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Efficient sampling of Bayesian posteriors and predictive distributions in χEFT
Isak Svensson
Department of Physics
Chalmers University of Technology

Abstract

In this thesis I employ Bayesian statistics to quantify parametric and epistemic
uncertainties in chiral effective field theories (χEFT) and propagate these for-
ward to predictions of observables in low-energy nuclear physics. Two primary
sources of uncertainty—experimental errors and the theoretical error induced
by the truncation of the EFT at up to next-to-next-to-leading-order—are
modelled and accounted for in the posterior distributions of the unknown low-
energy constants (LECs) that govern interaction strengths in χEFT. These
posteriors are computationally challenging to extract and I therefore intro-
duce an advanced Markov chain Monte Carlo (MCMC) algorithm, known
as Hamiltonian Monte Carlo, and investigate its performance. I compare
its sampling efficiency to standard MCMC algorithms and find reductions in
computation time by factors around 3-6 in the present work. I exploit the ex-
tracted posteriors to produce predictive distributions for neutron-proton and
proton-proton scattering cross sections below and above the pion production
threshold and check the consistency of the model predictions against empirical
data and higher-order point estimates. I find that the predictive distributions
provide reliable credibility intervals as long as the size of the truncation error
is estimated from expansion coefficients at next-to-leading-order and above.
The LEC posteriors are also central to uncertainty quantification in few- and
manybody systems, and as part of a larger collaboration I explore constraints
on three-nucleon forces imposed by light-nuclei observables.

Keywords: nuclear physics, two-nucleon scattering, chiral effective field theory,
Bayesian parameter estimation, Markov chain Monte Carlo
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Chapter 1

Introduction

Precision nuclear physics relies on realistic models of the nuclear interaction
potential and predictions with quantified uncertainties. The wavefunction of
an interacting A-nucleon system is governed by the non-relativistic A-nucleon
Schrödinger equation

(Ĥ0 + V̂2N + V̂3N + V̂4N + . . .) |Ψ〉 = E |Ψ〉 , (1.1)

where Ĥ0 denotes the kinetic energy operator of the free nucleons, V̂jN is a
j-nucleon potential operator, and E is the eigenenergy of the system. Theoret-
ical predictions for nuclear observables may be found by numerically solving
Equation (1.1), a decades-old problem [1] for which there exists several ongo-
ing research efforts using e.g. ab initio methods [2]. The challenge of solving
the A-nucleon Schrödinger equation notwithstanding, we need a model for the
nuclear potential

V̂ = V̂2N + V̂3N + V̂4N + . . . (1.2)

which is the main focus of this work. Efforts to characterize the nucleon-
nucleon (2N) potential V̂2N have been underway since the 1930’s, with Yukawa
achieving the first major breakthrough in 1935 when he proposed the existence
of mesons: massive force carriers more than 200 times heavier than the elec-
tron [3]. Yukawa expressed pessimism regarding the result as no such particle
had been observed, but his hypothesis was eventually proven correct by the
discovery of pions (and, later, heavier mesons). However, high-precision nu-
clear potentials in this vein remained elusive [4].

The discovery of quantum chromodynamics (QCD), the theory of the
strong interaction between quarks and gluons, provided a deeper understand-
ing of the strong nuclear interaction. Unfortunately, QCD is nonperturbative
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in the low-momentum region below the typical hadronic mass scale (∼ 1 GeV)
relevant for nuclear physics and it is as a result impossible to apply conven-
tional perturbation theory in powers of the strong coupling constant. One
can pursue QCD calculations on a finite space-time lattice using the lattice
QCD (LQCD) method [5], but such calculations are still too computation-
ally expensive for general use in nuclear theory [6]. Nuclear forces arise from
residual quark interactions in a manner analogous to the molecular Van der
Waals force, and it is possible that this comparatively weak effect may be
perturbatively analyzed by generalizing so-called chiral perturbation theory
(χPT) [7] to generate potentials for A ≥ 2 systems.

Effective field theories (EFTs) [4, 8, 9] aim to bridge the gap between phe-
nomenological models and costly LQCD calculations. The relevant degrees
of freedom in nuclear EFTs are nucleons and (usually) pions, as opposed to
quarks and gluons in QCD. Weinberg [10–12] proposed to construct a nu-
clear interaction potential from the most general effective Lagrangian Leff

that observes the symmetries of QCD, notably approximate chiral symme-
try, and expanding Leff in powers of external momenta p over the breakdown
scale Λb of the theory. The expansion yields an infinite number of terms
containing Feynman diagrams encoding different types of nucleon and pion
interactions. For practical calculations, the expansion must be truncated at
a finite chiral order, and it is therefore important to employ a suitable power
counting scheme wherein the diagrams are ordered according to the impor-
tance of their contributions. The power counting scheme assigns an order
k ≥ 0 to each interaction: the dominant interactions comprise the leading
order (LO), and higher-order corrections—suppressed by successively higher
powers of the expansion parameter Q = p/Λb—are sorted as next-to-leading
order (NLO), next-to-next-to-leading order (NNLO), and so on. This means
that the magnitude of the error incurred by the truncation of the series is
controlled, enabling us to extract reliable uncertainty estimates.

Figure 1.1 shows a hierarchy of nuclear forces in the most widely used chiral
EFT (χEFT) arranged in a power counting scheme known as Weinberg power
counting. At LO (k = 0), one 2N contact interaction and one leading pion-
nucleon (πN) interaction appear: the short-range 2N contact interaction acts
with orbital angular momentum L = 0 (S-waves) indicated by crossed solid
lines, and the long-range one-pion exchange (1PE) indicated by a dashed line.
In this scheme, no interactions contribute at order k = 1 [13], and consequently
the order k = 2 is designated as NLO. The interactions at NLO include
derivative 2N contacts acting in L = 1 (P-wave) and two-pion exchanges
(2PE). At NNLO, three-nucleon (3N) interactions V̂3N enter.
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Figure 1.1: Hierarchy of nuclear forces in χEFT according to Weinberg power count-
ing. Solid lines represent nucleons, and dashed lines represent pions. Figure adapted
from Entem et al. [14].
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χEFT, sometimes referred to as pionful EFT, employs nucleons and pi-
ons as effective degrees of freedom and is well suited for analyzing physics
characterized by momenta comparable to the pion mass (mπ ≈ 140 MeV) [9].
An exact determination of the location of the breakdown scale Λb has yet to
be achieved. Nevertheless, χEFT has in many cases [2] proven to provide
a successful model of the strong nuclear interaction, yet outstanding issues
regarding appropriate power counting remain [15, 16]. I use the standard
Weinberg power counting in this work.

Each new order in the χEFT expansion of the effective Lagrangian (from
now on referred to as the chiral expansion) introduces a number of unknown
parameters known as a low-energy constants (LECs) that govern the strength
of the corresponding interactions. The LECs are thus divided into categories
based on the type of interaction, e.g. “contact LECs” for short-range con-
tact interactions and πN LECs for long-ranged π-exchanges. Power counting
places an important expectation on the LECs in that they are supposed to be
of “natural” size (i.e. of order 1) in appropriate units; a failure to fulfil this
expectation is an indication that the EFT is not working as advertised. The
LECs have to be inferred from data (usually experimental, but LQCD results
can in principle be used). The LECs are consequently imbued with an uncer-
tainty which will propagate to observable predictions. In addition there are
truncation and numerical errors from the solution of the Schrödinger equation.
Quantifying these uncertainties and their impact on predictions is therefore of
fundamental importance for precision nuclear physics, and the fundamental
motivation for the present work.

