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Soil functions and Ecosystem Services 

A Literature Review (Part 2/2) 

 

PAUL DRENNING 

Department of Architecture and Civil Engineering 

Division of Geology and Geotechnics 

Research Group Engineering Geology 

Chalmers University of Technology 

 

SUMMARY 

Soils are a non-renewable resource and comprise a key component of the world's stock 

of natural capital. Due to industrialisation, urbanisation and other patterns of 

unsustainable development, widespread land degradation in the form of contamination, 

soil sealing, compaction, etc. has impaired the capacity of soils to perform their 

essential functions and provide humans with vital ecosystem services. Brownfields are 

typically urban or peri-urban sites that have been affected by the former uses of the site, 

are or are perceived to be contaminated, and require intervention to bring them back to 

beneficial use. They also constitute an important and underutilised land and soil 

resource to provide ecosystem services in urban areas as an element of green 

infrastructure through the use of nature-based solutions such as gentle remediation 

options (GRO). Within the scope of the Ph.D. project " Enhancing ecosystem services 

by innovative remediation using gentle remediation options (ECO-GRO)", an in-depth 

but inexhaustive literature review has been carried out to build a theoretical 

understanding of soil functions and ecosystem services for the overall research project. 

This literature review report (part 2 of 2) will present a compilation of the main findings 

by continuing with E) core concepts of soil biology, functioning and linkages to 

ecosystem services including how they can be delivered in healthy soils by functional 

assemblages of soil biota; then, F) methods for assessing soil quality are reviewed 

including potential physical, chemical and biological indicators, how they can be 

selected using a logical sieve approach, which standardised analyses exist to measure 

certain parameters as well as how they can be interpreted to give an indication of the 

status of certain aspects of soil functioning; G) quantitative, semi-quantitative and 

qualitative methods for assessing ecosystem services are also discussed, primarily 

within the context of urban or brownfield soils, and noteworthy examples are presented 

at some length as well as considerations for economic valuation of ecosystem services; 

and finally H) broader implications for land management and planning are considered 

in terms of managing soils to improve their quality and adaptive management and 

monitoring approaches to iteratively evaluate soils for their capacity to function and 

deliver ecosystem services over time. Also, how the breadth of information presented 

in this report can be transferred and applied at contaminated sites and marginal land to 

improve soil quality and provide much-needed ecosystem services, particularly in urban 

areas, is discussed. 

Key words: 

Ecosystem services (ES), soil functions (SF), soil quality indicators (SQI), soil quality 

assessment, ecosystem service assessment, brownfields, contaminated sites, sustainable 

remediation, ecological risk assessment (ERA), gentle remediation options (GRO)  
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1 Introduction 

1.1 Background 

Natural capital is defined by the Natural Capital Forum as the world's stock of natural assets 

including geology, soil, air, water and all living things (www.naturalcapitalforum.com). 

According to the European Commission, a major problem connected to our current resource 

consumption patterns is that our common pools of natural capital are treated as infinite, 'free' 

commodities whose value is not sufficiently accounted for in modern economic markets (EC, 

2011a). This has inevitably led to detrimental resource depletion, pollution, and a wide range 

of associated threats to our long-term sustainability and resilience to environmental shocks, 

especially in urban areas (EC, 2011a; Olofsdotter et al., 2013). At present, resource 

consumption in urban areas accounts for almost 80% of global emissions of greenhouse gases. 

The legacy of industrialization over the past century has added the problem of widespread 

contamination in and around cities' soil and water systems. And cities in general are pushing at 

the limits of the established planetary boundaries (Olofsdotter et al., 2013; Rockström et al., 

2009; Steffen et al., 2015). A series of agenda-setting reports by the European commission (e.g. 

Vision for a Resource Efficient Europe, European Biodiversity Strategy to 2020) have raised 

awareness of the widespread degradation of ecosystems by over-exploitation, land-use change, 

contamination, sealing, compaction, erosion, neglect, etc. which have led to rapid losses in 

biodiversity and diminished the total provided ecosystem services by approximately 60% 

worldwide in the past 50 years alone (EC, 2011a, 2011b, 2006; Ellen MacArthur Foundation, 

2015). The concept of ecosystem services (ES) has become increasingly prevalent to denote 

nature's contribution to human welfare, and is commonly defined as 'the goods and services that 

humans derive from natural and human-modified systems on which societal welfare and 

economic development directly depend' (Millennium Ecosystem Assessment, 2005; TEEB, 

2010). Soil as well can be considered a non-renewable resource as it takes many hundreds of 

years to form fertile topsoil, and land itself is a finite and shrinking resource (Breure et al., 

2018). From an anthropocentric point-of-view, protecting and restoring these natural assets is 

imperative to human well-being for current and future generations. Urgent action is mandated 

by the European Commission and United Nations to curb the loss of biodiversity, resource 

degradation, and land-take by transitioning to a more sustainable development pattern that 

protects and preserves the value that these ecosystems represent.  

Given the situation, soil and its functions have been raised to a position of critical importance 

for our common future through the (currently revisited) Thematic Strategy on Soil Protection 

(EC, 2006). Within the Thematic Strategy, seven essential soil functions (SF) have been 

established: (i) biomass production, including agriculture and forestry; (ii) storing, filtering and 

transforming nutrients, substances and water; (iii) biodiversity pool, such as habitats, species 

and genes: (iv) physical and cultural environment for humans and human activities; (v) source 

of raw materials; (vi) acting as a carbon pool; (vii) archive of geological and archaeological 

heritage (EC, 2006). The significance of SF and soil-based ecosystem services (ES) for realising 

the UN's Sustainable Development Goals (SDG) has also been addressed by directly linking 

them to many of the SDGs (e.g. S. Keesstra et al. 2018; S. D. Keesstra et al. 2016). Soil 

functions, Figure 1-1, are critical for the delivery of ecosystem services to humans, and thus it 

is critical to account for these and evaluate soil performance in urban development to maximize 

soil multi-functionality and SF and ES provisioning whenever possible (Bünemann et al., 2018; 

Lehmann and Stahr, 2010; Volchko et al., 2013, 2014a, 2019).  

https://naturalcapitalforum.com/about/
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Figure 1-1. Schematic diagram of soil functions from the FAO, from (Baveye et al., 2016) (CC-

BY 4.0). 

Brownfields are underused areas with, in many cases, real or perceived soil and groundwater 

contamination which often is a barrier to redevelopment in terms of investment risks, ownership 

constraints, risk of future liability claims and public stigma (Ferber et al., 2006; Norrman et al., 

2016). In Europe, there are more than 2.5 million potentially contaminated sites caused by 

anthropogenic activity, i.e. brownfields, of which approximately 85 000 are in Sweden 

(Panagos et al., 2013). Soil contamination, along with other degradation processes, can 

negatively affect soil health (FAO et al., 2020; FAO and UNEP, 2021; Orgiazzi et al., 2016; 

Turbé et al., 2010), which is defined as 'the capacity of a given soil to perform its functions as 

a living system capable of sustaining biological productivity, promoting environmental quality 

and maintaining plant and animal health (Doran and Zeiss, 2000). Instead of being viewed as 

a valuable resource to be cleaned and reused, contaminated soil is often viewed as a disposable 

waste, so conventional "quick and dirty" remediation techniques, usually based on removing or 

destroying the source of contamination, tend to entail irreversible damage to ecosystems (FAO 

et al., 2020; Gerhardt et al., 2017; Mench et al., 2010). Conventional remediation techniques 

are often resource intensive and entail multiple environmental externalities often resulting in a 

lifeless soil ecosystem unfit for 'soft' end uses like green spaces which require ecological 

functioning (Bardos et al., 2016; FAO et al., 2020; G. Lacalle et al., 2020; Volchko et al., 

2014a). New practices are crucial for sustainable remediation and brownfield regeneration, 

because a significant amount of brownfield land area remains derelict or underutilized due to 

restoration being uneconomic or unsustainable using conventional methods (Bardos, 2014; 

Bardos et al., 2020, 2016, 2018). This problem is of particular concern for large land areas or 

smaller, marginal sites where contamination inhibits immediate development, but economic 

return post-remediation does not justify the costs (Cundy et al., 2016). A promising field of 

innovative remediation technologies which have received much attention in recent years are 

those involving plant- (phyto-), fungi- (myco-) and/or bacteria- (bio-) based methods with or 

without the use of soil amendments, i.e. gentle remediation options (GRO). Research shows 

that GRO can provide both effective risk management and a net gain in ecological soil function 

(Cundy et al., 2016; Mench et al., 2010; Vangronsveld et al., 2009).  
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1.2 Aim and Scope 

A literature review has been carried out as part of the Ph.D.-project "Enhancing ecosystem 

services by innovative remediation using gentle remediation options (ECO-GRO)". This report 

presents an in-depth but inexhaustive compilation of information that will be used to build a 

theoretical foundation for the overall research project. Concepts covered include soil biology, 

soil functioning, ecosystem functioning, and other fundamental soil science related concepts, 

which are referred to specifically in relevant sections. This report also aims to give a brief 

review of methods for soil quality and ecosystem service assessment including possible 

economic valuation of ecosystem services and implications for land and soil management. 

Given the growing importance of soils for achieving environmental goals and their recognition 

as a non-renewable resource, an in-depth understanding of the soil system is crucial for 

discussing the improvement of provisioning of soil functions and ecosystem services, including 

at contaminated sites. A thorough assessment of what this involves lies outside the scope this 

review, which instead will focus on synthesizing the state-of-the-art and presenting need-to-

know concepts within the context of the Ph.D.-project. This report is the 2nd part of two 

literature reviews concerning: 1) Gentle remediation options (GRO) and 2) Soil functions and 

ecosystem services. GRO are the focus of the 1st part of literature review and will not be 

discussed in-depth in this report. 

Specific objectives with this literature review: 

• Target literature review towards practical information necessary to carry out pilot 

studies, i.e. what do we need to know to assess soil functions and ecosystem services? 

• Compile pertinent studies to create a reference bank for assessing soil functions and 

ecosystem services in different situations.  

• Identify influential sources or seminal works that lead the field to focus on for deriving 

the most valuable information. 

• Gain the necessary background knowledge to have a sufficient understanding of the 

topics or themes addressed in the ECO-GRO Ph.D.-project and to identify areas of prior 

research to prevent duplication of effort (i.e. not re-inventing the wheel). 

• Identify key themes and the intersectionality between related (yet disconnected) fields: 

gentle remediation options to soil functioning and ecosystem service provisioning. This 

will be accomplished within the ECO-GRO Ph.D.-project by combining the findings of 

both parts of literature review in the future thesis work. 

1.3 Methodology 

The overarching purpose of a literature review can be broadly described as a more or less 

systematic way of collecting and synthesizing previous research (Snyder, 2019). In addition to 

a number of seminal works and highly cited and relevant papers (referred to explicitly in 

relevant sections), a series of steps (according to the Chalmers Library Literature Review 

Guide1) were followed to create a 'semi-systematic' method to add a robustness to the review in 

searching for supplementary material, including:  

1. Problem formulation – establishing the thematic areas and topics to be covered in the 

review, broadly including:  

 
1 Literature Review Guide at Chalmers University of Technology 

https://guides.lib.chalmers.se/c.php?g=402030&p=2734955
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• Interactions between soil biota and the environment that underly soil functions and the 

delivery of ecosystem services. 

• Methods and indicators to use in soil quality assessment to monitor and manage soil 

biodiversity for the delivery of ecosystem services. 

• Identification of existing ecosystem services at site and methods to inventory them, 

including via ecological risk assessment. 

• Identification of current and future needs of ecosystem services. 

• Effects on ecosystem services from disturbances and management practices.  

• Connections to holistic land management and planning.  

• Opportunities and synergies to enhance ecosystem services and improve overall soil 

quality and functioning, for example by using gentle remediation options. 

2. Formulating sensitive search terms – including relevant research and exclude the greater 

bulk, to search for literature in the Scopus database that may be relevant to include in the 

review.  

3. Screen the selected literature – by reading titles, abstracts, summaries, etc. to determine 

which are the most useful to include. Also, identify previously conducted reviews relevant 

to soil functions and ecosystem services and establish prominent, seminal works that have 

an outweighed influence in the field to rely more heavily upon. 

4. Analyse and interpret – analysing the findings and conclusions of the most significant 

literature, extract the pertinent information, and synthesise according to pre-selected themes 

to clearly structure within the overall review. 

Many searches in the Scopus database were carried out to isolate the most relevant scientific 

articles to include in this review, shown in Appendix I. To ensure that the searches were 

performed in a systematic, transparent way the PRISMA method was adopted2. 

1.4 Terminology 

Integrating key concepts of soil science like soil quality and soil quality indicators (including 

ecological soil health) into contaminated site investigation and management is a significant step 

in the right direction towards sustainable soil and land management where soil is managed in 

accordance with the soil's capability and condition (Volchko et al., 2019). By accounting for 

soil parameters beyond just contamination levels in decision-making the latent potential of the 

soil can be leveraged to turn sustainable ambitions to recover ecosystem functions through soil 

protection into action (Volchko et al., 2019). For, the ultimate objective of any remediation 

process must be not only to remove the contaminants from the soils (or instead disrupt 

the source-pathway-receptor linkages) but also to restore soil quality (Epelde et al., 2008; 

FAO et al., 2020; Gómez-Sagasti et al., 2012).  

Terms and definitions related to soils can vary significantly and be used interchangeably even 

within disciplines. To avoid confusion, it is necessary to establish a common language and 

 
2 http://www.prisma-statement.org/ 

http://www.prisma-statement.org/
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terminology in the context of contaminated sites for the purposes of this review. Terms will be 

used according to the following definitions: 

Brownfield has been defined a site that has been affected by the former uses of the site or 

surrounding land, is derelict or underused, is mainly in fully or partly developed urban areas, 

requires intervention to bring it back into beneficial use, and may have real or perceived 

contamination problems (Ferber et al., 2006; ISO, 2017a). 

Brownfield regeneration/restoration is the management, rehabilitation and return to 

beneficial use of the brownfield land resource base in such a manner as to ensure the attainment 

and continued satisfaction of human needs for present and future generations in 

environmentally non-degrading, economically viable, institutionally robust and socially 

acceptable ways" (Bardos et al., 2016). 

Ecosystem services (ES) are commonly defined as the goods and services that humans derive 

from natural and human-modified systems on which societal welfare and economic 

development directly depend (Millennium Ecosystem Assessment, 2005; TEEB, 2010). They 

are typically divided into 4 categories: i) provisioning (products obtained from ecosystems), ii) 

regulating (benefits obtained from regulation of ecosystem processes), iii) cultural (non-

material benefits obtained from ecosystems), and iv) supporting (services necessary for the 

production of all other ecosystem services) (Millennium Ecosystem Assessment, 2005; TEEB, 

2010). 

Gentle remediation options (GRO) are risk management strategies or technologies that result 

in a net gain (or at least no gross reduction) in soil function as well as achieving effective risk 

management(Cundy et al., 2016). 

Green infrastructure refers to a strategically planned network of natural and seminatural areas 

with other environmental features designed and managed to deliver a wide range of ecosystem 

services" (EC, 2013). A similar concept, blue-green infrastructure is defined as 

interconnected networks of land and water that support species, maintain ecological processes, 

sustain air and water resources, and contribute to the health and quality of life for communities 

and people (Olofsdotter et al., 2013).  

Human health is often considered as a basic human right and is defined by the World Health 

Organization (WHO) as not simply being free from illness, but in a state of complete physical, 

mental and social well-being. Biodiversity can be considered as the foundation for human health 

as it underpins the functioning of the ecosystems on which we depend for our food and fresh 

water; aids in regulating climate, floods and disease; provides recreational benefits and offers 

aesthetic and spiritual enrichment. Biodiversity also contributes to local livelihoods, to both 

traditional and modern medicines and to economic development (Health and Biodiversity 

(cbd.int)). 

Natural capital refers to the extension of the economic idea of manufactured capital to include 

environmental goods and services (Dominati et al., 2010). Natural capital consists of stocks of 

natural assets (e.g. soils, forests, water bodies) that yield a flow of valuable ecosystem goods 

or services into the future (COSTANZA and DALY, 1992; Dominati et al., 2010). Soils are 

considered here as natural capital and provide services such as recycling of wastes or flood 

mitigation (Dominati et al., 2010).  

Soil biodiversity comprises the variation in soil life, from genes to communities, and the 

ecological complexes of which they are part, that is from soil microhabitats to landscapes 

(Turbé et al., 2010). This variation is generally described in terms of three interrelated attributes 

of biodiversity: composition, structure and function (Pulleman et al., 2012). Biodiversity is then 

considered as the quantity, variety and structure of all forms of life in soils, as well as related 

functions (Pulleman et al., 2012). 

https://www.cbd.int/health/#:~:text=Health%20is%20often%20considered%20as,mental%20and%20social%20well%2Dbeing.
https://www.cbd.int/health/#:~:text=Health%20is%20often%20considered%20as,mental%20and%20social%20well%2Dbeing.
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Soil fertility has its origins in agriculture primarily referring to the ability of the soil to supply 

essential plant nutrients and soil water in adequate amounts and proportions for plant growth 

and reproduction in the absence of toxic substances which may inhibit plant growth (Bünemann 

et al., 2018). Soil fertility is a difficult term for it can be referred to as both soil function and 

ecosystem service. Whenever possible, this term will be avoided in favour of more consistently 

used terms like primary productivity.  

Soil functions is a loaded term which has been used alternatively to mean process, function, 

role, or service (Baveye et al., 2016; Bünemann et al., 2018). Confusing as the term may be, it 

has served as a conceptual foundation in soil management, most notably in EC 2006, so it is 

considered worthwhile to clarify and distinguish between soil processes, functions and services 

(Baveye et al., 2016). Accordingly, soil functions are here defined as what the soil has the 

capability to do in its natural (undisturbed) state as a result of the (bundles of) soil processes 

(e.g. soil formation, nutrient cycling, etc.) arising out of the complex interaction between biotic 

and abiotic components in the soil environment (Bünemann et al., 2018; Volchko et al., 2013). 

Soil functions thus can be viewed as a subset of wider ecosystem functions (Volchko et al., 

2013), which underpin the delivery of ecosystem services (Bünemann et al., 2018).  

Note: this term is often used interchangeably with ecosystem functions. 

Soil health accounts for soil's capacity beyond the direct utilitarian end use considerations as it 

has typically included soil's ecological attributes associated with soil biota, biodiversity, and 

the living and dynamic nature of soil (Bünemann et al., 2018; Doran and Zeiss, 2000; Garbisu 

et al., 2011; Karlen et al., 1997). The most frequently referred to definition defines soil health 

as the capacity of soil to function as a vital living system, within ecosystem and land-use 

boundaries, to sustain plant and animal productivity, maintain or enhance water and air 

quality, and promote plant and animal health (Doran and Zeiss, 2000). In a more agricultural 

context, Kibblewhite et al. (Kibblewhite et al., 2008) derive the definition of soil health as an 

essential feature of sustainable agriculture: a healthy agricultural soil is one that is capable of 

supporting the production of food and fibre, to a level and with a quality sufficient to meet 

human requirements, together with continued delivery of other ecosystem services that are 

essential for maintenance of the quality of life for humans and the conservation of biodiversity. 

A recently performed review (Bünemann et al., 2018) concluded that soil quality and soil health 

are essentially equivalent, so for this review the term soil quality will be favoured. 

Soil quality has a generally agreed upon definition broadly meaning the capacity of a soil to 

perform its functions necessary for its intended end use (Garbisu et al., 2011; Karlen et al., 

2003, 1997; USDA Natural Resource Conservation Service, 2015; Volchko et al., 2013). This 

inherently anthropocentric definition has been expanded in Bünemann et al. (2018) to more 

broadly include ecological (i.e. biological) functioning 'within ecosystem and land-use 

boundaries to sustain biological productivity, maintain environmental quality, and promote 

plant and animal health.' This expanded definition includes soil health (see above) and reflects 

more the complexity and site-specificity of soil functioning as well as indicates the multi-

functionality of soils when functioning according to their capacity.  

Soil quality indicators (SQI) have been loosely defined as 'those soil properties and processes 

that have greatest sensitivity to changes in soil function' (Andrews et al., 2004), or in an 

expanded form as 'measurable properties of the soil used to evaluate the degree to which the 

soil quality matches the soil functions determined by the intended end use of the soil' (Volchko 

et al., 2013). SQI may encompass physical, chemical, and biological parameters which can be 

connected to dynamic soil properties that can be strongly influenced by management and 

interventions at a site and correlate well with ecosystem processes (Andrews et al., 2004; 

Bünemann et al., 2018; Volchko et al., 2013).  
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Soil services can essentially be viewed as soil-based ecosystem services. That is, soil functions 

which have been utilized by humans directly or indirectly; therefore, are considered soil 

services (Volchko et al., 2013). Soil service indicators have also been integrated into multi-

criteria decision analysis (MCDA) frameworks (Volchko et al., 2013, 2014a) as a means to 

evaluate their contribution to human well-being; however, that lies outside of the scope of this 

review. 

Sustainable remediation is the practice of demonstrating, in terms of environmental, economic 

and social indicators, that the benefit of undertaking remediation is greater than its impact and 

that the optimum remediation solution is selected through the use of a balanced decision-

making process (Bardos, 2014), or simply the elimination and/or control of unacceptable risks 

in a safe and timely manner whilst optimising the environmental, social and economic value of 

the work (ISO, 2017a). 

1.5 Structure of the report and the limitations 

The literature review report has been structured to present concepts related to soil biology and 

functioning on micro-scale then broaden to assessment and their broader implications for land 

management and planning. Chapter 1 provides and introduction and background to the topic 

and its relevance to the broader Ph.D. project. Chapter 2 presents and discusses core concepts 

related to soil biology, corresponding functions and their linkages to ecosystem services. 

Chapter 3 presents the state-of-the-art for soil quality assessment including selection and use 

of soil quality indicators. Chapter 4 considers the use of similar indicators and other methods 

to assess ecosystem services with a focus on brownfields or contaminated sites. Chapter 5 

discusses the broader implications of the covered concepts for land management, planning and 

monitoring particularly for contaminated sites and marginal land. Chapter 6 provides a final 

discussion and concluding remarks.  

The main limitation of this literature review is that it is not systematic and wholly inclusive of 

the field of scientific literature. Instead, a more targeted approach has been taken to focus on 

the narrower range of topics presented here and by relying primarily on select, highly cited or 

relevant sources. Also, the deliberate focus of assessing soil functions and ecosystem services 

at brownfield sites to the exclusion of broader agricultural soil considerations. For this review, 

the typology of relevant ES will pertain primarily to soil-based services within an urban or 

brownfield context. The non-anthropocentric, intrinsic value of soils will be addressed in terms 

of its protection value as a haven for biodiversity for its own sake (e.g. precautionary principle), 

as it is essential for the health and functioning of ecosystems which can provide ES to humans, 

but the utilitarian value of soils will be prioritised.  
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2 Soil biology, functioning and ecosystem services 

Soils make up a crucial part of the Earth's system and play fundamental roles in its functioning, 

upon which humans are dependent, as well as linking the atmosphere, the subsurface, and the 

aquatic realms (Barrios, 2007; Faber et al., 2013; Kibblewhite et al., 2008). This section will 

discuss some of the essential aspects of biodiversity driving the ecological functioning of soils, 

how they can be grouped into understandable and measurable entities, which ecosystem 

services can be attributed to them and the threats posed to soils that can degrade overall soil 

functioning. The field of soil biology, function and ecosystem services is vast and many 

concepts will be covered only superficially; for more information the reader is referred to other 

extensive, in-depth reports e.g. (FAO et al., 2020; Orgiazzi et al., 2016; Turbé et al., 2010). 

2.1 Soil biota 

When referring to the soil system, it is common to emphasize the physical or material 

geochemistry (i.e. abiotic) component and neglect the living organisms (i.e. biotic) that are 

ultimately responsible for the majority of soil processes (Creamer et al., 2016a; Doran and 

Zeiss, 2000; Griffiths et al., 2016; Kibblewhite et al., 2008; Ritz et al., 2009). Ritz et al. (2009) 

state that the physical (e.g. texture, bulk density, porosity, and water availability) and chemical 

(e.g. pH, organic matter content, metal availability) properties of soils provide the fundamental 

context, and sets the limits, in which the biotic assemblages operate and thus have a clear utility 

in assessing ecological status. However, the majority of soil processes are in fact driven by the 

soil biota, shown grouped according to size in Figure 2-1 and within the context of the soil food 

web in Figure 2-2. According to Kibblewhite, Ritz, and Swift (2008) the unique and crucial 

feature of the biota is that it is adaptive to changes in environmental circumstances, driven by 

processes of natural selection, in ways that the abiotic systems of the soil are not. 

 

Figure 2-1. Size distribution of soil organisms, from (Lavelle, 2013). 
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Figure 2-2. The soil food web, from USDA Natural Resources Conservation Service – Soil and 

Water Conservation Society. Available at: Soil Food Web | NRCS Soils (usda.gov). 

As shown in Figure 2-1, soil biota can be broadly separated by size into the following groupings: 

microbes/microflora, microfauna, mesofauna, macrofauna and megafauna. Which organisms 

that can be included in these broad groupings and their associated roles in the soil system are 

briefly discussed in Table 2-1 below: 

Table 2-1. Soil biota organised by size class, summarised from (Wurst et al., 2013). 

Predominant organisms per group are in bold. 

Size class Dominating organisms Soil processes Associated functions and services 

Microbes/ 

microflora 
Bacteria, fungi, archaea 

Degradation of organic 

matter, nitrogen fixation 

and denitrification, soil 

aggregation 

Decomposition, carbon and nutrient 

cycling, disease suppression, regulation 

of plant growth and primary productivity 

Microfauna Nematodes, protozoa 

Predation, herbivory, 

bacteriovory, fungivory 

parasitism, provide food 

source to other organisms, 

distribute microbes in 

rhizosphere 

Nutrient cycling, regulation of population 

sizes, pest and disease suppression 

Mesofauna 

Mites, collembola 

(springtails), enchytraeids 

(potworms) 

Herbivory, bacteriovory, 

fungivory, predation, 

provide food source to 

other organisms, distribute 

microbes in rhizosphere 

Nutrient cycling, regulation of population 

sizes, pest and disease suppression 

Macrofauna/ 

megafauna 

Earthworms, ants, termites, 

spiders, millipedes, beetles, 

moles 

Degradation of organic 

matter, predation, 

herbivory, parasitism, 

burrowing, soil mixing, 

soil aggregation, provide 

food source to other 

organisms 

Decomposition, carbon and nutrient 

cycling, water regulation, pest and 

disease suppression, regulation of 

population sizes, positive/negative effects 

on plant growth and primary productivity 

https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/health/biology/?cid=nrcs142p2_053868
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Wurst et al. (2013) demonstrate the interconnections between different groups of biota, acting 

on varying trophic levels and spatial scales, by grouping the abovementioned soil biota into 

'functional groups' (discussed in the following section) in the soil system for nutrient cycling, 

see Figure 2-3. As shown, soil biota are interdependent which is crucial for both survival as 

well as delivery of ecosystem processes and functions essential to human well-being. 

 

Figure 2-3. a) Soil biota belong to different functional groups (i.e. groups of species with 

similar traits and effects on processes) involved in carbon and nutrient mobilisation from litter, 

i.e. dead plant residues ('indirect pathway') and from living plant roots ('direct pathway'). Soil 

biota have complementary functions and their interactions often increase process rates. b) 

Some functional groups are restricted to one size class (e.g. microbes), while other functional 

groups such as detrivores, herbivores, and predators/grazers involve organisms of the micro-, 

meso- and macrofauna, from (Wurst et al., 2013). 

2.2 Soil functions and ecosystem services linkages 

According to Faber et al. (2013): 'A major challenge is to link soil biodiversity with soil 

functioning to assess how soil biodiversity contributes to the delivery of ecosystem services.' 

An effort to draw conceptual linkages between soil biodiversity, soil functioning and ecosystem 

services considered in the soil system is shown in Figure 2-4.  
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Figure 2-4. Relationships between soil biodiversity, ecosystem functioning and ecosystem 

services determining ecosystem sustainability and ultimately human well-being, from (Faber et 

al., 2013) (adapted from Brussaard et al. 2007). SFD = Soil Framework Directive as proposed 

in (EC, 2006). 

The delivery of ecosystem services is reliant on a healthy, living soil ecosystem. A mechanistic 

understanding of the relationships between soil biodiversity and function remains elusive (Ritz 

et al., 2009; Turbé et al., 2010; Wurst et al., 2013); however, insights into the relationships and 

linkages between abiotic components, soil biota, and soil processes and functions have been 

gleaned from comprehensive studies into soil systems. Ecosystem services for human benefit 

are ultimately functional outputs of biological processes resulting from highly complex 

interactions between the soil biota and the abiotic physical and chemical environment of the 

soil (Kibblewhite et al., 2008). In aggregate, these soil or ecosystem functions are provided by 

assemblages of interacting organisms (i.e. specific groups of the soil biota) (Brussaard, 2013; 

Kibblewhite et al., 2008), see Figure 2-3 and Figure 2-5. Because of their perceived associations 

with certain ecosystem functions, groups of related biota interacting with each other and 

carrying out biological processes, which contribute to these aggregate functions, are often 

combined into so-called 'functional groups' or 'functional assemblages' (Brussaard, 2013; 

Kibblewhite et al., 2008). That is, instead of being grouped by size, as such categorisation 

cannot be unequivocally connected with function (Brussaard, 2013). An important note is that 

these assemblages do not operate in isolation, but are part of an interactive and interdependent 

soil system (Kibblewhite et al., 2008; Pulleman et al., 2012; Wurst et al., 2013), as can be seen 

clearly in Figure 2-2 and Figure 2-3. Indeed, these relatively broad classifications provide 

generalisations since multiple functions can be performed by different functional assemblages 

and overlap in functions occurs across all levels (Pulleman et al., 2012), broadly referred to as 

'ecological multifunctionality' (Birgé et al., 2016; FAO et al., 2020; Wall et al., 2004).  
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The USDA's Natural Resources Conservation Service provides extensive resources to 

understand soil health and assess soil quality largely targeted towards agricultural applications3. 

They maintain that a healthy soil system performs five essential functions (USDA Natural 

Resource Conservation Service, 2015):  

• Nutrient cycling – store and cycle nutrients and carbon 

• Water regulation – regulate and partition water and solute flow 

• Biodiversity and habitat – sustain biological diversity, activity and productivity 

• Filtering and buffering – filter, buffer, degrade, detoxify organic and inorganic materials 

• Physical stability and support – physical stability and support for plant growth (and 

human structures) 

Kibblewhite et al. (2008) synthesised the complex relationships between organisms by 

establishing four functional assemblages made up of 'key functional groups': 1) decomposers, 

2) nutrient transformers, 3) ecosystem engineers, and 4) biocontrollers. Via their associated 

biological processes and functional attributes, the functional assemblages directly contribute to 

four key aggregate ecosystem functions that can be linked directly to ecosystem services, see 

Figure 2-5. They propose that overall soil health (quality) is a direct expression of the condition 

of these assemblages, which in turn, depends on the physical and chemical condition of the soil 

habitat (Kibblewhite et al., 2008).  

 

 

Figure 2-5. Conceptual framework of linkages between soil biota, biologically-mediated soil 

processes and the provision of soil-based ecosystem goods and services, from (Barrios et al., 

2012) (adapted from (Kibblewhite et al., 2008)) 

 
3 Soil Health | NRCS Soils (usda.gov) 

https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/


Soil biology

 

CHALMERS Department of Architecture and Civil Engineering 
13 

Shown in Figure 2-5, Kibblewhite et al. (2008) argue that soil health (quality) is fully dependent 

upon the maintenance of four key functions (i.e. bundles of processes aggregated into 

ecosystem functions): 

• Carbon transformations – Transformation of carbon through the decomposition of plant 

residues and other organic matter, including soil organic matter, together with the 

synthetic activities of the soil biota, including, and particularly, soil organic matter 

synthesis. Decomposition in itself is not only an essential ecosystem function and driver 

of nutrient cycles (i.e. a master variable or 'common currency' that governs microbial 

activity, and ultimately all soil organisms are driven by energy derived from reduced 

forms of carbon (Brussaard, 2013)) but also supports a detoxification and waste disposal 

service. Soil organic matter contributes to nutrient cycling and soil structure maintenance. 

Sequestration of C in soil also plays some role in regulating the emission of greenhouse 

gases such as methane and carbon dioxide.  

• Nutrient cycling – For example, nitrogen, phosphorous and sulphur, including regulation 

of nitrous oxide emissions. While closely linked to decomposition, the cycling of 

nutrients is largely mediated by soil microorganisms whose activity levels are regulated 

by food web interactions within the soil community (Barrios et al., 2012). 

• Soil structure maintenance – Maintenance of the structure and fabric of the soil by 

aggregation and particle transport, and formation of biostructures and pore networks 

across many spatial scales by the combined action of plant roots and soil organisms 

commonly known as 'soil ecosystem engineers'. This function underpins the maintenance 

of the soil habitat and regulation of the soil-water cycle and sustains a favourable rooting 

medium for plants.  

• Biological population regulation – Biological regulation of soil populations by 

competition, predation and parasitism, including organisms recognized as pests and 

diseases of agriculturally important plants and animals as well as humans. 

These aggregated ecosystem functions participate in more than one soil-based delivery process, 

and one or more soil-based delivery processes are required in-turn for the provision of 

ecosystem goods and services in agricultural landscapes (Barrios et al., 2012).  

Classifications of soil organisms can be based on different criteria, and various levels of 

aggregation have been used between functional approaches (e.g. (Barrios, 2007; Kibblewhite 

et al., 2008; Wurst et al., 2013)). Addressing this issue, Turbé et al.(2010) provide one of the 

most extensive reviews of the state of knowledge of soil biodiversity and its contribution to 

ecosystem services and relevance to human society. They divided the soil organisms according 

to three 'all-encompassing ecosystem functions': 1) transformation and decomposition (i.e. a 

combination of carbon transformations and nutrient cycling), 2) biological regulation and 3) 

soil engineering (i.e. soil structure maintenance) (Turbé et al., 2010). Each of these functions 

can be performed by assemblages of soil organisms separated into just three broad functional 

groups (overlapping with those mentioned previously in (Barrios, 2007; Kibblewhite et al., 

2008; Wurst et al., 2013)): 

1. Ecosystem engineers – earthworms, ants, termites and some small mammals modify or 

create habitats for smaller soil organisms by building resistant soil aggregates and pores. In 

this way, they also regulate the availability of resources for other soil organisms since soil 

structures become hotspots of microbial activities. 
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2. Chemical engineers – includes microorganisms (the most abundant soil species) such as 

bacteria, fungi and protozoans that are responsible for carbon transformation through the 

decomposition of plant residues and other organic matter as well as transformation of 

nutrients (e.g. nitrogen, phosphorous, sulphur) made readily available for plants, animals and 

humans.  

Note: this group is a combination of decomposers and nutrient transformers. 

3. Biological regulators – comprises a large variety of small invertebrates, such as nematodes, 

pot worms, springtails, and mites, which act as predators of plants, other invertebrates, or 

microorganisms by regulating their dynamics in space and time. 

Birgé et al. (2016) created a detailed conceptualisation of the linkages between aboveground-

belowground functioning in the rhizosphere that is highly useful for tying these pieces together 

(Figure 2-6). 

 

Figure 2-6. A conceptualisation of the tightly coupled aboveground-belowground biodiversity 

and functioning. Primary productivity (1) is the ultimate source of energy in all ecosystems. 

Plant materials provide food for a variety of aboveground chewing, sucking, mining (2), and 

pollinating (3) insects. These plant-insect interactions affect plant chemistry, plant community 

structure, plant and insect dispersal, and an abundance and diversity of other herbivores and 

higher trophic levels in the ecosystem (not all shown). Changes in the quantity and/or quality 

of litter inputs to the soil (4) can result from aboveground herbivory and alter the food source 

for a variety of belowground detritivores (5). Bacteria, protozoa and arbuscular mycorrhizal 

(AM) fungi in the rhizosphere (6) directly influence the mineralisation of organic carbon and 

nitrogen (C-N) stored in humus (7), affecting available nutrients for plants, who may alter fine 

root turnover (8), and/or release labile carbon (9) to the surrounding microbiota in response, 

stimulating mineralisation activity, and indirectly influencing higher trophic levels, such as 

nematodes that feed on roots and bacteria (10). Soil nutrient availability in turn influence plant 



Soil biology

 

CHALMERS Department of Architecture and Civil Engineering 
15 

community structure, affecting the quality and quantity of litter inputs back to the soil and thus 

tightening aboveground-belowground diversity and functional linkages. From (Birgé et al., 

2016). 

There are some differences between how these functional groups are categorised and for which 

soil functions they are responsible (a challenge inherent to most literature about the soil 

sciences; even resulting in at least three versions of the diagram shown in Figure 2-5, two of 

which occurring in different chapters of the same book (Barrios et al., 2012; Brussaard, 2013)), 

but they seem to converge into a few key groups to which delivery of ecosystem services can 

be predominantly attributed. There are also many compilations of different 'alternative' soil 

functions that can be seen in further detail in Volchko (2014) and the informational website 

"Soil Quality for Environmental Health"4. Brief detail on the key functional groups is provided 

in the following sections.  

