the FFG representation of the goal-constrained GM. Message
passing can be interpreted as first minimizing Vt and then
minimizing a modified version of Gt, based on the outcome
of minimizing Vt [2].

Minimizing Vt[q]: Message passing yields a message A
(Fig. 3) that represents the current state estimate, given past
observations and controls. This message summarizes the in-
formation contained within the dashed box:

µA (xt) ,
∫
p
t
(y = y, x|u = u) dx0:t−1 . (17)

From the perspective of stochastic optimal control, message A
connects with the estimator. Moreover, for a linear Gaussian
state-space model, the recursive message updates for comput-
ing A constitute a Kalman filter [50].

Minimizing Gt[q]: In order to minimize Vt[q] + Gt[q], we
re-normalize the message µA (xt) to obtain a prior pe(xt),
i.e.,

pe(xt) ,
1

Ce
µA (xt) (18)

where

Ce =

∫
p
t
(y = y, x|u = u) dx0:t. (19)

Here, the subscript e emphasizes the fact that pe represents
the pdf of an estimate (of the current state). We then define a
modified objective for the expected future

G̃t[q] = Eq
[
log

q(y, x, u, xt)

pe(xt)pt(y, x|xt, u) p̃(y, xt, x, u)

]
, (20)

which can again be minimized by message passing. This yields
messages B – E (Fig. 3) by a backward recursion (smoothing
pass) over the GM of future variables. The product of D and
E then leads to a marginal belief q∗t (ut). Then, the current
control action is obtained using (15).
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IV. FROM ACTIVE INFERENCE TO STOCHASTIC OPTIMAL
CONTROL

The main question we’re interested in is the following:
“When does (15) provide the same control actions as (5)?”.
In other words, when can the ActInf framework be used to
solve the traditional stochastic control problem? Below, we
investigate this question. Since the goal priors only appear
in G̃t and Vt can be minimized independently, we focus
exclusively on the minimization of G̃t. We formulate two
conditions under which minimizing G̃t reduces to minimizing
the stochastic optimal control objective (4).

Note that G̃t[q] can be written as

G̃t[q] = Eq
[
log

q(y, x, u, xt)

pe(xt)pt(y, x|xt, u)

]
− Eq[log p̃(y, xt, x, u)] .

Then, minimizing G̃t[q] is equivalent to minimizing G†t [q]:

G†t [q] = Eq
[
log

q(y, x, u, xt)

pe(xt)pt(y, x|xt, u)

]
+λEq

[
t+T∑
k=t

`(xk, uk)

]
,

(21)

where we substituted the goal prior from (10) and omitted
the additive constants that do not depend on the optimization
variables.

A striking difference between the optimal control and ActInf
objective is that the optimal control objective (4) involves an
expectation w.r.t. the system model pt and policy mapping
π, while the free energy involves an expectation w.r.t. the
variational distribution q. In order to compare the solutions,
we need to create an equal footing.

A. Rewriting G†t
We start by noting that all arguments of q(y, x, u) that are

not within the expectation brackets in (21) are marginalized,
i.e., x\t is marginalized. Therefore, G̃t is effectively only
optimized with respect to q(y, x, u, xt). We then rewrite the
variational distribution in terms of the policy by making use
of a region-based approximation [45], [51]. Note that, for a
model that is a tree (which is the case for ft), the region-based
approximation is exact. Without loss of generality, we write:

q(y, x, u, xt) =

∏t+T−1
k=t q(yk+1, xk, xk+1, uk)∏t+T−1

k=t+1 q(xk)
(22)

=

[
t+T−1∏
k=t

q(uk)

]
︸ ︷︷ ︸

π(u)

[∏t+T−1
k=t q(yk+1, xk, xk+1|uk)∏t+T−1

k=t q(xk)

]
︸ ︷︷ ︸

φ(y,x|xt,u)

q(xt) ,

where we simply applied the Bethe factorization to write the
variational distribution in terms of a control posterior π, a
system posterior φ, and the current-state posterior q(xt).