Historically, the most prevalent approach to LEC inference has been lim-
ited to maximum likelihood estimation of LEC values to reproduce experi-
mental results with high accuracy, as was done in e.g. Ref. [17]. Subsequent
efforts extended this approach within the frequentist statistical framework by
extracting local estimates of the LEC covariances [18, 19]. In recent years, an
alternative approach based on Bayesian inference methods has been developed
as a tool for comprehensive error analysis in χEFT (see e.g. Refs. [20–25]).
The Bayesian interpretation of probability enables us to infer a probability
density function (pdf) for the LECs at a given chiral order. This pdf, known
as a posterior in Bayesian lingo, can be conditional on a range of given infor-
mation, such as the empirical data used for the parameter estimation and a
statistical model for the EFT truncation error [21]. The Bayesian framework
also allows (in fact, requires) us to encode a priori beliefs or assumptions in
the so-called prior pdf. This gives us a straightforward way to incorporate for
example the naturalness expectation of the LECs. The uncertainties encoded
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in the LEC posteriors can be propagated to observable predictions to yield
posterior predictive distributions (ppds) with an added model discrepancy
term [26] for the energy-dependent EFT truncation error.

The number of LECs in realistic chiral potentials at order NLO and be-
yond are at least 10-15, meaning that the corresponding LEC posteriors have
at least that many dimensions. Evaluating such multidimensional pdfs poses
a significant computational challenge, and the only realistic strategy is to use
Markov chain Monte Carlo (MCMC) sampling. However, standard MCMC
methods typically yield strongly correlated samples from the posterior pdf
when applied to high-dimensional problems. Sample correlations decrease the
information contained in the MCMC chain, and the sampler must collect a
correspondingly large number of samples to compensate. Minimizing sample
correlations by advanced sampling methods can therefore be highly advanta-
geous. One such method is Hamiltonian Monte Carlo (HMC) [27], originally
developed by LQCD researchers [28].

In this thesis I use Bayesian analysis to define LEC posterior pdfs encoding
parametric and epistemic uncertainties in χEFT at up to NNLO. I sample the
relevant posteriors by developing a custom HMC implementation, and investi-
gate its performance. I extract ppds of 2N elastic scattering cross sections and
evaluate the reliability of the statistical model by comparisons with a large
set of validation data reserved for this purpose.

5



6



Chapter 2

A statistical model for
uncertainties in χEFT

The central theme of this thesis is to quantify uncertainties in χEFT pre-
dictions of nuclear observables—primarily 2N scattering observables—using
Bayesian analysis. To achieve this goal it is necessary to adopt statistical mod-
els for the error terms. Several sources of uncertainty contribute to the total
uncertainty of χEFT predictions; in this work I will make the assumption that
the dominant contributions stem from (1) the parametric uncertainty of the
LECs and (2) the truncation of the infinite chiral expansion at a finite order
k. Further possible sources of uncertainty, which I will take to be negligible,
include a numerical error when solving the Lippmann-Schwinger equation [29]
by the standard matrix inversion method [30] used here. I will consider the
matrix inversion error negligible in this thesis.

The objectives of this chapter are twofold: define posterior pdfs for the
LECs that can be numerically evaluated to facilitate parameter estimation,
and outline how to exploit those pdfs to define ppds for arbitrary 2N scattering
observables. The ppds will combine the two dominant sources of uncertainty
outlined in Chapter 1.

2.1 Calibration and validation data

Empirical data plays a crucial role for both parameter estimation and the sub-
sequent validation of the statistical model. I will therefore begin this chapter
by specifying what data I use.

7



I define two mutually exclusive sets of data. The first, called the calibration
(or training) data Dcal, is used for the LEC inference. The second, called the
validation data Dval, is used to verify the validity of the statistical model. The
calibration data Dcal is slightly different between Papers A and B, and Dval

is only used in Paper B. In both papers I use the 2013 Granada 2N scattering
database [31, 32] which contains neutron-proton (np) and proton-proton (pp)
elastic scattering cross sections gathered from a long list of scattering exper-
iments spanning many decades, with some dating back to the 1950s. While
the database covers laboratory scattering energies Tlab from 0 up to 350 MeV,
I only use data below the pion production threshold (i.e. Tlab ≤ 290 MeV)
for the LEC inference. In Paper A all data in this range is used for infer-
ence, but in Paper B I withhold all data in the 80 ≤ Tlab ≤ 100 MeV range
for validation purposes in addition to one set [33] of total np cross sections
covering the 33 ≤ Tlab ≤ 350 MeV range. The validation data set Dval also
contains all available data above the pion production threshold. In all, Dcal

(Dval) comprises 4366 (2018) data points in Paper B. This leaves ample data
for both parameter inference and model checking.

A comprehensive summary of the distribution of data is shown in Ta-
ble 2.1. The observables are denoted using the SAID convention [34], where
e.g. total cross sections are denoted as SGT and unpolarized differential cross
sections are denoted as DSG. When specificity is required I prepend “NP”
or “PP” to indicate np or pp scattering, e.g. a total np cross section is de-
noted NPSGT. Total and differential cross sections comprise nearly half of
the Granada database, and the remaining data are various types of spin ob-
servables. A significant portion of the spin observables correspond to the
expectation values of the final spins along the direction normal to the scat-
tering plane (polarization, denoted P) and the polarization of the incoming
beam (denoted PB). Other prevalent spin observables correspond to the cor-
relations betweeen incoming and outgoing spins along various combinations
of axes (e.g. AXX, AYY).

Other types of data could straightforwardly be included in the calibration
data. A prime candidate would be πN scattering data, but I have opted
to let a prior that results from a separate data analysis constrain the πN
LECs entering at NNLO (see Section 2.3.3 for details). Additional data types
include nuclear binding energies and/or radii from e.g. light nuclei like 2H,
3H, or 3He [35], or slightly heavier nuclei such as 16O [36]. In principle, any
low-energy observable may be used.

It is common for an experimental data set to be reported with a normal-
ization constant which accounts for a common systematic uncertainty [32].
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Table 2.1: The distribution of observables in the calibration (Dcal) and validation
(Dval) data sets in Paper B. Dval is composed of all available data in the 80 ≤ Tlab ≤
100 and 290 < Tlab ≤ 350 MeV ranges, plus one set of NPSGT data [33] covering
the 33 ≤ Tlab ≤ 350 MeV range. All other available data constitutes Dcal. See text
for further details.

Training data (Dcal) Validation data (Dval)
Obs np pp Total (%) np pp Total (%)
SGT 315 0 315 (7.2) 84 0 84 (4.2)

SGTL 11 0 11 (0.3) 4 0 4 (0.2)
SGTT 16 0 16 (0.4) 3 0 3 (0.1)
DSG 1221 756 1977 (45.2) 457 159 616 (30.5)

A 5 47 52 (1.2) 0 24 24 (1.2)
AP 0 5 5 (0.1) 0 0 0 (0.0)
AT 30 0 30 (0.7) 35 0 35 (1.7)

AXX 0 143 143 (3.2) 0 120 120 (5.9)
AYY 64 151 215 (4.8) 46 151 197 (9.8)
AZX 0 137 137 (3.1) 0 120 120 (5.9)
AZZ 45 39 84 (1.9) 27 10 37 (1.8)
CKP 0 1 1 (0.0) 0 1 1 (0.0)

D 13 56 69 (1.6) 14 42 56 (2.8)
D0SK 8 0 8 (0.2) 14 0 14 (0.7)

DT 39 0 39 (0.9) 39 0 39 (1.9)
MSKN 0 8 8 (0.2) 0 8 8 (0.4)
MSSN 0 8 8 (0.2) 0 8 8 (0.4)
NNKK 8 0 8 (0.2) 0 0 0 (0.0)
NSKN 12 0 12 (0.3) 13 0 13 (0.6)
NSSN 4 0 4 (0.1) 14 0 14 (0.7)

P 0 489 489 (11.2) 0 260 260 (12.9)
PB 590 0 590 (13.5) 253 0 253 (12.5)
PT 38 0 38 (0.9) 19 0 19 (0.9)
R 5 50 55 (1.3) 0 50 50 (2.5)

RP 0 22 22 (0.5) 0 5 5 (0.2)
RPT 1 0 1 (0.0) 1 0 1 (0.0)
RT 29 0 29 (0.7) 37 0 37 (1.8)
All 2454 1912 4366 (100.0) 1060 958 2018 (100.0)
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Rather than attaching a corresponding normalization constant to the theo-
retically computed value and allowing it to vary, I fix the constants to the
values reported in the Granada database. This approximation should not
significantly affect the estimation of the LECs as it is unlikely that the nor-
malization constants shift experimental results disproportionally in a certain
direction when the database is viewed as a whole (see e.g. Ref. [37],) i.e. the
floating normalization constants are assumed to be uncorrelated.