2.2.1 Ecosystem engineers 

The 'ecosystem engineers' include soil macrofauna such as earthworms, termites, ants and 

enchytraeids (Brussaard, 2013; Pulleman et al., 2012; Wall et al., 2012). This group's keystone 

species, the earthworms, hold a position of greater importance in the soil ecosystem due to their 

outsized effect on soil functioning and the provisioning of ecosystem services, see (Blouin et 

al., 2013; Lavelle, 2013; Lavelle et al., 2006; Turbé et al., 2010; Wall et al., 2012). Due to their 

biological processes (see previously mentioned reviews for more detail on these mechanisms) 

they have been directly linked to several invaluable soil functions that enable all others through 

e.g. pedogenesis, development of soil structure, water regulation, nutrient cycling, primary 

production, climate regulation, pollution remediation and cultural services (Blouin et al., 2013; 

Lavelle, 2013; Lavelle et al., 2006). Considering the aggregate soil functions shown in Figure 

2-5, Brussaard (2013) states that a major driving force underlying these is soil porosity and 

associated water-holding capacity, which are in turn important determinants of plant growth, 

for which organic matter is allocated to feed ecosystem engineers, creating biogenic structures 

in soil. These functions can be greatly diminished from disturbances and it has been observed 

that the elimination of earthworm populations due to soil contamination can reduce the water 

infiltration rate significantly, in some cases even by up to 93% (Turbé et al., 2010). 

According to Kibblewhite et al. (2008), the key concept of soil health (quality) is that soil 

provides a living space for the biota, which is defined by the architecture (i.e. space and 

connectivity) and water content of the pore networks, and gradually decreases from the upper 

soil strata. Indeed, it is the porous nature of soils that governs so much of their functionality 

since the physical framework defines the spatial and temporal dynamics of gases, liquids, 

solutes, particulates and organisms within the matrix, and without such dynamics there would 

be no function (Kibblewhite et al., 2008). Lavelle (2013) stresses the importance of earthworms 

and other ecosystem engineers since their ability to dig and burrow and constantly mix the soil 

is essential to the expansion and maintenance of the structural pore space and to the selection 

and redistribution of microorganisms. Plant roots also do considerable 'biological drilling', but 

earthworms are the most efficient bioturbators of the soils, able ale to ingest and egest as solid 

but complex, organic matter-rich macroaggregates up to 1200 Mg dry soil per hectare and 

drilling up to 900 m of galleries per m². Termites and ants are other powerful ecosystem 

engineers that complete or replace earthworm activities in most ecosystems where they are 

present (Lavelle, 2013). 

In fact, as stated in Lavelle (2013), the soil habitat imposes a number of constraints on 

organisms (e.g. available pore space, food source availability) that requires organisms to 

develop adaptive strategies on in individual basis or via mutualistic associations to survive. 

 
4 Soil Quality: Soil Functions 

http://soilquality.org/functions.html
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These interactions between organisms to adapt to the constraints imposed by the soil 

environment can be described as 'self-organisation'. Wherein, the energy mobilised through 

microbial activities and photosynthesis (for plants and their roots) is used by soil ecosystem 

engineers to build habitats in the compact soil matrix and live there in mutuality with the 

organisms associated with them (see (Lavelle, 2013) for further elaboration). In agricultural 

soils, field trials have shown that inoculation of agricultural soils with assemblages of 

earthworms of different functional types can simultaneously influence a wider array of soil 

processes than single species inoculation (Barrios, 2007). According to Barrios (2007), this is 

because the cumulative impacts of vertical and horizontal burrows, surface casting, residue 

incorporation, and acceleration of plant residue decomposition can lead to improved land 

productivity even in intensive agriculture production systems. 

 

Box 1. Earthworms (adapted from Pulleman et al. 2012). (Image: R.G. de Goede in Pulleman et al. 2012) 

 

These invertebrates belong to the functional group of ecosystem engineers [3,4]. By producing soil structures 

such as burrows and excrements they strongly modify the habitat for other soil organisms, including plant roots. 

Earthworms can play a particularly large role in litter transformation and incorporation as well as soil structure 

formation [22]. Earthworms are used as bioindicators in contaminated soils because of their sensitivity to soil 

pollutants (e.g. heavy metals and organic contaminants) [28]. They also respond strongly to agricultural practices 

(e.g. tillage, crop rotations, pesticides application, organic matter inputs) [22,28,32,37,44,53]. Species (e.g. 

approximately 100 in France) are classified into three ecological groups (anecics, endogeics and epigeics) that 

provide different functions and show different sensitivity to soil disturbances or chemical contamination 

[28,53,32,54]. Epigeic earthworms live at the soil surface and feed on plant litter. Anecics create permanent 

vertical or subvertical burrows and feed at the soil surface. Those two groups are negatively affected by soil 

tillage. Endogeics feed on mineral soil enriched in soil organic matter, and therefore benefit from organic matter 

incorporation either through tillage or the activities of epigeics or anecic earthworms [55]. Anecic and endogeic 

earthworms play a key role in the formation and maintenance of soil structure, enhance water infiltration and 

remediation of soil pollutants and reduce soil erosion [30,37]. Total abundance or biomass of earthworms are 

commonly used as indicators. Nevertheless, the functional group diversity may be a better proxy for habitat 

quality and soil functions [11,28,53]. An important advantage of earthworms as indicators is that taxonomic 

identification is relatively easy. Earthworms can be observed with the naked eye and are commonly known and 

are therefore suitable for communication purposes with stakeholders. However, their spatial variability in the 

field can be high, which makes representative sampling a laborious task. 

Note: Reference numbers correspond to those used in Pulleman et al. 2012, see article for relevant references. 
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2.2.2 Chemical engineers 

This group is a combination of the decomposers and nutrient transformers functional groups 

used in Figure 2-5. Microorganisms, especially bacteria and fungi, constitute this group and 

form the majority of the soil biomass and biodiversity in the soil system and are in fact 

responsible for providing many of the soil ecosystem services on which human society relies 

(Gómez-Sagasti et al., 2012). According to Schröder et al. (2018), the most prominent impact 

of microorganisms on soil quality is their effect on nutrient cycles by fixing or mineralising 

nutrients from the gross soil nutrient pool thus making them more readily phytoavailable. Well-

known mechanisms by which microbes promote nutrient availability include: 1) biological 

nitrogen fixation, by symbiotic N2-fixing bacteria (e.g. within legume root nodules) and free-

living heterotrophic bacteria; 2) nitrogen mineralisation by fungi, especially by mycorrhizal 

fungi which can convert soil organic N to plant-available ammonium; 3) phosphorous 

solubilisation, whereby insoluble organic and inorganic phosphates are transformed into plant-

available forms; and 4) iron solubilisation, whereby inaccessible ferric ions can be mobilised 

through microbial activity thus improving iron bioavailability to plants (Schröder et al., 2018). 

Chemical engineers also play a key role in natural decontamination processes or 

bioremediation, which has even been regarded as an essential 'regulating ecosystem service' 

(FAO et al., 2020; Orgiazzi et al., 2016; Turbé et al., 2010). 

Plant-associated microbes (e.g. endophytic bacteria, mycorrhiza) can provide a host of benefits 

directly to plants in a number of ways, including: directly triggering plant health and growth 

through biosynthesis of various signalling molecules like phytohormones (e.g. auxins, 

cytokinins, ACC-deaminase), biological control of pathogens and modulation of the host plant 

immune system and resistance to drought and osmotic stress and tolerance to freeze-thaw cycles 

(Glick, 2012; Schröder et al., 2018). Plant-associated microbes can also directly influence soil 

structure. One prominent example is arbuscular mycorrhizal fungi which can improve soil 

aggregation through the production of mycelium, enmeshing and physically protection soil 

particles, and glomalin, promoting the binding of soil particles (Schröder et al., 2018).  

Recent research has shown how mycorrhizal fungi is especially key to the decomposition of 

organic matter, carbon cycling and ultimately long-term carbon sequestration (e.g. 

(Clemmensen et al., 2015; Finlay and Clemmensen, 2017; Verbruggen et al., 2016)). To better 

describe and understand the microbial mechanisms responsible for carbon sequestration, Liang 

et al. (Jastrow 2017) have proposed a 'soil microbial carbon pump' which is a function of 

microbial anabolism (i.e. the synthesis of complex molecules in living organisms from simpler 

ones together with the storage of energy – 'constructive metabolism'). The authors maintain that 

the microbes enable an 'entombment effect' by which stable soil organic matter (SOM) can be 

sequestered for long time periods as they build biomass and die-off becoming stabilised 

'necromass', see Figure 2-7. 
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Figure 2-7. Schematic diagram of microbial metabolic processes involved in C cycling in 

terrestrial ecosystems. Primary production inputs to soils occur through two pathways – in-

vivo turnover and ex-vivo modification – that jointly explain soil C dynamics driven by 

microbial catabolism and/or anabolism before entering the stable soil C pool. Even though the 

relative importance of in-vivo turnover (red lines) and ex-vivo modification (green lines) varies 

with different environmental scenarios, the authors argue that the majority of C that is 

persistent in soils occurs through coupling of the soil microbial carbon pump (MCP – 

associated with the in-vivo turnover pathway) to stabilisation via the entombing effect. The soil 

MCP is a conceptual object to demonstrate the fact that microbial necromass and metabolites 

can be the precursors for persistent soil C, which particularly highlights the importance of 

microbial anabolism in soil C storage. The yin-yang symbol is used to create a sense of 

movement and illustrate that the movement is driven, but driven differently, by both bacteria 

and fungi with different trophic lifestyles. From (Liang et al., 2017). 

Regarding contaminated soils, bacteria are typically shown to be more sensitive than fungi to 

stressors like contamination, which is possibly due to exudates and tolerance strategies to store 

contaminants like heavy metals in vacuoles (i.e. excluding contaminants from sensitive parts of 

the cell) (Turbé et al., 2010). According to conventional ecological theory, populations of 

microorganisms will also be affected by 1) temporal scales – microorganisms have potential for 

rapid growth and short generation times relative to that of plants and animals; 2) variable 

activity in microorganisms – active versus inactive or dormant populations, which are those 

that do not contribute directly to ecosystem processes but are important for resilience of a 

community to disturbance and might become important as conditions change; 3) competitive 

strategies like CSR (competitor – stress tolerator – ruderal) strategies – competitors are adapted 

for rapid resource utilization and long-term site occupation, stress tolerators are adapted to 

persist in low-resource environments and ruderals are adapted to highly disturbed sites by 

growing and reproducing quickly; 4) behaviour – changes in cellular processes that occur in 

response to external signals can be considered 'behaviour', including those triggered by 
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environmental stimuli (e.g. chemotaxis – sensing of, and movement towards, a higher 

concentration of a required resource) (Prosser et al., 2007). 

 

2.2.3 Biological regulators 

Also referred to as biocontrollers, this group includes small invertebrates, such as nematodes, 

springtails and mites, which act as herbivores, predators, grazers, etc. on other invertebrates or 

microorganisms (Brussaard, 2013; Pulleman et al., 2012; Wall et al., 2012). Soil microfauna 

(e.g. nematodes) are a diverse group of organisms that mostly feed on bacteria, fungi and (dead) 

plant materials, and in doing so they can regulate the population size and activity of soil 

microbes and can promote the competitive ability and dispersal of beneficial rhizosphere 

microbiota by selective grazing on detrimental soil microorganisms (Wurst et al., 2013). Soil 

mesofauna (e.g. collembola, mites) also aid in biological regulation by selectively feeding on 

pathogenic microorganisms, and can aid in distributing smaller soil biota throughout the soil 

(Wurst et al., 2013). These groups can also contribute to nutrient cycling through feeding on 

various sources and releasing nutrients via their excrements (Wurst et al., 2013). As stated by 

Box 2. Microorganisms (adapted from Pulleman et al. 2012). Picture on the left side represents bacterial cells, 

and picture on the right shows (blue-stained) fungal hyphae in soil (Images: K. Ritz in Pulleman et al. 2012) 

  

Chemical engineers decompose organic matter and transform nutrients. Soil microorganisms dominate this 

functional group [3,4]. They indicate environmental changes by modifications in (i) quantity/biomass, (ii) 

structure and/or (iii) activity [36,38]. Until now the impact of microbial biomass versus community structure on 

ecosystem processes and function is uncertain [38,59,60,62]. Levels of functional redundancy among 

microorganisms depend largely on function and environment considered [15,16,61]. Disconnections between 

factors driving microbial community structure and those driving its function further complicate indicator 

selection [62]. To comprehensively assess soil microbial diversity, it is recommended to include indicators of 

each parameter group: quantity, structure and activity [11]. However, the number of studies and monitoring 

networks using indicators of all three groups is limited. Different methods [41] are used to describe and quantify 

microbial diversity at the genotype, phenotype or metabolic level, and thousands of microbial species can occur 

in just a few grams of soil. To achieve progress in the area of microbial indicators it is important to work on the 

definition and identification of microbial functional groups and their response to environmental changes [61]. 

Beside molecular approaches new conceptual models and experimentation are needed to link microbial diversity 

to ecosystem functions. The development of concepts describing the relationship between the stoichiometry of 

soil microorganisms (e.g. the C, N and P status) and nutrient cycling is promising [39]. 

Note: Reference numbers correspond to those used in Pulleman et al. 2012, see article for relevant references. 
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Barrios et al. (2012), the control of soil-borne pests and diseases through biological regulation 

is an ecosystem service of great economic, human health and environmental importance 

because global annual crop losses are near 30% and commonly controlled with application of 

biocides toxic for humans and the environment. 

 

2.2.4 Vegetation 

Amongst the many biological processes associated with soils, Brussaard (2013) states that two 

are of particular importance: photosynthesis (i.e. composition/C fixation, largely occurring 

aboveground, associated with plant growth) and respiration (i.e. decomposition/ C dissipation, 

largely occurring belowground, inasmuch as associated with plant death). He argues that 

recognising C as the common denominator and main factor that integrates ecosystem functions 

implies that the concept of soil functional groups responsible for ecosystem processes that result 

in ecosystem services cannot be discussed without accounting for a link to the vegetation 

(Brussaard, 2013). This view stresses the importance of primary productivity (the rate of energy 

Box 3. Nematodes (adapted from Pulleman et al. 2012). Picture represents a nematode curling through the soil 

pore space (Image: K. Ritz in Pulleman et al. 2012) 

 

Nematodes are biological regulators and represent one of the most numerous and speciose groups in soils. Soil 

nematodes are trophically diverse and include economically important plant parasites. They show a high and 

diverse sensitivity to pollutants and because of their trophic diversity nematode assemblages do not only reflect 

their own fate, but also the condition of the bacterial, fungal and protozoan communities. These characteristics 

make them potentially interesting bio-indicators for soil health and soil disturbances [56]. Although nematodes 

can easily be sampled and extracted from soil, their identification is time consuming and requires expert 

knowledge. Previous studies demonstrate that the small subunit ribosomal DNA (SSU rDNA) gene harbours 

enough phylogenetic signal to distinguish between nematode families, genera and often species [57]. A robust 

and affordable quantitative PCR-based nematode detection tool for agricultural and scientific purposes, and 

comparable tools for the assessment of the ecological condition of soils, are being developed [58]. Briefly this 

works as follows: after nematodes extraction from soil the nematode community is lysed and after DNA 

purification the lysate is used to quantitatively characterize nematode assemblages. The difference in DNA 

contents of various life stages is limited and different distributions of the life stages barely interfere with 

quantitative community analyses. Verification in recent field studies suggests that Q-PCR based analysis of 

nematode assemblages is a reliable alternative for microscopic analysis. The availability of an affordable and 

user-friendly tool might facilitate and stimulate the use of this ecological informative group of soil inhabitants. 

Note: Reference numbers correspond to those used in Pulleman et al. 2012, see article for relevant references. 
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capture and carbon fixation by primary producers) as a driver of ecosystem processes and a key 

determinant of soil biodiversity (Brussaard, 2013; Prosser et al., 2007; Turbé et al., 2010; Wall 

et al., 2012).  

According to Turbé et al. (2010), both the abundance and the quality (i.e. nutritional quality) of 

vegetation are intricately linked to the diversity of functions performed by soil fauna and flora, 

since the functional groups contribute to the availability of nutrients and to the soil structure, 

two crucial parameters for plant growth. Plant biomass production also contributes to regulating 

the water cycle and local climate through evapo-transpiration (Turbé et al., 2010). The 

vegetation quality and distribution in the soil matrix is regulated by soil characteristics and soil 

biodiversity, which ensure the appropriate functioning of the ecosystem, providing the 

conditions for plant growth (Turbé et al., 2010). The inverse is also true, and there have been 

demonstrable positive effects by vegetation on the soil as a habitat for organisms; for example, 

in the case of agroforestry applications (Barrios et al., 2012), crop selection in agricultural 

settings (Cavigelli et al., 2013; Wall et al., 2012) and short-term rotation coppicing (SRC) with 

diverse clones of willows and poplar (Baum et al., 2009; Müller et al., 2018). 

Another important factor demonstrating the influence of vegetation on soil biota is the issue of 

'hotspots' of biological activity, which Barrios (2007) notes arise due to the distribution of soil 

biota in space and time not being random or homogeneous but rather in concentrated pockets 

of activity that are mostly associated with the availability of C substrates. These 'hotspots' 

include the rhizosphere and AMF hyphosphere, biogenic structures (i.e. soil aggregates), soil C 

pools (i.e. light fraction SOM), and organic detritus (i.e. litter), where key functional 

assemblages can be studied to focus on soil biological processes that underpin the provision of 

soil-based ecosystem services (Barrios, 2007; Barrios et al., 2012). The general consensus is 

that soil biological processes are not randomly distributed but are largely aggregated near C 

substrates, and that greater knowledge about plant–soil biota interactions have great potential 

to improve understanding of the impacts of soil biota at larger scales (Barrios, 2007; Barrios et 

al., 2012). 

To better understand the role of vegetation in the ecosystem, Thijs et al. (2016, 2017) describe 

a model of a 'metaorganism' (host and microbiome together) through which to gain a greater 

understanding of the synergistic actions of plants and microorganisms and plant-microbial 

functions (in the case of phytoremediation). Similarly, Liu et al. (2019) envision the 'eco-

holobiont' – the microbiome of an entire ecosystem, including feedbacks from microbiomes 

associated with biotic (e.g., plants and animals) and abiotic (e.g., soil) components and their 

inter-action, which are critical for shaping host-associated micro-biomes and their role in host 

fitness and ecosystem health. They further argue that crop diversity and rotation should be 

encouraged as it may have positive influences on soil microbiome and pollinator health (Liu et 

al., 2019) 

2.2.5 The role of diversity 

The functional group approach, rather than an exhaustive accounting of all manner of soil 

organisms in the system, is widely considered to be a pragmatic and effective way to study the 

linkages between potentially manageable soil biota and tangible functions that underpin ‘soil-

based’ ecosystem services (Barrios, 2007; Barrios et al., 2012; Kibblewhite et al., 2008); 

however, the functional group-based approach is not without criticism. Brussaard (2013) 

discusses the differences between a 'soil biogeochemistry' perspective on ecosystem 

functioning, which downplays the importance of functional groups, versus a 'soil biology' view, 

which considers such details as a necessary perspective, and their accompanying ecological 

perspectives. Brussaard (2013) further mentions three specific issues with functional groupings: 

1) some functional groups are, like body-size groups (shown above), associated with more than 

one aggregate function, 2) different life-stages of the same species may be associated with 
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different functions, and 3) within one group, species may occur with different effects on soil 

functions (e.g. bacteria and fungi). Additionally, some studies have shown 'functional 

redundancy' within the various functional groups by removing species from controlled soil 

communities and tracking the resulting effects on soil functioning (Barrios, 2007; Wurst et al., 

2013). Results indicate that certain species have an overriding importance in their functional 

group (i.e. 'keystone species') while others could be removed and still retain stability for certain 

essential soil functions (i.e. 'redundant species') (Barrios, 2007). These diversity-function 

relationship studies indicate that community composition, especially the traits (i.e. well-defined 

properties of organisms) of key species or groups, their relative abundance and interactions with 

other groups, appears to be the most significant driver of soils processes and functions, rather 

than 'species richness' (i.e. biodiversity) per se (Barrios, 2007; Brussaard, 2013; Wurst et al., 

2013). Put simply, 'functional diversity' (i.e. number of functional traits) may actually be a more 

important factor than simply 'species diversity' (i.e. number of taxonomically distinct 

organisms) (Brussaard, 2013; Wurst et al., 2013). For example, to measure the effectiveness of 

phytoremediation to remediate and restore soil quality, Epelde et al. (2008) suggest that 

functional diversity is a key indicator of soil health that can be measured by e.g. community-

level physiological profiling (CLPP). 

This refined 'trait-based ecology' approach can provide a sound scientific basis for the choice 

of species or cultivars (i.e. by judiciously selecting plant species or cultivars with 'key 

characteristics') to maintain both aboveground productivity and belowground ecosystem 

services in sustainable 'agro-ecosystems' (Brussaard, 2013). Although, robust, supportive 

models are still lacking. 

Schröder et al. (2018) provide an interesting discussion regarding the effects of microbial 

diversity on functioning (exact wording as in source, emphasis added, (Schröder et al., 2018) 

pp. 1116): 

"From all the arguments listed above, it becomes clear that soil microbes contribute to a 

very significant extent to plant growth on marginal soils. On the other hand, soil 

amendments that favour microbial activity also have the potential to increase plant 

growth, through increased mineralisation, resistance to plant disease (induced systemic 

resistance), or drought (induced systemic tolerance) and all other aspects associated with 

beneficial plant-microbe interaction. As a general rule, we may assume that the more 

microbes are active, the more they will contribute to soil mineralisation processes. 

Microbes are however sensitive to environmental conditions such as water content, pH or 

temperature. Hence microbially controlled soil processes are likely to be unstable in a 

versatile environment, and the loss of a species may lead to the loss of a given soil 

function. This is where microbial diversity is of importance: the higher it is, the more 

likely that the loss of a given species (because of a disturbance) is compensated by another 

one similar in functionality. In this case, this is not the taxonomic diversity per se 

(Estendorfer et al., 2017) that matters, but rather the functional diversity, defined 

as the range of processes that a microbial community can contribute to 

(Heemsbergen, 2004). To measure the contribution of microbial communities in soil 

processes, both, taxonomic and functional diversity need to be taken into account. High 

taxonomic diversity could therefore lead to higher stability and resilience of soil processes 

only if functional redundancy in the community is high. Reversely, some soil processes 

are dominated by single or a few individual species and therefore the rate of these 

processes will depend on species identity rather than high functional diversity (Gamfeldt 

et al., 2008). Hence, a functional trait (such as mineralization and nitrogen fixation) 

can be a better ecological indicator of soil microbiological quality than the 

abundance of specific taxa" (Schröder et al., 2018). 



Soil biology

 

CHALMERS Department of Architecture and Civil Engineering 
23 

Functional groups, functional redundancy, functional diversity, traits and relationships between 

diversity and function are complex issues and still widely debated, see (Barrios, 2007; 

Brussaard, 2013; FAO et al., 2020; Kibblewhite et al., 2008; Orgiazzi et al., 2016; Wall et al., 

2012; Wurst et al., 2013) for further reading. Also, Turbé et al. (2010) provide a clear 

explanation of the issues involved in functional redundancy, shown below in Figure 2-8. 

 

Figure 2-8. Functional redundancy: myth or reality, from (Turbé et al., 2010), pp. 42. 
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2.3 Soil-based ecosystem services 

To briefly reiterate, soil functions is used to define the biological, geochemical and physical 

processes and components that take place within a soil or larger ecosystem, i.e. underlying 

processes maintaining the ecosystem, and ecosystem services encompass the tangible and 

intangible benefits that humans obtain from ecosystems (Bünemann et al., 2018; Orgiazzi et al., 

2016). Many ecosystem services can be intuitively linked to the functioning of the soil biota 

and their interactions within their physical and chemical environment (Brussaard, 2013; 

Dominati et al., 2010; Faber and Van Wensem, 2012; Thomsen et al., 2012). Extensive lists of 

soil services have been by covered by many different authors (e.g. (Brussaard, 2013; Dominati 

et al., 2010; Haygarth and Ritz, 2009; Robinson et al., 2013; Wall et al., 2004)) with both 

considerable differences in terminology and overlap between the many variations. A few of 

these proposals will be briefly discussed in this section.  

One of the earliest (before the Millennium Ecosystem Assessment) and more frequently cited 

sets of soil-based ecosystem services comes from Wall et al. (2004), including 16 ecosystem 

services provided by soil and sediment biota as selected by a consortium of scientists for the 

Committee on Soil and Sediment Biodiversity and Ecosystem Functioning (SSBEF): 

1. Regulation of major biogeochemical cycles 

2. Retention and delivery of nutrients to plants and algae 

3. Generation and renewal of soil and sediment structure and soil fertility 

4. Bioremediation of wastes and pollutants 

5. Provision of clean drinking water 

6. Modification of the hydrological cycle 

7. Mitigation of floods and droughts 

8. Erosion control 

9. Translocation of nutrients, particles and gases 

10. Regulation of atmospheric trace gases (e.g. CO₂, NOx) (production and consumption) 

11. Modification of anthropogenically driven global changes (e.g. carbon sequestration, 

modifiers of plant and algae responses) 

12. Regulation of animal and plant (including algae, macrophytes) populations 

13. Control of potential pests and pathogens 

14. Contribution to plant production for food, fuel and fibre 

15. Contribution to landscape heterogeneity and stability 

16. Vital component of habitats important for recreation and natural history 

Another frequently cited example is from Haygarth and Ritz (2009) who provide a framework 

based upon 18 critical ecosystem services to give focus and highlight specific areas that require 

priority in the short- and longer-term future in the UK, see Table 2-2. They are concerned that 

anthropogenically induced changes in land use or management will result in soils not being 

utilised to provide the functions to which they are best suited. For example, soils primarily 

suited for food supply may be given over to provide a platform for construction. This is an all-
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pervading and recurring concern and highlights the importance of critical decisions, thresholds 

and potential ‘tipping points.’ Meaning that once critical soil functions are lost, they are 

irrecoverable, potentially for millennia, representing a loss of resource that is fundamental to 

the UK’s (and the world at-large) national livelihood and well-being (Haygarth and Ritz, 2009). 

Table 2-2. Ecosystem services and functions appropriate to soils and land use in the UK, 

adapted from (Haygarth and Ritz, 2009). 

Category Ecosystem Service Soil function Example 

Supporting    

1 Primary production 
Support for terrestrial 

vegetation 

Support for principal 

photoautotrophs 

2 Soil formation Soil formation processes 
Weathering of rock and 

accumulation of organic material 

3 Nutrient cycling 
Storage, internal cycling and 

processing of nutrient 

N-fixation and N and P 

mineralisation and cycling 

Provisioning    

4 Refugia 
Providing habitat for resident 

and transient populations 
Burrows for soil macrofauna 

5 Water storage 
Retention of water in 

landscape 

Retention of water in pore network, 

modulates soil biochemical 

processes 

6 Platform Supporting structures 
Supporting housing, industry, 

infrastructure 

7 Food supply Provisioning plant growth 
Provisioning for crops and 

livestock for farming 

8 Biomaterials Provisioning plant growth Producing timber, fibre, fuel 

9 Raw materials Provisioning source materials 
Topsoil, mineral, aggregates 

extraction 

10 Biodiversity and genetic resources 
Sources of unique biological 

materials and products 

Medical products, genes for 

resistance to pathogens and pests 

Regulating    

11 Water quality regulation 
Filtration and buffering of 

water 

Potable water for human 

consumption and good ecological 

status of rivers, lakes and seas 

12 Water supply regulation 
Regulation of hydrological 

flows 

Flood control where surplus, 

irrigation where deficit 

13 Gas regulation 
Regulation of atmospheric 

chemical composition 

CO₂/O₂ balance, O₂ for UVB 

protection, and SOx levels 

14 Climate regulation 

Regulation of global 

temperature, precipitation, 

and other biologically 

mediated climatic processes 

Greenhouse gas regulation 

15 Erosion control 
Soil and colloid retention 

within an ecosystem 

Retention of soil on hillslopes and 

in wetlands 

Cultural    

16 Recreation 
Providing a platform for 

recreational activities 
Eco-tourism, sport 

17 Cognitive 
Opportunities for non-

commercial activities 

Aesthetic, education, spiritual, 

scientific value 

18 Heritage 

Holds archaeological record 

of terrestrial occupancy and 

civilisations 

Preservation/destruction of 

archaeological record 

Regarding specifically soil-based (or agroecosystem-based) ecosystem services, Dominati et al. 

(2010) provide a detailed overview of current thinking on, and approaches for, the classification 

and quantification of soil natural capital and ecosystem services. They base their work on a 

scientific understanding of soil formation, functioning and classification systems to develop a 

framework consisting of five interconnected components: 1) soil natural capital, characterised 

by standard soil properties well known to soil scientists; 2) the processes behind soil natural 
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capital formation, maintenance and degradation; 3) drivers (anthropogenic and natural) of soil 

processes; 4) provisioning, regulating and cultural ecosystem services; and 5) human needs 

fulfilled by soil ecosystem services (Dominati et al., 2010). In this framework, ecosystem 

services are defined as the beneficial flows arising from natural capital stocks and fulfilling 

human needs. These include provisioning (food, wood and fibre; physical support; raw 

materials), regulating (flood mitigation; filtering of nutrients; biological control of pests and 

diseases; recycling of wastes and detoxification; carbon storage and regulation of N2O and CH4 

emissions) and cultural services (spirituality; knowledge; sense of place; aesthetics). See Figure 

2-9 for a graphic overview of this framework and the ecosystem services included therein. 

 

Figure 2-9. Framework for the provision of ecosystem services from soil natural capital, from 

(Dominati et al., 2010). 

Turbé et al. (2010) note that most of the ecosystem services provided by soils are supporting 

services, or services that are not directly used by humans, but underlie the provisioning of all 

other services. These include nutrient cycling, soil formation and primary production, as shown 

in the previous examples. In addition, soil biodiversity influences the main regulatory services, 

namely the regulation of atmospheric composition and climate, water quantity and quality, pest 

and disease incidence in agricultural and natural ecosystems, and human diseases. Soil 

organisms may also control or reduce environmental pollution (e.g. via bioremediation). Soil 

organisms also contribute to provisioning services that directly benefit humans. For example, 

the genetic resources of soil microorganisms can be used for developing novel pharmaceuticals. 

According to Turbé et al. (2010), the contributions of soil biodiversity, in terms of soil-based 

ecosystem services, can be grouped under the six following aggregated categories: 

1. Soil structure, soil organic matter and fertility – soil organisms are affected by but also 

contribute to modifying soil structure and creating new habitats. Soil organic matter is an 
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important ‘building block’ (or 'common currency' (Kibblewhite et al., 2008)) for soil 

structure, contributing to soil aeration, and enabling soils to absorb water and retain 

nutrients. All three functional groups (i.e. ecosystem engineers, chemical engineers and 

biological regulators) are involved in the formation and decomposition of soil organic 

matter, and thus contribute to structuring the soil. For example, some species of fungi 

produce a protein (glomalin) which plays an important role in soil aggregation due to its 

sticky nature. Also, nutrients are released and rendered bioavailable for plants and other 

organisms by soil organisms via the decomposition of soil organic matter. The residual soil 

organic matter forms humus, which serves as the main driver of soil quality and fertility. 

As a result, soil organisms indirectly support the quality and abundance of plant primary 

production (Turbé et al., 2010). 

2. Regulation of carbon flux and climate control – soil organisms process 25,000 kg of 

organic matter per year per hectare of soil. Soil organisms increase the soil organic carbon 

pool through the decomposition of dead biomass, while their respiration releases carbon 

dioxide (CO2) to the atmosphere. Carbon can also be released to the atmosphere as methane, 

a much more powerful greenhouse gas than CO2, when soils are flooded or clogged with 

water. The loss of soil biodiversity will reduce the ability of soils to regulate the composition 

of the atmosphere, as well as the role of soils in counteracting global warming (Turbé et al., 

2010).  

3. Regulation of the water cycle – soil ecosystem engineers affect the infiltration and 

distribution of water in the soil, by creating soil aggregates and pore spaces. Soil 

biodiversity may also indirectly affect water infiltration, by influencing the composition and 

structure of the vegetation, which can protect the soil surface, influence the structure and 

composition of litter layers and influence soil structure by rooting patterns. The diversity of 

microorganisms in the soil contributes to water purification, nutrient removal, and to the 

biodegradation of contaminants and of pathogenic microbes. Plants also play a key role in 

the cycling of water between soil and atmosphere through their effects on evapo-

transpiration. The loss of this service will reduce the quality and quantity of ground and 

surface waters as nutrients and pollutants (e.g. pesticides) may no longer be degraded or 

neutralised. Surface runoff will likely also increase, thereby increasing the risks of erosion 

and even landslides in mountain areas, and of flooding and excessive sedimentation in 

lowland areas (Turbé et al., 2010). 

Another major factor controlling the water infiltration rate in soil and its capacity for water 

retention is whether the surface of soil is covered with vegetation or plant litter. The 

presence of vegetation can regulate the quantity of water reaching the soil by protecting it 

with leaves, capturing the water and structuring the soil with underground roots. In effect, 

water is kept locally and can permeate into underground reserves. When vegetation is 

limited or absent, water will run off, instead of being absorbed, enhancing the erosion of 

soil particles. Plant roots prevent soil particles from being washed away with water flows, 

keep soil macro-aggregates together and can prevent landslides (Turbé et al., 2010). 

4. Decontamination and bioremediation – chemical engineers play a key role in 

bioremediation, by accumulating pollutants in their bodies, degrading pollutants into 

smaller, non-toxic molecules, or modifying those pollutants into useful metabolic 
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molecules. Humans can utilise these remediation capacities of soil organisms to directly 

engineer bioremediation, whether in situ or ex situ, or by promoting microbial activity (e.g. 

by adding soil amendments. Phytoremediation, which is indirectly mediated by soil 

organisms, is also useful to remove persistent pollutants and heavy metals (Turbé et al., 

2010). 

All the abiotic processes involved in soil decontamination and their effectiveness are 

determined by the physico-chemical properties of soil surface, soil porosity, the chemical 

properties of pore-water compartment, and, of course, the physico-chemical properties of 

the pollutants (e.g. behaviour of organic and inorganic molecules may be significantly 

different in the soil matrix). The presence of active surface fractions such as organic matter, 

possessing high surface areas and charges can, for example, facilitate oil retention in the 

soil matrix. All these physico-chemical properties are directly or indirectly linked to soil 

properties and biodiversity. For example, earthworms and microbes are key actors in the 

determination of soil aggregation and porosity. Similarly, microbial activity can locally alter 

soil pH, affecting soil aggregation and its capacity to absorb contaminants. Therefore, a 

high diversity and biological activity within soils, especially at the level of chemical 

engineers, but also in the case of ecosystem engineers, is indispensable to ensure this crucial 

service through a direct influence on soil biotic degradation processes and an indirect 

influence on soil abiotic degradation processes of pollutants (Turbé et al., 2010). 

5. Pest control – soil biodiversity promotes pest control, either by acting directly on 

belowground pests, or by acting indirectly on aboveground pests. Pest outbreaks occur when 

microorganisms or regulatory soil fauna are not performing efficient control. Ecosystems 

presenting a high diversity of soil organisms typically present a higher natural control 

potential, since they have a higher probability of hosting a natural enemy of the pest. 

Interestingly, in natural ecosystems, pests are involved in the regulation of biodiversity. 

Soil-borne pathogens and herbivores control plant abundance, which enhances plant 

diversity. In natural ecosystems, the loss of pathogenic and root-feeding soil organisms will 

cause a loss of plant diversity and will enhance the risk of exotic plant invasions. Changes 

in vegetation also influence aboveground biodiversity. Loss of this ecosystem service, 

therefore, will cause loss of biodiversity in entire natural ecosystems (Turbé et al., 2010). 

6. Human health – soil organisms, with their astonishing diversity, are an important source 

of chemical and genetic resources for the development of new pharmaceuticals. For 

instance, many antibiotics used today originate from soil organisms. Soil biodiversity can 

also have indirect impacts on human health. Land-use change, global warming, or other 

disturbances to soil systems can release soil-borne infectious diseases and increase human 

exposure to those diseases. Disturbed soil ecosystems may also lead to more polluted soils 

or less fertile crops, all of which can indirectly affect human health, for example through 

ingestion of contaminated food (Turbé et al., 2010).  

In the definition of these six services, Turbé et al. (2010) grouped several sub-services into one 

aggregated service. They also provide a useful comparison of their aggregated ecosystem 

services to those defined in the Millennium Ecosystem Assessment (MEA) report (The 

Millennium Ecosystem Assessment, 2005), see Table 2-3. 
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Table 2-3. Comparison of the aggregated ecosystem services proposed by Turbé et al. (2010) 

to MEA nomenclature, from (Turbé et al., 2010). 