We now use (22) to rewrite the second term of (21), as:

λEq

[
t+T∑
k=t

`(xk, uk)

]
=λEq

[
pe(xt)

pe(xt)

pt(y, x|xt, u)

pt(y, x|xt, u)

t+T∑
k=t

`(xk, uk)

]
(23a)

= λEπ

[
Eq(xt),φ

[
pe(xt)

pe(xt)

pt(y, x|xt, u)

pt(y, x|xt, u)

t+T∑
k=t

`(xk, uk)

]]
,

(23b)

= λEpe,pt,π

[
q(xt)

pe(xt)

φ(y, x|xt, u)

pt(y, x|xt, u)

t+T∑
k=t

`(xk, uk)

]
, (23c)

where in (23b) we made the expectations due to different terms
of q(y, x, u, xt) = π(u)φ(y, x|xt)q(xt) from (22) explicit
and in the last step we interchanged distributions in the
expectation subscript with distributions in the numerators, i.e.,
we used Eq

[
p(s)
p(s)f(s)

]
= Ep

[
q(s)
p(s)f(s)

]
for a function f and

probability distributions q and p.
We now turn to the first term of (21). Again using the

factorization q(y, x, u, xt) = π(u)φ(y, x|xt)q(xt) from (22),
we rewrite this first term as the sum of the negative policy
entropy and a posterior divergence:

Eq
[
log

q(y, x, u, xt)

pe(xt)pt(y, x|xt, u)

]
= Eq[log π(u)] (24)

+D(q(xt)‖pe(xt)) + Eq
[
log

φ(y, x|xt, u)

pt(y, x|xt, u)

]
.

Substituting (23c) and (24) in (21) then reveals the full
expression for the ActInf controller objective:

G†t [q] = (25)

Eq[log π(u)] +D(q(xt)‖pe(xt)) + Eq
[
log

φ(y, x|xt, u)

pt(y, x|xt, u)

]
+ λEpe,p,π

[
q(xt)

pe(xt)

φ(y, x|xt, u)

pt(y, x|xt, u)

t+T∑
k=t

`(xk, uk)

]
Remark 2 (Interpretation of the FEP objective). The FEP
objective can be seen as a trade-off between two terms: one
pulls q towards p (under uninformative future values for the
controls) and another that minimizes the cost

∑t+T
k=t `(xk, uk).

Minimization of only the first three terms in (25) (i.e. the case
with λ = 0) leads to an undetermined variational distribution
q∗. Namely, because the first three terms in (25) directly stem
from the first term of Eqn. (21), we have q∗(y, x, u, xt) =
pe(xt)pt(y, x|xt, u). Then, we have G†t [q∗] = 0 (with λ = 0).

Conversely, minimization of only the last term in (25) (with
λ > 0) leads to a degenerate variational distribution q∗ with
mass only at a global minimizer of

∑t+T
k=t `(xk, uk), because

this last term is equal to Eq
[∑t+T

k=t `(xk, uk)
]

(recall that the
last term in (25) is only a rewritten version of the last term
in (21)). In particular, while minimizing Eq

[∑t+T
k=t `(xk, uk)

]
over q, since there are no other constraints on q, and q can be
directly chosen as a distribution with point mass at a global
minimizer of

∑t+T
k=t `(xk, uk). For instance, with `(.) defined

as (7), q with point mass at xk = 0, uk = 0 ∀k is a minimizer.

We now present two sets of conditions under which the
actions chosen by the ActInf agent by (15) are the same as
the stochastic control actions chosen using (5).

B. First Condition: Deterministic Model with Point-Estimate

Theorem 1. Let (i) λ > 0, (ii) φ = pt, (iii) qe = pe, and (iv)
g(·) = mode(·). Then, u∗t,q = u∗t,π .
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Proof. See Appendix A.

The below result shows that Theorem 1 implies that the
optimal solution is recovered for deterministic systems with a
point-estimate.

Corollary 1. The conditions (ii) φ = pt, and (iii) qe = pe of
Theorem 1 occur in the case of a deterministic model pt in
conjunction with a point estimate for the current state.

Proof. In the case of a deterministic model, pt of (1) is con-
strained to delta functions; i.e., p(xk+1|xk, uk) = δ(xk+1 −
fx(xk, uk)) and p(yk|xk) = δ(yk − fy(xk)), for some de-
terministic functions fx(·) and fy(·). A point estimate for
the current state (after the minimization of Vt) is chosen as
pe(xt) , δ(xt − x̂t). Then, any condition other than (ii)
φ = pt, (iii) qe = pe will lead to infinite divergence in
(24), and hence in (25). By contradiction, (ii) φ = pt and
(iii) qe = pe are the only viable solutions to the minimization
of G̃t under the choice of a deterministic model with a point
estimate for the current state.