2.2 Linking truth, theory, and experiment

The true value Otrue of an observable O may be regarded as the sum of a
theoretical prediction Otheo and an unknown theoretical error δOtheo, i.e.

Otrue = Otheo + δOtheo, (2.1)

where in this work I make the assumption that δOtheo is dominated by the
EFT truncation error. Further, an experimentally measured value Oexp of the
same observable can be thought of as the sum of the observable’s underlying
true value and an experimental error:

Oexp = Otrue + δOexp. (2.2)

Substituting Equation (2.1) into Equation (2.2) yields

Oexp = Otheo + δOtheo + δOexp, (2.3)

thus forming a link between theory and experiment which I will use to define
Bayesian pdfs for the LECs and ppds for observables.

2.3 Bayesian framework

Fundamental to all Bayesian statistics is Bayes’ theorem (or Bayes’ rule) which
states

pr(A|B) =
pr(B|A) · pr(A)

pr(B)
. (2.4)

where A and B are propositions and pr(B) 6= 0. This simple formula is
a direct consequence of the product rule in probability theory [38], yet it
leads to interpretations of probability that are different in nature from the
traditional interpretation of probability as a frequency of outcomes. Rather,
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probability may be interpreted as the current state of knowledge and thus
subject to change as more information becomes available. On a more prosaic
note we may use Bayes’ theorem to conveniently express a so-called posterior
pdf for the χEFT LECs ~α given some data D and information I as

pr(~α|D, I) =
pr(D|~α, I) · pr(~α|I)

pr(D|I)
. (2.5)

The information I includes all assumptions and knowledge on which the in-
ference is based, e.g. a priori expectations for the parameters ~α, the model for
the strong nuclear force, specific choices regarding model hyperparameters,
and so on. The factors on the right hand side are the likelihood pr(D|~α, I),
the prior pr(~α|I), and the the marginal likelihood (or, succinctly, the evi-
dence) pr(D|I), all of which are also pdfs. The marginal likelihood does not
depend on ~α and consequently does not influence the parameter estimation,
and Equation (2.5) may therefore be conveniently written as

pr(~α|D, I) ∝ pr(D|~α, I) · pr(~α|I). (2.6)

Equation (2.6) provides the basis for the Bayesian parameter estimation
of the LECs ~α. The posterior on the left hand side is the end product of
the parameter estimation process. This multidimensional pdf encodes the full
state of knowledge of the LECs conditional on D and I, and is of central
importance for predicting nuclear observables.

2.3.1 Assigning a likelihood

The likelihood is central in both frequentist and Bayesian statistics. It mea-
sures the goodness of fit of a statistical model to the observed data. The
traditional approach to fitting the LECs in χEFT is to define a χ2 cost func-
tion [39]

χ2 =

N∑

i=1

(Otheo,i(~α)−Oexp,i

σexp,i

)2

, (2.7)

where Oexp,i is the ith datum, Otheo,i(~α) is the corresponding computed ob-
servable value, their difference is called a residual, σexp,i is the standard devi-
ation of the experimental error, and N is the number of data points. A search
for the LEC vector ~α∗ that minimizes this cost function is then performed,
i.e.

~α∗ = argmin(χ2) (2.8)
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This approach is equivalent to maximizing the χ2 likelihood

Lχ2(~α) ∝ exp

(
−1

2
χ2

)
, (2.9)

and is an example of maximum likelihood estimation (MLE). MLE is a sta-
ple of frequentist statistics and has been used in several studies to extract
optimized LEC values ~α∗ (see e.g. Refs [17, 40, 41]) along with local ap-
proximations of LEC covariance matrices [18, 42] in order to propagate LEC
uncertainties to predictions.

The likelihood (2.9) with χ2 defined by Equation (2.7) assumes that the
residuals are uncorrelated and follow a normal distribution. Furthermore, it
assumes that the experimental error is the only source of uncertainty. We can
introduce an independent theory error by replacing σexp,i in Equation (2.7)
with σi, defined as [39]

σ2
i = σ2

exp,i + σ2
theo,i (2.10)

where σtheo,i is the standard deviation of an assigned theoretical (Gaussian-
distributed) error. We can circumvent the restrictive assumption that the
errors σi are uncorrelated by introducing a covariance matrix Σ, where

Σ = Σexp + Σtheo (2.11)

and fully uncorrelated errors correspond to the special case

Σexp + Σtheo = diag(σ2
exp,1, . . . , σ

2
exp,N ) + diag(σ2

theo,1, . . . , σ
2
theo,N ). (2.12)

By introducing the residual vector

~r = ~Otheo − ~Oexp (2.13)

the corresponding likelihood can be written as [24]

L(~α) = pr(D|~α,Σexp,Σtheo, I) ∝ exp

(
−1

2
~rT · Σ−1 · ~r

)
(2.14)

The question is: how do we assign Σtheo? In this thesis I follow the path
laid down in Refs. [21, 23] and, in particular, Ref. [24]. As a starting point,
the EFT expansion parameter Q introduced in Chapter 1 is written as

Q =
max(mπ, p)

Λb
(2.15)
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where mπ is the pion mass, p is the center-of-mass momentum, and Λb is
the EFT breakdown scale. In this work I fix Λb = 600 MeV as was done
by Wesolowski et al. [24] and has been indicated as a reasonable value in a
previous study [23]. The breakdown scale is generally expected to be of the
order of the rho meson mass, mρ ≈ 775 MeV. By introducing a dimensionful
reference scale Oref and dimensionless expansion coefficients cn the infinite
χEFT series for an observable may be rewritten as

Õ = Oref

∞∑

n=0

cnQ
n. (2.16)

This series can then be split according to

Õ = O(k)
theo + δO(k)

theo = Oref

k∑

n=0

cnQ
n +Oref

∞∑

n=k+1

cnQ
n (2.17)

where the index k indicates the chiral order at which Otheo is computed, and

δO(k)
theo is the truncation error.
Several options exist for the choice of reference scale Oref, such as using

experimental values or values computed using some simpler model. In this
work I use values computed at LO, with preliminary LEC values ~αprel obtained
from an MLE fit to phase shifts, for SGT and DSG observables. Melendez
et al. argue in Ref. [25] that it is appropriate to set the reference value for
spin observables, whose values are in the range [−1, 1], to 1 in order to avoid
potential issues when the value is close to 0. This procedure is not ideal in my
experience as a value of 1 is an extreme value for a spin observable. I instead
compute an average value of the LO results based on ~αprel and use this value

(Ospin
LO = 0.15) as the reference scale.
The last piece of information needed to characterize the truncation error

δO(k)
theo are the values of the expansion coefficients c (where I drop the subscript

n to indicate that I am not specifying the chiral order). Importantly, the c’s
are expected to be of order 1, as each new term in the EFT expansion should
be suppressed by approximately a factor Q. As noted in Chapter 1, the
contribution at order n = 1 is zero in Weinberg power counting, so c1 ≡ 0.
The coefficients at order n 6= 1 may be estimated from consecutive orders as
e.g.

cn =
O(n)

theo(~αprel)−O(n−1)
theo (~αprel)

Oref ·Qn
, (2.18)

where the preliminary LEC values ~αprel are employed to compute approximate
observable values. However, the theoretical values at n > k are typically not
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available, as k is the order at which the prediction is made; if a higher order was
available, we should use that order to make the prediction. It is thus necessary
to estimate the characteristic size of cn for n > k. All expansion coefficients are
therefore assumed to be drawn from the same underlying normal distribution,

pr(c|c̄) = N (0, c̄2), (2.19)

where c̄ is the typical size of the expansion coefficients (i.e. we expect c̄ ≈ 1).
Leaving c̄ undetermined for the moment, Equation (2.19) yields (see Ap-
pendix B)

pr(δO(k)
theo|c̄, Q) = N

(
0, (σ

(k)
theo)2

)
(2.20)

where

(σ
(k)
theo)2 = c̄2O2

ref

Q2(k+1)