Aggregated services MEA nomenclature Category of service 

Soil organic matter recycling and fertility, 

including soil formation 

Decomposition, nutrient cycling, soil formation, 

primary production, erosion regulation 

Supporting and 

Provisioning 

Regulation of carbon flux and climate 

control 
Climate regulation Regulating 

Water cycle regulation Water regulation and water purification Regulating 

Decontamination and bioremediation - Regulating 

Pest control Disease regulation Regulating 

Human health Disease regulation Regulating 

As can be seen, a major challenge is to find a widely agreed upon selection of soil functions 

and ecosystem services that can be used as the standard for soil ecosystem services. The 

terminology also differs with each article, research group and classification effort. For example, 

the Landmark project5, a Europe-wide research project on the sustainable management of land 

and soil in Europe, refers to soil functions as simply "soil-based ecosystem services", 

encompassing the following five functions relating to agriculture: 

1. Primary productivity – the capacity of a soil to produce plant biomass for human use, 

providing food, feed, fibre and fuel within natural or managed ecosystem boundaries. 

2. Water purification and regulation – the capacity of a soil to remove harmful compounds 

from the water that it holds and to receive, store and conduct water for subsequent use and 

the prevention of both prolonged droughts and flooding and erosion. 

3. Climate regulation and carbon sequestration – the capacity of a soil to reduce the 

negative impact of greenhouse gas (i.e. CO₂, CH4, and N2O) emissions on climate. 

4. Soil biodiversity and habitat provisioning – The multitude of soil organisms and 

processes, interacting in an ecosystem, making up a significant part of the soil's natural 

capital, providing society with a wide range of cultural services and unknown services. 

5. Provision and cycling of nutrients – The capacity of a soil to receive nutrients in the form 

of by-products, to provide nutrients from intrinsic resources or to support the acquisition of 

nutrients from air or water, and to effectively carry over these nutrients into harvested crops. 

Bünemann et al. (2018) recommend that to better consolidate the ecosystem services in focus 

throughout these various schemes and frameworks, they can be seen as a soil-related sub-set of 

the ecosystem services mentioned in the Common International Classification of Ecosystem 

Services (CICES6) (Bünemann et al., 2018). For example, as shown below in Table 2-4, 

researchers developing the BISQ (Biological Indicators for Soil Quality) soil assessment 

framework aligned their 11 proposed soil services (selected via weighted multi-criteria analysis 

in a workshop with experts) with aggregated CICES categories (Rutgers et al., 2014, 2012). 

 
5 http://landmark2020.eu/soil-functions-concept/ 
6 https://biodiversity.europa.eu/maes/common-international-classification-of-ecosystem-services-cices-

classification-version-4.3 

http://landmark2020.eu/soil-functions-concept/
https://biodiversity.europa.eu/maes/common-international-classification-of-ecosystem-services-cices-classification-version-4.3
https://biodiversity.europa.eu/maes/common-international-classification-of-ecosystem-services-cices-classification-version-4.3
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Table 2-4. Soil ecosystem services in the BISQ soil assessment framework aligned with CICES 

classification, summarised from (Rutgers et al., 2014) and updated to match divisions in CICES 

v 5.1. 

Soil service in support of 

ecosystem service 

Aggregated soil ecosystem 

service 
CICES section CICES (v 5.1) division 

1a. Nutrient retention and 

release 
1. Supporting the 

production functions of the 

soil (crop, cattle, landscape) 

for agriculture, forests, 

nature, recreation and green 

areas 

Provisioning services 
Biomass; Water; Genetic 

materials 

1b. Soil structure 

1c. Natural disease 

suppressiveness 

('biocontrol') 

2a. Resistance and 

resilience 2. Resistance, resilience and 

flexibility (general support 

function) 

Regulation and 

maintenance services 

(CICES), regulating 

services (TEEB), 

regulating and supporting 

services (MEA) 

Transformation of 

biochemical or physical 

inputs to ecosystems; 

Regulation of physical, 

chemical, or biological 

conditions 

2b. Potential for other land 

uses 

3a. Fragmentation and 

mineralisation of plant 

residues, building of soil 

organic matter, carbon 

cycling 3. Supporting the regulation 

functions of the soil (incl. 

Nutrient cycles, clean 

ground water and surface 

water) 

3b. Natural attenuation or 

purifying capacity and 

nutrient cycling 

3c. Water: retention, 

release and transport 

3d. Climate functions (all 

temporal and spatial scales) 

4a. Habitat function, 

biodiversity and gene pool 
4. Supporting soil 

biodiversity and habitat 

functions 

Cultural services 

Direct, in-situ and outdoor 

interactions with living 

systems that depend (or do 

not) on presence in the 

environmental setting 

4b. Ethical, cultural and 

educational functions 

 

Similarly, one of the clearest delineations of soil-based ecosystem services (derived from the 

Millennium Ecosystem Assessment) is presented in the Global Soil Biodiversity Atlas 

(Orgiazzi et al., 2016) by linking them to correlated soil/ecosystem functions and soil biota 

(Figure 2-10), which was derived from the conceptual framework shown in Figure 2-5. 
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Figure 2-10. Soil-based ecosystem services, ecosystem functions and soil organisms that 

support them, from (Orgiazzi et al., 2016). 

2.4 Soil degradation and threats 

Just as ecosystem services are influenced by (bundles of) soil processes (i.e. aggregate soil or 

ecosystem functions), the latter are in turn affected by soil threats (Bünemann et al., 2018). The 

European Soil Thematic Strategy identified the main threats to soil quality in Europe as soil 

erosion, organic matter decline, contamination, sealing, compaction, soil biodiversity loss, 

salinization, flooding and landslides (EC, 2006). Although the economic value of these 

ecosystem services is difficult to calculate, it has been estimated that the consequences of soil 

biodiversity mismanagement are in excess of one trillion dollars per year worldwide (FAO et 

al., 2020; Orgiazzi et al., 2016; Turbé et al., 2010). Building on the conceptual framework 

established by Kibblewhite et al. (2008), Bünemann et al. (2018) more concretely link the 

abovementioned soil threats to specific soil functions and consequently impacted soil-based 

ecosystem services, see Figure 2-11 (shown also as 'SFD threats' in Figure 2-4).  
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Figure 2-11. Linkages between soil threats, soil functions and soil-based ecosystem services. 

Further developed from the scheme presented by Kibblewhite et al. (Kibblewhite et al., 2008), 

from (Bünemann et al., 2018). 

Wall et al. (2015) also made a clear connection between soil biodiversity, with its inherent 

complexity (the types, sizes, traits and functions of soil organisms), and human health since it 

provides ecosystem services like disease control and influences the quantity and quality of the 

food we eat, the air we breathe and the water we drink. Additionally, the authors stress that to 

achieve the Sustainable Development Goals it is not enough to aim towards improvement of a 

single benefit related to ‘food’ or ‘air’ or ‘water’ or ‘disease’ control, because all are 

simultaneously dependent on soils and soil biodiversity. Their assessment is rooted in the 

concept of human health as defined by The World Health Organization and Convention on 

Biological Diversity, which extends beyond disease and infirmity and recognizes human 

connections to other species, ecosystems and the ecological foundation of varied drivers and 

protectors of human health. The authors propose that promoting ecosystem functioning by 

managing soil biodiversity is a more cost-effective and sustainable approach than other 

resource-intensive methods to achieving long-term environmental and human health goals 

(Wall et al., 2015), see Figure 2-12. They further state that soil biodiversity is often negatively 

affected by the interaction between poor land management practices and drivers of climate 

change, both of which ultimately compromise ecosystem function and services that are essential 

for human health (e.g. control of pests, pathogens, production of nutritious food, cleansing 

water and reducing air pollution). Responses to reduced human health can in turn affect 

management decisions that govern land use and climate change (Wall et al., 2015). 
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Figure 2-12. Flow diagram illustrating the link between soil biodiversity and human health, 

from (Wall et al., 2015).  

Regarding specifically contaminated sites, the microbial community structure in soil can be 

markedly affected by chemical pollution, jeopardizing the provision of essential ecosystem 

services; thus, it is important to verify that during remediation processes, the links between soil 

biodiversity and soil functioning (as well as the corresponding ecosystem services) are restored 

(Gómez-Sagasti et al., 2012). Schröder et al. (2018) also make the case for intensifying biomass 

production on marginal land (a broader umbrella term that includes contaminated sites) for 

greater productivity as well as to address the degradation of soils by better managing this non-

renewable resource. The authors discuss how valuable agricultural land has become abandoned 

due to contamination, and such sites will remain unproductive (and continue to pose ecological 

and human health risks) unless alternative strategies like gentle remediation options (e.g. 

phytoremediation and soil amendments) are used to reverse course and restore soil quality 

(Schröder et al., 2018). They emphatically state the following (exact wording as in source, 

(Schröder et al., 2018) pp. 1119): 

"From an ecological point of view, the rationale for restoration of degraded or marginal 

land is to recover lost aspects of local biodiversity and ecosystem resilience. From a 

pragmatic point of view, it is indispensable to recover or repair ecosystems and their 

capacity to provide a broad array of services and products upon which human economies 

and human life quality depends. For sure, it is a loss of culture and a loss of patrimony if 

we decide to abandon agriculture in an area" (Schröder et al., 2018). 
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3 Soil quality assessment 

In recent years, due to the growing concern worldwide over the degradation of our soils, soil 

quality monitoring programs (including biodiversity) have been established in many countries 

(see (Pulleman et al., 2012) for an overview of European approaches focusing on soil 

biodiversity), and stress the importance of accounting for the soil biota in soil quality 

assessment. However, most of these monitoring programs comprise rather long lists of 

theoretically relevant (often very specific) indicators to be measured at different sites (according 

to soil types and land uses) and times even though no general agreement has been reached on 

their interpretation or direct linkage from land management to soil functions and ecosystem 

services (Baveye et al., 2016; Gómez-Sagasti et al., 2012; Pulleman et al., 2012; Velasquez et 

al., 2007).  

A few prominent examples of methodologies for soil quality (or health, function or services) 

assessment include the following (see (Baveye et al., 2016; Bünemann et al., 2018; Turbé et al., 

2010) for more extensive reviews):  

Andrews et al. (2004) proposed a soil management assessment framework (SMAF), to evaluate 

soil quality, consisting of three main steps: indicator selection, indicator interpretation and 

integration into a soil quality index. Indicator selection was broken down into a minimum data 

set (MDS) of quantitative soil quality indicators (SQI) sensitive to changes in soil function. 

This method is considered unique in that there is a degree of flexibility in the customisation of 

the MDS and indicator selection step. These SQI were then divided into categories 

corresponding to a set of soil functions (biodiversity and habitat, filtering and buffering, nutrient 

cycling, physical stability and support, resistance and resilience, and water relation) including 

biological, physical and chemical parameters, which could be integrated into a scoring index 

(Andrews et al., 2004). 

Velasquez et al. (2007) proposed a general Indicator of Soil Quality (GISQ) that evaluates soil 

ecosystem services (assuming that the more ecosystem services produced, the better is the soil 

quality) through a set of five sub-indicators: physical quality (e.g. soil hydraulic properties like 

soil porosity and compaction), chemical fertility (e.g. nutrient availability and pH), morphology 

(e.g. aggregate stability of the upper 5 cm, relating to hydraulic properties and C sequestration), 

organic matter stocks (e.g. climate regulation via carbon storage, soil fertility and as an energy 

source for biological activity) and macrofauna biodiversity (e.g. macroinvertebrate composition 

and abundance). To this end, 54 properties commonly used to describe the multifaceted aspects 

of soil quality were assembled into the aforementioned five sub-indicators and combined into 

a single numerical GISQ (Velasquez et al., 2007). 

The Cornell Soil Health Test (Gugino et al., 2009; Moebius-Clune et al., 2016; Schindelbeck 

et al., 2008) is a standardised methodology assessing soil quality by integrating the physical, 

biological and chemical aspects of agricultural soils (also available online: Comprehensive 

Assessment of Soil Health (cornell.edu)). Initially evaluating 39 soil health indicators, 4 

physical, 4 biological and 7 chemical indicators were selected for inclusion in the test based on 

sensitivity to management, relevance to functional soil processes, ease and cost of sampling 

and cost of analysis. The soil health test is targeted directly at land users, offering various soil 

health testing packages for farmers, landscape managers and others, and supplying them with 

management advice together with the results. 

Garbisu et al. (2011) proposed evaluating soil quality according to the ecosystem health 

concept, i.e. as a measure of a system's vigour (productivity, throughput of material and energy 

in the system), organisation (diversity, of components and their degree of mutual dependence), 

stability (resilience and resistance, system's ability to maintain its structure and behaviour in 

the presence of stress), suppressiveness (disease resistance, severity or incidence remains low), 

https://soilhealth.cals.cornell.edu/
https://soilhealth.cals.cornell.edu/
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and redundancy (functional, not affected by loss of a species if other species can perform the 

same functions). They maintain that soil microbial properties and parameters are the most 

relevant indicators/endpoints from an 'ecosystem health' perspective and propose functional 

groupings of microbial properties within the higher-level ecosystem health categories (or even 

ecosystem services) as a means of promoting greater understanding and communication, see 

Figure 3-1. An operative definition of soil quality nested within the concepts of ecosystem 

health is provided; where, Soil quality is the capacity of a given soil to sustainably perform its 

ecological processes, functions and ecosystem services, and maintain a suite of essential 

ecosystem attributes of ecological relevance (vigour, organization, stability, suppressiveness, 

redundancy) at a level similar to that of a reference soil, without causing an adverse impact on 

the proper functioning of surrounding ecosystems or human health (Garbisu et al., 2011). The 

assumption being made is that 'the higher the value of the ecosystem health attribute, the better 

the soil quality' appears to be valid for most situations and land uses (Garbisu et al., 2011). In 

later research, Epelde et al. (Epelde et al., 2014b) assessed soil quality by grouping select soil 

microbial parameters within the abovementioned ecosystem attributes (later expanded upon in 

Burges et al. (Burges et al., 2017, 2016) to group the parameters into ecosystem services). A 

soil quality index was then used to statistically calculate the overall soil quality using Equation 

(1) below: 

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝐸𝑆) = 10𝑙𝑜𝑔𝑚+
∑ |𝑙𝑜𝑔𝑛𝑖−𝑙𝑜𝑔𝑚|𝑛

𝑖=1
𝑛     (1) 

Where, m is the control value (set to 100%) and n corresponds to the measured values for each 

parameter as a percentage of the control value (Epelde et al., 2014b). Epelde et al. (2014) 

conclude that this index is appropriate for the assessment of soil quality in those cases where 

the soil has been intentionally treated to increase some parameters, e.g. addition of amendments 

or plants to remediate soil. More information on this methodology is covered in section 4.1.1 

(pg. 74). 

 

Figure 3-1. For a better interpretation of soil microbial properties as indicators of soil quality, 

it might be helpful to group microbial properties within a set of ecosystem health attributes of 

ecological relevance: vigour, organisation, resilience, suppressiveness, and redundancy, from 

(Gómez-Sagasti et al., 2012). 

Faber and van Wensem (2012) and Thomsen et al. (2012) proposed grouping soil quality 

indicators within a set of ecosystem services in an attempt to enhance the impact of ecological 
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risk assessment (ERA) on decision making. ERA for soils is often based upon the Triad 

approach (where, chemical, toxicological, and ecological data from a contaminated site are 

assessed along converging lines of evidence), and the authors propose to integrate ecosystem 

services as endpoints (i.e. measurable targets for protection or enhancement) within the ERA. 

The following ecosystem services were selected: soil fertility, adaptability and resilience, buffer 

and reaction function, biodiversity and habitat provision, disease suppression and pest 

resistance, and physical structure. To integrate ecosystem services within ERA, ecosystem 

services are first broken down into ecological requirements, i.e. the actual structures or 

processes of the ecosystem that underlie ecosystem services and which ecosystem provision is 

dependent upon (e.g., functional and structural biodiversity, ecosystem productivity, natural 

attenuation, and organic matter mineralization). The authors maintain that soil ecological 

integrity is what provides biological productive land and there is a need for at least a minimum 

appreciation of soil ecosystem requirements to the soil microenvironment quality. Physical, 

chemical or biological indicators are selected to assess the state of the ecological requirements. 

Ecosystem services, their ecological requirements, and indicators can be ranked or weighed by 

either societal or ecological importance with respect to a specific type of land use, affecting 

weighing of assessment results and thus the outcome of the decision-making (Faber, 2006; 

Faber and Van Wensem, 2012; Thomsen et al., 2012). More information on this methodology 

is covered in section 4.1.1 (pg. 74). 

Volchko et al. (2014, 2019) created the Soil Function (SF) Box tool to evaluate the effects on 

soil functions (e.g. as the basis for primary productivity) in remediation projects as a key criteria 

to determine the best remediation option for contaminated brownfields. The updated version of 

SF Box (Volchko et al., 2019) is aimed to improve the basis for ecological risk assessment 

(ERA) by seeking to answer the questions “what can this soil actually do and can it perform its 

Life and Habitat function well, assuming that it is free of contaminants?” By addressing these 

questions, it can assist in making a distinction between the effects of contamination on soil biota 

and the effects of soil capability to function as a habitat to these species in a reference state free 

of contaminants. In the tool, a minimum data set of physical (soil texture, content of coarse 

material, available water capacity), biological (organic matter content, potentially mineralizable 

nitrogen) and chemical (pH, available phosphorous) soil quality indicators that can be used to 

evaluate the effects on soil are scored and integrated according to a soil quality index. Figure 

3-6 depicts the generic framework for soil function assessment in a stepwise procedure using 

soil quality indicators (Volchko et al., 2014a, 2019).  

3.1 Soil quality indicators 

As shown above, there have been many attempts to create a comprehensive method for 

evaluating soil quality (or soil health) using indicators (alternatively called metrics, surrogates, 

proxies, etc.) – a term referring to both the parameter of interest as well as the corresponding 

method for evaluation, since both pieces are necessary for scientific comparability and 

consistency (Ritz et al., 2009). The aim is to identify and measure biotic or abiotic 

characteristics that are correlated (or at least thought to be) with soil functions and services of 

interest (Baveye et al., 2016). Which indicators to use assessing which aspects of the soil in 

what methodology (and accompanying terminology) has been a matter of debate for many years 

(e.g. (Doran and Zeiss, 2000; Karlen et al., 2003, 1997)). Clearly, no single indicator will 

encompass all aspects of soil quality, nor would it be feasible (or necessary) to measure all 

possible indicators (Kibblewhite et al., 2008). It is widely recognised that an important 

component of soil quality assessment is the identification of a set of sensitive soil attributes that 

reflect the capacity of a soil to function and can be used as indicators of soil quality (Bünemann 

et al., 2018). The selection of potential biological indicators is, however, only a step in 

developing practical soil quality assessment procedures (Doran and Zeiss, 2000), as there are 
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operational issues to be solved. Selection criteria addressing these issues have commonly been 

applied to filter the extensive range of potential bioindicators (e.g. (Bünemann et al., 2018; 

Doran and Zeiss, 2000; Faber et al., 2013; Griffiths et al., 2016; Stone et al., 2016b; Turbé et 

al., 2010)). Considering more than only the technically-focused assessment (i.e. based upon 

how easy or inexpensive a specific method is to use) provides a greater robustness to the 

indicator selection and ranking process (Faber et al., 2013; Stone et al., 2016b) (discussed 

further in the following sections). Generally speaking, the indicators used to assess soil quality 

should meet the following criteria, from (Turbé et al., 2010) (see (Bünemann et al., 2018) for a 

review of criteria used in the selection of SQI):  

1. Meaningfulness – well-correlated with beneficial, important soil functions that can provide 

valuable information using good surrogates (e.g. recognised high value organisms in 

functional groups). 

2. Standardisation – parameters should be standardised (or at least readily available) to 

ensure comparability of data.  

3. Measurability and cost-efficiency – parameters should be easy, inexpensive and 

accessible not only by experts, in order to ensure that the indicators will be used in practice 

and can be routinely collected. Also, relates to the availability of the necessary laboratory 

equipment and technical skills as well as labour-intensiveness in the field and lab (Faber et 

al., 2013). 

4. Sensitivity/Accuracy – indicators should reflect changes and variations in management, 

land use or disturbances like contamination. 

5. Understandability – indicators should be simple, easily understood and useful to land 

managers in decision-support (i.e. fit for use (Faber et al., 2013)). 

6. Policy-relevance – indicators should be sensitive to sensitive to changes at policy-relevant 

spatio-temporal scales and allow for comparisons with a baseline situation to capture 

progress towards policy targets (e.g. concerning biodiversity and ecosystem function). 

7. Spatio-temporal coverage – indicators should be validated in a wide range of conditions 

and should be amenable to aggregation or disaggregation at different spatial scales, from 

ecosystem to national and international levels. 

In addition, as noted by Dickinson et al (2005), the presence of soil organisms provides the 

most obvious visual indicator of soil health (quality) but surprisingly often even this is not a 

standard item of soil quality evaluations. The authors state that there are justifiable reasons for 

this, complications which must be addressed include: (i) limited agreement on what organism 

or groups of organisms are most appropriate, (ii) high-level taxonomic skills required to assess 

groups of invertebrates, (iii) specialist equipment or approaches required in soil microbiology, 

(iv) the immense choice of potential indicators, and (v) lack of universal applicability for 

indicators of soil quality (Dickinson et al., 2005). They further state that for an SQI to be 

considered for use at contaminated sites, the functional group should be dominant in all soil 

types having a high biodiversity and abundance, have a significant role in the food web and be 

both sensitive to contamination and well-correlated with beneficial soil functions (Dickinson et 

al., 2005). 

No single indicator will comply with all these criteria. In practice, efforts has been placed on 

the development of sets of complementary indicators, including both biotic and abiotic 

parameters, as selected by users (Pulleman et al., 2012; Turbé et al., 2010). However, despite 

the fact that a multitude of indicators estimating some aspect of soil biodiversity exists, no 

reference set of standardized indicators is available (Doran and Zeiss, 2000; Pulleman et al., 

2012; Turbé et al., 2010). Instead, there are many different sets of proposed indicators to pick 
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and choose from (see (Bünemann et al., 2018; Pulleman et al., 2012; Turbé et al., 2010) for 

reviews of these proposals). 

The indicator-based approach is not without criticism, and it has been argued that the 

correlations between the indicators and relevant functions is not based on actual data but on 

expert opinion (e.g. (Baveye et al., 2016)). Indeed, the link between biodiversity and ecosystem 

services is sometimes believed to be so strong that is often considered implicitly that changes 

in biodiversity automatically correlate with changes in ecosystem services, but this link is not 

at all certain (Baveye et al., 2016). Kibblewhite et al. (2008) label this approach of using soil 

quality indicators to assess specific soil properties as 'reductionist'; describing it as an accessible 

and practical means of assessing soil condition, but potentially losing sight of the complex 

interactions (e.g. assemblages) making up the soil as an integrated, living system.  

The soil system is undoubtedly complex and unlikely to be directly measurable, so for practical 

purposes surrogates (e.g. status of the soil biota) must be sought (Baveye et al., 2016; 

Kibblewhite et al., 2008). It has been argued by several authors that soil quality can only really 

be assessed in relation to one or several soil functions (e.g. Figure 3-2), ecosystem services or 

soil threats ('fitness for use') (e.g. (Baveye et al., 2016; Bünemann et al., 2018; Kibblewhite et 

al., 2008; Thomsen et al., 2012; Volchko et al., 2013, 2014a)). Therefore, according to 

Bünemann et al. (2018), clear definitions of these terms as well as firmly established 

associations with soil quality indicators are the basis of any functional soil quality concept 

(hence, the Terminology section).  
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Figure 3-2. Soil function – indicator matrix: when a direct relationship exists between the 

function and indicator, increasing reliability and ease of use of the associated assessment 

method is shown with increasing stars, from (USDA Natural Resource Conservation Service, 

2015). 

Though terminology may vary, soil quality and soil quality indicators have become 

internationally accepted, robust science-based tools for assessing soil resources (Karlen et al., 

2003). The soil system is undoubtedly complex, and the soil quality concept acknowledges that 

soils have both inherent and dynamic properties and processes, and that soil quality assessment 

must account for these biological, chemical and physical properties and processes by using 

appropriate soil quality indicators (Karlen et al., 2003). The following sections will go more in-

depth into specific aspects of the soil system that can be measured using the many and varied 

soil quality indicators. 

3.1.1 Biological indicators 

According to the previously established definitions, soil quality typically relates to a more 

human-centred evaluation of the soil properties and processes necessary to fulfil functioning 

suited for an end use. The more ecologically minded term soil health conveys the idea of soil 

as a living system with due consideration paid to the vast array of living organisms that are 
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ultimately responsible for many soil functions (e.g. nutrient cycling, maintaining soil structure, 

etc.). To date, assessment and monitoring of soil quality has focused mainly on physico-

chemical soil properties as indicators (e.g. pH, organic matter content, CEC, nutrient 

availability, water capacity, soil texture, etc.), but biological parameters are becoming 

increasingly used in soil assessments as they can provide a direct measure of soil functioning 

(Alkorta et al., 2003; Bünemann et al., 2018; Epelde et al., 2009a; Faber et al., 2013; Garbisu 

et al., 2011; Gómez-Sagasti et al., 2012; Orgiazzi et al., 2016; Ritz et al., 2009). Biological 

parameters are advantageous because they 1) are considered to be more sensitive to changes in 

the soil (e.g. due to management practices or contamination), 2) respond rapidly to changes 

over a shorter time period (i.e. dynamic), 3) provide information pertinent to many 

environmental factors, and 4) integrate complex, multi-dimensional phenomena that more 

directly relate to ecological status and function that are directly influenced by soil biota (Alkorta 

et al., 2003; Bünemann et al., 2018; Epelde et al., 2009a; Kibblewhite et al., 2008; Ritz et al., 

2009). Regarding the criteria mentioned previously, Doran and Zeiss (2000) argue that soil 

organism and biotic parameters (e.g. abundance, diversity, food web structure, or community 

stability) meet most of the criteria for useful indicators of soil quality. Thus, these biological 

(or ecological) indicators (i.e. bioindicators) can be used to assess the status and changes in 

ecological soil properties and processes within a given physico-chemical context, and ought to 

be considered in any soil quality monitoring program (Ritz et al., 2009).  

In their analysis to select suitable bioindicators for soil monitoring, Stone et al. (2016b) divided 

the bioindicators into those pertaining to 'biodiversity' or 'ecosystem function,' see Table 3-1, 

as is done here. However, many of the biodiversity indicators were identified as also relevant 

to assessing ecosystem function, including earthworms, enchytraeids, mites, collembola, 

nematodes and protista diversity. Some of the most studied bioindicators are briefly discussed 

in the following sections, broadly divided into indicators assessing primarily biodiversity or 

ecological function.  

Table 3-1. List of indicators processed by logical sieve and their importance to either 

biodiversity or ecosystem function, from (Stone et al., 2016b). 

Indicator Biodiversity Function 

Macro- and mesofaunal diversity   

Earthworms (morphological identification or molecular methods) X X 

Enchytraeids (morphological identification or molecular methods) X X 

Mites (morphological identification or molecular methods) X X 

Collembola (morphological identification or molecular methods) X X 

Nematodes (morphological identification or molecular methods) X X 

Protista diversity (morphological identification or molecular methods) X X 
   

Microfaunal diversity   

Bacteria and Archaea species by molecular methods X  

Fungi species (morphological identification or molecular methods) X  

Bacteria and Fungi diversity through fingerprinting methods (TRFLP, ARISA) X  

Pyrosequencing of soil DNA X X 

PLFA X  

   

Ecosystem function performed by soil biology   

Functional genes (targeting antibiotic producers, nitrifiers, denitrifiers)  X 

Chip technology (up or down regulation of specific genes)  X 

Molecular microbial biomass  X 

Respiration (all basal methods)  X 

Respiration (SIR-Glucose)  X 

Respiration (Multiple-SIR)  X 

Respiration (Biolog)  X 

Nitrification potential  X 
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Multiple enzyme assay  X 

Bait lamina  X 

Litter bags  X 

Biodiversity 

Biodiversity is a soil attribute in itself, and therefore implicit within the ecosystem approach 

(Doran and Zeiss, 2000). Soil biodiversity is a key component of soil quality and can provide 

valuable information on a variety of endpoints including the interconnection between soil 

organisms and soil functions (Creamer et al., 2016a; Pulleman et al., 2012; Stone et al., 2016b, 

2016a). Soil biodiversity can be characterised at the individual and community level, but 

presents difficulties due to the sheer enormity of biodiversity in the soil system, the opacity 

('black box') of the soil matrix and that only a minute fraction of the bacterial and archaeal soil 

microbes will grow in culture media (i.e. laboratory environments) (Wurst et al., 2013). Often, 

to contextualise biodiversity measurements, biodiversity indices will be used to statistically 

quantify species diversity and composition (e.g. Shannon's diversity index), species richness 

(e.g. Margalef diversity index) or evenness (e.g. Pielou diversity index) (Volchko, 2014). 

Methods for assessing biodiversity have advanced considerably in recent years and can be 

broadly split into 1) morphological/physiological identification and 2) molecular/genetic 

methods. Advances in technology have enabled the more sophisticated, multi-endpoint DNA-

based, genetic methods to be more reliable and informative than older physiological methods 

(Barrios, 2007; Bünemann et al., 2018). They are becoming more commonly applied in soil 

monitoring programs; however, they are more complex, expensive and not yet widely available, 

(Faber et al., 2013; Griffiths et al., 2016; Ritz et al., 2009; Stone et al., 2016b). Wurst et al. 

(2013) argue that the recent advances in genetics and the various guises of '-omics' (genomics, 

etc.) are revolutionising soil biology and will play an increasingly larger role in characterising 

soil biodiversity as the technologies become more refined. 

In their review, Bünemann et al. (2018) note that molecular methods focusing on DNA and 

RNA have great potential to perform faster, cheaper and more informative measurements of 

soil biota and soil processes than conventional methods. Consequently, they may yield so-called 

'novel indicators' that could substitute or complement existing biological and biochemical soil 

quality indicators in regular monitoring programs when the performance and cost-efficiency is 

improved. The rapid evolution of these techniques and the decreasing costs associated with 

them will likely increase their favourability and facilitate this development. However, the 

practical operability of these indicators by different stakeholders needs to be taken into account 

as there exist many limitations that limit their practical application in routine soil quality 

assessments. For example, the absence of standard operating procedures and accepted threshold 

values, especially for molecular methods, make the comparison and the interpretation of the 

results challenging. Also, the lack of direct functional linkages with soil processes and 

management implications further limits their application and potential use by stakeholders. 

Despite their promise and utility, Bünemann et al. (2018) conclude that most novel soil quality 

indicators still belong to the research domain, and many technological, practical and 

interpretation related issues need to be overcome. 

A non-exhaustive list of common bioindicators used to assess biodiversity are listed below (see 

(Bünemann et al., 2018; Creamer et al., 2016a; Garbisu et al., 2011; Gómez-Sagasti et al., 2012; 

Griffiths et al., 2016; Pulleman et al., 2012; Ritz et al., 2009; Stone et al., 2016b) for more in-

depth reviews discussing the various biodiversity related indicators, Soil Quality for 

Environmental Health website for more information on indicators and functions and Appendix 

II for a table showing the connections between the groups of soil biota and soil functions and 

services): 

1. Microbial diversity – including bacteria, fungi and archaea.  

http://soilquality.org/home.html
http://soilquality.org/home.html
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Physiological: community-level physiological profiles (e.g. Biolog™ plates or 

microarrays) – often relating to functional diversity; for example, with Biolog™ Ecoplates 

by assessing bacterial activity in the presence of various substrates relating to specific soil 

functions (see e.g. (Campbell et al., 2003, 1997; Rutgers et al., 2016) for more information 

on Biolog™ and its application). 

Genetic: genetic profiles (e.g. PCR-denaturing gradient gel electrophoresis (DGGE), 

phospholipid fatty acids (PLFA) or high-throughput genetic sequencing fingerprinting 

methods like TRFLP or ARISA) – to determine species abundance and richness (e.g. of 

bacteria and fungi), DNA abundance and gene sequences specific to individual species. 

2. Microfauna – primarily assessing nematodes. 

Physiological: feeding guild richness (i.e. identifying plant-feeders, fungal-feeders, 

omnivores, bacterial-feeders, predators), total abundance (e.g. biomass per m²) or nematode 

maturity index (MI) to assess soil condition based on nematode development. 

Genetic: pyrosequencing and other molecular methods (see e.g. Römbke et al. (2018)). 

3. Mesofauna – including mites, Collembola (springtails), and enchytraeids (potworms).  

Physiological: species abundance (e.g. biomass per m²) and richness (e.g. number of species 

per m²). 

Genetic: pyrosequencing and other molecular methods (see e.g. Römbke et al. (2018)). 

4. Macrofauna – including earthworms and other larger invertebrates. 

Physiological: species abundance (e.g. biomass per m²) and richness (e.g. number of species 

per m²). 

Genetic: pyrosequencing and other molecular methods (see e.g. Römbke et al. (2018)) 

Note: Based on results from the French "Bioindicator" programme, earthworms are 

considered to be good environmental indicator candidates for sites contaminated with PAHs 

and metals since (i) they are well represented in the soil system in terms of density, (ii) they 

respond to a variety of environmental and ecological factors such as changes in soil 

chemistry, and forestry and agricultural practices, and (iii) they can be considered as an 

indicator of soil functioning due to their strong impact on soil (see Pérès et al. (2011) for 

more information). 

Ecological function 

Bioindicators pertaining to ecological functioning aim to directly assess the status of soil flora 

and fauna that are responsible for (or contribute to) soil processes and functioning (see Soil 

Quality for Environmental Health and Fact Sheets | soilquality.org.au websites for more 

information and fact sheets on indicators and functions). For example, soil microbial properties 

have received increasing interest as soil bioindicators due to their quick response, high 

sensitivity and direct ecological relevance to ecosystem functions (Epelde et al., 2009a, 2008; 

Garbisu et al., 2011; Gómez-Sagasti et al., 2012). Since microbial communities play key roles 

in many soil processes (e.g. nutrient cycling, organic matter decomposition) and the delivery of 

essential ecosystem services, they can provide a direct measure of soil functioning through 

assessing microbial biomass, activity and diversity (Gómez-Sagasti et al., 2012; Ritz et al., 

2009). A non-exhaustive selection of common bioindicators used to assess ecological function 

are listed below, where #1-5 pertain to microbial indicators and #6 is used as a more aggregated 

indicator of soil function across faunal groups: 

http://soilquality.org/home.html
http://soilquality.org/home.html
http://www.soilquality.org.au/factsheets
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1. Soil microbial biomass (SMB) – is a measurement of the mass of intact microbial cells in 

a given soil, usually estimated from the measurement of carbon or nitrogen content of these 

cells (Carson, n.d.; ISO, 1997a, 1997b). Microbial biomass is an important constituent of 

the soil biological fertility, involved in the biogeochemical cycle of nutrients and carbon, 

and is an important reservoir of nutrients in ecosystems (Niemeyer et al., 2012). Soil 

microorganisms immobilize carbon and nitrogen by forming new biomass using the energy 

they obtain from oxidation of carbon sources through respiration, or inorganic chemical 

reactions (Gonzalez-Quiñones et al., 2011; Niemeyer et al., 2012). Therefore, more 

microbial biomass can stock, cycle and slowly release more nutrients, thereby improving 

the sustainability of an ecosystem (Gonzalez-Quiñones et al., 2011; Islam and Wright, 2004; 

Niemeyer et al., 2012). SMB is a critical component of the soil ecosystem that regulates 

many critical functions including nutrient cycling, decomposition of organic residues, 

structural stability and functioning as an indicator of soil pollution and bioremediation 

amongst others (Gonzalez-Quiñones et al., 2011; Islam and Wright, 2004; Niemeyer et al., 

2012). Consequently, sites with low microbial biomass can have these functions impaired. 

Soil microbial biomass carbon (MBC) is the most commonly measured (by e.g. a 

fumigation-extraction method, ISO 14240-2:2011, or estimated from substrate-induced 

respiration, ISO 14240-2:2011) and is often used in a measurement to determine the 

'metabolic quotient' (qCO2), which is a ratio between basal soil respiration and MBC. This 

value reflects 'microbial efficiency' and microbial responses to stress, where a higher value 

indicates higher microbial stress, and has been used as an indicator of microbial stress 

caused by contamination in soil (Kumpiene et al., 2009; Niemeyer et al., 2012). MBC is the 

most commonly used parameter for the evaluation of soil microbial abundance and is a well-

documented indicator of soil quality and fertility that has been shown to be sensitive to 

changes in soil management and disturbances (e.g. contamination) (Gómez-Sagasti et al., 

2012; Niemeyer et al., 2012). In terms of interpreting the SMB values, absolute values are 

difficult to interpret so target or reference values are needed for soil quality assessments to 

allow ameliorative action to be taken at an appropriate time (Gonzalez-Quiñones et al., 

2011)). 

Note: Broos et al. (2007) question the utility of routine measurements of MBC as an 

ecotoxicological endpoint at the field scale due to high spatial and temporal variability. 

2. Potentially mineralizable nitrogen (PMN), nitrification and ammonification rates – are 

varying measurements of the biological activity of the soil with respect to 

nitrifying/denitrifying bacteria. PMN is an indicator of the capacity of the soil microbial 

community to convert (mineralise) nitrogen tied up in complex organic residues into the 

plant available form of ammonium (ISO, 2012a; Moebius-Clune et al., 2016). Various 

methods exist to measure the rates, most often utilising an incubation of a soil sample over 

a short (e.g. hours) or long (e.g. 7, 14 or 28 days) period of time then measuring the changes 

in quantities of respective nitrogen compounds (e.g. (ISO, 2012a, 2013; Moebius-Clune et 

al., 2016; OECD, 2000a)). 