C. Second Condition: Vanishing State and Control Cost

We now consider minimizers of (25) as a function of λ, and
define

rλ(y, x, xt, u) ,
q∗(xt)φ

∗(y, x|xt, u)

pe(xt)pt(y, x|xt, u)
=
q∗(y, x, xt|u)

pt(y, x, xt|u)
.

(26)

Note that the distribution q is an argument of (25). Hence, the
optimal q depends on λ. In light of Remark 2, we see that for
λ = 0, rλ(y, x, xt, u) = 1, while for λ > 0, rλ(y, x, xt, u) 6=
1.

Theorem 2. Let (i) limλ→0+
1
λEq[log rλ(y, x, xt, u)] = 0,

(ii) limλ→0+ rλ(y, x, xt, u) = 1, ∀y, x, xt, u, and (iii) ut =
modeπt. Then, limλ→0+ u∗t,q = u∗t,π .

Proof. See Appendix B.

Condition (ii) requires that, under a vanishing λ, the second
term of (25) grows to zero faster than λ itself. Hence, under
(ii), the last term will dominate over the second term, retaining
the dependence of G̃t on ` (see the proof for details). Note
that if we outright require λ = 0, all dependence on ` is
immediately lost. Instead, the limit ensures that the influence
of the cost ` is retained.

It is not straightforward to see when the conditions (i) – (ii)
of Theorem 2 apply. In the subsequent sections, we further
discuss the implications of Theorem 1 and Theorem 2 for the
special case of a linear Gaussian SSM.

V. RELATIONSHIP BETWEEN LQG CONTROL AND ACTIVE
INFERENCE FOR A LINEAR GAUSSIAN SSM

We now investigate the behavior of the ActInf controller
under a linear Gaussian state-space model. We assume a linear
Gaussian system with the respective transition and observation
precisions Ww and Wv , as follows:

p(xt+1|xt, ut) = N (xt+1|Axt +But,W
−1
w ) (27a)

p(yt|xt) = N (yt|Cxt,W−1v ) . (27b)

where the notation N (z|m,V ) represents a Gaussian distribu-
tion with the mean m and the covariance (inverse precision)
matrix V = W−1 for the variable z. We consider the quadratic
cost in (7), leading to independent Gaussian goal priors (10).

A. Algebraic Results for the Active Inference Controller

A closed-form expression for the resulting ActInf regulator
is obtained by propagating the messages of Fig. 3 algebraically
as follows:

Theorem 3. The ActInf solution for the system in (27) is given
by

u∗t,q = −Ktx̂t (28a)

Kt =

[
BT
(
AV̂ ′tA

T + P−1t+1 +W−1w

)−1
B + λR

]−1
×

BT
(
AV̂ ′tA

T + P−1t+1 +W−1w

)−1
A V̂ ′t Ŵt (28b)

V̂ ′t =
(
Ŵt + λQ

)−1
, (28c)

where x̂t and Ŵt are the respective mean and precision of pe
(the normalized message A ). Here, Pk, i.e. the precision of
the backward message over state xk, is given by

Pt+T = λQ (29a)

Pk−1 = −ATPkB
(
R′ +BTPkB

)−1
BTPkA+

ATPkA+ λQ (29b)

R′ =
(

[λR]
−1

+
[
BTWwB

]−1)−1
. (29c)

Proof. See Appendix C.

Note that this result provides an iterative procedure for
finding the ActInf solution. In particular, we initialize Pt+T
with (29a). Then, Pk’s can be calculated iteratively and offline,
i.e., without obtaining the measurements. Then, the action is
found using (28). Here, calculation of Kt requires calculation
of Ŵt. In the LQG case, pe is a Gaussian pdf with a mean
and covariance that are given by the standard Kalman filtering
equations, see for instance [50], [52].