1−Q2
. (2.21)

Under the simplifying assumption that the c’s are completely uncorrelated the
theory covariance matrix Σtheo becomes

(Σtheo)ij = c̄2(O(i)
ref)

2Q
2(k+1)
i

1−Q2
i

δij . (2.22)

I now turn my attention to the assignment of c̄. An example of computed
expansion coefficients ~c3, i.e. at order n = 3 (NNLO), for the np differential
cross section is shown in Figure 2.1. The displayed behavior of these particu-
lar expansion coefficients is fairly representative of the disposition of the cn’s
in general. The first thing to note is that, encouragingly, the c’s are indeed of
order 1. Of further note is that the values of c show a clear, but complicated,
correlation structure. In a recent study [25], this correlation structure was
modelled using Gaussian processes. In this thesis I have adopted the method
described in Ref. [24]: I estimate the standard deviation of expansion coeffi-
cients by calculating the root-mean-square (RMS) value of a set of computed
cn values. I use a relatively sparse grid of energies Tlab and scattering angles
θ to minimize the influence of correlations, and work with the four observ-
ables (SGT, DSG, P, and PB) which together account for the majority of the
scattering data in the database (see Section 2.1). The grid, indicated in Fig-
ure 2.1 by the displayed energies and the two vertical dashed lines indicating
the angles, is Tlab = 20, 70, 120, 170, 220, 270 MeV and θ = 50°, 150°. The
RMS value c̄ is computed using all orders up to order k, i.e.

c̄(k) =

√√√√ 1

NobsNord

k∑

n=0

Nobs∑

i=0

c2n,i, n 6= 1, (2.23)
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Figure 2.1: Computed expansion coefficients ~c3 for the np differential cross section
at NNLO. Each curve was calculated at the laboratory energy Tlab indicated in
the legend. The dashed vertical lines indicate the scattering angles θ used in the
assignment of c̄.

where Nobs is the number of different observables (defined by the grid outlined
above) and Nord is the number of chiral orders up to and including order
k (e.g. k = 2 and Nord = 2 at NLO). Before I apply Equation (2.23) I
remove outlier c values which would otherwise disproportionally influence the
estimation of c̄; I define outlier c values as those that lie more than three
times the inter-quartile range outside the upper or lower quartiles. As we
will see in Chapter 5, the inclusion of the LO expansion coefficients ~c0 turned
out to be inadvisable as these are uninformed by order-by-order differences
and in our case underestimate c̄. I will therefore present results based on
alternative prescriptions for c̄ as well. The computed values of c̄ are presented
in Table 2.2.

2.3.2 A prior for the contact LECs

The prior we place on the 2N contact LECs is a simple multivariate Gaussian
with independent variables of standard deviation ᾱ = 5. This encodes that
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Table 2.2: Results from the c̄ analysis. c̄n denotes the root-mean-squared value
of the expansion coefficients at a particular order n, while c̄(k) also includes lower
order coefficients. The number of outliers compared to the total number of kinematic
points is shown in the outlier columns; see text for how outliers are defined.

Order k c̄n c̄(k) Outliers c̄(k)
LO 0 1.17 1.17 1/54

NLO 2 4.95 2.08 15/108
NNLO 3 2.84 2.72 8/162

the LECs are expected to be of natural size and penalizes large (unnatural)
LEC values. All LECs at LO and NLO are contact LECs, so the prior at these
orders is

pr(~α|I) ∝ exp

(
−1

2
~αT · Σ−1

prior · ~α
)

(2.24)

where
(Σprior)ij = (Σprior,2N)ij = ᾱ2δij (2.25)

As there are two relevant LECs at LO,

~αLO =
(
C̃1S0, C̃3S1

)
, (2.26)

and ten at NLO,

~αNLO =
(
C̃np

1S0, C̃
pp
1S0, C̃3S1, C1S0, C3P0,

C1P1, C3P1, C3S1, C3S1−3D1, C3P2

)
,

(2.27)

the priors at LO and NLO will be two- and ten-dimensional, respectively.

2.3.3 NNLO prior

The contact LECs at NNLO are the same as at NLO, as odd-k 2N contact
terms are zero due to parity [18]. Three new πN LECs do enter at NNLO,
though, called c1, c3, c4.1 These LECs govern the strength of πN interactions
as well as the two-pion-exchange in 3N interactions [43]. In principle, πN
scattering data could be included in the likelihood to aid this inference, but
I instead exploit the power of the Bayesian framework and place a prior on

1Note that c1, c3, and c4 are not the same as the expansion coefficients cn introduced
earlier. This clash of notation has unfortunately become standard in the field.
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the πN LECs from a previous analysis. This prior, based on a so-called Roy-
Steiner (R-S) analysis [44], imposes tighter constraints than plain scattering
data would. The central values and covariance matrix are gathered from
Ref. [45]. The full NNLO prior will thus be a 13-dimensional Gaussian with
one block of the covariance matrix encoding tight constraints on the three πN
LECs about the central values from the R-S analysis, and one block encoding
the same permissive, uncorrelated prior from NLO for the contact LECs:

pr(~α|I) ∝ exp

(
−1

2
(~α− ~µ)T · Σ−1

prior · (~α− ~µ)

)
(2.28)

Σprior =

[
Σprior,πN 0

0 Σprior,2N

]
(2.29)

where ~µ is a vector with the central values from the R-S analysis for the πN
LECs and zeros for the contact LECs.

2.3.4 Beyond the 2N system

Venturing beyond two-nucleon interactions introduces at least two new LECs,
called cD and cE , which govern the strength of leading contact 3N interac-
tions. These parameters enter at NNLO in χEFT (assuming Weinberg power
counting) and influences predictions of all atomic nuclei except the deuteron.
Like any LEC, they are unknown and have to be inferred from data. Do-
ing so with rigorous statistical constraints is the focus of Paper A. My main
contribution to the study was to provide a tightly constrained Bayesian prior
for the 2N contact LECs to facilitate MCMC sampling over the full posterior
including the 3N LECs, thus handling the 2N LECs in a similar fashion to
how I treat the πN LECs in Paper B.

The approach to obtain this pdf is to set up a likelihood similar to that
described in Section 2.3.1 and perform a maximum likelihood estimation along
with a local estimation of the LEC covariance matrix using second derivatives.
The likelihood is essentially the same as in Equation (2.14) but with a couple
of simplifications. Perhaps the most important simplification is that we used
c̄ = 1 in the definition of the covariance matrix (2.22) for the truncation error.
Next the πN LECs were fixed to the central values from the Roy-Steiner
analysis and not allowed to vary. Finally we used Oref = Oexp rather than
using LO calculated observable values. The charge-dependent LO contact
LEC C̃nn1S0 is also included. This LEC is unconstrained by 2N scattering data
and an empirical 1S0 nn scattering length ann = −18.95 ± 0.40 fm [46, 47]
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and effective range rnn = 2.75 ± 0.11 fm [48] are included in the calibration
data in order to constrain it.

The set of LECs ~α∗2N that maximizes the likelihood was found by minimiz-
ing the negative log likelihood in two stages. The first stage entailed perform-
ing a broad search of the parameter space using the first-order Levenberg-
Marquardt optimization algorithm. From the resulting array of candidate
optima I picked the one that resulted in the maximum likelihood value and
used that as a starting point for a second-order Newton method, which re-
sulted in a further increase of the likelihood value.

I extracted an approximate LEC covariance matrix using the method out-
lined in Ref. [18]. The method relies on access to second-order derivatives of
the negative log likelihood. These derivatives were extracted to near machine
precision using so-called automatic differentiation (AD) [49], which will also
play a major role for the MCMC sampling detailed in the next chapter.

2.4 Predictive distributions

Bayesian posteriors of the form (2.6) may be used to propagate parameter un-
certainties to predictions of observables, resulting in predictive distributions.
Such predictive distributions can have either intrinsic or instrumental value,
or both, depending on the observable in question. Intrinsic value emerges
when the observable is difficult or impossible to empirically measure and the-
oretical predictions contribute information that is otherwise unattainable. An
example of this is the proton-proton fusion cross section in the energy do-
main relevant to main sequence stars [50]. Instrumental value, on the other
hand, enables us to check whether our model is useful by comparing model
predictions with data. In this thesis my primary concern regarding predictive
distributions is to check the consistency of model predictions with validation
data.