Microorganisms in the soil are mainly responsible for nutrient cycling and 

nitrification/ammonification rates are key indicators with which to measure nitrogen cycling, 

and soil fertility, in soils (ISO, 2012a; Niemeyer et al., 2012). Nitrification is also considered 

to be one of the most sensitive soil microbial processes regarding contaminant-induced stress 

(Broos et al., 2005; Niemeyer et al., 2012). For example, Broos et al. (2005) found the 

potential nitrification rate to be a more sensitive ecotoxicological endpoint than substrate-

induced and basal respiration or plant growth assays. 
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3. Soil respiration – methods for measuring respiration include two main types: 1) basal 

respiration (BR) – a value representing the baseline level of soil activity measured by O₂ 

uptake and/or CO₂ release without the addition of nutrients; and 2) substrate-induced 

respiration (SIR) – representing the 'potential' microbial activity by measuring the changes 

in O₂ uptake or CO₂ release after addition of various substrates like glucose (ISO, 2012b, 

2002). Microbial soil respiration results from the mineralisation of organic substances and 

is a measure of the metabolic activity of the soil microbial community, where a higher CO₂ 

release indicates a larger, more active soil microbial community (ISO, 2002; Moebius-Clune 

et al., 2016). Methods like the Cornell Soil Health Assessment (Moebius-Clune et al., 2016) 

provide scoring functions to aid in interpretation of the absolute values obtained in such tests 

to evaluate soil heath. Otherwise, ratios like the 'respiratory activation quotient' (QR, a ratio 

of BR/SIR) or 'metabolic quotient' (qCO2, a ratio of BR/MBC) to give indications of stress 

caused by e.g. contamination in a soil. More advanced SIR methods using multiple substrates 

(MSIR) like MicroResp™ have seen increasing use in recent years due to their better 

sophistication to gain a better understanding of the diversity of soil microbial community to 

utilise a wider range of carbon sources (e.g. (Campbell et al., 2003; Creamer et al., 2016b, 

2009; Griffiths et al., 2016; Stone et al., 2016b)). 

Soil respiration is highly relevant to soil functioning as it is a direct measurement of 

biological activity, integrating abundance and activity of microbial life (Moebius-Clune et 

al., 2016). Thus, it is an indicator of the biological status of the soil community, which can 

give insight into the ability of the soil’s microbial community to accept and use residues or 

amendments, to mineralize and make nutrients available from them to plants and other 

organisms, to store nutrients and buffer their availability over time, and to develop good soil 

structure, among other important functions (Moebius-Clune et al., 2016). Furthermore, many 

studies have shown that soil respiration is a suitable soil quality indicator for comparisons 

between soil ecological conditions (e.g. contamination) and biological activity that responds 

well to gentle remediation options like phytoremediation (e.g. (Burges et al., 2016, 2017; 

Epelde et al., 2009a, 2010; Gómez-Sagasti et al., 2012; GREENLAND, 2014; Kumpiene et 

al., 2009)).  

From an ecotoxicity perspective, there is debate regarding the sensitivity of soil respiration, 

especially basal respiration (e.g. either increasing or decreasing in various assessments with 

increasing metal concentrations), to contamination (Broos et al., 2005; Niemeyer et al., 

2012). For example, Broos et al. (2005) found that SIR (measuring the lag time between the 

addition of glucose and the exponential increase of the soil respiration rate) to be 

significantly more sensitive to metal toxicity than BR and more robust than other studied 

indicators in terms of reproducibility and consistency.  

4. Soil enzyme activity – methods for measuring soil enzymes (though not the actual rate of 

enzymatic processes in-situ) in soil can involve such biochemical techniques as multi-well 

fluorometric assays that measure the fluorescence generated by soil samples diluted in buffer 

solutions contained fluorogenic substates corresponding to various soil enzymes (ISO, 

2019a) or chemical extracts measured by spectrophotometry (ISO, 2019b, 2019c). 

Measuring soil enzymes provides a direct measurement of microbial activity as enzymes 

play key roles in the microbially-mediated processes of degradation and mineralisation of 

organic macromolecules, which is a crucial component of C, N, P and S nutrient cycling in 

soil (Table 3-2) (Alkorta et al., 2003; ISO, 2019a, 2019c, 2019b). Furthermore, such 

processes contribute to the decontamination of soil by degrading organic pollutants or 

immobilising heavy metals, participate in the formation of soil structure, and can have 

negative (plant pathogens) or positive (plant growth promoting rhizobacteria) effects on 

plant growth (Alkorta et al., 2003).  
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Table 3-2. Role of soil enzymes, adapted from Soil Quality: Indicators: Soil Enzymes. 

Enzyme 
Target organic 

substances 
End product Significance Soil function 

Beta 

glucosidase 
carbon compounds glucose (sugar) 

energy for 

microorganisms 

organic matter 

decomposition 

FDA 

hydrolysis 
organic matter 

carbon and various 

nutrients 

energy and nutrients for 

microorganisms, measure 

microbial biomass 

organic matter 

decomposition, nutrient 

cycling 

Amidase 
carbon and nitrogen 

compounds 
ammonium (NH4) plant available NH4 nutrient cycling 

Urease nitrogen (urea) 
ammonia (NH₃) and 

carbon dioxide (CO₂) 
plant available NH4 nutrient cycling 

Phosphatase phosphorous phosphate (PO4) plant available P nutrient cycling 

Sulfatase sulphur sulphate (SO4) plant available S nutrient cycling 

Soil enzymes are one of the more reactive components of the soil ecosystem (i.e. responding 

rapidly to changes in soil management and use) and potentially excellent soil quality 

indicators informing on the soil's microbial functional status and diversity (Alkorta et al., 

2003; Epelde et al., 2008; Gómez-Sagasti et al., 2012; Touceda-González et al., 2017b). 

They are highly functionally relevant especially regarding nutrient cycling. Dehydrogenases 

indicate viable microbial activity and hydrolytic enzymes involved in key reactions in 

nutrient cycling (e.g. phosphatases, sulfatases, ureases, glucosidases, etc.) (Alkorta et al., 

2003; Gómez-Sagasti et al., 2012). As bio-indicators soil enzyme activities show great value 

to monitor soil health, Alkorta et al. (2003) provide the following rationale for their use: 

• They are related to important soil quality parameters (e.g. organic matters, soil physical 

properties, microbial activity, biomass), 

• Change much sooner (i.e. dynamic) than other more static properties (e.g. soil organic 

carbon) in response to soil management practices or disturbances (i.e. sensitive), 

• Serve as an integrative soil biological index of past soil management, 

• Involve measuring procedures that are relatively simple and inexpensive. 

The sensitivity of soil enzymes also makes them valuable indicators for contaminated soils. 

In the case of metals, which are toxic to living organisms primarily due to their protein-

binding capacity and hence ability to inhibit enzymes, soil enzymes have been shown to be 

valid bio-indicators of the negative impact of heavy metals on the soil ecosystem as well as 

the effectiveness of gentle remediation options like phytoremediation (Epelde et al., 2008; 

Gómez-Sagasti et al., 2012; GREENLAND, 2014; Niemeyer et al., 2012). An important 

conclusion from the French "Bioindicator program" regarding soil enzymes are that enzymes 

are more sensitive to metallic contamination than to organic, enzymes are good indicators of 

metal bioavailability and that Alkaline phosphatase and Arylamidase are the most relevant 

enzymes to assess the effect of soil contamination (Cheviron et al., 2016). 

5. Functional genes – measuring the abundance (copies/g soil or normalised per ng of DNA) 

of specific genes catalysing major transformation steps in nitrogen, carbon or phosphorous 

cycling, chemical transformations and plant growth promotion using techniques like 

quantitative-PCR assays. Functional genes for nitrogen cycling have been shown to be good 

candidate bioindicators (scoring highly in logical sieves – discussed in the following section) 

and highly sensitive to disturbances like contamination (Creamer et al., 2016a; Griffiths et 

al., 2016; Thiele-Bruhn et al., 2020; Tiberg et al., 2019; Volchko et al., 2020; Wessén and 

Hallin, 2011). Frequently assayed nitrogen cycling genes include: 

Denitrifying genes – nosZ1 (clade I N2O reducers), nosZII (clade II N2O reducers), nirK 

(denitrifier type), nirS (denitrifier type) (Creamer 2016, Griffiths 2016, Volchko 2020) 

http://soilquality.org/indicators/soil_enzymes.html
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Nitrifying genes – AOB (ammonia-oxidising bacteria) and AOA (ammonia-oxidising 

archaea) – amoA (total abundance) and nifH (total nitrogen-fixing bacteria) (Creamer 2016, 

Griffiths 2016, Volchko 2020) 

6. Bait lamina – is a relatively simple, unobtrusive method for assessing the feeding activity 

of soil dwelling organisms (food webs both under and over the soil surface) in-situ. The 

method entails inserting small, perforated plastic strips enriched with organic material into 

the soil and counting the empty apertures of the bait-lamina strips after a certain exposure 

time (ISO, 2018). This method has a clear functional relevance by directly measuring feeding 

activity of soil fauna in particular (e.g. earthworms, termites, Collembola, enchytraeids) thus 

informing on organic matter decomposition (and nutrient cycling), functional integrity and 

the state of the soil as a habitat (Griffiths et al., 2016; ISO, 2018; Römbke, 2014). Bait lamina 

can also be used as a sensitive indicator to test the effects of disturbances like contamination 

(ISO, 2018). 

Note: Litter bags are similar tests to measure feeding activity through the loss of organic 

material in-situ but bait lamina is generally favoured due to ease of use (Griffiths et al., 2016; 

Römbke, 2014). 

Summary 

Compilations of the bioindicators listed above are provided in Table 3-3 and Table 3-4: 
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Table 3-3. Indicators of soil biodiversity according to functional group, adapted from (Turbé 

et al., 2010). Highlighted cells indicate possible updated information, i.e. new ISO standards. 

Functional 

group 
Organisms Indicator Method Standard 

Sensitivit

y to soil 

type 

Sensitivit

y to land 

use 

Measurabilit

y 

Chemical 

engineers 

Micro-

organisms 

Biomass/ 

activity 

SIR, fumigation-

extraction 
Yes 

Good Good Good ATP concentration, 

initial rate of 

mineralisation of 

glucose 

Yes 

Activity 

Respiration 

rate/quotient ration 
Yes Good Medium 

Good 

Nitrification, N-

mineralisation, C 

mineralisation 

Yes Medium Medium 

Denitrification No Medium Medium 

N-fixation No Good Medium 

Mycorrhizae (% of 

root colonised) 
No Good Good 

Enzymatic 

activity 

Dehydrogenase 

activity 
Yes Good Good Medium 

Other enzymatic 

activity tests: 

phosphatase, 

sulphatase, etc. 

No Good Good 
Good 

Enzyme index No Very good Very good 

Diversity 

Culture-dependent 

methods: direct count, 

community-level 

physiological profiles 

(CLPP) 

No Poor Poor Good 

Culture-independent 

methods: fatty acids 

analysis, nucleic acid 

analysis 

No Poor Very good 
Good 

(technical) 

Biological 

regulators 

Protists, 

nematodes 

Abundanc

e and 

diversity 

Culture-dependent 

methods: direct count 

(diversity index, 

functional or trophic 

diversity) Yes Good Very good 
Low (time, 

expertise) 
Culture-independent 

methods: fatty acids 

analysis, nucleic acid 

analysis 

Micro-

arthropods 

(springtails, 

mites) 

Counting Litter-bag technique 

(colonisation 

capacity) 
No Good Good 

Low (time, 

expertise) 

Soil coring 

Abundanc

e and 

diversity 

Community 

composition, 

ecological groupings 

Yes Very good Very good 
Low (time, 

expertise) 

Soil 

ecosystem 

engineers 

Earthworms

, isopods 

Abundanc

e and 

diversity 

Species richness, 

diversity, evenness 

Yes 

(ongoing

) 

Very good Good 

Good (low 

expertise, 

simple) 
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Table 3-4. Soil biological indicators, methodologies, related main soil functions and advantages/disadvantages at different time scales, adapted from 

(Bünemann et al., 2018). 

Indicator Methodology Main soil functions Main pros Main cons 

Individual population and community level 

Presence, richness and 

abundance of individual soil 

organisms 

Traditional handsorting and 

microscopic methods; molecular 

quantitation (qPCR) 

Nutrient, organic matter and 

water cycling, biological 

population regulation, soil 

structure maintenance 

Taxonomic and functional level 

Not always linked directly with functions. 

Difficult to apply to fauna, e.g. protozoa, 

mites and collembola 

Microbial biomass and fungal 

biomass, fungi:bacteria ratio 

Direct counting, chloroform 

fumigation-extraction, SIR, PLFA, 

molecular quantitation 

Nutrient and organic matter 

cycling, decomposition, soil 

structure maintenance 

Sensitive and well related with other soil 

quality indicators 

Spatially variable, difficult interpretation, 

contradictory results. Unclear direct link 

to functionality 

Indices based on faunal 

communities (e.g. Maturity 

Index, Enrichment Index, 

Channel Index, Structural 

Index for nematodes) 

Counting and identification of 

specific groups of organisms 

Nutrient and organic matter 

cycling, biological population 

regulation, decomposition 

Sensitive, taxonomic and functional 

level 

Time-consuming and costly, specialist 

required for morphological identification 

Community composition 

Manual counting and identification 

Nutrient and organic matter 

cycling, biological population 

regulation, decomposition, soil 

structure maintenance 

Division in functional groups can give 

an indication of functions 

Time-consuming, expertise required, not 

indicative of active biota 

PLFA 

Correlated with other measurements, 

good indicator of active microbial 

biomass, integrated information on the 

microbial community 

Time-consuming, no direct link with 

functions, coarse resolution 

Fingerprinting methods (e.g. 

DGGE, T-RFLP, ARISA, 

ARDRA, TGGE), microarrays 

Greater phylogenetic resolution 

No direct link with function, difficult 

comparison between studies due to greater 

variety in methods, difficulties to extract 

and amplify DNA 

Sequencing (metabarcoding) 

Detailed view of diversity, enormous 

amounts of data, detects less abundant 

organisms, permits discovery of new 

diversity 

Taxonomic genes with no direct link with 

functions, difficulties to extract and 

amplify DNA, costly, problems related 

with handling of large datasets and 

analyses, dependent on libraries, no 

standard methodology 

Community level physiological 

profiling (CLPP, e.g. Biolog™, 

MicroResp™) 

Nutrient and organic matter 

cycling, decomposition, habitat 

provision 

Insight into functionality of the 

community, MicroResp™ closer to in-

situ conditions, shorter time of 

measurements 

Many replicates needed because of 

variability 
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Ecosystem level 

Soil respiration, nitrogen 

mineralisation, denitrification, 

nitrification 

CO₂ evolution, N2O emission, NO3 

produced 

Nutrient, organic matter and 

water cycling, decomposition, 

habitat provision 

Sensitive and ecologically relevant 
Highly variable and fluctuating, relatively 

laborious 

Potentially mineralizable 

nitrogen 
Anaerobic incubation 

Good correlation with MB and total soil 

N 
Relatively laborious 

Metabolic quotient (qCO2), 

microbial quotient 

(MBC/SoilC) 

  Sensitive, simple and inexpensive 
Difficult interpretation: confounds 

disturbance with stress 

DNA and protein synthesis 
Thymidine and leucine DNA 

incorporation 
Reflection of active microbial biomass No standardised procedure 

Enzymatic activities 

Extraction of enzymes in the soil 

and incubation with various 

substrates Nutrient and organic matter 

cycling, decomposition, 

biological population regulation 

Closely related to important soil quality 

parameters, very sensitive, simple and 

inexpensive methods 

Standard procedure not available, 

contradictory results, complex behaviour 

and variable for each enzyme, potential 

activity 

Functional genes and 

transcripts 

FISH, Microarrays, meta-

transcriptomic, qPCR, 

metagenome analysis 

Closer link to functionality, FISH and 

microarrays can give an idea of active 

microorganisms, high sensitivity and 

throughput 

Restricted to known gene sequences, 

genes and transcripts might not be 

expressed, difficulties linked with RNA 

extraction, costly 

Metabolomics and 

metaproteomics 

Assessment and quantitation of 

metabolites and proteins in the soil 

Nutrient and organic matter 

cycling, decomposition, 

biological population 

regulation, soil structure 

maintenance 

Closer link to functionality 
Field in development, difficult extraction 

of metabolites and proteins 

Stable isotope probing 

Incorporation of 13C- or 15N-

labelled substrates into DNA, 

RNA, PLFA, proteins 

Nutrient and organic matter 

cycling, decomposition 

Permits establishing link between 

biodiversity and functions, allows in-situ 

analysis of active microbial population 

Field in development, time involved in the 

assimilation of the substrates 
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3.1.2 Indicator selection 

Many bioindicators have been proposed for various purposes, and multiple reviews have been 

carried out to evaluate and filter them (e.g. by a 'logical sieve' (Ritz et al., 2009) or 'parameter 

selection module' (Gutiérrez et al., 2015)) according to multiple selection criteria, like those 

previously mentioned, to determine those best suited for soil monitoring programs for 

biodiversity and/or ecosystem function, e.g. (Faber et al., 2013; Griffiths et al., 2016; Ritz et 

al., 2009; Stone et al., 2016b). These guiding examples will be briefly discussed below: 

In one of the first attempts, Ritz et al. (2009) presented a 'participatory approach' (enlisting the 

help of experts) of selecting soil biological indicators from a list of 183 potential indicators 

pertinent to a subset of three ecological soil functions (i.e. bundles of ecosystem process and 

properties):  

• Food and fibre production – maintaining soil in a suitable state for plant and animal 

biomass production (supplying nutrients and water, disease control, physical condition) 

• Environmental interactions – protecting the capacity of soils to store, transform and 

regulate soil processes (gas exchanges, degradation and retention of solid materials e.g. 

pollutants and organic water, water flow regulation) critical to environmental 

sustainability  

• Support of habitats and biodiversity – maintaining the ecological, utilitarian and ethical 

value of soil biodiversity including maintenance of semi-natural habitats and biodiversity 

aboveground 

To select for suitable indicators, the potential indicators were scored by scientists and end-users 

according to multiple technical and scientific criteria in a 'logical-sieve' approach, which 

allowed several iterations to account for end-user requirements and expert opinion. The 

different requirements for an indicator were weighted and, in combination with scores, were 

used to then rank, prioritise and select the indicators. A final ranked list of 21 indicators was 

produced that covered a range of genotypic-, phenotypic- and functional-based indicators for 

different trophic groups, though 4 of these were deemed not sufficiently robust for ready 

deployment, see Table 3-5. Genetic analyses predominate the results, partly reflecting advances 

in molecular techniques, since they relate directly to diversity and function (Ritz et al., 2009). 

Table 3-5. Consolidated list of candidate indicators from the logical sieve by Ritz et al. (2009), 

ranked according to aggregated score (FA) and categorised according to deployment status (as 

of 2005). TRFLP = terminal restriction fragment length polymorphism, PLFA = phospholipid 

fatty acids, PCR = polymerase chain reaction. 

Indicator Indicator Description FA Sub-category 

Deployment status = 2, FA > 100  
  

TRFLP- ammonia oxidiser/denitrifiers Genetic profile - specific group 
769 Genotype - 

Nucleic acid 

PLFA profiles Composition - total community 
615 Phenotype - 

Biomarker 

TRFLP - ITS fungal Genetic profile - specific group 
437 Genotype - 

Nucleic acid 

Multiple substrate-induced respiration 

(MSIR) GC 

Activity capability profile - total 

community 

311 Function - 

activity 

Nematode Baermann extraction procedure 
Numbers, composition and size of 

nematode community 

302 Phenotype - 

Fauna 

TRFLP - bacteria Genetic profile - specific group 
295 Genotype - 

Nucleic acid 
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Microarthropods Tullgren dry extraction 
Numbers, composition and size of 

invertebrate community within soil 

188 Phenotype - 

Fauna 

On-site visual recording - flora and fauna Numbers estimate of animals 173 Phenotype - Other 

Microplate fluorometric assay - multi-

enzyme 
Enzyme potential activity - wide range 

172 Function - 

Enzyme 

TRFLP - Archaea Genetic profile - specific group 
146 Genotype - 

Nucleic acid 

TRFLP - methanogens/methanotrophs Genetic profile - specific group 
123 Genotype - 

Nucleic acid 

Invertebrates pitfall traps 
Numbers, composition and size of 

invertebrates motile aboveground 

123 Phenotype - 

Fauna 

TRFLP - actinomycetes Genetic profile - specific group 
121 Genotype - 

Nucleic acid 

Deployment status = 1, FA > 100  
  

TRFLP - nematodes Genetic profile - specific group 
437 Genotype - 

Nucleic acid 

Multiple substrate-induced respiration 

(MSIR) MicroResp 

Activity capability profile - total 

community 

313 Function - 

activity 

TRFLP - protozoa Genetic profile - specific group 
291 Genotype - 

Nucleic acid 

qPCR AM Fungi Genetic profile - specific group 
111 Genotype - 

Nucleic acid 

Deployment status = 0, FA > 50  
  

Functional gene arrays Genetic profile 
788 Genotype - 

Nucleic acid 

Phylogenetic gene arrays Genetic profile 
511 Genotype - 

Nucleic acid 

FISH - keystone species Genetic profile 
138 Genotype - 

Nucleic acid 

Soil proteomics Phenotypic profile 51 Phenotype - Other 

Logical sieve(s) was also performed within the scope of the Ecological Function and 

Biodiversity Indicators in European Soils (EcoFINDERS7) project, carried out to determine and 

standardise the most valuable bioindicators to evaluate the relationships between soil 

biodiversity, ecosystem function and ecosystem services across various climatic zones, soil and 

land use types, see (Creamer et al., 2016a; Faber et al., 2013; Griffiths et al., 2016; Stone et al., 

2016b, 2016a). The logical sieve was a modified version of the method proposed by Ritz et al. 

(2009) (discussed in broad detail in (Faber et al., 2013)) allowing customisation according to 

the desired end-use and enabling a structured ordering of potential indicators according to the 

following steps: 1) establishment of the purpose for which the monitoring will be applied (e.g. 

to monitor changes in soil biodiversity and ecosystem function across Europe); 2) listing of the 

potential indicators (consolidation into a shortlist for sieving – derived from surveys); 3) 

classification of indicators into operational categories (e.g. microbial, faunal, and functional); 

4) ranking of indicators in order of their relevance to specific criteria. Indicators to sieve were 

shortlisted for relevance to ES (i.e. water retention, C sequestration, and nutrient provision). 

Faber et al. (2013) note that modifying the selection criteria used in the logical sieve approach 

is necessary to come up with an objectively filtered shortlist. The shortlist ought to be context-

specific in terms of e.g. time and place, professional involvement, stakeholder preferences, 

budgetary restrictions and specific objectives and requirements of the monitoring network 

(Faber et al., 2013). 

The full logical sieve was later applied, by building on the list of indicators identified in Faber 

et al. (2013) (Figure 3-3), and discussed in Stone et al. (2016b) to establish the most suitable 

bioindicators of soil quality for use in future soil monitoring programs across the agricultural 

 
7 https://projects.au.dk/ecofinders/ 

https://projects.au.dk/ecofinders/
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areas of Europe; concerning specifically the ecosystem functions of 1) habitat for soil 

biodiversity, 2) C cycling and storage, 3) cycling of nitrogen (N) and phosphorous (P).  

The responses from surveys sent out to soil science experts were used to score each indicator 

(see Table 3-1 for list of indicators) according to the criteria and then rank them according to:  

1. Technical factor (FT) – gives an indication of the practicality associated with the 

measurement of a particular indicator (i.e. cost and difficulty). Comparing to the aggregate 

score, those that scored highest in this category were not necessary the best overall. The top 

ten indicators mostly determinant for ecosystem function (e.g. respiration, nitrification, 

molecular microbial biomass, litter bags) as they are usually simple and effective compared 

to high cost of molecular techniques and high labour demand of soil fauna identification. 

2. Applicability/Discrimination factor (FAD) – applicability tests the ubiquitous nature of each 

indicator (e.g. presence of earthworms at a location) and discrimination tests the sensitivity 

of indicators to environmental conditions. Five of the top ten indicators within this category 

were for ecological function (e.g. enzymes, nitrification, respiration, molecular microbial 

biomass, functional genes). Indicators which measure ecosystem function are therefore 

intrinsically able to discriminate between these different soil conditions and are often 

recommended for monitoring schemes. Molecular methods for biodiversity produce a lot 

of species data that can be used to create a detailed picture of a community or niche leading 

to higher discrimination ability, which can also be linked to functioning. 

3. Soil function factor (FSF) – changes the recommended indicators dependent on the 

function(s) wanted, thus function is a key parameter for selecting indicators suited to desired 

end use. The results can also change depending on whether the indicator is intended all 

functions or in a looser monitoring situation where a single function could be monitored by 

an indicator (e.g. potential nitrification). Molecular methods for microbial biodiversity 

score highest if ubiquitous (i.e. multiple) function measurement is desired. Important to note 

is that some indicators are highly specific and attributable to certain functions. 

4. Aggregate score – combining the above factors into an aggregate score resulted in a mix of 

biodiversity and ecosystem functioning indicators due to: 1) the discrimination potential 

and wide applicability of biodiversity indicators and 2) a mix of technical factors and 

discrimination potential for the indicators of soil ecosystem function provision. The top ten 

indicators were dominated by molecular methods of measuring both biodiversity and 

ecological function (7 indicator/method combinations).  

According to Stone, Ritz et al. (2016): 'Though methods of determining biodiversity are often 

time consuming and/or costly (with regard to scientist hours need for morphological 

identification), it can be seen from the results of this exercise that the potential of these 

indicators in terms of discrimination and relevance to more than one function results in them 

being recommended for use as indicators for monitoring schemes.' This includes bacteria and 

archaea diversity, fungi diversity and mite biodiversity which all scored in the top ten of the 

aggregated scoring. Regarding ecosystem function, four indicators were in the top ten: 1) 

respiration (MSIR), 2) molecular microbial biomass, 3) functional genes (targeting antibiotic 

producers, nitrifiers and denitrifiers), and 4) multiple enzyme assays. Of these functional 

indicators, the latter two indicators scored higher than the former two indicators due to their 

relevance to more than one function. 

Also within the scope of the EcoFINDERS project, Griffiths et al. (2016) performed a logical 

sieve to select cost-effective and policy-relevant bioindicators for monitoring of soil 

biodiversity and ecosystem function in Europe; concerning specifically ecosystem functions 

related to the ecosystem services of: 1) water regulation, 2) C-sequestration, and 3) nutrient 
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provision. Their sieving approach was focused on the indicator selection process itself (a 'top-

down' approach) with particular attention paid to the cost-effectiveness of the indicators (i.e. 

operation in the field, laboratory and equipment/instrumentation) and interpretation of the 

results from the monitoring. To that end, a shortlist of 30 potential bioindicators, see Table 3-6 

below, was developed by a panel of experts then rigorously sieved following an approach like 

those mentioned previously. Eighteen of these sieved indicators (a 'logically feasible number 

for evaluation') were then tested in the field, ranked and grouped within 5 categories: 1) ease of 

field sampling, 2) utility (in terms of getting more than one piece of information from the test), 

3) ease of lab test, 4) lab throughput, and 5) setup costs. 

Table 3-6. Weighted score from the logical sieve assessment of potential biological indicators 

of soil biodiversity and ecosystem function. Indicators were grouped as faunal, microbial or 

functional, and addressed issues of biodiversity (BD) and/or ecosystem function (EF). 

Indicators selected for evaluation in the field are marked in bold. DNA abundance and 

resilience were not assessed in the logical sieve (marked n/a). EEA = extra-cellular enzyme 

activity; T-RFLP = terminal restriction length polymorphism of archaea, bacteria and fungi; 

PLFA = phospholipid fatty acids. From (Griffiths et al., 2016). 

Potential indicator Indicator group Issue addressed Weighted score 

Nematodes: molecular Fauna BD/EF 659 

Nematodes: morphological Fauna  640 

Enchytraeids: molecular Fauna  639 

Mites: molecular Fauna  639 

Collembola: molecular Fauna  639 

Earthworms: morphological Fauna BD/EF 633 

Collembola: morphological Fauna BD/EF 623 

Enchytraeids: morphological Fauna BD/EF 623 

Mites: morphological Fauna BD/EF 611 

Earthworms: molecular Fauna  599 

Fungi (ergosterol) Microbe BD/EF 549 

Protista: molecular Microbe  539 

Nitrification Function EF 525 

Potentially mineralizable N Function EF 525 

Hot water extractable C Function EF 525 

Respiration Function EF 507 

Bait lamina Function EF 492 

EEA Function EF 474 

Microbial T-RFLP Microbe BD 473 

PLFA Microbe BD 459 

Functional genes Function BD/EF 448 

Protista: morphological Microbe  446 

Denitrification Function  422 

Pyrosequencing Microbe  415 

MicroResp Function EF 398 

Water infiltration Function EF 398 

Molecular Chip technology Microbe  383 

Other 'omic' methods Microbe  328 

DNA abundance Microbe EF n/a 

Resilience Microbe EF n/a 

In their breakdown of the cost effectiveness of the indicators, results showed the expected trade-

off between the intensity of work in the field and intensity in the laboratory (Griffiths et al., 

2016). Thus, earthworms and water infiltration, which are labour intensive in the field, require 

relatively little laboratory time, while DNA based analyses from the easily obtained composite 

soil sample require the most laboratory effort. The authors further state that a monitoring 
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programme should be based upon a suite of different indicators (since none could detect all 

management effects) to enhance reliability (Griffiths et al., 2016). However, this inevitably 

incurs a trade-off to balance between reliability (larger set) and costs (smaller set) when 

selecting indicators and designing monitoring system. They add that 'in any monitoring scheme 

there will be over-riding considerations of resources, time and expertise available, so any 

decision to apply extra tiers, further indicators or more complete datasets then becomes an 

internal matter that is different for each monitoring scheme' (Griffiths et al., 2016). 

Furthermore, the authors emphasise that standardisation is an absolute necessity to enable 

comparison of results. General conclusions regarding methods can be separated into: 

• Molecular methods – expensive and labour-intensive lab tests, the field is developing 

rapidly though results can be difficult to interpret, and new platforms (e.g. Illumina) could 

provide more information on molecular analysis of flora/fauna; however, many are not 

yet cost-effective, fully developed or standardised. 

• Non-molecular methods – widely used throughout Europe in soil monitoring schemes 

and have undergone thorough scientific validation and clear demonstration of usefulness 

(e.g. score well in logical sieves) and cost-effectiveness. 

Regarding biodiversity monitoring, as the presence of soil biota varies from site to site, the 

authors argue that all taxonomic groups would need to be included because changes in the 

biodiversity of one group cannot be used to infer changes in other taxonomic groups (Griffiths 

et al., 2016). The authors refer to the ENVASSO (ENVironmental ASsessment of Soil for 

mOnitoring) project ((Bispo et al., 2009; Faber et al., 2013)) which employs a 3-tiered approach 

aimed at defining and documenting a common soil monitoring system in support of a European 

Soil Framework Directive: 

Tier 1 – a basic, minimum set of 3 indicators for large-scale adoption, standardised 

according to ISO with reference values for comparison in some cases. Indicators used are 

for species diversity (earthworms, collembolan species) and biological function (soil 

respiration) 

Tier 2 – a more intensive study looking at the effects of a stressor, typically requires expert 

identification for additional biodiversity indicators (macrofauna, mites, nematodes, bacteria 

and fungi) and testing for bacterial and fungal activity. Such increased effort is only required 

when specific sites or questions must be addressed 

Tier 3 – integrates the activity of the whole soil community, ecologically relevant but likely 

to be less sensitive in establishing effects. It calls for additional biodiversity (protist) and 

functional (faunal activity from litter bags or bait lamina) indicators but is optional and 

likely not directly linked to functioning. 

For monitoring under the European climatic zones and land uses, Griffiths et al. (2016) suggest 

different indicators of ecosystem function than for monitoring of soil biodiversity. For 

ecosystem functions related to the services of water regulation, C-sequestration and nutrient 

provision (which are all carried out by the general soil biota), they would recommend a 

minimum data set from each indicator group: 

• Fauna: earthworms – (measured in e.g. biomass g/m2) there could be too few species to 

be reliable indicator of biodiversity, however anecic earthworm species are strongly 

related to water infiltration and earthworms in general are important for many soil 

functions. 
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•  Microbial: functional genes – (normalized gene copy number per ng DNA) genes for 

nitrogen cycling were selected as they have been shown to be good bioindicators for soil 

monitoring and are becoming increasingly common in scientific literature (e.g. (Wessén 

and Hallin, 2011)) and have also been shown to be sensitive to soil contamination ((Tiberg 

et al., 2019; Volchko et al., 2020)). 

Note: MicroResp and enzyme activities were also considered valid for use.  

•  Functional: bait lamina – constraints to using bait lamina sticks exist (e.g. cultivating 

too soon after deployment) but were shown to be easy to use, functionally relevant and 

sensitive to land use changes/management. 

As demonstrated in these studies, bioindicators are necessary to gain a deeper understanding of 

the soil system and to monitor eventual changes that may result from land management 

strategies. Many Europe-wide sampling campaigns and projects utilising various bioindicators 

have been carried out to characterise and monitor soils (see (Pulleman et al., 2012; Turbé et al., 

2010) for comprehensive reviews). These include the aforementioned ENVASSO and 

EcoFINDERS projects as well as other frameworks for selecting biological indicators for 

national soil monitoring have been devised in, for example, France (BioIndicator - (Pérès et al., 

2011)) and the Netherlands (BISQ - (Rutgers et al., 2012, 2009)). These frameworks adopted a 

similar approach to the logical sieve; in which a wide range of candidate indicators were 

assembled and tested for their suitability to be used in systematic soil biodiversity assessment. 

Within the scope of EcoFINDERS, Stone et al. (2016a) established a range of sites representing 

a varied set of soils (a 'transect') across Europe to then be used for testing a calibrating methods 

of measuring soil biodiversity (e.g. micro- and mesofauna biodiversity, extracellular enzyme 

activity, phospholipid fatty acid and community level physiological profiling using 

MicroResp™ and Biolog™). Also within the scope of the EcoFINDERS project, Creamer et 

al. (2016a) performed an 'ecological network analysis' across this Europe-wide transect to 

greater understand the interconnections between soil biodiversity and ecosystem function 

(specifically carbon cycling and storage potential and nutrient cycling of nitrogen and 

phosphorous). They tested soils using biological indicators related to microbial diversity: DNA 

yields (molecular biomass), archaea, bacteria, total fungi and arbuscular mycorrhizal fungi; 

microfauna diversity: nematode trophic groups; mesofauna diversity: enchytraeids and 

Collembola species; and microbial function: nitrification, extracellular enzymes, multiple 

substrate-induced respiration, community level physiological profiling and ammonia 

oxidiser/nitrification functional genes. The network analysis was used to identify the key 

connections between organisms (and taxonomic units) under the different land use scenarios, 

reflecting their relative importance to soil functioning. Key drivers of carbon cycling and 

storage over time were shown to relate to microbial biomass, basal respiration and fungal 

richness while nutrient cycling showed more variation in key biological indicators across sites. 

3.1.3 Minimum data set 

As has been noted in the abovementioned studies, there are potentially hundreds of viable 

bioindicators that could be potentially used in a soil monitoring program (Faber et al., 2013; 

Griffiths et al., 2016; Ritz et al., 2009; Stone et al., 2016b). Hence, the selection of a minimum 

data set (MDS) derived from a larger set of soil quality indicators is a necessary step in soil 

quality assessments because of financial and time limitations (Bünemann et al., 2018). The 

logical sieve is advantageous due to its methodological transparency, which is imperative to 

allow wide application and replication of minimum dataset selection (Bünemann et al., 2018). 

According to Bünemann et al. (2018) the number of indicators finally selected for inclusion 
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in a minimum dataset typically ranges between 6-8, which could be viewed as the output of 

a logical sieve or other type of indicator selection process. 

The assessment of soil health (quality) can be based on measures of biodiversity or functional 

processes, though Dickinson et al. (2005) argue that soil biodiversity is probably most important 

for maintaining ecosystem function in disturbed (e.g. contaminated) environments. They 

preliminarily suggest a test battery using bioindicators wherein biodiversity can be measured 

directly as species richness, or as a surrogate measure of biodiversity using standardized 

procedures (e.g. higher taxa richness, microbial community diversity, testate amoebae, 

nematode maturity indices), and functioning of soil processes can be measured as soil functional 

assessments (e.g. enzyme assays, nutrient mineralization, nitrification potential, soil 

respirometry) (Dickinson et al., 2005). In a follow-up paper, Hartley et al. (2008) attempt to 

establish a test battery with indicators selected due to their importance as key functional groups 

in soils. For example, earthworms as soil ecosystem engineers, microarthropods as 

microregulators (i.e. biological regulators) and microorganisms as decomposers and elemental 

transformers (i.e. chemical engineers). More than 30 potential assays were short-listed for 

investigation, with selection based on similar criteria to those mentioned previously. In their 

study, the most extreme sites (metal-contaminated or suffering from compaction) were readily 

identified by some of the assays, but performance of indicators varied considerably between 

sites (Hartley et al., 2008). They observed that the most successful site remediation, from the 

point of view of vegetation establishment (a landfill site), also scored well using assays of ATP, 

microbial carbon, soil respiration and microbial biodiversity (Hartley et al., 2008). When sites 

were ranked on the basis of an index that combined results from the more effective assays, there 

was a clear discrimination between degraded and less perturbed environments; however, the 

authors were forced to conclude: 'unfortunately, this could not be sustained by further critical 

analysis of data, leaving the conclusion that there is no obvious suite of robust or reliable 

indicators' (Hartley et al., 2008). 