We now investigate the conditions implied by the two theo-
rems and the corollary from Sec. III-A2. Theorem 1 assumes a
deterministic model and a point estimate for the current state
(Cor. 1), which corresponds to Ŵt = Ww = εI2, ε → ∞.
Theorem 2 investigates the dependence on λ, and lets λ→ 0+.
In both cases (29c) reduces to R′ = λR, and (28b) reduces
to Kt =

[
BTPt+1B + λR

]−1
BTPt+1A, thus recovering the

classically optimal LQG solution in the form of the discrete-
time finite horizon Ricatti equations [35]. Note that compared
to the standard LQG solution, both Q and R appear to be
scaled with λ in the above equations, which has no effect
on the optimal solution. This can be seen for instance by
recognizing that this scaling corresponds to the scaling of both
matrices with λ in (7), which corresponds to a simple scalar
scaling of the objective function.
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Fig. 4. Results comparing LQG with ActInf control, where the time-axis is log-scaled. The more aggressive LQG control (bottom left), leads to faster state
adjustments (top left). ActInf control for small but nonzero λ reduces to LQG control. Notably, although ActInf control with λ = 1 accumulates higher cost
in terms of `(xk, uk) in (7) (bottom right), it achieves lower free energy than ActInf control with small λ (top right).

VI. NUMERICAL RESULTS

A. Scenario

In this section, we illustrate the performance of the ActInf
controller for varying positive values of λ and compare the re-
sults with the standard LQG scenario. The ActInf simulations
are performed with the ForneyLab probabilistic programming
toolbox [53], and follow the experimental protocol in [39].
The protocol at each time t consists of three main steps: (i)
find A and the current state estimate pe by minimizing Vt
(16), (ii) from the estimate, find a control posterior q∗t (ut)
by minimizing G̃t (20), and (iii) pass a selected action to the
system (1) to obtain a new observation.

For the system, we use (27), with C = R = Q = Wv =

Ww = I2, A =

(
1 0.1
0 1

)
, B =

(
0.1 0.5
0.05 0.5

)
. The GM

follows the system assumptions and uses a lookahead of T =
10. We initialize the system relatively far from equilibrium, at
x0 = (25, 25)T and choose a vague prior for the initial state
x0.

B. Discussion

The results are presented in Fig. 4, which leads to several
interesting observations. Firstly, for small but nonzero λ, the
results (controls, state trajectory, the accumulated cost for
`(xk, uk) and also Gt) of the ActInf controller approaches the
results of the LQG controller as expected; see Sec. III-A2 and
also the discussions at the end of Sec. V. We note that, for
the current system, λ = 0.01 (not plotted) already renders
the results of the ActInf and LQG controller nearly visually
indistinguishable.

Secondly, the LQG controller is more aggressive than the
ActInf regulator in terms of the controls, i.e., the magnitude
of the LQG controls are relatively large compared to those
of the ActInf regulator. The explicit inclusion of the process
noise in ActInf is in contrast to the LQG scenario where the
process and estimation noise only affect the state estimation

directly but not the regulator [17]. In particular, (29a–28c)
depend explicitly upon Ww and Ŵt, whereas these terms are
not present in the original Ricatti equations. These terms make
the ActInf controller more conservative.

Thirdly, the accumulated cost in terms of `(xk, uk) for the
ActInf controller approaches the optimal cost of the LQG
controller under decreasing λ. This observation is consistent
with Theorem 2, which formulates sufficient conditions for
making the ActInf solution coincide with the LQG solution.
Interestingly, and perhaps counter intuitively, the terminal free
energy for λ = 1 is improved (lower) compared to the λ = 0.1
case. This effect can be interpreted in light of the good
regulator theorem, which states that “every good regulator of
a system must be a model of that system” [54]. Namely, where
the LQG cost function (7) measures a quadratic cost, the free
energy (25) offers an approximate measure of model fitness
(12). This then implies that the ActInf regulator with λ = 1
better models the system properties than the ActInf regulator
with λ = 0.1, leading to lower free energy.

VII. CONCLUSIONS

ActInf and the free energy principle provide a flexible and
general framework for stochastic optimal control problems.
By including the control cost as goal priors, the control cost
appears as an additive term in the free energy. The resulting
free energy minimization problem can be solved by belief
propagation over the associated factor graph, leading to an
elegant and tractable approach to solve stochastic optimal
control problems. In general, the ActInf controller does not
solve the underlying stochastic optimal control problem. To
address this, we provide sufficient conditions for which ActInf
reduces to traditional stochastic optimal control. In other
words, under certain conditions, stochastic optimal control is
a subset of ActInf control. Finally, while it is not known for
which classes of problems the sufficient conditions hold, we
prove and numerically demonstrate that the ActInf controller
is a generalization of the important case of the LQG controller.
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At the heart of these methods lies the fact that ActInf allows
us to directly control the modeling assumptions. Therefore, we
can explicitly include the anticipated effect of the costs and
the noise in the control policy. Controlling these assumptions
allows us to reproduce traditional stochastic optimal control
solutions, such as the LQG controller.