I model the true value of a scattering observable as the sum of the predicted
value at chiral order k and a corresponding truncation error according to

Õ(k) = O(k)
theo + δO(k)

theo, (2.30)

where I have added the index k to Õ to indicate the order at which the pre-
diction is made. Both terms on the RHS, and consequently Õ, are stochastic
variables described by pdfs. Assuming that we can draw samples from the

pdfs of both O(k)
theo and δO(k)

theo we can also sample the pdf of Õ, pr(Õ|D, k, I),

by adding the independent samples of O(k)
theo and δO(k)

theo. To derive a pdf
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pr(O(k)
theo|D, I) for O(k)

theo we begin by marginalizing in the LECs ~α, i.e. [51]

pr(O(k)
theo|D, I) =

∫
pr(O(k)

theo, ~α|D, I)d~α. (2.31)

Using the product rule we rewrite this equation as

pr(O(k)
theo|D, I) =

∫
pr(O(k)

theo|~α,D, I)pr(~α|D, I)d~α (2.32)

and then utilize the conditional independence between O(k)
theo and D given ~α

to arrive at

pr(O(k)
theo|D, I) =

∫
pr(O(k)

theo|~α, I)pr(~α|D, I)d~α. (2.33)

This expression is easy to sample assuming that we have an MCMC repre-
sentation of the LEC posterior pr(~α|D, I). All that is needed now to draw

a sample from the pdf of the true value Õ (2.30) is to add a sample of the
truncation error. This is easy as we have an analytical expression for the
truncation error pdf in Equation (2.20).
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Chapter 3

Hamiltonian Monte Carlo

Straightforward function evaluation of multidimensional pdfs, such as the N -
dimensional posterior pr(~α|D, I) in Equation (2.5) where ~α = (α1, . . . , αN ),
on a grid of ~α-values quickly becomes intractable as the number of parameters
increases. This is because the number of needed gridpoints grows exponen-
tially. Consider, for example, a 13-dimensional pdf like the NNLO posterior
in this work. Even if we limit ourselves to just four evaluations in each di-
rection, we end up with 413 ≈ 7 · 107 evaluations. It is furthermore difficult
to select a suitable grid, and many of the selected points are hence likely to
provide a negligible contribution to an expectation value 〈f(~α)〉 with regards
to the posterior for some function f of the LECs. What is required, then, is
a method that

1. minimizes the number of posterior evaluations, and

2. samples the relevant locations of the parameter space.

These requirements are fulfilled by Markov chain Monte Carlo (MCMC) sam-
pling, which samples the posterior by performing a guided random walk
through the parameter space.

In this chapter I first present an overview of MCMC methods and com-
mon issues encountered by practitioners. I then introduce the Hamiltonian
Monte Carlo (HMC) algorithm along with the most important details of the
specific Python implementation I have developed. The package, christened
montepython, is available at https://github.com/svisak/montepython.git.
A practical overview and a toy example is presented in Appendix A.
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3.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings (M-H) algorithm [52, 53] samples a pdf pr(~α) by
producing a Markov chain whose stationary (or equilibrium) distribution is
pr(~α). Given a current sample ~α, the algorithm proposes a new sample ~α′

from a proposal distribution q(~α′|~α). The new sample is accepted with a
probability a given by

a = min(1, r) (3.1)

where r is the Hastings ratio

r =
pr(~α′)q(~α′|~α)

pr(~α)q(~α|~α′) (3.2)

The next sample in the chain will be ~α′ if the update is accepted, or ~α if it is
rejected. The proposal distribution q(~α′|~α) is typically a normal distribution
N (~α, diag(σ2)) with some step size σ, but many other options exist. The
step size σ needs to be tuned so that the acceptance rate ā, i.e. the fraction
of accepted proposed samples, is around 0.25 [54] in order to explore the
parameter space efficiently. The M-H algorithm is a so-called single-walker
algorithm, i.e. the algorithm is only aware of a single location in the parameter
space at any given time.

3.2 The affine invariant ensemble sampler

Software packages implementing improved variants the original M-H MCMC
algorithm are currently the go-to tools for sampling parameter posteriors in
χEFT. A significant improvement to the original M-H algorithm called the
affine invariant ensemble sampler was introduced in 2010 [55]. A Python im-
plementation of this algorithm, known as emcee [56], is a workhorse of modern
Bayesian inference, in particular in the astrophysics community. The primary
reasons for its popularity are its high performance and easy tuning. Only 1-2
hyperparameters need to be tuned, and the algorithm usually performs well
without careful tuning. In this thesis I will usually use the name emcee to
denote both the general algorithm and the specific implementation. emcee, in
contrast to M-H, relies on multiple walkers and is thereby aware of multiple
locations of the parameter space at once. This ensemble of walkers is evolved
by using a proposal distribution for every walker based on the positions of the
other walkers in the ensemble.

To sample an N -dimensional pdf pr(~α) using emcee, the user first chooses
the number of walkers nw to use (which should ideally be high, nw ∼ 100 [56])
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and initializes them to some small volume in the parameter space. The algo-
rithm then updates the position ~αk of each walker k in sequence. The update
is performed by randomly choosing a walker j 6= k, drawing a random variable
Z from a distribution g(z|b) defined as

g(z|b) ∝
{

1√
z

if z ∈
[

1
b , b
]

0 otherwise
(3.3)

where b is a tunable hyperparameter, and calculating

~α′k = ~αj + Z(~αk − ~αj) (3.4)

where ~α′k is the proposed next position for walker k [56]. The new position
~α′k is then accepted with probability a calculated using a criterion similar to
the Metropolis rejection criterion (3.1):

a = min

(
1, ZN−1 pr(~α′k)

pr(~αk)

)
. (3.5)

A strong point of this algorithm is hinted at by the name affine invariant
ensemble sampler: the algorithm is insensitive to affine transformations of the
target pdf, i.e. it performs well even if the target pdf is highly skewed by
correlations between the sampled parameters. Most MCMC methods would
need tuning to perform well for such distributions.

3.3 Practical MCMC challenges

The primary drawback of the M-H algorithm, and most of its derivatives, is
that the samples it produces are strongly correlated in most practical appli-
cations. Correlations between samples decrease the amount of information
contained in the MCMC chain, requiring longer chains than would otherwise
be necessary. The problem is generally exacerbated when the dimensionality
of the sampled distribution pr(~α) increases.

To see why correlated MCMC samples are problematic it is instructive to
first consider a situation where the samples are uncorrelated. According to
the central limit theorem, the sampling variance of a parameter expectation
value 〈αi〉 is given by

Var [〈αi〉] =
Var [αi]

N
(3.6)
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where N is the length of the MCMC chain. If instead the samples of αi are
correlated, it can be shown that the sampling variance is given by [57]

Var [〈αi〉] = τ
Var [αi]

N
(3.7)

where in the limit N →∞

τ = 1 + 2

N∑

h=1

ρi(h). (3.8)

Here ρi(h) is the so-called autocorrelation function and measures the correla-
tion between samples separated by h samples. The variable h is usually called
the lag, and Equation (3.6) is a special case of Equation (3.7) with ρi(h) = 0
for all lags h.

τ is known as the integrated autocorrelation time and is greater than 1
in most practical MCMC applications. This increases the sampling variance
and the MCMC practitioner must increase N to compensate for the larger
sampling error, thus motivating us to define the effective sample size (ESS) as

ESS =
N

τ
. (3.9)

A large value for τ thus greatly increases the required length of the MCMC
chain, usually at great computational cost. Designing MCMC algorithms
that yield small τ values is therefore highly desirable, even if the cost of each
sample rises dramatically. Consider, for example two MCMC samplers A and
B. Sampler A yields τA ≈ 100 for a particular problem while Sampler B yields
τB ≈ 1, and the computational cost per sample is CA and CB , respectively.
As long as CB < 100CA, Sampler B will be more efficient.