Volchko et al. (2014) observed that there are a limited number of studies aimed at providing 

MDSs to assess soil quality for non-agricultural uses. A search in the Scopus database showed 

2 hits for "brownfield" (including other terms like "contaminated site", "contaminated land", 

"marginal land", "polluted soil" or "polluted land") AND "minimum data set" or "MDS", and 

14 hits (6 deemed relevant) for the same "brownfield" terms AND "soil quality indicator" or 

"SQI".  

For contaminated sites, potential future land uses typically do not include crop production for 

agricultural purposes; however, some parts of the sites are usually transformed into green spaces 

for recreation which soil functions related to primary production are highly relevant (Volchko 

et al., 2014b). Volchko et al. (2014) highlight four proposals that suggest an MDS for evaluating 

soils in an urban environment with/without contamination, see Table 3-7 for the proposed 

indicators:  

1. Schindelbeck et al. (2008) suggested an MDS for soil quality assessment for landscape 

management that was then applied for the soils of a vacant urban site and a more rural grass 

park. The MDS was purposed for 'soil health evaluation,' with emphasis on processes related 

to crop production. 

2. Lehmann et al. (2009; 2010) suggested using different sets of SQIs for specific soil end 

uses, e.g., soil as (i) basis for life and habitat of flora and fauna; (ii) site for grass land use 

or wheat production, (iii) filter and buffer of heavy metals. 
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3. Bone et al. (2010) suggested an MDS of physical, chemical, and biological SQIs for 

prioritizing contaminated urban sites for soil remediation, which were selected based on a 

literature review.  

4. Craul and Craul (2006) provided an MDS and practical recommendations aimed towards 

landscape architects and contractors for successful planting of trees in the built 

environment. 

Table 3-7. MDSs for soil function evaluation suggested for non-agricultural use, adapted from 

(Volchko et al., 2014b).  

(Schindelbeck et al., 2008) (Bone et al., 2010) (Craul and Craul, 2006) (Lehmann, 2009; Lehmann 

and Stahr, 2010) 

Physical soil quality indicators    

Soil texture Soil texture Soil texture Soil texture 

Aggregate stability (%) Infiltration rate Soil moisture Depth of horizon 

Available water capacity (m/m) Presence of debris 
Content of coarse 

fragments (%) 

Available field capacity 

(1/m²) 

Surface hardness Soil odour 

Structure of soil 

profile/Depth of soil 

layers 

Content of coarse fragments 

(%) 

Subsurface hardness (psi) Soil colour Slope of the surface 
Structure of soil 

profile/Depth of soil layers 
 Penetrability  Bulk density (g/cm3) 
   Soil colour 

   Penetration 

potential/rooting depth (cm) 

Biological soil quality indicators    

Organic matter (%) Organic carbon Organic matter (%) Organic matter (%) 

Root health rating Root presence   

Active carbon (oxidisable 

carbon) (ppm) 
Plant cover   

Potentially mineralizable 

nitrogen (μgN/g dw/week) 

Soil organism's presence 

and diversity 
  

Chemical soil quality indicators    

pH pH pH pH 

Extractable P (ppm)  Salinity (mS/cm) 
Cation exchange capacity - 

CEC (mol/kg) 

Extractable K (ppm)  Ca (ppm)  

Minor elements    

Volchko et al. (2014) also conducted a literature review to compile the SQIs used for evaluation 

of the effects on ecological soil functions in remediation projects, see (Volchko et al., 2013) for 

further description. The assessment approach of the studies evaluated combined the 

conventional extraction tests (i.e. measuring total concentrations in the soil) and the 

bioavailability tests with an assessment of SQIs related to soil functioning (Volchko et al., 

2014b). The authors note that the studies largely emphasised that the goal of remediation is not 

only to reduce contaminants concentrations/amounts in the soil or to reduce their bioavailability 

and mobility, but also to restore the ecosystem functions (e.g. (Epelde et al., 2009a, 2009b, 

2008)).  

The work by Volchko et al. (2014) resulted in a candidate MDS for the evaluation of the effects 

on ecological soil functions in remediation projects, what was identified by compiling SQIs that 

are (i) suggested by two or more literature sources in Table 3-7, (ii) suggested by three or more 

literature sources found in literature review, and (iii) relatively easy to measure and interpret. 
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The MDS was separated into physical, biological and chemical indicators, shown below in 

Table 3-8. 

Table 3-8. A candidate MDS for soil function evaluation in remediation projects, adapted from 

(Volchko et al., 2014b) 

Soil quality indicators Relevance to soil functions 

Physical Aggregate stability of the soil 

Soil texture 

Water infiltration, plant-available water and nutrient retention, aeration and root penetration. 

Buffering and filtering of heavy metals, the capacity of the soil to bind contaminants and thus 

protect from contamination 

Content of coarse 

material 

The increased content of coarse particles (>2mm) and presence of debris affect soil aggregate 

stability (i.e. ability to withstand falling apart when wet or hit by raindrops) as well prevent 

rooting, decrease plant-available water and decrease organic matter levels 

Available water 

capacity 

Water cycling. Water between the field capacity and the wilting point is the crucial factor of 

storing water in the soil for soil organisms between precipitations 

Biological Biodiversity and nutrient cycling 

Organic matter content 

Carbon cycling. Presence of organic matter leads to i) improvement of soil aggregate stability, 

water storage potential and nutrient cycling and ii) increased microbial diversity/activity and 

thus increased carbon sequestration 

Potentially 

mineralizable nitrogen 

Nitrogen cycling. Ability of microbial communities to supply plant-available nitrogen, a 

measure of biological activity 

Chemical Nutrient retention and availability, buffering potential 

pH 
The indicator revealing the level of toxicity and nutrient availability. Reflecting a potential for 

filtering and buffering of heavy metals 

Available phosphorous Phosphorous cycling. Macronutrient for plants and a measure of soil fertility 

A soil function assessment with the suggested MDS was proposed for use to complement 

environmental risk assessment in remediation projects (Volchko et al., 2014b), and was 

expanded into a separate tool for use in site investigation – Soil Function Box (SF Box) tool 

(Volchko et al., 2019, 2014a). Volchko et al. (2014) argue that the value of an MDS is that it 

facilitates more comprehensive soil assessment in remediation projects, which should integrate 

the improved risk assessment and soil function evaluation in order to assure sustainable 

management of contaminated soil. 

Gomez-Sagasti et al. (2012) state: 'due to the well-known heterogeneity and dynamic nature of 

the soil ecosystem, as well as the great variety of specific problems and interests associated 

with polluted and remediated soils, it is very hard to recommend a set of best indicators valid 

for all cases and situations.' Concerning microbial properties, they advise always including 

measurements that provide information on the biomass (e.g. MBC), activity (e.g. respiration, 

potentially mineralizable nitrogen, soil enzyme activities), and diversity of soil microbial 

communities as part of a MDS (Gómez-Sagasti et al., 2012). Both biomass and activity 

measurements can serve as suitable independent indicators to assess soil microbial communities 

(e.g. effects of heavy-metal-induced stress); however, the authors maintain that 'linked' 

measurements such as the metabolic quotient (qCO2  – ratio of CO₂ production to MBC) are 

frequently better indicators of heavy metal pollution than either microbial activity or biomass 

measurements alone. Complementing assessments with community-level physiological (CLPP, 

obtained with Biolog™ plates) and genetic (via PCR-DGGE) profiles as well as phospholipid 

fatty acid profiles (PLFA) have also proven to be useful indicators for the estimation of 

microbial diversity in heavy-metal-polluted and phytoremediated soils (Epelde et al., 2008; 

Gómez-Sagasti et al., 2012). 

Another useful consideration in the selection of a minimum data set is to take into account the 

most frequently used bioindicators in soil monitoring programs (or those frequently used in 

remediation projects, as discussed in (Volchko et al., 2014b)). For example, Turbé et al. (2010) 

provide an extensive review of European soil monitoring programs and, while acknowledging 
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that there is no established standard, point out the utility of the Envasso approach as a minimum 

set (i.e. Tier 1) of surrogate measures selected to assess the overall changes in soil biodiversity 

covering the three functional groups: 

• Soil ecosystem engineers: earthworm biomass and diversity 

• Biological regulators: springtails biomass and diversity 

• Chemical engineers: microbial activity (respiration) 

This minimum set of indicators could even be extended in some regions (i.e. including Tier 2 

or 3), according to the availability of resources, to include e.g. all macro-fauna or nematodes 

(Turbé et al., 2010). It is also recognised that that soil biodiversity monitoring should be 

accompanied by measurements of soil abiotic characteristics, so as to be interpretable; 

including: habitat characteristics (e.g. geographical classification, land use type, climate data, 

groundwater level), soil properties (e.g. pH, SOC content, N content, C:N ratio, soil texture, 

CEC) and contamination and human-induced stress (e.g. concentration of heavy metals) (Turbé 

et al., 2010). 

Faber et al. (2013) state that 'there is no consensus about a basic set (minimum test battery) of 

soil biodiversity indicators since all have useful characteristics, e.g. sensitivity, ease of use, 

ecological meaning, etc., that prevail under particular circumstances.' However, some 

indicators are clearly used more often than others as shown in the results of the surveys they 

sent out to soil scientists across Europe, shown below in Figure 3-3. The authors note that few 

surveys were returned (135 total), indicating the general lack of structured soil biodiversity 

monitoring in Europe (Note: Sweden was not included in the countries participating in the 

survey). Those used most often per group include (Faber et al., 2013):  

• Fauna indicator – nematodes  

• Microbes – soil microbial biomass including SIR 

• Soil processes – basal respiration including potential C-mineralization 

• Multi-endpoint tool (-omics) – bacterial automated rRNA intergenic spacer analysis, B-

ARISA. 
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Figure 3-3. Soil biodiversity indicators used in approximately 14,200 measurements in 

European soils (according to results from surveys). The indicators were grouped into four 

categories: soil fauna (blue), microbes (yellow), soil processes (red) and 'omics' including 

multi-endpoint indicators like PLFA (green). Arrows (added extra) indicate those most 

frequently used. amoA = amoA genes in archaea (coding for the alpha-subunit of the ammonia 

monooxygenase); ARISA = automated rRNA intergenic spacer analysis fingerprints; ITS = 

internally transcribed spacer sequences; PLFA = phospholipid-derived fatty acids; SIR = 

substrate-induced respiration; t-RFLP = terminal restriction fragment length polymorphism. 

From (Faber et al., 2013). 

More recently, Bünemann et al. (2018) reviewed 62 publications and extracted the most 

frequently proposed SQIs, see Figure 3-4. Results show that total organic matter/carbon and pH 

are the most frequently proposed soil quality indicators, followed by available phosphorus, 

various indicators of water storage and bulk density (all were mentioned in >50% of reviewed 

indicator sets). Soil texture, available potassium and total nitrogen are also frequently used 

(>40%). The authors note that the average number of proposed indicators was 11, which they 

consider is probably more than is feasible from a practical as well as a financial viewpoint under 

most circumstances (Bünemann et al., 2018). Therefore, a trend towards smaller indicator sets 

in recent years can be seen; however, the development of novel indicators, which can be applied 

on a high number of samples in a fast and cheap way, could change the picture in the future 

(Bünemann et al., 2018). 

Bünemann et al. (2018) reported that in most of the publications at least one indicator of each 

category (physical, chemical and biological) is included. These categories are typically 

represented automatically when all soil functions or soil-based ecosystem services are 

addressed. However, soil biological indicators were missing from 40% of the reviewed 

minimum data sets. Soil physical indicators, especially those related to water storage, were 

frequently proposed in the early assessment schemes and again in the last 5 years, while they 

were less common in between. Among the soil chemical indicators, soil organic carbon content, 

pH, available P and K, total N, electrical conductivity, cation exchange capacity, and mineral 

N were proposed more often than all other indicators. Likewise, soil respiration, microbial 

biomass, N mineralization and earthworm density were more frequent among the biological 

indicators than the other 10 indicators that have been proposed at least once. 
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Figure 3-4. Frequency of different indicators (min. 10%) in all reviewed soil quality assessment 

approaches (n= 65). Soil biological, chemical and physical indicators are shown in green, red 

and blue respectively, from (Bünemann et al., 2018). 

A crucial factor to emphasise when establishing an MDS for soil assessment is that soil 

organisms play a central role in soil functioning (see Appendix II); therefore, adding biological 

and biochemical indicators can greatly improve soil quality assessments (Barrios, 2007; 

Bünemann et al., 2018; Gómez-Sagasti et al., 2012). However, the more 'static', physico-

chemical soil parameters ought not be neglected for, as previously stated, these parameters 

inform upon the condition of the soil habitat which enables life to flourish. Historically, it has 

been these parameters that have formed the basis for soil quality evaluations (Gómez-Sagasti 

et al., 2012; Ritz et al., 2009), so there is a wealth of information to draw from to inform the 

selection of soil quality indicators for physico-chemical conditions. In their review, Bünemann 

et al. (2018) note that molecular methods focusing on DNA and RNA hold great potential to 

perform faster, cheaper and more informative measurements of soil biota and soil processes 

than conventional methods. Consequently, they may yield so-called 'novel indicators' that could 

substitute or complement existing biological and biochemical soil quality indicators in regular 

monitoring programs when the performance and cost-efficiency is improved (Bünemann et al., 

2018). This promise seems to be reflected in indicator selection procedures for, as previously 

mentioned, seven out of the top ten selected indicators in the logical sieve performed by Stone, 

Ritz et al. (2016) were indeed based on molecular methods, with ‘molecular bacteria and 

archaea diversity’ being number one. Nevertheless, soil biological indicators are still 

underrepresented in soil quality assessments and mostly limited to 'black-box' measurements 

such as microbial biomass and soil respiration (Bünemann et al., 2018). In any case, it is 
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essential to emphasize that physical, chemical, and biological properties must always be 

included in a proper assessment of soil quality (Gómez-Sagasti et al., 2012). 

3.1.4 Analyses 

The key aspect to this section is standardisation. Römbke et al. (2018) argue that soil 

biodiversity indicators are critical to evaluate ecosystem functioning at a given site and to, in 

turn, provide ecosystem services in the face of the myriad threats that affect soil organism 

diversity and abundance (e.g. contamination, loss of organic matter). However, the authors also 

stress the importance of standardised methods in providing a robust assessment of soil quality 

for use in monitoring programs and other site assessments (e.g. (ISO, 2017b)), which has been 

echoed by many other authors (Bünemann et al., 2018; Faber et al., 2013; Griffiths et al., 2016; 

Turbé et al., 2010). Furthermore, since the concept of ecosystem services permeates many 

different fields, Römbke et al. (2018) believe that ISO should develop guidelines offering a 

wide range of ISO standards to be used to protect microbial functions supporting a given 

ecosystem service defined as specific protection goals by regulatory authorities. A recognised 

problem with many biological methodologies is a lack of reference control materials, which 

would allow for direct comparison between and within laboratories (i.e. assessment of the 

repeatability and reproducibility of the method – see (Creamer et al., 2009) for an inter-

laboratory comparison of multi-enzyme and MSIR assays which showed significant variation) 

(Faber et al., 2013). Faber et al. (2013) argue that when using soil biodiversity indicators, 

methods have to be standardised at least for Tier 1, preferably according to ISO 

standards. The authors claim that present use of soil biological indicators in monitoring 

schemes is highly variable across Europe and would benefit from standardisation of sampling 

and identification methods (Faber et al., 2013). However, a potential bottleneck is the 

availability of labs and analyses to practically assess the parameters of interest, as evidenced 

by the survey questions posed in the logical sieve procedures addressing e.g. 'practicability' 

which refers to demands on and availability at labs (Griffiths et al., 2016; Ritz et al., 2009; 

Stone et al., 2016b) 

Römbke et al. (2018) critically reviewed the standardised methods for assessing the structural 

and functional diversity of organisms, within the ISO framework, which could facilitate 

obtaining scientifically sound and comparable data as well as references values. A series of 

tables of relevant analyses were provided, shown below in Table 3-9, Table 3-10, and Table 

3-11. 
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Table 3-9. List of ISO guidelines available to measure a range of soil physicochemical 

parameters, adapted from (Römbke et al., 2018). 

ISO Nr Title Comment 

10390:2005 Determination of pH 

Almost all of these methods have been used 

in soil sciences worldwide (most in northern 

temperate regions) for at least 20 years by 

various stakeholders, including regulatory 

agencies, soil monitoring institutions, 

farmers and scientists. In parallel, they were 

checked every 5 years to determine whether 

the standard in general and/or specific parts 

of it still reflect the actual state of the art. In 

case modifications became necessary, they 

were improved accordingly. 

10694:1995 Determination of organic and total C after dry 

combustion (elementary analysis) 

11260:1994 Determination of effective cation exchange capacity 

and base saturation level using barium chloride 

solution 

11261:1995 
Determination of total N - modified Kjeldahl method 

11277:2009 
Determination of particle size distribution in mineral 

soil material - method by sieving and sedimentation 

11464:2004 
Pre-treatment of samples for physicochemical analysis 

11465:1993 Determination of dry matter and water content on a 

mass basis - Gravimetric method 

11508:1998 Determination of particle density 

13878:1998 
Determination of total N content by dry combustion 

14235:1998 Determination of organic C by sulfo-chromic 

oxidation 

14256-1:2003 Determination of nitrate, nitrite, and ammonium in 

field-moist soils by extraction with potassium chloride 

solution. Part 1: Manual method 

14256-2:2005 Determination of nitrate, nitrite, and ammonium in 

field-moist soils by extraction with potassium chloride 

solution. Part 2: Automated method with segmented 

flow analysis 

15903:2002 Format for recording soil and site information 

18400-206:2017 

Sampling: Guidance on the collection, handling and 

storage of soil for the assessment of biological, 

functional and structural endpoints in the laboratory 

In order to update the requirements 

regarding the use of soil samples in 

ecotoxicological laboratory tests, this new 

standard has been prepared recently 

(replacing ISO 10381-6:1993) 
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Table 3-10. List of ISO guidelines available to estimate a range of parameters giving insight 

into the abundance, diversity and activity of soil fauna, adapted from (Römbke et al., 2018). 

ISO Nr Attribute Title Comment 

23611-

1:2018 

Abundance and/or 

structure 

Sampling of soil invertebrates - Part 1: 

Hand-sorting and formalin extraction of 

earthworms 

This standard was recently updated. 

23611-

2:2006 

Abundance and/or 

structure 

Sampling of soil invertebrates - Part 2: 

Sampling and extraction of 

microarthropods (Collembola and 

Acarina) 

This standard is still valid, however, 

new species identification methods 

('barcoding') allowing quicker species 

determination must be added for all 

standards for individual organism 

groups 

23611-

3:2019 

Abundance and/or 

structure 

Sampling of soil invertebrates - Part 3: 

Sampling and extraction of enchytraeids 
This standard was recently updated. 

23611-

4:2007 

Abundance and/or 

structure 

Sampling of soil invertebrates - Part 4: 

Sampling, extraction and identification of 

free-living stages of nematodes 

Improving the practicability of this 

standard by modifying the sampling 

method is currently under discussion. 

23611-

5:2011 

Abundance and/or 

structure 

Sampling of soil invertebrates - Part 5: 

Sampling and extraction of 

macroinvertebrates 

This standard covers a very broad 

range of organism groups. Thus, a new 

standard for surface-living species 

(mainly large arthropods) must be 

considered. 

23611-

6:2012 
General 

Sampling of soil invertebrates - Part 6: 

Guidance for the design of sampling 

programs with soil invertebrates 

This standard is regularly under 

discussion in order to keep track with 

regulatory requirements. 

18311:2016 
Activity and/or 

function 

Method for testing effects of soil 

contaminants on the feeding activity of 

soil-dwelling organisms - Bait-lamina test 

No change necessary. 

GD 56 - 

OECD 

2006 

Activity and/or 

function 

Determination of the breakdown of 

organic matter in litterbags 

This standard was developed for the 

ecotoxicological assessments of 

pesticides; thus, it must be modified in 

order to use it for the general 

monitoring of soil quality. 

Römbke et al. (2018) observe that there is guidance for designing monitoring programs but 

neither sampling design nor the description of general site properties is, as of yet, standardised. 

However, as shown in the tables above, many of the relevant soil properties are standardised 

leaving the task of selecting which parameters to include in a soil assessment. An effort was 

recently made to implement new standards to assess the soil microbial community structure and 

to quantify the abundance of microbial groups from soil DNA extracts (Römbke et al., 2018). 

For example, different functional microbial groups (nitrifiers and denitrifiers) support the N 

cycle, a key component of nutrient cycling ecosystem services, have seen surging interest in 

monitoring and are linked to 5 standardised methodologies (i.e. ISO 14238, 15685, 17601, 

20131-1, 20131-2). Of particular note, is the use of q-PCR assays to provide more sensitive 

functional endpoints to assess microbes involved in key functions like nutrient cycling (i.e. 

functional genes) (Thiele-Bruhn et al., 2020). Other complex molecular methods to characterize 

the structure and diversity of microbial communities are not yet standardized at the ISO level 

because most of them rely on high-throughput sequencing technologies and subsequent 

bioinformatics treatment of sequence data sets, which have evolved rapidly over the past 15 

years (Römbke et al., 2018). According to Römbke et al. (2018), several high-throughput 

sequencing platforms using 'barcoding' or 'meta-barcoding' methods are on the market, but they 

are not stabilised yet, and there is currently no consensus among microbial ecologists about 

how to interpret the results. This lack of consensus inhibits their standardisation; however, the 

general consensus is that more of these methods should be standardised to enable widespread 
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usage and improved assessment of functional diversity for both microorganisms and soil 

invertebrates (Römbke et al., 2018). 

In their proposal of new microbial functional standard for soil quality assessment, Thiele-Bruhn 

et al. (2020) highlight the importance of microorganisms for robust soil functioning and related 

ecosystem services and bring attention to the fact that new standardised methods should focus 

more on soil microbial functions. The authors suggest 8 key soil functions and ecosystem 

services (based off of MEA (Millennium Ecosystem Assessment, 2005)): 1) biodiversity, 

genetic resources, cultural services, 2) food web support, 3) biodegradation of pollutants, 4) 

nutrient cycling (e.g. N, C and P), pest control and plant growth promotion, 6) carbon cycling 

and sequestration, 7) greenhouse gas emissions, and 8) soil structure affecting soil water, gas 

balance and filtration function. The few existing standardised methods available that focus on 

the function of soil microorganisms mostly include measurements of abundance and activity 

under well-defined conditions in the lab (e.g. basal respiration, nitrification, enzyme activities, 

biodegradation of organic matter) (Römbke et al., 2018; Thiele-Bruhn et al., 2020). For 

invertebrates, the only available functional tests related to the activities of these animals are: 

the bait-lamina (ISO, 2018) and the litter bag test (GD 56, OECD 2006) (Römbke et al., 2018). 

Thiele-Bruhn et al. (2020) assessed existing ISO standards for determining potential microbial 

biomass and activities and connect to the functions listed above, shown in Table 3-11: 

Table 3-11. List of ISO methods available to estimate a range of parameters, giving insight into 

the abundance, structure and activity of soil microorganisms, adapted from (Römbke et al., 

2018) and adding functional relevance from (Thiele-Bruhn et al., 2020). 

ISO Nr Attribute Title Comment Functional relevance 

10832:2009 Activity 

Effects of pollutants on 

mycorrhizal fungi - spore 

germination test 

This standard was last 

reviewed and confirmed 

in 2016. 

N/A 

11063:2012 

Required for 

abundance 

and diversity 

analyses 

Method to directly extract DNA 

from soil samples 

This standard was last 

reviewed and confirmed 

in 2017. 

Biodiversity, genetic 

resources; Carbon cycling 

and sequestration 

11266:1994 Activity 

Guidance on laboratory testing 

for biodegradation of organic 

chemicals in soil under aerobic 

conditions 

This standard was last 

reviewed and confirmed 

in 2016. 

Biodegradation of 

pollutants 

14238:1997 Activity 

Determination of N 

mineralisation and nitrification 

in soils and the influence of 

chemicals on these processes 

This standard was last 

reviewed and confirmed 

in 2017. 

Nutrient cycling 

14239:2017 Activity 

Laboratory incubation systems 

for measuring the 

mineralisation of organic 

chemicals in soils under aerobic 

conditions 

This standard was last 

reviewed and confirmed 

in 2017. 

Biodegradation of 

pollutants 

14240-

1:1997 
Abundance 

Determination of soil microbial 

biomass - Part 1: substrate-

induced respiration method 

These 3 standards were 

last reviewed and 

confirmed in 2014. 

Carbon cycling and 

sequestration 

14240-

2:1997 
Abundance 

Determination of soil microbial 

biomass - Part 2: fumigation-

extraction method 

Carbon cycling and 

sequestration 

15473:2002 Activity 

Guidance on laboratory testing 

for biodegradation of organic 

chemicals in soil under 

anaerobic conditions 

Biodegradation of 

pollutants 
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15685:2004 Activity 

Determination of potential 

nitrification and inhibition of 

nitrification - rapid test by 

ammonium oxidation 

This standard was last 

reviewed and confirmed 

in 2017. 

Nutrient cycling 

16072:2002 Activity 

Laboratory methods for 

determination of microbial soil 

respiration 

This standard was last 

reviewed and confirmed 

in 2014. 

Carbon cycling and 

sequestration 

17155:2012 Activity 

Determination of abundance 

and activity of soil microflora 

using respiration curves 

This standard was last 

reviewed and confirmed 

in 2017. 

Carbon cycling and 

sequestration 

17601:2016 Abundance 

Method to quantify the 

abundance of microbial 

communities from soil DNA 

extracts 

This standard was 

published in 2016 and 

remains current. 

Biodiversity, genetic 

resources; Carbon cycling 

and sequestration 

20130:2018 Activity 

Measurements of enzyme 

activity patterns in soil samples 

using colorimetric substrates in 

micro-well plates 

Under development at 

time of writing - now 

complete 

Carbon cycling and 

sequestration; Nutrient 

cycling 

20131-

1:2018 
Activity 

Assessment of the capacity of 

soils to reduce N2O - Part 1: 

soil denitrifying enzyme 

activities 

Greenhouse gas emissions 

20131-

2:2018 
Activity 

Assessment of the capacity of 

soils to reduce N2O - Part 2 
Greenhouse gas emissions 

22939:2019 Activity 

Measurement of enzyme 

activity patterns in soil samples 

using fluorogenic substrates in 

micro-well plates 

Carbon cycling and 

sequestration; Nutrient 

cycling 

23753-

1:2019 
Activity 

Determination of 

dehydrogenase activity in soils - 

Part 1: Method using 

triphenyltetrazolium chloride 

(TTC) 
These standards were 

last reviewed and 

confirmed in 2019. 

Carbon cycling and 

sequestration; Nutrient 

cycling 

23753-

2:2019 
Activity 

Determination of 

dehydrogenase activity in soils - 

Part 2: Method using 

iodotetrazolium chloride (ITC) 

Carbon cycling and 

sequestration; Nutrient 

cycling 

29843-

1:2010 
Structure 

Determination of soil microbial 

diversity - Part 1: Method by 

PLFA analysis and PLEL 

analysis 

This standard was last 

reviewed and confirmed 

in 2017. 

Biodiversity, genetic 

resources; Carbon cycling 

and sequestration 

29843-

2:2010 
Structure 

Determination of soil microbial 

diversity - Part 2: Method by 

PLFA analysis using the 'simple 

PLFA extraction method' 

This standard was last 

reviewed and confirmed 

in 2015. 

Biodiversity, genetic 

resources; Carbon cycling 

and sequestration 

Methods to assess the biodegradation of pollutants are already implemented into ISO guidelines 

(e.g. ISO 14239, 15473 – assessing the degradation of organic chemicals), and are part of legal 

frameworks including pesticide directives (Thiele-Bruhn et al., 2020). In previous years, the 

development of standard methods was mainly driven by the need to assess the ecotoxicological 

effects of anthropogenic activities, such as chemical contamination of soils, rather than to de-

scribe and understand the natural properties and functions of soils (Thiele-Bruhn et al., 2020). 

Defining methods for the determination of adverse effects of contaminants on soil biota was 

also a major task of other organisations such as the Organization for Economic Co-Operation 

and Development (OECD)8. For example, there are OECD guidelines (OECD 216 and 217 

 
8 Note: According to Römbke et al. (2018): Standardisation in the field of soil biodiversity is mainly carried out 

by ISO. Other international standardization institutions (e.g., the Organisation for Economic Co-operation and 

Development [OECD]) focus on ecotoxicological tests to assess chemicals, but they are far less active in soil 

biodiversity. OECD and ecotoxicological tests were not discussed in their review though both are still relevant to 

site assessment. 
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(OECD, 2000a, 2000b)) for testing the long-term effects of single-exposure chemicals on soil 

microbial nitrogen and carbon transformation, respectively.  

3.1.5 Interpretation of indicator values 

As stated by Bünemann et al. (2018), 'an indicator is only useful if its value can be 

unequivocally interpreted and reference values are available.' Reference values for a given 

indicator could be either those of a native soil, which may however not be suitable for 

agricultural production, or of a soil with maximum production and/or environmental 

performance. Acceptable values for an indicator can also be defined as those at which there is 

no loss or significant impairment of functioning; in the context of pollution, thresholds of 

contamination are often used (Bünemann et al., 2018). 

A more advanced way to evaluate soil quality indicators is the establishment of standard non-

linear scoring functions, which typically have the shapes i) more is better, ii) optimum range, 

iii) less is better, or iv) undesirable range (as shown in Figure 3-6), with i-iii being most common 

in soil science (Bünemann et al., 2018). The shape of such curves is established based on a 

combination of literature values and expert judgement (Andrews et al., 2004). When scoring 

curves are based on regional data, such as in the Cornell Soil Health Assessment (Moebius-

Clune et al., 2016), then scores are relative to measured values in the respective region. Each 

indicator measurement is transformed to a value between 0 and 1 (or 0 and 100) using a scoring 

algorithm, with a score of 0 being the poorest (lower threshold) and a score of 1 (or 100) the 

best (upper threshold). The baseline value equals the midpoint between threshold values. 

Validation of scoring curves is possible if datasets with measurements of the given soil quality 

indicator and a related soil process are available (Andrews et al., 2004; Bünemann et al., 2018; 

Moebius-Clune et al., 2016; Volchko et al., 2014a). 

Bünemann et al. (2018) maintain that acceptable target ranges of soil quality indicators need to 

be soil-and land use-specific, and they depend not only on targeted soil functions, but also on 

both spatial and temporal scale of soil quality assessments, with regional target ranges typically 

being narrower than national ones. In addition, acceptable ranges of a soil quality indicator for 

one property or process are often highly dependent on the value of another soil property or 

process, e.g. dependence of microbial biomass or soil organic carbon on soil texture. Due to the 

contentious nature of interpreting SQIs (e.g. establishing target values, data limitations and 

difficulties interpreting values that often rely on expert judgement), a comparative approach in 

which indicator values or scores of a given sampling point are put in relation to other sampling 

points may be the most intuitive and flexible basis for interpretation (Bünemann et al., 2018). 

Providing a relative assessment (e.g. top 25%) in this way allows continuing evolution of the 

system and ease of understanding (Bünemann et al., 2018). For example, in the Applicera 

project, contaminant levels (toxic pressure, indicating toxicity in relation to threshold values) 

were plotted against SF Box scores of potential soil quality (soil classes representing good, 

medium and poor quality) (Volchko et al., 2020), see Figure 3-5. 
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Figure 3-5. Soil quality obtained with SF Box as a function of bioavailability corrected toxic 

pressure (TP) values. Samples were grouped into three soil quality classes according to the SF 

Box index. Sampling points with TP < 0.25 were used as reference points in the ecological line 

of evidence, from (Volchko et al., 2020). 

Similar to the 'SF Box score' shown above, many studies on soil quality have searched for a 

way to aggregate the information obtained for each soil quality indicator into a single soil 

quality index (Andrews et al., 2004; Bünemann et al., 2018; Epelde et al., 2014b; Velasquez et 

al., 2007). The ultimate purpose of a soil quality index is to inform farmers and other land 

managers about the effect of soil management on soil functionality, which is an especially 

useful communication tool, particularly by graphical means, as an aggregated presentation of 

the outcome of soil quality assessments communicating that can transmit to society as a whole 

the consequences that human decisions can have on soil-based ecosystem services (Bünemann 

et al., 2018). According to Turbé et al. (2010), no comprehensive index has yet been proposed 

that would combine all the aspects of soil complexity into a single formula and allow accurate 

comparison among sites and plots. Existing indicators comprise rather long lists of potentially 

relevant variables to be measured, although no general agreement has been reached on their 

interpretation (Doran and Zeiss, 2000; Turbé et al., 2010). Some attempts to combine groups of 

variables into indicators of soil biotic activity have recently been proposed, which can be 

classed into three main approaches (see (Turbé et al., 2010) for more detail and compilation of 

compound indicator systems):  

• Shopping list approach – where a set of different soil parameters are assessed using 

'simple indicators' 

• Benchmark approach – where the degree of deviation between reference situations and 

the actual measurements are evaluated using compound indicators (often limited by 

absence of reference systems and indicators) 

• Numerical approach – where synthetic indices are developed for the assessment of soil 

status using compound indicators 
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Figure 3-6. A generic framework for soil function assessment. The dotted box corresponds to 

operations carried out in the SF Box tool, from (Volchko et al., 2014a). 
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4 Ecosystem services assessment 

There has long been disagreement over defining exactly what ecosystem services (ES) are, but 

they can generally defined as the direct and indirect contributions of ecosystems to human well-

being (Potschin and Haines-Young, 2016; TEEB, 2010). The ES concept is becoming 

mainstream in policy and planning for communicating about the environment and 

operationalisation has even led to gradual changes in decision-making and action (Dick et al., 

2018). Many international research initiatives and classification systems such as The 

Millennium Ecosystem Assessment (MEA) (Millennium Ecosystem Assessment, 2005), The 

Economics of Ecosystems and Biodiversity (TEEB) (TEEB, 2010), The Common International 

Classification of Ecosystem Services (CICES) (Haines-Young and Potschin, 2018; Potschin 

and Haines-Young, 2016) and Mapping and Assessment of Ecosystems and their Services 

(MAES) (Maes et al., 2016) emphasise that the concept of ES is fundamentally a reductionist, 

anthropogenic view on nature and acknowledges the instrumental value of ecosystems (i.e. its 

components, processes and functions) as a means of sustaining and improving human well-

being. A true, holistic accounting of the value of the ecological system must account for the 

non-anthropocentric or intrinsic value of ecosystems regardless of the benefits it delivers to 

humans (Back et al., 2019; La Notte et al., 2017). In the context of soils, their intrinsic value 

(e.g. as a haven for biodiversity, existence value) has been argued from both an ethical and 

practical perspective by Back et al. (2019) as worthy to be included under the umbrella of 

protection offered by such agendas as the Soil Security framework, which is predominantly 

focused upon human well-being (Back et al., 2019). The authors highlight three cases where 

the non-anthropocentric value of soil is especially important (in the context of contaminated 

soils): 1) when ES are difficult to assess or are of low value, 2) when the intrinsic value of soil 

is especially strong, and 3) when human activity has caused negative effects on soil organisms 

or on other parts of the ecosystem (e.g. secondary poisoning in the food web). They argue 

ignoring the non-anthropocentric value of soils in these situations could actually counteract 

sustainability efforts and even allow threats to persist (Back et al., 2019). 

There are many standardised classification systems but no one that has been universally agreed 

upon. MEA, TEEB and CICES are the most prominent in the field though even these have 

slightly different classifications of the individual ecosystem services, the scale of grouping and 

what is considered an ecosystem service in various contexts (e.g. soil ES, urban, ES, etc.). MEA 

and TEEB provide much broader, simplified classification systems while CICES breaks down 

the broader categories progressively into smaller groupings that can be used in economic and 

environmental accounting to facilitate assessment and valuation (Haines-Young and Potschin, 

2018; Potschin and Haines-Young, 2016). The Swedish Environmental Protection Agency 

(SEPA) based their ES classification system on the CICES framework (SEPA, 2017). Table 

4-1 provides a comparison between the three main classification systems: 

Table 4-1. Ecosystem services classification systems – comparing MEA, TEEB and CICES. 