Future research directions include the comparison of ActInf
and traditional stochastic optimal control frameworks under
model uncertainty, and a full characterization of classes of
general stochastic control problems where ActInf can provide
competitive performance, including non-linear systems. Here,
a central task is to determine how restrictive the sufficient
conditions provided by Theorem 1 and Theorem 2 are in
practice. Although the ActInf framework is expected to pro-
vide at least sub-optimal solutions in many settings, best
practices are missing; for instance in the case of tracking
generative models in non-linear systems, as well as precise
characterization of possible performance gaps between ActInf
and existing stochastic control solutions. These topics thus
arise as promising directions for future research.
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APPENDIX A
PROOF OF THEOREM 1

First, we substitute (ii), (iii) in (25) which removes the
second and third term and the factors within the expectation
of the last term resulting in

G†t [q] = Eq[log π(u)] + λEpe,pt,π

[
t+T∑
k=t

`(xk, uk)

]
. (30)

Let LTt (x, xt, u) ,
∑t+T
k=t `(xk, uk). We now focus on the

second term in (30)

λ

∫
pe(xt)p(y, x|xt, u)π(u)LTt (x, xt, u) dudxdy dxt (31a)

= Ceλ

∫
p
t
(y, x|u)pt(y, x|xt, u)π(u)LTt (x, xt, u) dy dx du

(31b)

= Ceλ

∫
pt(y, x|u)π(u)LTt (x, xt, u) dy dxdu (31c)

= CeλJt , (31d)

where in (31b), we have used (19) and (18); and in (31c)
we have used (8c); and in (31d) we have used (4), i.e. the
definition of Jt.

Since the mode of the policy is used for the current action
by (iv), the negative policy entropy term Eq[log π(u)] in (30)
does not affect action selection. We therefore absorb the policy
entropy in a constant C. Hence, (25) reduces to a function of
the form G†t [q] = λCeJt[q] +C. Scaling of the scalar optimal
control objective Jt does not affect regulator behavior. Hence,
the standard stochastic control solution u∗t,π is the same as the
ActInf solution u∗t,q .

APPENDIX B
PROOF OF THEOREM 2

Recall from Theorem 1 that under condition (iii), the first
term in (25) does not affect the optimal solution. Furthermore,
(ii) removes the ratio rλ(y, x, xt, u) from the last term in (25).
Hence, substituting in these modifications and multiplying the
objective with 1/λ (note that multiplications with 1/λ > 0
do not change optimal solutions), we have following objective
function:
1

λ
D(q∗(xt)‖pe(xt)) +

1

λ
Eq∗
[
log

φ∗(y, x|xt, u)

pt(y, x|xt, u)

]
+ Ep∗e ,p∗,π∗

[
t+T∑
k=t

`(xk, uk)

]
, (32a)

=
1

λ
Eq∗
[
log

q∗(xt)φ
∗(y, x|xt, u)

pe(xt)pt(y, x|xt, u)

]
+ Ep∗e ,p∗,π∗

[
t+T∑
k=t

`(xk, uk)

]
,

(32b)

where in (32b) we have used

D(q∗(xt)‖pe(xt))=Eq∗(xt)

[
log

q∗(xt)

pe(xt)

]
= Eq∗

[
log

q∗(xt)

pe(xt)

]
.

Taking the limit with λ → 0+ and substituting (ii), we ob-
tain Ep∗e ,p∗,π∗

[∑t+T
k=t `(xk, uk)

]
as desired. Then, the optimal

control objective (4) is again (proportionally) recovered, and
hence u∗t,q = u∗t,π .

APPENDIX C
PROOF OF THEOREM 3

The algebraic result for the ActInf regulator, (29) and (28),
is obtained by message passing (Fig. 3). We derive this result
by following the standard belief propagation update rules as
summarized by [50, Table 4.1]. For notational convenience,
we write mean-variance and mean-precision parameterized
Gaussian distributions as NV and NW respectively, where
distribution variable arguments are left implicit.