Of note is that the definitions of τ and ESS allow for the tantalizing pos-
sibility of effective sample sizes that are greater than the actual number of
samples N if τ < 1, which can occur if the samples are anticorrelated. In such
a situation, sometimes known as antithetical sampling [58], Equation (3.9)
becomes an advantage rather than a burden. This effect will become manifest
in Chapter 4. It is important to keep in mind that the integrated autocorrela-
tion time will in general be different for each expectation value one computes
using the MCMC chain, i.e. one should not only compute τ for Var [〈αi〉] but
also for Var [〈f(~α)〉] where f is some function of ~α. Some care is required for
computing τ to avoid a signal-to-noise problem [57]; we use a Fourier method
implemented in emcee.
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Most MCMC algorithms have sampling hyperparameters that can be tuned
to each specific problem in order to increase their sampling efficiency. For ex-
ample, the proposal distribution in the M-H algorithm is typically a normal
distribution of the same dimensionality as the target distribution. The pro-
posal’s covariance matrix is in the simplest case an identity matrix multiplied
by a scalar, but performance gains can usually be achieved by using a diagonal
matrix with different step sizes for each parameter, or in the most general case
a matrix with off-diagonal elements to account for correlations between the
target parameters. In the latter case there are thus O(n2) tunable hyperpa-
rameters for an n-dimensional problem, and for maximum performance each
of these need to be tuned correctly. Regardless of tuning, I find that both the
M-H algorithm and emcee produce chains with strong autocorrelations when
employed to sample LEC posteriors (see also Chapter 4).

Another practical challenge is multimodal target distributions. In infi-
nite time all properly constructed MCMC algorithms will explore the entire
parameter space and converge to the true target distribution, but in prac-
tice MCMC will frequently fail to move between highly probable areas that
are separated by areas of very low probability density. This is a formidable
problem without easy solutions, but methods to alleviate it exist. One ex-
ample is parallel tempering methods [59, 60], wherein the target distribution
is flattened to make mode transitions more probable. A special sampling al-
gorithm known as nested sampling [61] can also be employed to deal with
multimodal distributions. Nested sampling is actually designed for comput-
ing the Bayesian evidence (the denominator in Bayes’ theorem (2.5), useful
for model selection [62]) but yields posterior samples as a by-product and is
inherently well-suited to deal with multimodality.

As mentioned in the introduction to this chapter, the motivation for MCMC
is to combat the curse of dimensionality which very quickly makes function
evaluation on a grid intractable. Unfortunately, MCMC also suffers from the
same curse, albeit to a lesser degree. To see why, it is important to realize that
the M-H algorithm performs a (guided) random walk through the parameter
space. Each new proposed sample is drawn by taking a random step from the
current sample. As the dimensionality of the problem increases, the fraction
of interesting (i.e. probable) space decreases compared to the total parame-
ter space. Obviously, walking randomly through a parameter space of mostly
uninteresting regions generally results in proposed samples that are unlikely
to be accepted, thus causing low acceptance rates ā. The step size must be
decreased to combat this behavior and keep ā reasonable, but reducing the
step size unfortunately increases the autocorrelation. The end result is a small

25



effective sample size and long runtimes. All MCMC algorithms suffer from
this problem to a greater or lesser extent, but one algorithm—Hamiltonian
Monte Carlo—is particularly adept at minimizing random walk behavior and
circumventing the curse of dimensionality.

3.4 Hamiltonian Monte Carlo

In 1987, physicists working with lattice QCD simulations introduced a new
MCMC algorithm based on Hamiltonian dynamics to combat the problems of
correlated samples and poor scaling with increased target dimensionality [28].
They dubbed the algorithm Hybrid Monte Carlo but it has subsequently be-
come known as Hamiltonian Monte Carlo (HMC) [27].

HMC is based on the Metropolis-Hastings algorithm, but the method for
proposing a new sample is radically modified. Rather than randomly drawing
a perturbation of the current sample, the pdf to be sampled is treated as a
potential energy surface. The current sample of the chain is regarded as the
location of a particle, which is given a momentum that is randomly drawn
from a predefined distribution. The algorithm then simulates the motion of
the particle by solving the Hamiltonian dynamics for a finite length of time,
and then computes the Hastings ratio for the joint pdf of the final position
and momentum variables and accepts or rejects the proposed sample in accor-
dance with Equation (3.1). The momentum variable is then discarded. The
proposed sample is likely to be accepted even though the distance from the
current sample is great. With suitable choices of simulation length and other
tuning parameters, the result is a new sample of the target pdf that is uncor-
related with the previous sample. Due to this, the length of the MCMC chain
produced by HMC can be drastically reduced compared to chains with a high
degree of correlation as less correlated samples are equivalent to a shorter in-
tegrated autocorrelation time and reduced sampling error. The strongest ben-
efit of using HMC is that the algorithm is capable of producing uncorrelated
samples even when the target pdf is high-dimensional, as the Hamiltonian
dynamics make it less susceptible to the curse of dimensionality than other
MCMC algorithms.

Simulating Hamiltonian dynamics is computationally expensive compared
to the method of randomly proposing new samples used in M-H, and the reduc-
tion in overall chain length must be sufficiently large to warrant the increased
cost per sample. In particular, the algorithm requires multiple evaluations
of the target pdf’s gradient ~∇pr(~α) in the course of proposing new samples.
A mere lack of access to the gradient information may be a showstopper for
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HMC depending on the implementation of the target pdf, for example if the
pdf is evaluated using third-party software that does not provide gradient
information. Evaluating the gradient is ideally done through AD unless an
analytical expression for the gradient is available. AD generally incurs a fac-
tor ∼ 2 overhead compared to just computing the value pr(~α) of the target
pdf [63]. I employ AD to perform the HMC samplings in this work.

In the following subsections I present the HMC algorithm in detail. For
the purpose of the analysis presented in this thesis, I have written a custom
HMC implementation (montepython) using Python [64] and NumPy [65] in
lieu of using a standard package such as Stan [66]. Specific implementation
choices will be presented as appropriate. The implementation presented here
is largely based on Ref. [27]. A conceptual introduction to HMC can be found
in Ref. [67].

3.4.1 From probability to energy

The link between an energy function E(·) and a pdf pr(·) is provided by the
canonical (Boltzmann) distribution from statistical mechanics,

pr(·) =
1

Z
exp

(−E(·)
T

)
, (3.10)

where Z is a normalization constant and T is the temperature of the system.
The energy function E will in the case of HMC be the Hamiltonian H (note
that H is a technical MCMC construct that is physically unrelated to any
quantum mechanical Hamiltonian). H is the sum of the potential and kinetic
energies,

H(~α, ~p) = U(~α) +K(~p), (3.11)

where ~α—the parameters whose pdf we wish to sample—can be thought of as
the position of the MCMC particle and ~p its momentum. The normalization
constant Z can be set to any convenient positive constant as it is indepen-
dent from ~α and ~p and does not impact the parameter estimation, and it will
later be cancelled out in the Metropolis rejection criterion anyway (see Equa-
tion (3.23)). In the following, we let Z = 1. The joint pdf of ~α and ~p, pr(~α, ~p),
can thus be expressed as

pr(~α, ~p) = exp

(−H(~α, ~p)

T

)
(3.12)

= exp

(−U(~α)

T

)
exp

(−K(~p)

T

)
. (3.13)
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The joint pdf pr(~α, ~p) can be regarded as the product of two canonical distri-
butions, one for ~α and one for ~p, and we identify the form of U(~α) as

U(~α) = − ln pr(~α). (3.14)

with T = 1. In other words, U(~α) is the negative log posterior.
The form of the kinetic energy function K(~p) is up to the implementer

of the algorithm and the choice can have a powerful impact on the overall
performance of the sampler. Since many target distributions encountered
in practice are approximately Gaussian, it is common practice to employ a
multivariate normal distribution for ~p:

pr(~p) ∝ exp

(
−1

2
~p TM−1~p

)
. (3.15)

Strictly speaking, the pdf for ~p is conditional on ~α since

pr(~α, ~p) = pr(~α)pr(~p|~α), (3.16)

but I omit the conditional as ~α and ~p are conditionally independent by design.
The result is a quadratic form for K(~p),

K(~p) =
1

2
~p TM−1~p, (3.17)

where M is a problem-specific, user-chosen, positive-definite symmetric ma-
trix, frequently called the mass matrix in a continuation of the physical anal-
ogy. M effectively sets the scale for how the sampler will traverse the param-
eter space in the various directions, and consequently influences the efficiency
of the sampler. My implementation uses Equation (3.17) as the form of the
kinetic energy.