Category MEA TEEB CICES (v 5.1) 

Provisioning 

Food Food 

Biomass – Cultivated or wild terrestrial 

and aquatic plants (incl. algae, fungi) 

and animals for nutritional purposes 

Fibre, Timber, Ornamental, 

Biochemicals 

Raw materials, Medicinal 

resources 

Biomass – Cultivated or wild terrestrial 

and aquatic plants (incl. algae, fungi) 

and animals for direct use or processing 

as raw materials or energy 

Fresh water Fresh water 
Water – Surface or groundwater used for 

nutrition, materials or energy 
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Genetic resources Genetic resources 

Genetic materials from all biota – 

Plants, algae, fungi, animals or other 

organisms 

Regulating 

& 

Maintenance 

Water purification and waste 

treatment, Air quality 

maintenance 

Wastewater treatment 

(water purification), Air 

quality regulation 

Transformation of biochemical or 

physical inputs to ecosystems – 

Mediation of wastes or toxic substances 

of anthropogenic origin by living 

processes 

    

Transformation of biochemical or 

physical inputs to ecosystems – 

Mediation of nuisances of anthropogenic 

origin (e.g. smell, noise, aesthetic) 

Water regulation, Storm 

protection, Erosion control 

Regulation of water flows, 

Moderation of extreme 

events, Erosion prevention 

Regulation of physical, chemical, or 

biological conditions – Regulation of 

baseline flows and extreme events (e.g. 

erosion, water regulation, storm 

protection, wind protection, fire 

protection) 

Pollination Pollination 

Regulation of physical, chemical, or 

biological conditions – Lifecycle 

maintenance, habitat and gene pool 

protection 

Biological control, 

Regulation of human 

diseases 

Biological control 

Regulation of physical, chemical, or 

biological conditions – Pest and disease 

control 

Soil formation and retention 

(supporting) 
Maintenance of soil fertility  

Regulation of physical, chemical, or 

biological conditions – Regulation of 

soil quality 

Water cycling (supporting)   
Regulation of physical, chemical, or 

biological conditions – Water conditions 

Climate regulation, Air 

quality maintenance 

Climate regulation, carbon 

sequestration and storage, 

Air quality regulation 

Regulation of physical, chemical, or 

biological conditions – Atmospheric 

composition and conditions 

    
Other types of regulation and 

maintenance services by living processes 

Cultural 

Recreation and ecotourism 
Tourism, Recreation and 

mental and physical health 

Direct, in-situ and outdoor interactions 

with living systems that depend on 

presence in the environmental setting – 

Physical and experiential interaction 

with the natural environment 

Aesthetic values, Inspiration, 

Cultural diversity, Cultural 

heritage, Social relations, 

Knowledge systems, 

educational values 

Aesthetic appreciation and 

inspiration for culture, art 

and design, Recreation and 

mental and physical health 

Direct, in-situ and outdoor interactions 

with living systems that depend on 

presence in the environmental setting – 

Intellectual and representative 

interactions with the natural 

environment (e.g. traditional knowledge, 

culture, education, aesthetics) 

Spiritual and religious 

values, Sense of place 

Spiritual experience and 

sense of place 

Direct, in-situ and outdoor interactions 

with living systems that do (or do not) 

depend on presence in the environmental 

setting – Spiritual, symbolic and other 

interactions with the natural 

environment 

    

Direct, in-situ and outdoor interactions 

with living systems that do not require 

presence in the environmental setting – 

Other biotic characteristics that have a 

non-use value (e.g. existence, bequest) 

Supporting Primary production   

Regulation of physical, chemical, or 

biological conditions – Lifecycle 

maintenance, habitat and gene pool 

protection 
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Nutrient cycling   

Regulation of physical, chemical, or 

biological conditions – Regulation of 

soil quality (soil formation and 

composition) 

Habitat provisioning 

Habitats for species, 

Maintenance of genetic 

diversity 

Regulation of physical, chemical, or 

biological conditions – Lifecycle 

maintenance, habitat and gene pool 

protection 

Purpose: 

MEA provides a 

classification that is globally 

recognised and used in sub 

global assessments. 

TEEB provides an updated 

classification, based on the 

MEA, for urban ecosystem 

services. 

CICES provides a hierarchical system, 

building on the MA and TEEB 

classifications but tailored to 

accounting. The ES listed correspond to 

Division - Group in CICES designation 

which can be further broken down into 

specific classes. 

When considering the benefits that ES provide humans, there is a consensus that there exists 

some kind of 'pathway' for deriving human well-being from ES that are delivered by ecological 

structures and processes (Potschin and Haines-Young, 2016). The framework for assessing the 

delivery of ES to humans is often portrayed as a 'cascade' model that captures that view of a 

'production chain' linking biophysical structures and processes to ecosystem functions 

ecosystem services, benefits and values that a considered system provides to humans 

(Andersson-Sköld et al., 2018; Potschin and Haines-Young, 2016, 2011; TEEB, 2010). As 

shown in Figure 4-1, for the example system of an urban woodland or park, clear connections 

can be drawn between the functions that the woodland has the capacity to provide (e.g. slowing 

the passage of water) and the service this provides humans (e.g. reducing flooding in cities) 

thereby providing benefits which can be valuated (Andersson-Sköld et al., 2018; Potschin and 

Haines-Young, 2016). The various ES classification systems (i.e. CICES) aim to classify so-

called 'final' ecosystem services that link to the goods and benefits that are valued by people 

and contribute to human well-being (Potschin and Haines-Young, 2016). CICES considers 

supporting services or ecological functions separately as the underpinning structures and 

processes that ultimately give rise to ecosystem services; instead, CICES provides a 

classification of potential final services which can be attributed to direct human benefit and 

valued appropriately (Potschin and Haines-Young, 2016). 

 

Figure 4-1. The cascade model framework for ecosystem valuation, from (Potschin and Haines-

Young, 2016). 
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This model is not without criticism, and practical inconsistencies and confusion regarding ES 

frameworks, classification systems and terminology abound which can hinder consistent 

application (La Notte et al., 2017).  

Regarding the assessment of soil functions and soil-based ES, reviews by Baveye et al. (2016) 

and Greiner et al. (2017) assess the state of the field and methods for quantifying and valuing 

them. They conclude that, thus far, soil has not been well represented in ES assessments 

(Baveye et al., 2016; Greiner et al., 2017); even though it has been acknowledged that soil is an 

integral to ES provisioning, especially considering that 'soil fertility' and 'soil formation' are 

commonly mentioned in ES frameworks (Dominati et al., 2010; Greiner et al., 2017). Soil 

functions are typically included in soil quality assessments (including closely related concepts 

such as soil health, soil protection, soil security, etc.) so there is a degree of overlap in these 

related fields (Greiner et al., 2017). As previously noted, the capacity of soils to deliver ES is 

largely determined by its functions; however, operational tools for quantifying soil-related ES 

in ES assessments is still lacking (Greiner et al., 2017). To demonstrate the contributions soils 

make to ES, Greiner et al. (2017) used a similar cascade model as that shown above to develop 

linkages between soil functions and ES, see Figure 4-2. Their model emphasises the importance 

of soil properties and processes to the delivery of ES, many of which can be used to assess 

individual soil functions (Greiner et al., 2017). In their review, they identified eight soil-based 

ES which were most frequently included in ES mapping studies (in order of frequency): 1) 

carbon pool, 2) agricultural production, 3) water cycling, 4) nutrient cycling, 5) habitat for 

plants, 6) filter/buffer of organic compounds, 7) filter/buffer of inorganic compounds, 8) acidity 

buffer. Many studies neglected the inherent multi-functionality of soils to deliver many ES 

(with notable exceptions), and instead narrowed in on a few of the most commonly considered 

soil functions (Greiner et al., 2017). 

 

Figure 4-2. Assessment of the contributions of soil functions to ecosystem services using the 

cascading framework, from (Greiner et al., 2017). 
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4.1 Assessment methods 

In the context of contaminated soils, application of ecosystem service assessment or valuation 

methods is still limited to only a few studies (De Valck et al., 2019). Those which have been 

considered to be most instructive will be briefly discussed in this section. These methodologies 

can be separated into essentially two types of procedures: 

1. Quantitative analysis – based upon the use of assessment endpoints and indicators linked 

directly to specific soil functions and ecosystem services. 

2. Ecosystem service mapping – procedure utilising a semi-quantitative, quantitative or 

qualitative approach based upon using proxies or stand-in indicators for estimating the 

expected change in ecosystem services at a site that could result from some land 

management alternative, e.g. a remediation option. 

4.1.1 Quantitative analysis 

In this section, analytical methods for quantitatively assessing ES have been separated into 

those based upon either 1) ecological risk assessment or 2) integrative numerical indices. 

Ecological risk assessment 

Traditionally, ecological risk assessment (ERA) focuses on assessing the risk of chemical 

contamination by comparing soil contaminant (pseudo-)total concentrations to soil quality 

standards derived from laboratory-based ecotoxicity experiments based on 'species sensitivity 

distributions' (SSD), which estimate the 'potentially affected fraction' (PAF) of a standard set 

of species from a chemical stressor (Faber and Van Wensem, 2012; Gutiérrez et al., 2015; 

Volchko et al., 2014b, 2014a). However, such an approach, named ‘Tier 1’ ERA, may not 

provide accurate, unbiased results given that field conditions are likely to differ from the 

laboratory conditions used to derive soil-quality standards (i.e. total concentrations versus 

bioavailable concentrations), most toxicological data used in SSDs is for a select few taxonomic 

groups, ecological complexity is neglected and that various confounding factors can affect 

actual contaminant ecotoxicity within soil (e.g. mixtures of contaminants) (Faber and Van 

Wensem, 2012; Gutiérrez et al., 2015; Volchko et al., 2020, 2014a). Biodiversity has so far 

been neglected in most environmental assessments because it is often considered too broad and 

vague a concept to be applied to real-world regulator and management problems (Turbé et al., 

2010). Additionally, many soil investigations and remediation projects do not consider soil 

properties unrelated to contamination (such as nutrient or water availability) and may therefore 

result in undesirable economic and environmental outcomes (Volchko et al., 2020).  

It has been recognised that the sole use of SSDs is not sufficient to assess ecological risks, thus 

encouraging the use of expanded, site-specific ERAs like the Triad approach (e.g. (ISO, 2017b; 

Mesman et al., 2006)) (Faber and Van Wensem, 2012; Gutiérrez et al., 2015); where different 

'lines of evidence' (e.g. chemical, biological, toxicological analyses) stand on their own and 

provide individual pieces of the much larger puzzle that comprises the natural environment. 

Concern has also been expressed about the lack of impact of ERA on decision-making as well 

as the fact that decision makers have not been appropriately focused on ecological endpoints 

(Faber and Van Wensem, 2012). Over the past decade, developments in environmental 

monitoring and risk assessment to remedy this situation converged towards the use of indicators 

and endpoints (defined as an explicit expression of the environmental value to be protected, 

operationally defined as an ecological entity and its attributes (US EPA, 2016)) that are related 

to soil functioning and ecosystem services (Faber et al., 2013). Chapman (2008) argues that 

ecosystem services are effectively assessment endpoints (i.e. the part of the natural environment 

that we are trying to assess and protect). While it may not be possible to measure them directly, 
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we can measure certain components of the ecosystem (i.e. measurement endpoints) to give us 

a reasonable indication of the health of the whole (Chapman, 2008). Thomsen et al. (2012) 

argue that ERA is needed to facilitate the assessment of soil health and the capability of a soil 

to provide ecosystem services for a desired biologically active end use (i.e. 'suitability for use') 

such as e.g. detoxification and decomposition of wastes, soil formation and renewal of soil 

fertility. An example, from Semenzin et al. (2009), of how the taxonomic group-ecological 

process relationships might be incorporated into Triad LoE is shown in Figure 4-3.  

 

Figure 4-3. Ecosystem Impairment Matrix (EcoIM), as implemented in DSS-ERAMANIA 

Module 2, that shows the integration of taxonomic group-ecological process relationships into 

Triad LoE, from (Semenzin et al., 2009a). 

One of the most promising avenues for the integration of ES within ERA has been advocated 

by Faber et al. (2012; 2013), proposing to use assessment endpoints and indicators that are 

clearly linked to land use objectives (i.e. stakeholder demands) and representative for specific 

ES thereby enhancing the societal relevance of the ERA and its value in decision-support. They 

explain that the goal is not necessarily to change the way assessment studies are usually 

conducted, but rather to shift the focal point of assessment away from biodiversity and 

ecosystem health towards ecosystem services and associated benefits relevant for society 

(Faber and Van Wensem, 2012). According to Forbes and Calow (2013), the strength in 

formulating protection goals in ERA in terms of ES is in contributing to management by 

connecting ecosystem structure and processes to what is valued (i.e. human well-being), thus 

making risk assessment more policy- and value-relevant. It is argued that deriving assessment 

endpoints from structures and processes in the ecosystem that are considered indispensable for 

the provision of particular provides several distinct advantages, including i) communicative 

strength – to better explain the value of ecosystems for mankind, becoming more policy 

relevant and enabling different actors to speak a common language, ii) overarching/integrative 

aspects – using similar data and assessment processes across fields, e.g. equating ecological 

risk with ES loss or including ES in ERA (Munns et al., 2009), including developing SQI for 

use in ERA to create broader soil management policy, iii) possibility to value ES – in monetary 
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terms or otherwise, is another aspect that makes the concept attractive for decision makers as it 

may facilitate the weighing of options (e.g. benefits of risk reduction measures or restoration of 

contaminated soils for society via cost-benefit analysis e.g. (Volchko et al., 2020)) (Chapman, 

2008; Faber et al., 2013; Faber and Van Wensem, 2012). 

Faber et al. (2012; 2013) maintain that the concept of ES can be used as a guiding principle in 

environmental quality assessment, see Figure 4-4. A crux is the identification of relevant 

indicators of ecosystem services, through recognition of essential structures and processes that 

are key in the delivery of these services (Faber et al., 2013). Harmonisation in approaches 

utilising ES will benefit communication about assessments using biological indicators (Faber 

et al., 2013; Thomsen et al., 2012). The applications of ES shown in Figure 4-4 refer to the 

following scenarios: 

A) Literature toxicity data for relevant indicators may be used for derivation of soil quality 

criteria for sustainable land use – scenarios may be selected for different types of land use where 

related ES and associated indicators are selected. In the derivation process for chemical soil 

quality objectives, those indicators will be selected that are sensitive and have been used in 

toxicity testing. The toxicity data may be compiled from literature to make up datasets that can 

be used in the traditional way of deriving soil quality objectives (e.g. (Thomsen et al., 2012)) 

B) Site-specific ERA may use the status of ES indicators to assess suitability for use of the soil. 

Given the desired type of land use and specific aims of local stakeholders, vulnerable indicators 

are selected to be used in bioassays or to be assessed through field inventory and monitoring in 

a Triad approach. Notably, indicators should be selected as relevant as can be in view of the 

intended land use and management practices in question (e.g. relevant for the type of 

agricultural use in terms of cropping and soil management). 

C) Indicators for soil biological monitoring may be selected with respect to relevant ecosystem 

services required in associated to land use. Biological measures can be used as indicators of 

impact and change both to biodiversity itself and associated ES pertinent to specific types of 

land uses. 

 

Figure 4-4. Derivation of relevant indicators for evaluation of ecosystem service provision in 

environmental quality assessment, through ecological requirements that are conditional for 

sustainable land use of specific type, from (Faber et al., 2013). 
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There seems to be a general consensus that when a land (or soil quality) management 

strategy incorporates the concept of ecosystem services, quantifiable soil features can be 

more easily linked to land-use expectations and protection goals in a defensible and 

transparent way (Bünemann et al., 2018; Burges et al., 2018, 2016; Epelde et al., 2014a, 

2014b; Faber et al., 2013; Faber and Van Wensem, 2012; Garbisu et al., 2011; Gómez-Sagasti 

et al., 2012; Gutiérrez et al., 2015; Pulleman et al., 2012; Rutgers et al., 2012). Kapustka et al. 

(2016) argue that assessment endpoints should be related to ecosystem services because they 

provide a common currency for determining what priority ecological attributes to protect within 

ecosystems and across management goals. For example, measurement endpoints used to 

characterize the existing ecological conditions for selected ecosystem services can also be used 

to evaluate restoration (or remediation) success (Kapustka et al., 2016; Rohr et al., 2016). This 

also relates to the problem posed by Faber et al. (2012), stating that, while soil ecosystems are 

infinitely complex, the question (in risk assessment) is essentially What to protect? This 

question can be a prime cause for miscommunication between land using stakeholders and 

scientific risk assessors as well as lead to a lack of acceptance of results of ERA (Faber and 

Van Wensem, 2012). In determining the 'level of protection' at a site, the more specific question 

to answer is Which factors determine or modulate the risk to the soil ecosystem from pollution 

and other stressors? (Faber and Van Wensem, 2012). 

Regarding investigation at contaminated sites, the integration of ES into ERA (scenario B) has 

been discussed by many authors (e.g. (Faber, 2006; Faber et al., 2013; Faber and Van Wensem, 

2012; Forbes and Calow, 2013; Galic et al., 2012; Gutiérrez et al., 2015; Kapustka et al., 2016; 

Munns et al., 2009, 2016; Niemeyer et al., 2012; Semenzin et al., 2009a; Slack, 2010; Swartjes 

et al., 2011; Thomsen et al., 2012; Volchko et al., 2020)). A search in the Scopus database for 

"ecological risk assessment" AND "ecosystem services" resulted in 87 hits with 14 of these 

deemed relevant after reading through abstracts. While all the relevant articles are instructive, 

two of the proposed methods were particularly relevant to this study and will be discussed in 

more detail: 

Thomsen et al. (2012) – Problem tree conceptual model linking: 

Land use → ecosystem services → ecological requirements → indicators 

Thomsen et al. (2012) provide an approach (in answer to the above-mentioned questions) that 

was aimed to tailor risk assessment in alignment with intended land use and concurring 

demands for soil quality. The assessment focuses on characteristics and vulnerability of the 

biological community required for soil ecosystem functioning (Faber and Van Wensem, 2012; 

Thomsen et al., 2012). The method is based upon a conceptual system model, a 'problem tree 

configuration' – see Figure 4-5, for describing soil ecosystem health in terms of 'suitability for 

use' (i.e. the provision of ecosystem services), using defined ES as proxies for soil health (i.e. 

assessment endpoints). It utilises ecotoxicological data to systematically identify specific, 

'vulnerable' (i.e. sensitive) indicators that are associated with essential ecosystem structures and 

processes that underlay soil ecosystem services (i.e. 'ecosystem service providers'). The authors 

note that impacts of chemical stress (i.e. contamination) on biological diversity and land use 

impacts on soil fertility or health are complex and difficult to quantify; nonetheless, such 

impacts are drivers for decreased habitat quality to a level that may exceed soil ecosystems 

ability to maintain the ecological processes and functions mediating e.g. waste assimilation and 

detoxification and primary productivity (Thomsen et al., 2012). The key assumption made is 

that if indicators reflecting ecological requirements for ES are not exposed beyond their no-

effect concentration thresholds, the associated ES is not impacted (Thomsen et al., 2012). 
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Figure 4-5. Problem tree configuration for soil ecosystem health in terms of ecological 

suitability for specific land use, depicted as ecosystem services subdivided into ecological 

requirements down into ecological indicators representing ecosystem structure and 

functioning, biodiversity and soil processes that are needed for the provision of soil ecosystem 

services, from (Thomsen et al., 2012) 

The problem tree is broken down into the following stages: 

• Risk problem: suitability for land use – risk assessment of contaminated land may 

focus on ecological suitability for land uses (e.g. agricultural, nature (meadow), and urban 

(recreational greenspace)) entailing provisioning of select ES. This stage will gain in 

accuracy by precise definition of intended land use and goals for use, thus enabling 

selection of suitable ES. 

• Sub-problems level 1: ecosystem services – soil ecosystem health is not easily expressed 

in well-defined representative measurable sub-problems (i.e. biological, physical and 

chemical key parameters that need to be protected for the soil system to survive. Also, 

due to of the complexity of the soil ecosystem, ecological indicators might not be 

available at all; however, the degree of fulfilment of ES can be used as proxies for 

ecosystem health. The following 6 ES were identified by Thomsen et al. (2012) as 

relevant for all open types of land use: 

1. Soil fertility – the capacity to provide nutrients and biomass 

2. Adaptability and resilience – the capacity to adapt, or the fragility upon disturbance, and 

changes in land use 

3. Buffer and reaction function – storage and buffering of water, gases, chemicals, energy, 

CEC, breakdown and synthesis of chemicals (detoxification, humification) 

4. Biodiversity and habitat provision – genetic, functional and structural diversity 

5. Disease suppression and pest resistance – the natural capacity to prevent and suppress pests 

and diseases 

6. Physical structure – supportive capacity, historical archive, landscape identity 

• Sub-problems level 2: ecological requirements – for ES to be provided to society, a 

certain level of soil quality is required. In this framework, 'ecological requirements' are 

the actual structures or processes of the ecosystem that underlie ES. Each ES has specific 
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ecological requirements to be fulfilled to some minimum level (qualitative or 

quantitative) to enable functional delivery. For example, soil fertility (e.g. decomposition 

processes) requires different functional groups of soil biota, and the condition of each 

ecological requirement may be assessed by using proper indicators representing these 

functional groups. See Table 4-2 for the connections between ecological requirements 

and ES: 

Table 4-2. Regulatory functions and other aspects of the ecosystem as ecological requirement 

underlying ecosystem services, from (Faber and Van Wensem, 2012). 

Ecological requirement 

Ecosystem service (clustered) 

Soil 

fertility 

Adaptability, 

resilience 

Buffer and 

reaction 

function 

Biodiversity 

and habitat 

provision 

Disease 

suppression 

and pest 

resistance 

Physical 

structure 

Functional biodiversity X X X X X  

Structural biodiversity (species 

richness) 
X X X X X  

Ecosystem productivity X X  X X  

Organic matter fragmentation, 

mineralisation 
X  X X   

Soil properties (pH, CEC, 

aggregates, pore space, WHC, 

etc.) 

X  X X  X 

Nutrient cycling (supply, 

availability, assimilation, 

immobilisation) 

X  X X   

Autonomic development 

(nature) 
X X  X   

Soil organic matter build-up 

and maintenance 
X  X  X X 

Carbon sequestration X  X X   

Greenhouse gases X  X X   

Groundwater supply and 

quality 
X  X X  X 

Genetic variation and storage of 

genes 
 X X X X  

Natural attenuation  X X X   

Adaptability, flexibility for use  X     

Air quality amelioration   X    

Water transport and storage   X   X 

Landscape diversity    X  X 

Soil archive (archaeological, 

geological) 
     X 

In Thomsen et al. (2012), the ecological requirements shown in Table 4-2 are broadly grouped 

into 1) general biodiversity aspects, 2) microbial aspects, 3) plant aspects, 4) fauna aspects, 5) 

physical/chemical aspects – see Table 4-3. 

Note: As defined in the terminology section, ecological requirements are effectively 

synonymous with soil functions. 

• Sub-problems level 3: ecological indicators – indicators were designated as the means 

for assessing the state of ecological requirements; including indicators for soil biota, soil 

processes, or conditions of ecological sustainability, see Table 4-3. Numerous ecological 

indicators exist and may be used (as noted in previous sections). In this framework, 

preference was given to those that have been used in toxicity testing in the field or in the 
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lab (i.e. thresholds based on no observed effect concentrations and SSD), and if so were 

assessed using ecotoxicity data. 

Table 4-3. Sub-problems at level 1, 2 and 3 of the problem tree. Grey cells in the third column 

represent ecological indicators for which toxicological data are available for representative 

contaminants, adapted from (Thomsen et al., 2012).  

Sub-problems at level 1: 

ecosystem service 

Sub-problems at level 2: 

ecological requirements 

Sub-problems at level 3: 

ecological indicators 

Soil fertility General biodiversity aspects 1 Biodiversity indices 

 
Microbial aspects 2 Arginine deaminase activity 

  
3 Carbon sources utilisation diversity 

  
4 Cellulase activity 

  
5 Microbial biomass and activity 

  
6 Mycorrhizal infestation 

  
7 Nitrification 

  
8 Phosphatase activity 

  
9 Soil respiration 

  
10 Sulphur oxidation 

  
11 Urease activity 

 
Plant aspects 12 Dicotyledons biomass (fodder quality) 

  
13 N content (fodder quality) 

  
14 Litter standing crop 

  
15 Root density 

  
16 Root turnover 

  
17 Vegetation biomass 

  
18 Vegetation standing crop 

 
Fauna aspects 19 Anecic earthworms 

  
20 Ants 

  
21 Cattle meat quality 

  
22 Collembola 

  
23 Earthworm community structure 

  
24 Earthworms 

  
25 Epigeic earthworms 

  
26 Hoverflies, other dipterans, beetles 

  
27 Isopods 

  
28 Millipedes 

  
29 Mites 

  
30 Native bees 

  
31 Nematode community composition 

  
32 Nematodes 

  
33 Pollinators 

  
34 Protozoa 

  
35 Slugs, snails, beetles 

  
36 Springtails 

  
37 Springtails, mites 

 
Physical/chemical aspects 38 Ionic strength 
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39 Loss on ignition 

  
40 Soil aggregates 

  
41 Soil bulk density 

Adaptability and resilience Fauna aspects 42 Earthworm ecological groups 

  
43 Mites functional groups 

  
44 Nematode community structure 

  
45 Oribatid mites 

 
General biodiversity aspects 46 Diversity indices 

  
47 Rank abundance distribution 

  
48 Soil food web complexity 

 
Microbial aspects 49 Fungi:bacteria ratio 

  
50 Nucleic acids microbial population characterisation 

Buffer and reaction Fauna aspects 51 Anecic earthworms 

  
52 Earthworm bioturbation activity 

  
53 Epigeic and endogeic earthworms 

 
Microbial aspects 54 Carbon sources utilisation diversity 

  
55 Methanotrophic diversity 

 
Physico-chemical aspects 56 Loss on ignition 

  
57 Soil organic matter 

 
Plant aspects 58 Litter standing crop 

  
59 Primary production 

  
60 Root turnover 

  
61 Tree growth 

  
62 Vegetation standing crop 

Disease suppression Fauna aspects 63 Predator species diversity 

 
General biodiversity aspects 64 Green vein landscape elements 

  
65 Key species 

 
Microbial aspects 66 Antibiotics producers 

Biodiversity General biodiversity aspects 67 Diversity indices 

  
68 Growth form diversity 

  
69 Isoenzymes 

  
70 Keystone species 

  
71 Species diversity 

Physical support Microbial aspects 72 Nucleic acids microbial population characterisation 

 
General biodiversity aspects 73 Vegetation cover 

 
Physico-chemical aspects 74 Soil aggregates 

  
75 Soil bulk density 

  
76 Soil stratification 

 
Plant aspects 77 Root density 

Clearly, as noted by Thomsen et al. (2012), a critical issue is to find a reduced core set of the 

77 ecological indicators listed Table 4-3, using e.g. a logical sieve approach (Faber et al., 2013; 

Ritz et al., 2009; Stone et al., 2016b). To create an indicator 'shortlist', the authors recommend 

to first group the ecological indicators in clusters of similar importance (i.e. equivalent weights) 

for types of ES relevant to certain land uses, then assess the data coverage for the most important 
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ecological indicators. Their classification method (ranking the indicators according to the 

derivation of soil quality parameters using toxicological data to fulfil the defined ecological 

requirements) showed that for the 3 types of land uses in focus, no ecological indicator relevant 

to all 3 is covered with toxicological data. This indicates a gap in the data and uncertainty due 

to ignorance concerning how an ecological requirement is affected. When urban recreational 

greenspace is deemed less important than agricultural or natural uses then the 8 ecological 

indicators covered with toxicological data for chemical stressors, shown shaded in grey in Table 

4-3, become more applicable. Regarding uncertainty in data and understanding of what actually 

contributes to ecosystem functioning, a pre-cautionary approach could be used to define 

maximum ecological productivity by appreciating some level of soil ecosystem requirements 

is needed for maintaining ecological integrity. Furthermore, knowledge of soil ecosystem 

requirements may guide the planning of health improving soil management practices (Thomsen 

et al., 2012). 

Ecosystem services, their ecological requirements and indicators can be ranked or weighed by 

either societal or ecological importance with respect to a specific type of land use (Faber and 

Van Wensem, 2012). This will likely affect the weighing of assessment results, thus the 

outcome of decision-making, but would enable accounting for a societal viewpoint as 

stakeholders may attach different values to ES and their indicators (Faber and Van Wensem, 

2012). Within an ERA, indicators may also be ranked according to increasing ecological 

relevancy as they differ in relevancy for the various ES (Faber and Van Wensem, 2012).  

To summarise, the method by Thomsen et al. (2012) (and discussed by (Faber et al., 2013; 

Faber and Van Wensem, 2012)) presented a tentative classification of soil health criteria in 

terms of their relevance to land use, serving as a basis to recognise vulnerable and sensitive 

structures and processes in ecosystems that are needed in the provision of ES. Also, this 

framework provides clear, robust linkages between land uses, ecosystem services, ecological 

requirements and indicators as shown in Figure 4-4 and Figure 4-5. Terminology may differ 

slightly (e.g. ecological functions vs. soil functions), however, the framework aligns closely 

with the understanding of the relationships between assemblages of soil biota, soil processes, 

ecosystem/soil functions and the ultimate delivery of ES as discussed throughout this review 

and shown in Figure 2-5 and Figure 2-4.  

Gutierrez et al. (2015) – modified Triad tiered approach 

The TRIAD approach combines three 'Lines of Evidence' (LoE) for the estimation of ecological 

risk into an 'integrated risk value' (IRV) that provides a clear indication of the ecological risks 

at a site (ISO, 2017b; Mesman et al., 2006). The 3 LoE include 1) chemical (total and 

bioavailable contaminant concentrations), 2) toxicological (a variety of toxicity bioassays), and 

3) ecological (parameters providing information on the abundance, activity and diversity of soil 

organisms). The analysed parameters are further separated for the three LoE into 3 tiers of 

increasing in complexity and cost. The risk assessment then proceeds according to 5 steps 

shown in Figure 4-6. 

• Tier 1 (screening) – cheaper and quicker tests (e.g. total concentrations)  

• Tier 2 (refining) – more specific and complex tests 

• Tier 3 (detailing) – most complex and site-specific 
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Figure 4-6. Decision tree of the five steps of integrating soil quality TRIAD into a site-specific 

ERA, from (Ok et al., 2020) (modified after (ISO, 2017b)). 

The ERA methodology proposed by Gutierrez et al. (2015) is intended to be site-specific and 

further takes into consideration the ecosystem services to be protected that result from 

ecological functions attributable to the concerted actions of a myriad of soil organisms. In turn, 

the selected soil ES will depend on the envisioned land use for the study site, see Table 4-4, 

which were classified in accordance with the Millennium Ecosystem Assessment (Gutiérrez et 

al., 2015; Millennium Ecosystem Assessment, 2005).  

Table 4-4. Ecosystem services for each land use, adapted from (Gutiérrez et al., 2015).  

  Natural Agricultural Urban Industrial 

Supply of nutrients x x   

Regulation of water cycle x x x x 

Pest control  x   

Regulation of carbon flux and climate control x x x  

Decontamination and bioremediation  x x x 

This methodology is carried out in 6 broad steps, shown in Figure 4-7 and described below: 
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Figure 4-7. Methodological scheme for the contaminated site-specific TRIAD-tiered ERA 

approach, from (Gutiérrez et al., 2015). 

1. Definition of land use, intended ecosystem services and nature of contaminants – as 

shown in Table 4-4, the ERA is tailored to protect specific ES depending on the envisioned 

land use. Linking the measured parameters to ES and land use objectives (i.e. stakeholder 

demands) enhances the societal relevance of the ERA, hence increasing acceptance by 

decision-makers. The 'nature of contaminants' refers to which type of contaminants are 

present at the site (e.g. organic or inorganic) and how this could affect the selection of 

suitable parameters. 

2. Selection of suitable parameters in 'Parameter Selection Module' (PSM) – the PSM 

was developed to aid in the selection of suitable parameters (i.e. indicators) to use in the 

ERA depending on the site-specific conditions considering envisioned land use, intended 

ES and the nature of the contaminants. Based on a multi-criteria analysis (see (Critto et al., 

2007; Semenzin et al., 2009b, 2007) for more details on the method) each parameter was 

evaluated according to criteria selected for each LoE: chemical, toxicological and 

ecological. 'Importance values' (prioritisation values) were calculated from average scores 

obtained during the expert judgement process. Then, all parameters were numerically 

scored by using a scoring equation and then ranked within each tier. In total, 3 chemical, 12 

toxicological and 15 ecological parameters were included in the PSM for scoring.  

Note: The PSM is comparable to SQI selection using a multi-criteria logical sieve approach. 

Biological parameters (i.e. bioindicators) were emphasised for inclusion in the PSM, 

especially microbial parameters since they are responsible for 80-90% of the soil biological 

activity and have been successfully used to determine the impact of metal contamination on 

soil quality as well as to assess the effectiveness of (gentle) remediation techniques applied 

to metal contaminated soils (Epelde et al., 2008, 2009b, 2010; Gómez-Sagasti et al., 2012; 

Gutiérrez et al., 2015). Earthworms were also highly valued due to their function as 
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ecosystem engineers, ability to accumulate many xenobiotics and mix soil to facilitate 

organic matter cycling (Gutiérrez et al., 2015). 

3. Determination of parameters within each LoE – accounting for both the envisioned land 

use and the nature of the contaminants at the site, the most suitable parameters for each tier 

can be selected using expert judgement and the results of scoring from the PSM. Generally, 

less expensive, faster and highly standardised parameters ranked highly for tier 1, but 

become less important for tiers 2 and 3 where greater endpoint and ecosystem 

sensitivity were valued (Gutiérrez et al., 2015). Selection in their case study also accounted 

for preference in parameters depending upon their relevance. For example, soil basal 

respiration and microbial biomass carbon (MBC) were favoured for tier 1, because basal 

respiration is a well-known indicator of overall microbial activity and MBC, despite its 

lower score in the PSM, due to its utilisation in a variety of quotients traditionally used as 

SQI (e.g. respiratory quotient – qCO2 and specific enzyme activities). Upon selection, the 

parameters can be performed for the site in question according to established methods. 

4. Normalisation of results –the data from the measured parameters need to be normalised to 

a common scale, representing 'ecosystem impairment', in order to make them comparable 

and integrable in a 'risk index', and to facilitate interpretation and decision-making 

processes. The ecosystem impairment scale ranged from zero to one (0 = no effect; 1 = 

maximum impairment), which was based off Semenzin et al. (2008). A control (non-

contaminated) soil is set to an impairment of 0; then, ecosystem impairment for the different 

sampling points is calculated by means of a linear function (from 0 to 1), considering the 

corresponding value of the control soil for each parameter as zero ecosystem impairment.  

5. Integration of results in risk index – as is frequently done in an ERA based on the TRIAD 

approach, the integration and subsequent interpretation of the data into an 'integrated risk 

index' (IRI) is required in order to get a scientific evidence-based risk assessment (Gutiérrez 

et al., 2015). Thus, the IRI is considered as the final outcome of the 'Weight of Evidence' 

approach (Gutiérrez et al., 2015). Risk indices facilitate decision-making and risk 

communication; however, risk indices might oversimplify the complexity of site-specific 

risks and the assessment itself (Gutiérrez et al., 2015; Semenzin et al., 2007). For the 

calculation of quantitative risk indices, ecosystem impairment values were first integrated 

in the 3 LoE-risk indices using mean values, and then the IRI was calculated by averaging 

the 3 LoE-risk indices.  

6. Risk assessment – interpreting the IRI was done according to the ranges shown in Figure 

4-8. The risk magnitude, and consequent outcome of the ERA, depends on the IRI value as 

well as on the level of uncertainty given by the standard deviation (SD) of the values, while 

also taking into consideration the envisioned land use (Gutiérrez et al., 2015; Mesman et 

al., 2006). In practical terms, this means that if an elevated risk for the soil ecosystem is 

detected after Tier 1 assessment or the level of uncertainty is unacceptable, the ERA must 

proceed to Tiers 2 and 3, using more specific, complicated and costly tests (Gutiérrez et al., 

2015). If an ecological risk is still detected after Tier 3 assessment then remedial actions 

must be employed or, alternatively, a different, less restrictive land use must be envisioned 

(Gutiérrez et al., 2015). 
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Figure 4-8. Quantitative and qualitative risk assessment depending on integrated risk indices 

(IRI) and standard deviations (SD). Acceptable land uses are indicated: N = Natural, A = 

Agricultural, U = Urban, I = Industrial. (1) Only acceptable in case of sealed soil, with no 

green bared areas; (2) An assessment of the target of concern is recommended, from (Gutiérrez 

et al., 2015). 

To summarise, the modified TRIAD-tiered approach of Gutierrez et al. (2015) provides a 

robust, stepwise procedure for accounting for and assessing the delivery of ES in the context of 

potential impairment due to contamination. 

Integrative numerical index 

As shown in the example with Gutierrez et al. (2015), integrative indices can be used in an ERA 

approach. Other approaches that focus more specifically on soil quality assessment have also 

uses indices to synthesise the information collected from a range of soil physical, chemical and 

biological parameters into a 'soil quality score' (Turbé et al., 2010). According to Turbé et al. 

(2010), the main advantage of this kind of the numerical, index-based approach is that it 

simplifies interpretations to allow comparisons between different soils. The index-based 

approach is also advantageous when interpreting the data in terms of ecosystem services to 

communicate with land owners and decision-makers regarding the state of soil resources as a 

habitat for soil organisms and for human well-being (Pulleman et al., 2012). 