Backward Recursion

The backward recursion (29) follows from message passing
in a section of the model as visualized in Fig. 5. Note that
our specific choice of goal prior (10) is independent of yk.
As a result, messages 2 and 3 are uninformative, and do not
contribute to the end result.

The messages of Fig. 5 are computed as follows:

1 ∝ NW (0, Pk)

2 ∝ 1

3 ∝ 1

4 ∝ NW (0, Pk)

5 ∝ NV
(
0, P−1k +W−1w

)
6 ∝ NW (0, λR)

7 ∝ NV
(
0, B(λR)−1BT

)
8 ∝ NV

(
0, P−1k +B(λR)−1BT +W−1w

)
9 ∝ NW

(
0, AT(P−1k +B(λR)−1BT +W−1w )A

)
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. . . =

NW

A +

B

NW

NW =

C

NW

. . .
xk−1

→
0

←
λQ

uk−1

→
0

←
λR

↓ Ww

→
Wv

↑yk

xk

1
←

2↑

3↑4
←

5
←

6 ↓

7 ↓

8
←

9
←

10 ↓

11
←

Fig. 5. Message passing schedule for recursive backward propagation in a
single (future) section of a linear Gaussian state-space model (27).

10 ∝ NW (0, λQ)

11 ∝ NW
(
0, AT(P−1k +B(λR)−1BT +W−1w )A+ λQ︸ ︷︷ ︸

Pk−1

)
,

where we identify a recursion over Pk−1. The recursion is
initialized with Pt+T = λQ, and terminates when Pt+1 is
computed. The result simplifies further:

Pk−1 = AT(P−1k +B

[R′]−1︷ ︸︸ ︷
[(λR)−1 + (BTWwB)−1]BT)A

+ λQ (using BB−1 = I)

= ATPkA−ATPkB[R′ +BTPkB]−1BTPkA

+ λQ (using Woodbury identity) ,

with

R′ = [(λR)−1 + (BTWwB)−1]−1 .

This concludes the derivation of (29). The computation of R′

can be simplified by making use of Searle’s identity.

Control Law

The control law (28) follows from message passing in a
section of the model as visualized in Fig. 6.

The messages of Fig. 6 are computed as follows:

1 ∝ NW (0, Pt+1)

2 ∝ 1

3 ∝ 1

4 ∝ NW (0, Pt+1)

5 ∝ NV
(
0, P−1t+1 +W−1w

)
6 ∝ NW (0, λR)

7 ∝ NW
(
x̂t, Ŵt

)
8 ∝ NW (0, λQ)

9 ∝ NV
(

[Ŵt + λQ]−1Ŵtx̂t, [Ŵt + λQ]−1
)

. . . =

NW

A +

B

NW

NW =

C

NW

. . .
xt

→
0

←
λQ

ut

→
0

←
λR

↓ Ww

→
Wv

↑yt+1

xt+1

1
←

2↑

3↑4
←

5
←

6 ↓

7
→

8 ↓

9
→

10
→

11↑

12↑

Fig. 6. Message passing schedule for the control law in a single (present)
section of a linear Gaussian state-space model (27).

10 ∝ NV
(
A[Ŵt + λQ]−1Ŵtx̂t, A[Ŵt + λQ]−1AT

)
11 ∝ NV

(
−A[Ŵt + λQ]−1Ŵtx̂t,

A[Ŵt + λQ]−1AT + P−1t+1 +W−1w

)
12 ∝ NW

(
−B−1A[Ŵt + λQ]−1Ŵtx̂t,

BT[A[Ŵt + λQ]−1AT + P−1t+1 +W−1w ]−1B
)
.

The current control then follows from

q∗t (ut) ∝ 6 × 12

ut = mode q∗t (ut)

= −Ktx̂t ,

where (using the Gaussian equality rule)

Kt = [BT(AV̂ ′tA
T + P−1t+1 +W−1w )−1B + λR]−1×

BT(AV̂ ′tA
T + P−1t+1 +W−1w )−1A V̂ ′t Ŵt ,

with

V̂ ′t = (Ŵt + λQ)−1 .

This concludes the derivation of (28).
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