Rather than sampling the posterior pr(~α) directly, the HMC algorithm
actually samples the joint pdf pr(~α, ~p) and then marginalizes over the auxiliary
momentum, i.e.

pr(~α) =

∫
pr(~α, ~p)d~p, (3.18)

to obtain the sought posterior for the parameters.

3.4.2 Hamiltonian dynamics

A particle moving in a d-dimensional space governed by Hamiltonian dynamics
moves through the 2d-dimensional phase space (~α, ~p) on a hypersurface of
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constant energy. The time evolution of the system is described by Hamilton’s
equations

dαi
dt

=
∂H

∂pi
(3.19)

dpi
dt

= −∂H
∂αi

(3.20)

where i = 1 . . . d. The form of the Hamiltonian, Equation (3.11), allows us to
rewrite Hamilton’s equations as

dαi
dt

=
∂K

∂pi
= (M−1p)i (3.21)

dpi
dt

= − ∂U
∂αi

. (3.22)

Note that ∂U/∂αi is a partial derivative of the negative log posterior. We
must therefore be able to evaluate this partial derivative in order to simulate
Hamiltonian dynamics and, by extension, use HMC sampling.

We may now move the particle to another position by solving Equa-
tions (3.21) and (3.22) for a finite period of time. The prescription for eval-
uating the potential energy, Equation (3.14), associates high probability with
low potential energy. Intuitively, then, we expect the MCMC particle to tend
towards areas of high probability density, while it can still reach low density
areas given high momentum.

3.4.3 Advancing the HMC sampler

With the tools in place for gliding along constant-energy surfaces and for
associating energies with probabilities, the stage is set for an MCMC sampler
based on Hamiltonian dynamics. Assuming we have a parameter sample ~α,
we proceed to draw a random momentum ~p from Equation (3.15). We then
solve Equations (3.21) and (3.22) starting from (~α, ~p) for a period of time and
end up with new position and momentum vectors. The new momentum is
subsequently negated for reasons that will be made clear momentarily, and
the result is a proposed sample (~α′, ~p ′). For a hypothetical exact solution to
Hamilton’s equations the joint probability pr(~α′, ~p ′) for the proposed sample
would be exactly equal to pr(~α, ~p ) due to the conservation of energy. We
could then simply accept the sample and discard the auxiliary momentum ~p ′,
store the new parameter sample ~α′, and repeat the process starting from the
new sample.
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In practice it is necessary to solve Equations (3.21) and (3.22) numeri-
cally. The unavoidable numerical error will cause the total energy H(~α, ~p) to
only be approximately conserved, leading to a difference between the prob-
abilities pr(~α, ~p ) and pr(~α′, ~p ′). This difference would, if uncorrected, cause
the Markov chain to converge to a different stationary distribution than the
sought pr(~α). The solution is to vet the proposed sample with the Metropolis
rejection criterion. We compute the Hastings ratio, Equation (3.2), for the
joint probabilities:

r =
pr(~α′, ~p ′)
pr(~α, ~p )

= exp(−H(~α′, ~p ′) +H(~α, ~p )). (3.23)

The proposal distribution q(·) in Equation (3.2) is in this case symmetrical,
i.e.

q(~α′, ~p ′|~α, ~p )

q(~α, ~p |~α′, ~p ′) = 1, (3.24)

because we previously negated the momentum so we do not need to in-
clude that factor. The new sample is then accepted with the probability
a = min(1, r) given by Equation (3.1). The Metropolis rejection criterion
requires the so-called detailed balance condition to be satisfied, meaning that

pr(s)T (s, s′) = pr(s′)T (s′, s) (3.25)

where s = (~α, ~p ) and T (s, s′) is the transition probability to move from s to
s′. The MCMC update must be reversible and volume-preserving for (3.25)
to hold, a condition that is upheld by HMC since Hamiltonian dynamics are
time-reversible and volume preserving. The method for solving Hamilton’s
equations must be chosen such that these properties are observed.

An illustration of how HMC navigates the joint position-momentum pa-
rameter space is shown in Figure 3.1, using a one-dimensional (1D) standard
normal distribution N (0, 1) as an example posterior. In the upper plot the
position α in the 1D parameter space is shown on the x axis and the mo-
mentum is shown on the y axis. The algorithm was started in α0 = 0 and
randomly drew a momentum p0 ≈ 0.18 from a standard normal distribu-
tion. It then evolved α and p using Hamilton’s equations for a fixed period of
time. Because the sampler was started at the maximum a posteriori (MAP)
point (i.e. the peak of the sampled distribution), the momentum immediately
started decreasing—remember that high probability translates to low poten-
tial energy. After some time the HMC particle lost all momentum and started
falling towards the MAP point again, ending up at the opposite side of the
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Figure 3.1: A detailed look at how HMC navigates through the parameter space
when sampling a one-dimensional standard normal distribution π(α) = N (0, 1). (a)
five particle trajectories through the joint position-momentum space. The color
coding follows the rainbow, i.e. the first trajectory is red, the second orange, and so
on. The gray arrows indicate (random) resamplings of the momentum. The dark red
cross indicates the starting position with α0 = 0 and a random momentum. The end
points of each trajectory are the MCMC samples; intermediary states are discarded.
(b) the same trajectories and color coding as above, but with the corresponding pdf
value on the y axis. The y axis is inverted to visualize how HMC operates: the
maximum of the pdf corresponds to the lowest potential energy and the particle
tends to “fall” towards this position. The wide and pale parts of the lines are the
beginnings of the trajectories, while the narrow and saturated parts are the ends.
Note that the curves have vertical offsets to aid visualization. The accepted samples
of α are shown as crosses.
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MAP point. At this point the simulation stopped, and the proposed sam-
ple was vetted (and accepted) by the Metropolis rejection criterion. A new,
much higher momentum was randomly drawn and the process repeated. The
resampled momenta are indicated by gray arrows; note that the arrows are
always vertical, i.e. the resampling of momentum does not affect the position.
In the lower figure the pdf value is on the y axis and we get a visual repre-
sentation of the pdf as a potential energy surface: the HMC particle tends to
fall towards the MAP point, but can climb high given sufficient momentum,
thus exploring the tails of the distribution. Note that the y axis is inverted in
order to reflect the inner workings of HMC. Attentive readers may have noted
that the momentum is not negated at the end of each trajectory; the reason
for this is that the pdf for the momentum, Equation (3.15), is symmetrical
with pr(~p) = pr(−~p) which means that the negation of the momentum does
not need to be done in practice because Equation (3.24) holds true without
the negation. This is obviously not true if pr(~p ) 6= pr(−~p ).

3.4.4 Leapfrogging the parameter space

Many algorithms exist for solving a set of differential equations like (3.21)-
(3.22), but the HMC algorithm places important requirements on the solver:
the numerical error must not be accumulative, and the solver must be time-
reversible and volume preserving. These requirements disqualify several well-
known methods, such as e.g. the Euler or Runge-Kutta methods. If the
error was accumulative, the length of the particle trajectory would be limited
because a large accumulated error would result in an unacceptably low ac-
ceptance rate. Worse, if the method is not reversible and volume-preserving,
the Markov chain could converge to the wrong stationary distribution as the
detailed balance condition is unsatisfied. To get around these issues HMC
uses a special type of integrators called symplectic integrators. The local dis-
cretization error of a symplectic integrator is equally likely to be positive or
negative in each step of the integration as long as the step size (i.e. discrete
time step) ε is below some threshold value at which the energy diverges. The
result is that the total energy is conserved to a high degreee for any arbitrarily
long trajectory as long as ε is smaller than the threshold value, and the ac-
ceptance probability a remains high even for extremely long trajectories. The
appropriate step size needs to be determined by trial-and-error in practice.