One prominent example of this approach is the General Indicator of Soil Quality (GISQ) 

method (discussed previously in Section 3) which derives a synthetic numerical indicator for 

soil quality based upon five compound sub-indicators representing five ecosystem services 

through a number of physical, chemical and biological parameters by using statistical 

multivariate analyses (Velasquez et al., 2007). This statistical approach can be universally 

applied by calibrating to the site context and allows for monitoring of change through time and 

variation between sites without relying on expert opinion (Pulleman et al., 2012; Velasquez et 

al., 2007) 

Another example, previously discussed in Section 3, is the soil quality index developed by 

Epelde et al. (2014b) to statistically calculate the overall soil quality (by grouping soil microbial 

parameters within a set of ecosystem attributes) using Equation (1) below:  

𝐸𝑆 = 10𝑙𝑜𝑔𝑚+
∑ |𝑙𝑜𝑔𝑛𝑖−𝑙𝑜𝑔𝑚|𝑛

𝑖=1
𝑛     (1) 

Where, m is the control value (set to 100%) and n corresponds to the measured values for each 

parameter as a percentage of the control value (Epelde et al., 2014b). Epelde et al. (2014b) 

conclude that this index is appropriate for the assessment of soil quality in those cases where 

the soil has been intentionally treated to increase some parameters, e.g. addition of amendments 

or plants to remediate soil. This was expanded upon in Burges et al. (2016, 2017) to test the 

validity of such an approach to evaluate the effectiveness of phytoremediation studies. The soil 

physicochemical and biological indicators were grouped within a set of 8 ecosystem services 

as follows: 1) nutrient cycling – enzyme activities and basal respiration, 2) carbon storage – 

total C content and MBC, 3) water flow regulation – water content at field capacity, 4) water 

purification – pH and CaCl2-extractable metal concentrations, 5) contamination control – pH, 

CaCl2-extractable and total metal concentrations, 6) pest control – soil suppressiveness,  7) 
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fertility maintenance – total N and organic C content, and 8) biodiversity – richness (S), 

Shannon's diversity (H') and Pielou's evenness (J') of bacterial and fungal communities from 

ARISA profiles. The effects of the treatments on soil quality were then assessed according to 

an integrated numerical index for each ecosystem service, shown below in Figure 4-9 for an 

example project. 

 

Figure 4-9. Sunray plot of ecosystem services, from (Burges et al., 2017). A value of 100 

corresponds to the mean value obtained for each ecosystem service in the unplanted (UP) 

control treatment. N-E, N-U, R-E, R-U, NR-E and NR-U refer to the various phytoremediation 

treatments using different plants with or without an endophyte consortium, see (Burges et al., 

2017) for more details. 

The authors conclude that the assessment of soil quality through the grouping of soil parameters 

in ecosystem services was an appropriate approach to estimate the effectiveness of 

phytoremediation (Burges et al., 2017, 2016), especially considering that the ultimate goal 

of any soil remediation method must not be only to remove the contaminants (or instead 

disrupt source-pathway-receptor linkages) but also to restore soil quality (Epelde et al., 

2008; FAO et al., 2020; Gómez-Sagasti et al., 2012). Soil microbial parameters were in focus 

in these studies as they have been shown to have great potential as biological indicators of the 

effectiveness of phytomanagement and recovery of soil quality (Epelde et al., 2009a; Garbisu 

et al., 2011; Gómez-Sagasti et al., 2012). Microbial parameters, however, can be highly context-

dependent and difficult to interpret thus grouping them into higher-level categories such as 

ecosystem services will facilitate interpretation and decision-making as well as provide long-

term phytomanagement monitoring programs with the ability to adapt through time against 

changes in techniques, methods, interests, etc. (Burges et al., 2018, 2017, 2016; Epelde et al., 

2014a; Garbisu et al., 2011; Gómez-Sagasti et al., 2012).  

4.1.2 Ecosystem service mapping 

Within the context of contaminated sites, methods to evaluate existing ecosystem services and 

the expected changes due to a remedial action have emerged in recent years. Scopus search 

results for "brownfield" (and related terms) AND "ecosystem services" showed 196 hits of 
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which many were relevant. However, "brownfield" AND "ecosystem service mapping" showed 

only 5 hits, 2 of which were deemed relevant. A few of these studies will be discussed in this 

section. 

In the Swedish context, the Swedish EPA (SEPA) created the Guide to valuing ecosystem 

services to meet the growing interest and demand for valuing ES in a variety of applications, 

including contaminated sites (SEPA, 2018). The guide focuses on methodological aspects of 

valuation emphasising the importance of methodology to ensure that important values are not 

missed and that the information required to make a proper valuation is generated (SEPA, 2018). 

Another important aspect is that ecosystem service values are not always expressed in monetary 

terms, discussed in more detail in the following section, but can be alternatively expressed by 

means of words and description (qualitatively), by means of scoring (semi-quantitatively), or 

in the form of various other physical units (quantitatively) (SEPA, 2018). Broadly speaking, 

SEPA breaks down the valuation of ecosystem services into six steps (SEPA, 2018):  

1. Identifying the purpose of the valuation, 

2. Identifying ecosystem services (e.g. a broad list of potentially relevant ES), 

3. Defining the analysis (i.e. limiting the scope), 

4. Determining the starting points for the valuation (i.e. investigate the ES value creation 

chain), 

5. Apply valuation methods (i.e. qualitative, semi-quantitative, quantitative or monetary), 

6. Doing a review. 

Semi-quantitative and qualitative valuation 

One promising method, mentioned in SEPA's guidance material and aligning closely with the 

stepwise methodology, assesses the sustainability of different remediation alternatives via a 

semi-quantitative (i.e. quantifying values by assigning them points between 1-5) "ecosystem 

service mapping" procedure9 (SEPA, 2018). Initially developed by Ivarsson (2015) as part of 

the Balance 4P project (Norrman et al., 2015) and expanded upon by Volchko et al. (2020) in 

the Applicera project (as part of a broader cost-benefit analysis), the analysis is performed in 

the following steps (when considering uncertainties as in (Volchko et al., 2020)): 

1. Screening a gross list of ES then identifying the relevant ES and their current status on the 

site given present land use (i.e. reference alternative), 

2. Assigning a degree of importance to each ES based on current demand, 

3. Assigning a score between 1 and 5 (very good and very limited, respectively) which reflects 

the capacity of a site to deliver a particular ES, while also specifying a level of uncertainty 

for the provision of this ES (low, medium, high), 

4. Evaluation of the effects of the remediation alternatives on each ES relative to the reference 

alternative regarding changes in quality and quantity, 

5. Summing the effects on each ES while accounting for the demand for each ES. 

The outcome of this procedure would be a comparison of the remediation alternatives according 

to expected positive or negative impacts resulting from each alternative on the relevant urban 

 
9 Understandably, confusion arises at the use of the term 'mapping' which may or may not include spatial (e.g. 

GIS) mapping. In the case of Ivarsson (2015) and Volchko et al. (2020) it does not but the use of the term depends 

on the individual study. 
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and soil-based ecosystem services, shown in Table 4-5. By applying a semi-quantitative 

approach (i.e. evaluating indicators on a point scale between 1-5), the changes in ecosystem 

services resulting from various remediation alternatives could be evaluated (Ivarsson, 2015). 

The value in this method is that it brings urban and soil ES to the forefront of the decision-

making process in a clear, scalable way by providing indicators (or proxy indicators) for 

quantifying and evaluating the expected change in the services for each alternative (Ivarsson, 

2015). The list of indicators used to measure each ecosystem service is shown in Appendix III. 

Table 4-5. List of ecosystem services included in the ecosystem service mapping assessment, 

adapted from (Ivarsson, 2015) 

Type Category Ecosystem Service 

Urban 

Provisioning Food, fresh water 

Regulatory 

Air quality, climate (global), climate (local), water, noise reduction, water purification and waste 

treatment, pollination and seed dispersal, maintaining nursery populations and habitats, natural 

hazard regulation 

Cultural Knowledge systems, aesthetic values, cultural heritage, recreation 

Soil 

Provisioning Food, biomass 

Regulatory 
Water purification, climate regulation (global), water regulation, erosion regulation, waste 

treatment 

An expanded version of the ES mapping methodology paired with cost-benefit analysis (CBA) 

was recently applied as part of the Applicera project for improving ecological risk assessment 

in Sweden, see (Volchko et al., 2020). Important differences from the original method include 

the alignment of the gross ES list to be screened in step 1 with the CICES classification system 

and SEPA framework (seeAppendix III), integration within a broader socio-economic analysis 

(i.e. CBA) of remediation alternatives and a probability-based uncertainty and sensitivity 

analysis of the expected changes in ES due to a remedial action. Altogether the methodology 

used in Applicera proceeded according to the steps shown below in Figure 4-10: 

 

Figure 4-10. The methods used in the Applicera study including the ES mapping procedure, 

from (Volchko et al., 2020). 

Other examples of an ES mapping approach include the study by Cortinovis and Geneletti 

(2018) who used spatial mapping techniques (i.e. GIS) as a tool to prioritise development at 

urban brownfield sites in order to provide the two key ES of microclimate regulation and nature-

based recreation. Their method adopted a semi-quantitative multi-criteria analysis using 

weights for various parameters reflecting the different planning and beneficiary group 

objectives that was then used to inform upon which site could potentially provide the greatest 

benefits in terms of ES provisioning (Cortinovis and Geneletti, 2018).  
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Pueffel et al. (2018) provide another illustrative example evaluating specifically cultural and 

recreational ecosystem services (according to CICES classification) at green brownfield sites 

(i.e. abandoned sites primarily covered by vegetation) by mapping the use of various brownfield 

sites via a smartphone application (MapNat) (Pueffel et al., 2018). Based on citizen responses, 

they identified spatial use patterns in how the urban green brownfields in Leipzig were used 

and showed that such sites were still highly valued for recreational services such as dog 

walking, exercise or informal visits. The researchers noted that, for example, the form of ES 

varies with the site characteristics and even sites with low accessibility (due to e.g. fencing or 

remoteness) were highly valued especially if they had a pleasing natural 'urban wilderness' 

character with relatively rich and diverse vegetation (Pueffel et al., 2018). 

Mathey et al. (2015) took a different approach and applied three different methods to determine 

the extent of three selected ecosystem services provided by green urban brownfields (i.e. more 

or less vegetated brownfield sites): 1) identification of parameters for habitat services based on 

a literature review, 2) modelling of microclimatic effects for microclimate regulating services 

at different scales (site level and city level), and 3) a qualitative survey on the perception, 

acceptance, and use of green urban brownfields for recreational services which was expanded 

on in Mathey et al. 2018. Furthermore, these specific results were used to evaluate the impacts 

of land use changes and the potentials of design options of urban brownfields on the provision 

of ecosystem services. This was based on land-use scenarios and the qualitative evaluation of 

eight design options for green space development on urban brownfields (Mathey et al., 2015), 

see Figure 4-11. 

 
Figure 4-11. Options for reusing brownfields as green space and evaluation of their habitat 

services, microclimatic regulation services, and recreational services: ++ "well suited", + 

"suited", - "unsuited, +/- "detailed investigation of individual site necessary", from (Mathey et 

al., 2015). 

Quantitative valuation 

De Valck et al. (2019) adopt a slightly different tack to value the urban ecosystem services 

(UES) provided by green infrastructure at brownfield sites. Five UES (local climate regulation, 

air filtration and ventilation, recreation, carbon sequestration and avoided runoff) were 

quantified and economically valuated using the 'Nature Value Explorer' (Nature Value Explorer 

(natuurwaardeverkenner.be)) modelling tool for a case study site in Antwerp where three types 

of green infrastructure were employed: a green corridor, infiltration gullies and green roofs. 

Using the valuation metrics shown in Table 4-6, the authors were able to monetise the expected 

'biophysical flows' delivered by the three types of green infrastructure on each UES. Altogether, 

green infrastructure at the site would generate an estimated €700,000/year (€19,069/ha*yr) (De 

Valck et al., 2019). 

https://www.natuurwaardeverkenner.be/#/
https://www.natuurwaardeverkenner.be/#/
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Table 4-6. Monetary valuation factors used to quantify urban ecosystem services of green 

infrastructure on-site, adapted from (De Valck et al., 2019). 

Urban ecosystem service Metric Value per unit (€) 

Avoided runoff m³/year 0.52 

Air filtration and ventilation kg PM10/year 72 

Climate regulation m²/year 0.207 

Carbon sequestration tons/year 233 

Recreation visitors/year 4.5 

While the authors acknowledge that this methodology has a number of limitations (e.g. 

dependent upon the values per unit of UEC obtained from literature study, different calculation 

methods for recreation, difficulties in accurately modelling effects from vegetation), accounting 

for UES provides valuable decision-support alongside project costs and economic return when 

comparing different potential brownfield redevelopment designs. The advantages of this UES 

valuation approach are that it is relatively simple to apply and effective at demonstrating the 

many benefits of green infrastructure in easily understandable monetary terms (De Valck et al., 

2019).  

Applicability 

The most suitable use of these ES valuation schemes in the context of contaminated soil and 

land management is to provide support in selecting the most suitable remediation alternative or 

to justify a brownfield regeneration project in an urban area. Furthermore, by mapping the use 

of brownfield land the needs and desires of local citizenry can be accounted for and used as an 

indicator to inform land management and planning (Mathey et al., 2018, 2015; Pueffel et al., 

2018). These types of ES mapping and valuation methods could be included in existing 

brownfield re-development decision-support tools that do not yet account for them since ES 

considerations are a valuable addition to any sustainability-minded decision-making and may 

greatly help urban planners and land managers to mitigate undesirable environmental impacts 

(De Valck et al., 2019; Mathey et al., 2015). 

As stated by Ivarsson (Ivarsson, 2015), the ES mapping method 'indicates that a semi-

quantitative approach to map the changes in provision of ecosystem services that will follow 

from different redevelopment alternatives will potentially add important decision support 

regarding the economic and social desirability of available options. The principal strength of 

the method is its ability to map and quantify changes in well-being that in many cases are 

neglected in applications of cost-benefit analysis to redevelopment projects, despite the 

relevance of those changes in such analysis.' 

4.2 Economic valuation 

The necessity of ecosystem service assessment to demonstrate the value of ES for society at 

large has been illustrated well in the Swedish context in the report "Make the value of ecosystem 

services visible" (SOU, 2013) and SEPA's "Guide to valuing ecosystem services" (SEPA, 

2018), which both highlight the necessity of clear valuation of ES for sound decision-making 

and ensuring that the long-term needs of society for functioning ecosystems are met. When 

discussing the valuation of ecosystem services, monetary valuation (i.e. measuring the value of 

an ES in monetary units) is typically the foremost considered valuation method (SEPA, 2018; 

TEEB, 2011, 2010). However, there are multiple other ways other than monetisation to value 
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ecosystem services; including, by means of words and description (qualitatively), by means of 

scoring (semi-quantitatively, as in the ES mapping method), or in the form of various other 

physical units (quantitatively) (SEPA, 2018; TEEB, 2011, 2010). In fact, monetisation is 

considered to be challenging to account for most ES (Söderqvist et al., 2015; Volchko et al., 

2020). For, in order to be able to compare various remedial actions and their effects on the 

environment, one must be able to value how ecosystem services change with the 

implementation of different site remediation actions, including comparing the necessary trade-

offs (Colombo et al., 2012; SEPA, 2018). In the case of incorporating ES in a CBA, ES values 

are best quantified in monetary terms (monetisation) to include as quantified ecosystem service 

metrics that would facilitate evaluating costs and benefits (SEPA, 2018). This would entail that 

the value of an ecosystem service is described using on or more indicators for the service that 

are measurable aspects of the environment that contribute to human well-being for which a 

monetary value can be credited (SEPA, 2018). In general, there are three main categories for 

monetary valuation of ES: 1) Market-based valuation – based on services that are marketized 

with affixed prices or expenditures for protection from contaminated water, noise, flooding, 

etc.; 2) Non-market valuation – including 'scenario valuation methods' creating hypothetical or 

surrogate markets in which participants indicate their 'willingness-to-pay' for certain services 

via surveys (stated preferences) or 'market data methods' based on studying the relationships 

between ecosystems and actual behaviours according to market prices and production data 

(revealed preferences); and 3) Value transfer – provides an approximation of an ES's value by 

generalising a value from a study done in an unrelated place (Baveye et al., 2016; SEPA, 2018; 

TEEB, 2011, 2010). However, there are pros and cons with each of these valuation methods; 

for example, the willingness-to-pay for species or measures that are unfamiliar or undesired by 

the general public could yield extremely low values despite the fact that these species could 

perform indispensable ecological services (Schröder et al., 2018). See (Chee, 2004) and 

(Baveye et al., 2016) (Figure 4-12) for more in-depth reviews of the many and varied methods 

that can be used to value ecosystem services within the neoclassical economics market 

framework.  

 

Figure 4-12. Schematic classification of the different methods that have been developed for the 

monetary valuation of ecosystem services, from (Baveye et al., 2016) 

The appropriate method to valuate ecological goods and services (i.e. ecosystem services, ES) 

is a controversial subject with no clear answer other than that ES should be included in some 

form in economic valuations such as cost-benefit analyses. One such debate on the topic of 

monetary valuation (monetisation) in ecological valuation can be read in Society for 

Ecotoxicology and Chemistry's 'Learned Discourses' special issue on ecological valuation 
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(Chapman et al., 2015). Three distinct views are discussed: 1) counting money in, 2) including 

non-monetary means of valuing ES, or 3) using money when possible though it is not always 

possible. The arguments range from Calow (2015) stating that monetisation is crucial and 

(aligning with the philosophy of cost-benefit analysis) market values are the only way to ensure 

transparency in capturing public preferences for ES (so-called revealed preference (Johansson 

and Kriström, 2018)) to Kapustka and McCormick (2015) arguing that neoclassical economics 

is fundamentally flawed and monetisation is insufficient to capture the value of ecosystems 

(often setting aside important parts in calculations as 'externalities') thus we must transition to 

more eco-centric economic models. Ultimately, the middle way is best stated by Munns and 

Rea (2015) by saying that the ES concept is fundamentally anthropocentric whose value is 

defined 'in the eye of the beholder' (i.e. people and society) and money is a convenient 'common 

unit' with which to quantify, aggregate, and compare these values in the decision-making 

process; however, monetisation is not always feasible, practical, not desirable.  

Other examples include the work by Dominati et al. (2010) who argue that pairing their model 

with an economic valuation of soil services provides powerful decision-support to economics 

and policy makers in order to better understand and value the ecosystem services provided by 

soils in development. This model predicates a valuation based on natural capital accounting, 

which is supported by other work to economically value ecosystem services (Dominati et al., 

2010; Kelemen et al., 2015; Maes et al., 2016; Robinson et al., 2013), though it does pose a risk 

that indirect uses or non-use values may be neglected. To account for this, the term 'total 

economic value' (TEV) has been used to ascertain the total economic value generated by an 

ecosystem service by summing the use and non-use values (SEPA, 2018), as shown in Figure 

4-13. According to Baveye et al. (2016), TEV is typically separated into 'extrinsic' or 

'instrumental' value based on use or function and 'intrinsic' or 'inherent' value in the absence of 

direct use value though the notion of intrinsic value is controversial. Most often, the intrinsic 

value relates an 'aesthetic' or 'moral' (e.g. 'right to exist') value or to functions that result in 

benefits to nature (i.e. not to humans), and the criticism arises when attempting to incorporate 

these values into an anthropocentric, economic valuation (Baveye et al., 2016). Instrumental 

value is customarily divided into 'use value' and 'non-use' or 'passive use value' that are based 

on whether goods and services are interacted with 'directly', with further sub-groups added in 

specific cases (Baveye et al., 2016).  

 

Figure 4-13. Schematic diagram of the subdivision of the Total Economic Value (TEV) into 

different types of value, from (Baveye et al., 2016).  
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Pascual et al. (2015) provide an alternative framework for the TEV of soil biodiversity and ES 

by joining the fields of soil ecology and ecological economics, see Figure 4-14. The authors 

contend that soil biodiversity and associated ecosystem services can be valued as a natural 

capital asset via two main additive value components, in the context of risk and uncertainty: a 

Total Output Value (TOV) and a Natural Insurance Value (NIV). The TOV refers to the 

different economic outputs associated with tangible benefits provided by soils in a given state, 

which is largely dependent on its 'use value.' The use value is separated into i) direct use value 

(provisioning services) – 'final' products of soils that can be used directly or 'consumed', ii) 

indirect use value (intermediate regulating services) – services necessary for the production of 

final services and which are typically valued by society as a whole but rarely fully captured, 

and iii) option value – referring to keeping soil healthy and viable for future purposes. Direct 

use value is also connected to cultural services as diverse ecosystem 'co-produce' cultural 

services, which may be intangible and difficult to value linking to 'non-use value' like existence 

value. NIV is related to the capacity of soil biodiversity to maintain the production of ecosystem 

services over time in the face of risk and uncertainty, which is linked to the idea of socio-

ecological resilience. The NIV aims to account for the importance of regulating and supporting 

ES given fluctuating disturbance factors influencing the provisioning services under global 

environmental changes such as intensification of land use and climate change. This value 

comprises two value related components under risk and uncertainty: 1) self-protection – the 

value of lowering the 'risk' (probability) of being negatively affected by a disturbance (e.g. 

pests, flood, drought, etc.) which would decrease the mean value of the flow of an ES, and 2) 

self-insurance – the value of lowering the 'size of the loss' due to such an event occurring and 

is associated with the ecological notion of resistance. In essence, the NIV of soil biodiversity is 

associated with the stabilisation of the total output value of soil biodiversity and is assumed 

positive when the beneficiaries of such services are risk averse (Pascual et al., 2015). 

The proposed framework emphasises regulating (e.g. water regulation) and supporting (e.g. 

nutrient cycling) services as a simpler way of identifying the value of soil biodiversity that can 

be considered as 'intermediate services' (indirect use) underlying 'final' (direct use) provisioning 

services thus avoiding double counting. In this context, soil biodiversity can be considered as a 

portfolio of resources that build up soil natural capital which in turn can be economically 

valued. Thusly viewed as an economic asset, the flow of ecosystem services derived from soil 

biodiversity is the accrued interest or return (positive or negative) from managing the asset. The 

authors further expound on the value of soil biodiversity when seen through this economic lens 

by incorporating some of the key contributions of soil biota to ecosystem services from a soil 

ecology perspective. In their examples, the crucial contributions of earthworms for the delivery 

of regulating services (water infiltration and greenhouse gas control) and provisioning services 

(grass production) are highlighted as being amenable to economic valuation within the proposed 

framework by using a proxy indicator (i.e. abundance and species type) to predict the delivery 

of the ES based on the 'stock' of soil biodiversity. Examples of increasing the NIV of soils 

would be the 'suppressiveness' (i.e. resistance and resilience) of a biodiverse soil to specific 

soil-borne pests diseases due to e.g. robust soil microbial biomass and communities that would 

suppress roots infections by pathogens through competition and/or antibiosis and rebound faster 

after disturbance (Pascual et al., 2015). 
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Figure 4-14. The Total Economic Value (TEC) of soil biodiversity based on the two main 

additive components of Total Output Value (TOV) and Natural Insurance Value (NIV) under 

risk and uncertainty. The lowest level value components are the ones that are most closely 

related to soil as natural capital in this framework. Cultural services are co-produced and 

jointly related to use and non-use value, from (Pascual et al., 2015). 

According to Baveye et al. (2016), a prerequisite to progress in such public deliberations on the 

valuation of ES is that participants be cognizant of the extreme relevance of soils to many 

aspects of their daily life, and as long as this prerequisite is satisfied, the combination of 

deliberative decision-making methods with a sound scientific approach to the quantification of 

soil functions/services (including uncertainties) is a very promising avenue to manage, 

effectively and ethically, the priceless heritage that soils constitute. In addition, when certain 

ES are highly valued but not necessarily linked to immediate benefit for the landowner (e.g. 

climate regulation services), economic incentives like payment schemes for ecosystem services 

(PES), which aim to internalise the value of services provided by intact ecosystems into 

economies via markets, can be useful tools (Baveye et al., 2016; Pascual et al., 2015; Schomers 

and Matzdorf, 2013). According to Schomers and Matzdorf (2013), PES is a multi-facetted 

term with many diverse definitions coexisting, but a seminal definition is given by Wunder 

(2005) focusing on market transactions and construing PES as i) a voluntary transaction where 

ii) a well-defined ES (or a land-use likely to provide that service) iii) is being ‘bought’ by a 

(minimum one) ES buyer iv) from a (minimum one) ES provider v) if and only if the ES 

provider secures ES provision (conditionality). This definition has been criticized for being too 

narrow and thus excluding many payment schemes that do not comply with these criteria; in 

particular, the voluntary aspect of the transaction has been questioned at least from the buyer’s 

side since many PES cases rather involve governmental intervention and public payment 

schemes (Schomers and Matzdorf, 2013). PES remain a controversial topic and entail many 

challenges, such as accurately measuring how changes in agricultural practises will change ES 

delivery (Pascual et al., 2015). Perhaps most importantly, PES must be socially equitable to not 

overly favour large landowners as well as both economically efficient and environmentally 

effective (Baveye et al., 2016; Pascual et al., 2015; Schomers and Matzdorf, 2013). See 

Schomers and Matzdorf (2013) and Engel et al. (2008) for comprehensive reviews of PES and 

their application in developed and industrialising countries. 
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5 Land management and planning 

This section broadens the scope of the information presented so far to discuss the implications 

for situational application and general soil management and monitoring, detrimental effects on 

soil resulting from soil contamination and the possibility of green infrastructure and nature-

based solutions to improve soil quality and provide ecosystem services.  

There seems to be a general consensus that when a land (or soil quality) management 

strategy incorporates the concept of ecosystem services, quantifiable soil features can be 

more easily linked to land-use expectations and protection goals in a defensible and 

transparent way (Bünemann et al., 2018; Burges et al., 2018, 2016; Epelde et al., 2014a, 

2014b; Faber et al., 2013; Faber and Van Wensem, 2012; Garbisu et al., 2011; Gómez-Sagasti 

et al., 2012; Gutiérrez et al., 2015; Pulleman et al., 2012; Rutgers et al., 2012). Faber and Van 

Wensem (2012) argue that, while cost-efficiency may still be an important objective for the 

current state of soil protection, the land use perspective and 'suitability (or fitness) for use' are 

playing increasingly important roles. According to the 'fitness for use' principle, the level of 

soil quality required in a given location or site depends on the specific end use envisaged for 

such site; thus, a soil that has an excellent quality for one purpose can have poor quality for 

another (Gómez-Sagasti et al., 2012). Consequently, the choice for references in soil quality or 

risk assessment is critical, in which we have to accept that soil communities change as a result 

of land use, and strive for multi-functionality in soil based on sustainable management of 

functional soil biodiversity to enhance the provision of ES (Faber and Van Wensem, 2012). In 

the case of contaminated sites, given the possible risks posed by contaminants, polluted soils 

cannot be treated as isolated entities because a certain degree of contaminant dispersion and 

ecosystem interconnectedness is likely, which should elicit be caution when applying the 

'fitness for use' principle (Gómez-Sagasti et al., 2012). However, as stated by Volchko et al. 

(2019a), 'contaminated sites, which are often found in attractive locations of a city map, should 

be managed in accordance with the soils' capability and their best condition.' 

The multi-functionality of soils is reflected as a basic principle of the modern understanding of 

soils, and soil functions are effectively introduced into spatial planning to assess the ecological 

value of soils and also to evaluate the loss of functionality caused by soil degradation (Lehmann 

and Stahr, 2010). The end use of a site will also have a direct impact on the targeted soil 

functions, and the end use of the site, in turn, will also impact the soil services resulting from 

the functions (i.e. demand for ES will differ depending on land use) (Lehmann and Stahr, 2010; 

Volchko et al., 2013). Broadly speaking, integrating soil functions and ecosystem services into 

land management and planning can occur on many different scales (i.e. micro- to macro-scale). 

One prominent example for doing so comes from Lehmann and Stahr (2010) who proposed a 

hierarchical concept for 'planner-oriented soil evaluation' divided into three levels, see Table 

5-1. A general approach (level 1) would be appropriate for macro-scale planning on the 

international, national or city level which should consider soil function broadly, as specified in 

Soil Strategy (EC, 2006); an intermediate approach (level 2) would entail accounting for soil 

sub-functions (e.g. via soil quality indicators) when comparing land use alternatives for meso-

scale planning of zones, city districts, etc; and a detailed, more site-specific approach (level 3) 

would be necessary for micro-scale planning when aiming to improve or optimise soil 

functioning for a specific type of land use (e.g. water regulation for stormwater management) 

(Lehmann and Stahr, 2010).  
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Table 5-1. Proposed hierarchy of soil functions and planning levels to respect both the multi-

functionality of soils and the land-use specified soil evaluation, adapted from (Lehmann and 

Stahr, 2010). 

Levels of eco-functions Types of functions Example application Planning levels 

General - Level 1 Functions and part-functions 
Soil as a basis for life and 

living space for wildlife 
Principal planning 

Intermediary - Level 

2 
Land-use oriented sub-functions 

Soils under extensive 

meadows and forests and 

infiltration bodies in high 

mountainous areas 

Comparison of land-

use alternatives 

Detailed - Level 3 
Soil performances from special 

relevance for spatial planning 

Drainage for alternative 

stormwater management 

Improvement of a 

fixed type of soil use 

With very few exceptions, all soil organisms are ultimately driven by energy which is derived 

from reduced forms of carbon, and the C transfer with associated energy flows is the main 

integrating factor in ecosystem functioning (Brussaard, 2013; Kibblewhite et al., 2008). This 

implies that manipulations of the soil biota, induced by the living plants, plant litter, and soil 

organic matter, would affect ecosystem functioning with possible feedback to aboveground 

biota (Brussaard, 2013). Furthermore, the soil and plant microbiome (i.e. all microorganisms 

present in soil, rhizosphere and plants) fulfil crucial roles in ecosystem functioning like nutrient 

cycling, plant nutrient uptake and disease suppression, which ultimately regulates plant health, 

physiology and performance (Schröder et al., 2018). In particular, the biogeochemical cycles 

and biodiversity in soil, shown in Figure 5-1, have been highlighted as key drivers of ecosystem 

services provided by soils, which can influenced, positively or negatively, by land and soil 

management activities (Smith et al., 2015). Various aspects of soil management and best 

practices will briefly discussed in the following section, for as stated by Smith et al. (2015), 

'enough is known [about the relationships between different facets of soils and the array of 

ecosystem services they underpin] to implement best practices now. There is a tendency among 

soil scientists to dwell on complexity and knowledge gaps rather than to focus on what we do 

know and how this knowledge can be put to use to improve the delivery of ecosystem services.' 
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Figure 5-1. Schematic representation of where soil carbon, nutrient and water cycles, and soil 

biota underpin ecosystem services. Role in underpinning each ecosystem service shown by C, 

soil carbon; N, soil nutrients; W, soil water; and B, soil biota. Only soil carbon, nutrient, and 

water cycles, and soil biota are considered, so the figure does not represent a comprehensive 

overview of soil ecosystem services, from (Smith et al., 2015). 

5.1 Soil management 

This section is not intended to provide a comprehensive overview of soil management theory 

and practices, which has been covered extensively in other studies and reviews (see e.g. (Bai et 

al., 2018; Barrios, 2007; Brussaard, 2013; FAO et al., 2020; Kibblewhite et al., 2008; Orgiazzi 

et al., 2016; Turbé et al., 2010; Wall et al., 2012)), but instead aims to provide a few key aspects 

to consider and a selection of best practices. 

Kibblewhite et al. (2008) maintain that soil is the site of a vital range of ecosystem functions 

which provide humans with a range of essential services. In natural ecosystems, these functions 

and services are driven by the energy generated by carbon transformations carried out by the 

soil biological community acting in a highly interactive and integrated fashion. Their study is 

carried out from the perspective of soil health for sustainable agriculture systems, which must 

ensure that the full range of ecosystem services is conserved for future generations by retaining 

the multi-functional capacity agricultural soils and is heavily impacted by humans. The authors 

list four main factors controlling soil health (quality) that must be accounted for in soil 

management:  

1. Soil type – considering past land management by humans and how the natural soil has been 

altered, for example by loss of surface horizons due to erosion, alteration of soil water 

regime via artificial drainage, salinization due to poor irrigation practices, loss of natural 

soil organic matter caused by arable production or contamination. Variable factors include 

physico-chemical parameters such as pH, bulk density, soil organic matter content nutrient 

availability and concentrations of toxic materials determine the overall condition of the soil 
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system and biological factors like the presence or absence of specific assemblages and types 

of organisms. 

2. Organisms and functions – accounting for biodiversity within and between trophic groups 

and assemblages, including functional diversity and redundancy. 

3. Carbon and energy – considering the available carbon, ultimately derived from net 

primary productivity, that is the energy driving soil systems (the 'common currency'). This 

suggests that the quantity and quality of organic matter pools may be indicative of the state 

of the soil system, while the flows and allocations of carbon between assemblages or 

organisms may provide information about their relationships to ecosystem functions. 

4. Nutrients – considering nutrients as a controlling input to the soil system and the processes 

within it. Their levels and transformations are critical to soil health (quality). After carbon, 

the cycling of nitrogen and phosphorus to, from and within the soil system most affects its 

dynamics and the delivery of ecosystem services, including agricultural production. 

Manipulation of nutrient supplies to increase productive outputs from the soil system by the 

addition of fertilizers has been one of the keystones of agriculture for centuries. 

Nonetheless, knowledge is limited about the impacts of nutrient additions on the condition 

of different assemblages of soil organisms and thence on their functions.  

Kibblewhite et al. (2008) further discuss the significant impact of agricultural interventions 

(e.g. the use of pesticides, powered tillage and the use of inorganic sources of nutrients) upon 

the biological communities of soil, which can damage their habitats and disrupt their functions 

to varying extents. They claim that the link between disturbance, targeted biota and effect on 

function is far from linear owing to the high level of interaction between organisms and 

functions. Cause-effect relationships are complicated by a few major 'integrating features' of 

the soil community, including i) energy flow (i.e. .C transfers) – the majority of the soil 

organisms depend directly or indirectly via one or more trophic levels on the processes of 

organic matter decom-position for their source of energy and carbon, and any disruption of this 

energy generating system may result in changes in the flow of energy and carbon dedicated to 

the different functions; ii) multi-functionality – the probability of soil organisms participating 

in the ecological processes governing more than one function, which may mean that organisms 

belonging to a certain functional assemblage play a role in a separate function; iii) soil as a 

habitat – the activities of soil organisms are influenced by the condition of their habitat in the 

soil, but at the same time continuously modify it, and any shift in one function is thus likely to 

influence others by habitat change (Kibblewhite et al., 2008). In terms of management, the 

agricultural soil system is a subsystem of the 'agroecosystem', and the majority of its internal 

functions interact in a variety of ways across a range of spatial and temporal scales that can 

provide a framework for management options (Kibblewhite et al., 2008; Turbé et al., 2010). 

The assumption is that the size of organisms strongly determines their spatial aggregation 

patterns and dispersal distances, as well as their lifetimes, with smaller organisms acting at 

smaller spatio-temporal scales than larger ones (Turbé et al., 2010). Thus, according to Turbé 

et al. (2010), chemical engineers are typically influenced by local scale factors, ranging from 

micrometres to metres and short-term processes, ranging from seconds to minutes. Biological 

regulators and soil ecosystem engineers, on the other hand, are influenced essentially by factors 

acting at intermediate spatio-temporal scales, ranging from a few to several hundreds of metres 

and from days to years. Land managers have then two distinct management options for soil 

biodiversity: direct actions on the functional group concerned, or indirect actions at greater 

spatio-temporal scales than that of the functional group concerned (Turbé et al., 2010). For 

example, microbial activity is fundamentally governed by the availability of fixed carbon (the 
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major ‘currency’ of the soil system), which is amenable to manipulation via agronomic factors 

such as crop type, and residue and other organic waste management (Kibblewhite et al., 2008). 

Organic matter plays other important roles in modulating soil functions, for example via the 

provision of surface charges, expressed as the cation exchange capacity, or influencing 

hydrological properties such as wettability (Kibblewhite et al., 2008). The intricacies of soil 

management for agroecosystem design and management are undoubtedly complex, so, to better 

illustrate these connections, Brussaard (2013) created a framework with a series of 'entry points' 

for management of important aspects of the soil system (Figure 5-2). 

 

Figure 5-2. Agroecosystem design and management framework illustrating the potential entry 

points (1-10) for biological management of crop/livestock systems, organic matter inputs and 

soil organisms, aimed at sustainable agricultural production and ecosystem services, and 

feedback to agro-ecosystem design and management using monitoring and evaluation (11). OM 

= organic matter. From (Brussaard, 2013). 

In terms of best practices for practical, sustainable management of agricultural soils to 

maximise soil health, the guide from Ward Labs (2019) lists five key components for soil 

health: 

1. Keeping the soil covered – keeping the topsoil in place and resistant to erosion from 

wind, water, drying out in the sun and breakdown of soil aggregates. 

2. Minimising soil disturbance – allowing and maintaining soil structure and aggregation 

by avoiding overgrazing and tillage and chemical over-use. 

3. Plant diversity – diversity aboveground supports diversity belowground – polyculture 

instead of monoculture, preferably with perennial plants. 

4. Continual live plant/root – carbon root exudates to soil microbiology during the entire 

growing season – Cover crops can address a number of resource concerns including: i) 

harvesting CO2 and sunlight which provides carbon root exudates to the soil microbes; 

ii) building soil aggregates and pore spaces which improves water infiltration; iii) 
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covering the soil which controls wind and water erosion, soil temperature, and rainfall 

compaction; iv) weed suppression; wildlife food, habitat, and space; v) and pollinator 

food and habitat.  

5. Livestock integration – incorporating livestock in the fall or winter can covert high 

carbon crop residue into low carbon organic matter, which balances the carbon to 

nitrogen ratio. Utilising livestock on annual or perennial plants in short bursts followed 

by long recovery periods allows plants to regrow and harvest sunlight and CO2. 

Integrating livestock will reduce nutrient export from cropland and hay fields, which 

will lead to the recycling of the majority of nutrients, minerals, vitamins, and carbon. 

Grazing manages weed pressure and reduces livestock waste associated with 

confinement which helps to manage our water quality and nutrient management 

concerns. 

On a broader scale, the Landmark project10 has developed a framework for 'functional land 

management', which is a conceptual framework for optimising the supply of soil-based ES, 

grouped into the five overarching soil functions of primary productivity, water purification and 

regulation, carbon sequestration and regulation, provision of functional and intrinsic 

biodiversity and provision and cycling of nutrients (see (O’Sullivan et al., 2015; Schulte et al., 

2014)). A key result of the project has been the development of the Soil Navigator decision-

support system (DSS) that is aimed at assessing and optimising the five above-mentioned soil 

functions by offering targeted solutions and management recommendations for farmers and 

farm advisors.11 Another important result was clearly showing the expected trade-offs in soil 

function delivery for differing land uses and soil multi-functionality to deliver at least 3 soil 

functions at a site, as shown in Figure 5-3. 

 

Figure 5-3. Illustration of typical suites of soil functions under contrasting land use types with 

colours corresponding to the five soil functions respectively, from (Schulte et al., 2014). 

Turbé et al. (2010) also provided insight into the expected trade-offs in both soil functioning 

and soil biodiversity that could be expected with different land use types. They emphasised that 

grassland soils present the richest soil biodiversity, and it is worthwhile to consider including 

longer-lasting grasslands in an arable crop rotation in order to restore carbon levels and soil 

biodiversity, as well as disease-suppressing services. In Europe, grasslands generally host the 

 
10 Landmark 2020 
11 www.soilnavigator.eu 

http://landmark2020.eu/
http://www.soilnavigator.eu/
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most diverse and abundant earthworm communities, with some dominated by endogeic species 

and others by anecic species but can be degraded by soil compaction and intensive agriculture. 

Depending on the land-use type, different representation of species within the three main 

functional groups can be expected, as shown in Table 5-2. 

Table 5-2. Distribution of functional groups by land-use types with + or – indicating overall 

impact, adapted from (Turbé et al., 2010). 

Soil biodiversity 

(Dominance/diversity) 

Forest Grassland Cropland Urban land 

Total ++ ++ + - 

Chemical engineers Fungi dominated 

Fungi dominated;  

Fungi: 10-100m;  

Bacteria: 108-109 g/soil 

Bacteria dominated;  

Bacteria: 108-109 g/soil 

Bacteria 

dominated 

Biological regulators 

Fungal-feeding protists 

and nematodes (100-1000 

g/soil),  

Micro-arthropods 

(106/m²)  

Protists and nematodes 

dominated;  

Protists: 1000/g; 

Nematodes: 10-100/g;  

Micro-arthropods: 

5000-20000/m²  

Opportunistic bacterial-

feeding fauna;  

Protists: 1000/g;  

Nematodes: 10-20/g;  

Micro-arthropods: 

<100/m²  

Negligible 

Ecosystem engineers 

Earthworm and ant-

dominated;  

Anecic earthworms 

(100/m²) 

Earthworm dominated;  

Endogeic/Anecic 

earthworms 

Epigeic and endogeic 

earthworms (50-300/m²) 
Negligible 

According to Turbé et al. (2010), the key feature of agricultural land uses (i.e. croplands), is the 

specialisation of the production process, often resulting in monocultures and choice of fast-

growth and high-yield plants that allocate most of their biomass to the harvested parts. The 

systemic ramifications of this type of land use are best stated by the authors (exact wording as 

in source, (Turbé et al., 2010) pp. 130): 

"In other words, conventional agriculture may push ecosystems in the direction of 

performing one single service, food provisioning, at the expense of the other, related 

services, such as the maintenance of soil structure, water quality and climate control. Such 

intensive agricultural practices contribute to the homogenisation of the landscape and are 

unfavourable to most soil organisms, leading to large scale soil biodiversity changes. It is 

not necessarily so that soil biodiversity of croplands is so much less than of for example 

grasslands, but some essential species groups with special functions can drop out. For 

example, cropland soil contains relatively few arbuscular mycorrhizal fungi and few 

earthworms. The soil community is adapted to regular disturbance and the food chains 

are mainly based on bacteria-based pathways. Especially conventionally cropped soils 

result in stressed and depleted soil food webs. When intensively cropped, arable soils are 

characterised by low organic matter inputs (leaf litter and stubbles are largely removed), 

and thus low soil fungal/bacterial ratios, and depleted bacteria-dominated chemical 

engineer communities. Consequently, biological regulator communities are themselves 

reduced and dominated by opportunistic bacterial-feeding fauna. Finally, strong 

mechanical and chemical disturbance cause reduction of earthworm and mycorrhizal 

fungi communities. Earthworms are only present at moderate densities (10 à 20 

individuals per m²) and mostly composed of endogeic species, as epigeics are missing 

due to a lack of litter layer. Together, these conditions are indicative of low resilience and 

low sustainability" (Turbé et al., 2010). 

Although each type of land use is characterised by its specific soil biodiversity, the intensity of 

management practices may also vary within a certain land use and severely impact soil biota 

(Turbé et al., 2010). According to the so-called 'intermediate disturbance hypothesis', soil 
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biodiversity peaks at intermediate management intensities; whereby, species diversity and 

abundance increase from low to intermediate disturbance (e.g. extensive grasslands to organic 

agriculture), peak at moderate agricultural disturbance (e.g. organic agriculture) and then 

decrease with strong agricultural disturbances (e.g. intensive monocultural agriculture) (Turbé 

et al., 2010). Therefore, reducing management intensity of an intensive cropping practice with 

some degree of organic inputs, continuous plant cover and limited tillage, typically leads to an 

environment in which soil biodiversity is enhanced (Turbé et al., 2010). In addition to 

management practices, land-use changes can also have a positive or detrimental effect on soil 

biodiversity. For example, due to historic land-use changes and management, current 

communities are often composed of generalist species that have been able to adapt well to 

changes leading to a distinctly homogenous population of, for example, earthworms across 

Europe with local structural differences (Turbé et al., 2010). Homogenisation of biological 

communities poses challenges to resilience of communities to future changes, and ongoing 

changes (e.g. converting forests to grasslands or croplands) can also induce rapid changes in 

soil communities that may limit their ability to provide ecosystem services, see Table 5-3. For 

example, in the case of deforestation, stormwater run-off and the associated risk of erosion are 

increased with decreasing vegetation cover, and it has been observed that land without 

vegetation can be eroded 123 times faster than land covered by vegetation which lost less 

than 0.1 ton of soil per ha/year (Turbé et al., 2010). 

Table 5-3. Impact of land-use change on the diversity of the three functional groups and the 

ecosystem services provided, adapted from (Turbé et al., 2010). 

Functional group Forest → Grassland 
Grassland → 

Cropland 

Cropland → 

Urban land 
 

Chemical engineers 
 - fungi;  - 

bacteria 

 (but some local 

) 
 

 

Biological regulators 

= /  

 - nematodes 

 - micro-arthropods 

 

Plant-feeding → 

bacteria-feeding 

nematodes 

 

 

Ecosystem engineers 

 

Anecic → endogeic 

earthworms 

 / 0 

 - anecic 

earthworms 

 
  

Ecosystem service Forest → Grassland 
Grassland → 

Cropland 

Cropland → 

Urban land 
Affected soil functions 

Soil fertility and 

nutrient cycling 
= /    

Reduced decomposition 

of SOM; Reduced 

biological control 

Regulation of carbon 

flux and climate 

control 

   
Reduced decomposition 

and mixing of SOM 

Regulation of the 

water cycle 
-   

Reduced burrowing 

activity 

Decontamination and 

bioremediation 
-   

Impaired self-regulation 

of ecosystems 

Pest control -   
Reduced biological 

control 

Human health effects - - - - 

5.1.1 Adaptive soil management and monitoring 

Much of what has been discussed thus far in this review has the ultimate purpose of being 

applied for use in soil quality assessment and monitoring (e.g. the use of reliable, relevant 

indicators connected to ecosystem services). A key consideration for this section is the 

incorporation of 'adaptive management and monitoring' (hereafter referred to as just 'adaptive 

monitoring') schemes into long-term land management and planning (see e.g. (Birgé et al., 
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2016; Chapman, 2012; Epelde et al., 2014a; Hooper et al., 2016)). The 'adaptive' in adaptive 

monitoring refers to the strategy of monitoring programs evolving iteratively (i.e. continuously 

improving or 'learning by doing') to reduce uncertainty regarding responses in soil biodiversity 

to management as new information emerges or as research questions or objectives change 

(Birgé et al., 2016; Chapman, 2012; Epelde et al., 2014a). Furthermore, adaptive monitoring 

should be firmly based on ecosystem services (e.g. as assessment endpoints), thereby providing 

the best means to develop necessary information for informed decision-making (Birgé et al., 

2016; Chapman, 2012; Epelde et al., 2014a; Hooper et al., 2016). Common pitfalls in 

monitoring programs that can be avoided through adaptive monitoring include selecting the 

wrong drivers (e.g. politics rather than good science), poor initial design and lack of clarity 

regarding goals, components, data collection and communication (Chapman, 2012). Also, to be 

most effective, monitoring plans should be designed concurrently with restoration plan 

development and implementation and integrated early into the planning stage (i.e. in the 

beginning of the site assessment and management process) to support restoration goals for the 

site (Hooper et al., 2016; Hull et al., 2016). Birgé et al. (2016) provide an instructive example 

of an adaptive management framework tailored towards managing soil biodiversity to enhance 

ecosystem services, see Figure 5-4. 

 

Figure 5-4. An adaptive management framework for reducing uncertainty in the soil system 

while proceeding with the fundamental management objective, from (Birgé et al., 2016).  

Adaptive monitoring has also been recommended to monitor the remediation or restoration of 

soils at contaminated sites, both in terms of risk reduction and return of lost ecological function 

and ecosystem services (Epelde et al., 2014a; Hooper et al., 2016; Hull et al., 2016). For 

example, Epelde et al. (2014) proposed to incorporate adaptive monitoring into the long-term 

monitoring required for metal phytostabilisation at contaminated sites by including a few key 

principles, such as i) posing well-formulated, good questions that are based on testable 

hypotheses to cover the chemical, toxicological and ecological concerns related to 

contaminated soils; iii) basing the study on a conceptual model of the ecosystem under study; 

iii) avoiding the common mistake of including a long, expensive 'laundry list' of indicators and 
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instead focus on analytical techniques that are cheap, easy to interpret and do not require 

specific expertise – preferably soil microbial parameters as indicators of soil health and 

recovery; iv) grouping the soil microbial parameters into higher-level categories such as 

'ecological attributes' (vigour, organisation, stability) or ecosystem services in order to facilitate 

interpretation and stability over time against changes in techniques, method, interests, etc.; v) 

evolving the monitoring program iteratively (e.g. every 5 years) to critically analyse the 

monitoring program and remediation effectiveness. To facilitate this process, the authors 

created a 'Phytostabilisation Monitoring Card', see Figure 5-5, based on both ecological 

attributes and ecosystem services and using soil microbial parameters to answer the question 

'Does the recovered soil health remain as such?' To evaluate, initial values can be normalised 

to 100% (100% = value obtained for each specific variable measured at the beginning of the 

long-term monitoring program) and the mean value = arithmetic mean of all microbial 

parameters included in each ecological attribute or ecosystem service (mean > 100% indicates 

a positive trend; mean value < 100% indicates a negative trend) (Epelde et al., 2014a). 

 

Figure 5-5. Phytostabilisation Monitoring Card, based on both ecological attributes and 

ecosystem services, for soil microbial parameters as selected to answer the question 'Does the 

recovered soil health remain as such?', from (Epelde et al., 2014a). 

5.2 Contaminated sites and marginal land 

In urban soils, the conditions for soil biodiversity are severely stressful as they are often 

substantially degraded or altered by the impacts of urbanisation (Pavao-Zuckerman, 2012, 

2008). Nevertheless, there exist ecosystems in and around cities that can provide critically 

needed and highly demanded ecosystem services provided that the ecosystem functionality is 

retained or restored (see e.g. (Pavao-Zuckerman, 2012, 2008) for interesting discussions on 

urban ecology and ecological restoration in cities or (Craul and Craul, 2006) for getting the soil 
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right in terms of landscape architecture and soil design). In fact, there have been many studies 

documenting the unique biodiversity present at contaminated sites or other marginal land that 

is worth protecting and preserving (FAO et al., 2020; Garbisu et al., 2020; Hartley et al., 2008; 

Orgiazzi et al., 2016; Turbé et al., 2010; US EPA, 2009). However, in many cases, the soil in 

urban areas is sealed (i.e. paved over with hard, impermeable surfaces), which stops all 

exchange between soil fauna and all external inputs, prompting chemical engineers to go into a 

dormant, inactive state in the sealed soils thereby terminating provided services (Turbé et al., 

2010). If they do not simply die off, profound shifts in community structure can also be expected 

in non-sealed soils such as domination by bacteria as chemical engineers given the high 

chemical inputs used for pest control, biological regulators being dominated by 

microarthropods and earthworms being mostly absent or present only in urban parks or forests 

(Turbé et al., 2010).  

Soil contamination is a major and acute problem in many areas of the EU, which has received 

growing attention in recent years (Panagos et al., 2013; Turbé et al., 2010). In order to capture 

the full ecological value that these sites offer, tools such as SF Box will be required to address 

the question: 'what can this soil actually do and can it perform its functions well, assuming that 

it is free of contaminants?' (Volchko et al., 2019). Applying such tools and asking these kinds 

of questions will assist in making a distinction between the effects of contamination on soil 

biota and the effects of soil capability (i.e. soil quality) to function as a host to these species in 

its own reference state free of contaminants (Volchko et al., 2019). With regards to the effects 

of contaminants on soil biota, the impacts of chemical pollution on soils can be extremely 

heterogeneous, acting either directly (e.g. mortality, inhibition of growth or reproduction) or 

indirectly (e.g. altering community structure and food webs or inhibiting necessary functions) 

on specific organisms and trophic levels depending on such factors as the type of contaminant, 

mode of action, distribution in the soil matrix and concentration (Turbé et al., 2010). Turbé et 

al. (2010) provide extensive discussion regarding the effects of various contaminants on the 

three main functional groups, summarised in Table 5-4. The authors conclude that organic 

matter degradation and soil structure regulation are the functions most impacted by 

contamination which can impair the delivery of services like nutrient cycling, soil fertility and 

water control. Important considerations for each functional group include the following (Turbé 

et al., 2010): 

• Chemical engineers – chemicals can have differing impacts different soil microbial 

species and communities, which can disturb the interactions within and among functional 

groups. Also, due to their very short reproduction time (e.g. an average of 20 minutes for 

bacteria in optimal conditions), exposure to some toxic chemical could rapidly lead to a 

resistant population which can develop genes that can be transferred to successive 

generations and even aid in breaking down some organic contaminants into non- or less 

toxic compounds. 

• Biological regulators – many chemicals have deleterious impacts on biological 

regulators by affecting lifespans and reproduction, the most studied being nematodes. 

However, dose-response effects can vary depending on the chemicals and exposure time. 

• Ecosystem engineers – earthworms, in contrast to ants and termites which tend to be 

more resistant, are often highly sensitive to contaminants due to their close contact with 

pore water and their highly permeable epidermis (easily absorbing water-soluble 

contaminants) and the fact that they ingest large quantities of soil. However, sensitivity 

to contaminants varies on the earthworm species due to feeding habits and tolerance 

strategies (e.g. eliminate certain excess metals like Cu and Zn) as well as the 

bioavailability of the contaminant. 
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Table 5-4. Possible impacts of chemical pollution on soil biodiversity related services, on the 

basis of its impacts on soil organisms, adapted from (Turbé et al., 2010). 

Chemical pollutant Affected soil organisms Affected soil function Affected soil service 

Pesticides 
Biological regulators, 

ecosystem engineers 

Organic matter decomposition, 

residue fragmentation 

Nutrient cycling, Soil 

fertility 

Pesticides 

Chemical engineers 

(microorganisms), biological 

regulators (microfauna) 

Mineralisation, immobilisation 
Nutrient cycling, Soil 

fertility 

Pesticides Ecosystem engineers 
Bioturbation, soil structure 

regulation, SOM production 

Nutrient cycling, Soil 

fertility, Water regulation 

Pesticides Biological regulators Population control Pest control 

GM plants Chemical engineers 
Mineralisation, organic matter 

decomposition 

Nutrient cycling, Soil 

fertility 

GM plants 
Ecosystem engineers 

(earthworms) 

Soil structure regulation, SOM 

production and transformation 

Nutrient cycling, Soil 

fertility, Water regulation 

Industrial 
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Chemical engineers 
Mineralisation, organic matter 

decomposition 

Nutrient cycling, Soil 

fertility 

Industrial 

chemicals and 

heavy metals 

Biological regulators 

(nematodes) 

Soil structure regulation, SOM 

production and transformation, 

regulation predation 

Nutrient cycling, Soil 

fertility, Pest control, Water 

control, Climate control 

Industrial 

chemicals and 

heavy metals 

Ecosystem engineers 

(earthworms) 

Soil structure regulation, SOM 

production and transformation 

Nutrient cycling, Soil 

fertility, Water regulation 

As noted by Hartley et al. (2008), there is an assumption that if appropriated site conditions are 

provided then natural processes will 'take care of the rest', which is an ill-defined concept, but 

refers to the self-organising capacity of ecosystems to recover by assembling the necessary 

constituents for improved soil functioning. With respect to contaminated soils, gentle 

remediation (e.g. bioremediation, phytoremediation or using soil amendments) of the toxic 

contaminant to an environmentally safe, non-toxic level could be applied as a soil management 

strategy to ameliorate soil conditions and promote ecological recovery (Burges et al., 2018; 

Cundy et al., 2016; FAO et al., 2020; Gómez-Sagasti et al., 2012; Orgiazzi et al., 2016; 

Thomsen et al., 2012; Turbé et al., 2010). For instance, soil fauna ('ecosystem engineers') can 

also be dispersal agents for both microorganisms that degrade organic contaminants and the 

contaminants themselves through the soil profile (FAO et al., 2020). Soil invertebrates such as 

earthworms have also been shown to improve decontamination of organic (e.g. pesticides) and 

inorganic contaminants (metals) by plants and microorganisms (FAO et al., 2020; G. Lacalle et 

al., 2020; Orgiazzi et al., 2016; Rodriguez-Campos et al., 2014; Turbé et al., 2010). Natural 

decontamination processes or bioremediation are even regarded as an 'regulating ecosystem 

service' performed by microorganisms, earthworms and other soil organisms functioning in 

healthy soils; therefore, a high diversity and biological activity within soils, especially at the 

level of chemical engineers, but also in the case of ecosystem engineers, is indispensable to 

ensure this essential service (FAO et al., 2020; Orgiazzi et al., 2016; Turbé et al., 2010).  

A good example of this type of land management strategy was shown by Schindelbeck et al. 

(2008) for a contaminated urban vacant lot; where, the poor soil condition (low organic matter 

and nutrient content) could be ameliorated through the addition of organic soil amendments to 

restore soil quality and also provided a soil cap as a barrier to reduce risks posed by elevated 

metal concentrations in the soil (e.g. direct ingestion or spreading via dust). Along these same 

lines, Schröder et al. (2018) envisioned a strategy for 'mobilising' marginal lands to intensify 
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production and utilise these otherwise latent resources for biomass production and improved 

economic, environmental and social outcomes, shown as a decision tree in Figure 5-6. 

 

Figure 5-6. Decision tree for improving and optimising the productivity of soils on marginal 

lands, from (Schröder et al., 2018). 

Schröder et al. (2018) emphasise that in order to achieve this vision, there must be a focus on 

integrated, systems-based approaches of land management with sustainable intensification of 

agricultural production, even on neglected or marginal sites: underexploited grassland, 

abandoned and set aside lands and brownfields with actual or aged pollution. On these marginal 

sites, the land has lost its economic and/or ecological viability for the community and typically 

is degraded to such an extent that it has lost the capacity to provide ecosystem services 

(Schröder et al., 2018). Approaches to restore the functionality of such sites should be based in 

on 'eco-agricultural' (or regenerative agriculture) practices that entail applying organic matter 

in the form of crop residues and other wastes or compost or in the later years also biochar, to 

enhance biogeochemical nutrient cycling, stimulate soil biodiversity and its proliferation 

effectively (Schröder et al., 2018). Soil amendments play a key role in this strategy to improve 

soil fertility by using organic amendments like compost and biochar to e.g. adjust the soil pH, 

increase soil nutrient content and retention capacity and improve the microbial community 

abundance and activity (Schröder et al., 2018; Touceda-González et al., 2017b, 2017a) (see 

Appendix IV for a comprehensive table synthesising the relevant properties of compost, animal 

manure, digestate and biochar from (Schröder et al., 2018)). 

There is a broad range of possible soft re-use strategies for brownfields that can provide a host 

of benefits either as a permanent or interim measure, which have been extensively covered in 

projects like the Holistic Management of Brownfield Regeneration12 (HOMBRE) (Bardos et 

al., 2016). A major outcome of the Hombre project was the 'Brownfield Opportunity Matrix' 

that can be used to identify opportunities for additional services and benefits that can be 

delivered by brownfield projects via soft end-uses to increase their overall value and 

 
12 Brownfield Regeneration: Holistic Management - FP7 HOMBRE Project (zerobrownfields.eu) 

http://www.zerobrownfields.eu/
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attractiveness for investment (Bardos et al., 2016). Soft re-uses are mostly mediated by plants, 

and brownfields that are significantly covered by tree, shrub and grass vegetation contribute to 

the variety of urban green space as vital elements of 'urban green infrastructure' and host 

particular ecosystems that provide important ecosystem services like habitat and biodiversity, 

biomass production and micro-climate regulation (Bardos et al., 2016; De Valck et al., 2019; 

Mathey et al., 2018, 2015; Pueffel et al., 2018). Urban green brownfields can even provide 

highly valued cultural ecosystem services such as recreational services for local residents that 

can serve as alternatives to and providing similar functions as more classic green spaces such 

as parks and gardens (Mathey et al., 2018, 2015; Pueffel et al., 2018).  
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6 Discussion and concluding remarks 

The provision of soil-based ecosystem services is clearly dependent upon soil ecosystem 

functioning, which is the result of interactions between soil biota and their physic-chemical 

environment, and there is a need for at least a minimum appreciation of soil quality in 

contaminated site assessment to ensure the provisioning of these crucial services. Nowadays, 

as shown in Figure 6-1, soil quality assessment has developed to focus on the multi-

functionality of soils, providing ecosystem services and resistance and resilience to 

disturbances. In terms of applying the concepts covered in this review to soil quality and 

ecosystem service assessment at contaminated sites, some of the main findings are the 

following: 

Soil quality and ecosystem service assessment must entail clear objectives that are decided 

upon at the beginning of a site assessment and planning project; whereby, target ecosystem 

services and desired functionality are made explicit (in consultation with stakeholders) as 

assessment endpoints with which to assess the effectiveness of a restoration/remediation 

strategy. 

The selection of soil quality indicators should be carried out according to a multi-criteria 

analysis (e.g. logical sieve) in which preference is placed on those that are reasonably 

inexpensive, easy to understand, accessible in laboratories and standardised as well as 

meaningfully based on linkages between indicators, soil functions and ecosystem services. The 

frameworks offered by ecological risk assessments could be highly useful; for example, to 

establish parallel lines of evidence (e.g. physical, chemical and biological) along increasing 

tiers of complexity with which to assess the ecological status using measurement endpoints 

linked to ecosystem services. Semi-quantitative ecosystem service mapping procedures could 

also be highly useful to demonstrate the value of urban green brownfields. 

The interpretation of the data obtained from the indicators should be well-defined and ideally 

based on quantitative, statistical evaluation. Scoring curves, target values or reference values 

can be utilised to make sense of the indicators and aid in both interpretation and 

communication. The (dis)agreement of results obtained from different lines of evidence can 

be reconciled using mathematical procedures employed in ecological assessment. Similar to the 

integrated risk value used in ecological risk assessment, an aggregated soil quality index is 

often desired but is likely to be more useful when assessed in relation to specific soil functions 

or ecosystem services by grouping indicators accordingly. 

Incorporation of soil quality indicators in monitoring programs to assess 

restoration/remediation effectiveness should be based on the principles of adaptive monitoring 

to have a clear initial plan and iteratively improve it by revisiting the objectives approximately 

every 5 years.  
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Figure 6-1. Main objectives, tools and approaches of soil quality assessment through history, 

from (Bünemann et al., 2018). 
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8 Appendix I 

As of February 3, 2020, a blanket search for "ecosystem services" will result in 30, 791 hits and 

"soil functions" 1656 hits. The highest cited paper by Costanza et al. (1997) has been cited 

11,057 times since its publication. Filtering through these results and using sensitive search 

terms to find those that are most relevant to this literature review is a challenge. Also, previously 

conducted reviews and seminal works (primary sources) have been extracted and will be 

referred to specifically for reference throughout this review. Additionally, certain papers have 

been recommended by professionals in the field so accordingly extra weight will be placed 

upon them. The table below shows the process of finding relevant literature in the Scopus 

database in this phase of the literature review: 

Search Terms – Phytoremediation/GRO Smorgasbord  

Feb. 3, 2020 

"Phytoremediation" AND "_____" 

Search Terms Hits Year of 

Origin 

Highest Citation Score Relevance 

AND "meta-analysis" 18 2007 Audet and Charest 2007 

(94) 

8 

AND "systematic review" 8 2017 Wang et al. 2017 (90) 2 

LIMIT to reviews 986 1996 Haritash and Kaushik 2009 

(1468) 

•   

LIMIT to reviews + heavy metal 218 1997 Ali et al. 2013 (1133) 
•   

LIMIT to phytoextraction 933       

LIMIT to degradation 421       

AND "removal rates" 300       

          

AND "soil quality" OR "soil 

health" OR "soil fertility" 

381 1995 Garbisu et al. and Epelde et 

al. papers 

  

LIMIT to keyword - soil quality 157 2001   10 

          

AND "risk management" 33 2000 Kuppusamy et al. 2017 

(146) 

7 

Feb. 4, 2020         
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AND "ecosystem services" 71 2008 Dickinson et al. 2009 (169) 22 

          

"phytotechnology" 133 2000 Rezania et al. 2016 (141) 
 

+ "pollution" or "contamination" 61 2003 - 6 

+ "remediation" 38 2002 - 6 

          

"phytomanagement"* 171 2005 Robinson et al. 2009 (147) 15 

LIMIT to reviews 10 
•   •   

5  

+ "soil quality" or "soil health" or 

"soil fertility" 

17 
•   •   

8 

          

Feb. 7, 2020         

AND "plant selection" 

(screening) 

48 1997 Labeau et al. 2008 (218) - 

AND "bioaugmentation" 177   Kuiper et al. 2004 - 

*Usage of the term "phytomanagement" varies per paper, e.g. 'phytomanagement' can mean: 1) 

Greenland/Robinson et al. definition of maximizing co-benefits or 2) Phytoremediation to 

'manage' a site using vegetation 

 

Search Terms – Pre-conditions  

Feb. 4, 2020 

"Phytoremediation" AND "_____" 

Search Terms Hits Year of 

Origin 

Highest Citation Score Relevance 

AND "site-specific" 58 1998 Mulligan et al. 2001 (956) 7 

AND "site characterization" 12 
  

1 

AND "site suitability" 0       

AND "site conditions" 24     1 

AND "pre-conditions" 0       
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AND "conditions" 2615   Haritash et al. 2009 (1468)   

AND "brownfield" 40 1999 Mench. Et al. 2010 (217) 16 

AND "uncertainty" 41 1998 Mench et al. 2010 (217) 9 

AND "regulation" 483       

And "monitoring" 799       

          

Feb 13, 2020         

AND "technosol" 33 2013 Sylvain et al. 2016 (41) - 

          

Feb. 14, 2020         

AND "indicators" 340 1994 He et al. 2005 (693) – 

Garbisu et al., Epelde et al. 

- 

          

September 3, 2020         

AND bioaccessibility 21 2006 Mench et al. 2006 (88) 6 (8) 

AND bioavailability 941 1995 - Salt et 

al. 

Haritash et al. 2009 (1584)   

 

Search Terms – Soil functions 

Feb. 4, 2020 

"Phytoremediation" AND "_____" 

Search Terms Hits Year of Origin Highest Citation Score Relevance 

And "ecosystem services" 71  2008 Dickinson et al. 2009 

(169) 

22 

AND "soil functions" 14  2006  Gomez-Sagasti et al. 

2012 (88) 

8 

  

"Brownfields" OR "contaminated sites" (or "contaminated land" or "marginal land" or "polluted soil" 

or "contaminated land" or "polluted land) AND "_____"  
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Search Terms Hits Year of 

Origin 

Highest Citation Score Relevance 

AND "soil functions" 35 2002 Van Straalen 2002 (69) 10 

AND "soil quality" 230 1994 Luo et al. 2012 (306) - 

AND "soil health" 31 2000 Dickinson et al. 2009 (169) 8 

AND "ecosystem services" 73 2003 Dickinson et al. 2009 (169)   

AND "ecosystem services 

analysis" 

0       

AND "ecosystem services 

mapping" 

1 2018 Cortinovis and Geneletti 

2018 (9) 

1 

AND "ecosystem services 

assessment" 

0       

          

AND "green infrastructure" 20 2011 Mathey et al. 2015 (31) - 

AND "nature-based solutions" 7 2016 Song et al. 2019 (22) 3 

          

Feb. 6, 2020         

AND "ecological risk 

assessment" 

149   Linkov et al. 2009 (143) - 

LIMIT to "ecosystem services" 3 2012 Thomsen et al. 2012 (39) 3 

          

March 24, 2020         

AND "decision support" 203   Li et al. 2007 (153) - 

  

  

August 21, 2020 

"Brownfields" OR "contaminated sites" (or "contaminated land" or "marginal land" or "polluted soil" 

or "contaminated land" or "polluted land) AND "____" 

Search Terms Hits Year of 

Origin 

Highest Citation Score Relevance 
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AND "minimum data 

set" 

2 2014 Volchko et al. 2014 (30) 2 

AND "soil quality 

indicators" 

14 1999 Schindelbeck et al. 2008 (62) 6 

AND "soil functions 56   Hinojosa et al. 2004 (175) (Gomez-

Sagasti et al. 2012 (88)) 

  

AND "soil health" 78   Dickinson et al. 2009 (178)   

          

Oct 10, 2020         

And "ecosystem service 

mapping" 

5 2014 Gret-Regamy et al. 2014 (40) 2 

AND "ecosystem 

services" 

196       

          

Oct 20, 2020         

And "ecosystem service 

assesment" 

0       

And "ecosystem service 

valuation" 

0       

And "ecosystem service 

analysis" 

1   Wells et al. 2018 (6) - marginal 

agricultural lands 

  

 

Search terms – Ecosystem services 

Feb 12, 2020 

Search Terms Hits Year of Origin Highest Citation Score (of 

relevance) 

Relevance 

"ecosystem services 

mapping" 

128       

AND "ecological risk 

assessment" 

87 Sergeant, A. 2000 

(6) 

E.g. Faber 2013 14 

"soil ecosystem services" 167   Dominati et al. 2010 (362)   
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March 5 - soil ES         

And "endpoints" 109 Cairns Jr. 1994 

(21) 

Keeler et al. 2012 (201) 

+ Faber et al. 

- 

AND "indicators" 2643   Lavalle et al. 2006 (664) - 

AND "typology" 230       

And "demand" 2200     - 

And "future needs" 34     - 

And "design" 2250     - 

And "optimize" 389   

 

- 

And "semi-quantitative" 27 Everard et al. 

2009 (3) 

Schipanski et al. 2014 (157) 2 

And "remediation" 266   Becerril et al. Garbisu et al., 

Mench et al., Cundy et al., 

Epelde et al. 

  

          

April 20 , 2020         

"soil ecosystem health" 33 Lau et al. 1997 

(11) 

Thomsen et al. 2012 (41) 

Park et al. 2011 (38) - 

nematodes 

Chae et al. (13) - beta-

glucosidase 

3 
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9 Appendix II 

Compilation of connections between soil organisms and soil functions and ecosystem services, from Bünemann et al. (2018) – Supplementary material 

(see paper for references). 

Soil organism Main soil functions Mechanisms involved Soil-based ecosystem 

services 

Ease of application References 

Macroorganisms (fauna) 

Earthworms 

(macrofauna) 

Soil structure 

maintenance, 

decomposition, organic 

matter and water 

cycling, habitat 

provision 

Burrowing, 

fragmentation of litter, 

soil aggregation, 

humification, organic 

matter distribution 

Biomass production, 

erosion control, water 

supply, climate 

regulation, 

biodiversity 

conservation 

Easy to sample but not 

ubiquitous 

Blouin et al. 

2013, 

Lavelle et 

al. 2006 

Nematodes 

(microfauna) 

Element cycling, 

decomposition, 

biological population 

regulation 

Grazing on 

microorganisms, root 

herbivory, predation  

Biomass production, 

pest and disease 

control 

Identification via 

morphology currently only 

by specialists but facilitated 

by molecular tools in the 

future. Ubiquitous, easy to 

sample, abundant, sensitive. 

Key role in soil food web. 

Information about feeding 

preferences and life strategy. 

Mulder et al. 

2005, Neher 

et al. 2001, 

Schloter et 

al. 2003 

Protists 

(microfauna) 

Element cycling, 

biological population 

regulation 

Grazing on 

microorganisms 
Biomass production 

Poorly defined 

taxonomically, difficult to 

isolate and identify. Variable 

in space and time. 

Foissner 

1999, 

Riches et al. 

2013 
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Collembola 

(mesofauna) 

Decomposition, 

element cycling, 

biological population 

regulation 

Grazing on fungi  

Biomass production, 

pest and disease 

control 

Cumbersome to sample and 

isolate, difficult to identify  

Brussaard et 

al. 2004, 

Cardos et al. 

2013, 

Pulleman et 

al. 2012, 

Ruf et al. 

2003 Enchytraeids 

(mesofauna) 

Decomposition, soil 

structure maintenance 

Burrowing, 

fragmentation of litter, 

soil aggregation, 

decomposition, 

humification, organic 

matter distribution 

Water supply, climate 

regulation 

Easy to sample but difficult 

to identify 

Mites 

(mesofauna) 

Decomposition, 

element cycling, 

biological population 

regulation 

Grazing on bacteria 

and fungi, 

fragmentation of 

residues 

Biomass production, 

pest and disease 

control 

Cumbersome to sample and 

isolate, difficult to identify 

Macroarthropods 

(macrofauna) 

Soil structure 

maintenance, 

biological population 

regulation 

Burrowing, root 

herbivory, predation, 

grazing on bacteria 

and fungi 

Biomass production, 

pest and disease 

control, biodiversity 

conservation 

Relatively easy to sample, 

taxonomically very diverse 

Microorganisms (microbes) 

Bacteria  

Element and organic 

matter cycling, 

decomposition, 

biological population 

regulation 

Symbiotic association 

(nitrogen fixing 

bacteria), production 

of antibiotics, 

transformation and 

mineralization of 

organic material 

Biomass production, 

pest and disease 

control, climate 

regulation 

Spatially and temporally 

variable. Taxonomically 

very diverse and difficult to 

classify. 

Barrios 

2007, 

Lehman et 

al. 2015, 

Schloter et 

al. 2017 
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Fungi 

Element, organic 

matter and water 

cycling, soil structure 

maintenance, 

decomposition, 

biological population 

regulation 

Symbiotic association 

(mycorrhizae), 

production of 

antibiotics, 

transformation and 

mineralization of 

organic material 

Biomass production, 

water quality and 

supply, erosion 

control, pest and 

disease control, 

climate regulation 
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Examples of soil organisms, their main soil functions and ecosystem services, and gaps 

and opportunities, from FAO et al. (2020). 
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10 Appendix III 

Indicators used in ecosystem service mapping procedure, from Ivarsson (2015). 

Indicators for quantifying changes in provision of urban ecosystem services: 
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Indicators for quantifying changes in the provision of soil ecosystem services: 
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The ecosystem services including in the mapping procedure in Applicera, from Volchko 

et al. (Volchko et al., 2020). 
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11 Appendix IV 

Compilation of organic amendments and their relevant properties, from Schröder et al. 

(Schröder et al., 2018). Green and orange colour indicates positive and negative effects 

respectively, yellow colour indicates presence of both positive and negative effects, 

grey colour indicates lack of knowledge. Numbers indicate specific references, see 

(Schröder et al., 2018) for sources. 

 