The standard symplectic integrator used in HMC is known as the leapfrog
method, a second-order method similar to the velocity Verlet method [68].
Central to its function as a symplectic integrator is to take half-steps ε/2 for
advancing the momentum, and one iteration is completed as follows.

32



1. Starting from a position-momentum pair (~α0, ~p0), the momentum is ad-
vanced by a half-step

~pε/2 = ~p0 −
ε

2
~∇U(~α0). (3.26)

2. The position is then advanced by a full step

~αε = ~α0 + ε~∇K(~pε/2). (3.27)

3. Finally, the momentum is advanced by another half-step

~pε = ~pε/2 −
ε

2
~∇U(~αε). (3.28)

More than one iteration is usually performed, in which case steps 3 and 1 may
be combined except for the first and last iterations. The calculation proceeds
as follows for t = 0, ε, . . . , εL where L is the number of iterations.

1. First the momentum is advanced by a half-step

~pε/2 = ~p0 −
ε

2
~∇U(~α0) (3.29)

2. Then

~αt+ε = ~αt + ε~∇K(~pt+ε/2) (3.30)

~pt+3/2ε = ~pt+ε/2 − ε~∇U(~αt+ε) (3.31)

is repeated for 0 ≤ t ≤ ε(L− 2).

3. Finally the position and momentum at the end of the trajectory is com-
puted as

~αεL = ~αε(L−1) + ε~∇K(~pε(2L−1)/2) (3.32)

~pεL = ~pε(2L−1)/2 −
ε

2
~∇U(~αεL). (3.33)

The proposed sample (~αεL,−~pεL) is then vetted through the Metropolis up-
date as discussed in Section 3.4.3. Figure 3.2 shows an example of how the
leapfrog integrator navigates the phase space; notice that each trajectory be-
gins and ends with a half-step in the momentum.
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Figure 3.2: Symplectic leapfrog integration using L = 4 iterations visualized during
three HMC samples of an N (0, 1) distribution. The color coding is the same as in
Figure 3.1 (a). The black circles are the constant energy curves that the integrator
is approximating.

The leapfrog hyperparameters ε and L need to be chosen by the user
in the standard HMC algorithm I have implemented here. The step size ε
directly affects the acceptance rate and should be tuned to be close to, but
not greater than, the threshold value for which the total energy can no longer
be conserved. A nice property of HMC is that the acceptance rate drops
precipitously if ε is greater than the threshold value; the lack of quiet failures
makes it easy to diagnose a too-large ε. The step size should not be chosen too
small, either, as this would result in wasteful computational effort. Tuning ε
such that the acceptance rate becomes around 90-95% is a good compromise
between stability and efficiency in my experience. The upper bound for ε
is generally determined by the most constrained parameter in the posterior
pr(~α) that is being sampled by HMC.

The number of leapfrog iterations (“steps”) L can drastically influence the
performance of the sampler, and it should neither be chosen too high nor
too low. A too-low choice partly defeats the purpose of using HMC in the
first place, as it would result in a random-walk-like behaviour with highly
correlated samples. In contrast, a too-high choice of L would waste valuable
CPU cycles without improving performance. Note that choosing a very small
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step size ε needs to be compensated for by increasing L in order to avoid
random walks.

Neither ε nor L are fixed in montepython. Rather, the user picks nominal
values and random values ε∗ and L∗ are drawn from predefined probability
distributions prior to each invocation of the leapfrog solver. The parameters
are drawn from

ε∗ ∼ U
(

1

2
ε,

3

2
ε

)
(3.34)

L∗ ∼ U
{

1

2
L,

3

2
L

}
,

1

2
L ≥ 1. (3.35)

The reasons for randomly perturbing the leapfrog parameters are threefold.
First, varying the trajectory length εL can decrease correlations between sam-
ples. Second, a fixed trajectory length may result in oscillatory behavior if εL
happens to approximately match some periodic feature of the target distri-
bution. To see this, revisit Figure 3.1 and imagine that the trajectories were
about 1.5 times longer: the initial and final states would be almost identical
each time. Third, the target pdf may have smaller sections where the gradi-
ent is very steep so that the nominal ε is too large to resolve features in that
section of the parameter space, and by drawing ε from a distribution we may
occasionally draw a small enough value for the sampler to be able to efficiently
explore this region.

Extensions of HMC whose purpose is to relieve the user from the burden
of tuning ε and L exist. The choice of ε may be automated by letting the
computer try different values and adjusting based on acceptance rates of small
trial runs. The state-of-the-art No-U-Turn Sampler (NUTS), which is based
on HMC, automates the choice of L using heuristic rules for when continuing
a trajectory no longer increases the performance of the sampler. Both of these
improvements are described in Ref. [69].

3.4.5 Tuning in to the target

An array of tunable HMC parameters have been introduced in the previous
subsections: the step size ε, the number of leapfrog iterations L, and the mass
matrix M. A drawback of HMC is the need to carefully tune these hyperpa-
rameters to each target distribution, or risk poor performance. However, as
mentioned in Section 3.4.4, the tuning of ε and L may be automated, and as
we shall see the same holds true forM, paving the way for a fully automated
setup. montepython, in its current state of development, uses a manual tun-
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ing procedure and in this section I will describe the process of tuning these
parameters to achieve efficient sampling.

The keen reader may have noticed that ε, L, and M are interlinked and
changing one may force us to change one (or both) of the others. The link
between ε and M can be seen by inspecting Equation (3.27): ε multiplies
~∇K(~p), which in turn depends onM. Both ε andM relate to the topography
of the sampled posterior. The link between L andM is similar to that between
ε and L, in that an unsuitable choice of M forces L to increase in order to
maintain short autocorrelation times in all directions. The tuning procedure
is iterative to an extent because of these relationships, and there is no fixed
order in which to tune the parameters. It is, however, often best to start by
estimating a ballpark value for ε.

Leapfrog step size and number of iterations

For tuning ε we exploit that the acceptance rate is independent of L (a con-
sequence of using a symplectic integrator) and use a small number of leapfrog
steps, L ≈ 3, to save time. We need an initial guess of ε; this guess may
in some cases be completely blind, or it may be educated based on previous
experience of similar target distributions. For example, choosing ε ≈ 0.5 as a
first guess is reasonable if the target distribution is a Gaussian of width 1. We
then run the sampler and collect a few tens of samples, and monitor ā. If ā is
low (typically 0) we decrease ε by an order of magnitude and try again. If ā is
100% we instead increase ε and try again. We stop once we see an acceptance
rate of around 60-90%. The step size may need to be modified later if the
acceptance rate changes during production runs.

Careful tuning of L is rather pointless untilM is locked in since the number
of leapfrog steps is intimately linked to the choice of the mass matrix. We have
found that choosing L ≈ 10-20 yields excellent performance for approximately
Gaussian distributions with around a dozen or so parameters, assuming that
the mass matrix (and ε) is well chosen. To quickly assess the choice of L—and
the overall performance of the sampler—it is useful to study trace plots of each
individual parameter. The trace plots will reveal no significant structures (i.e.
autocorrelations) if the sampler is performing well. Autocorrelations may be
quenched by increasing L, at the obvious expense of increased computational
effort, or by improving the mass matrix. The latter alternative should take
precedence. Two example traceplots are shown in Figure 3.3, where I have
sampled a 1D standard normal distribution with two different values of L
while keeping other parameters fixed. I have deliberately chosen a too-low
value for the step size ε in order to accentuate the impact of L. The left
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panel, with L = 3, show clear correlations between subsequent samples. In
fact, the sampler has barely visited positive parameter values over the course
of the 100 samples; this sampler is not performing well. The right panel
on the other hand, with L = 25, performs much better: there are few, if any,
correlations between samples and the sampler moves quickly across the typical
set of parameter values.
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εL = 0.1 · 3
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εL = 0.1 · 25

Figure 3.3: Parameter traces for two HMC samplings of a 1D N (0, 1) distribution.
Left: L = 3. Right: L = 25. Note the difference in correlation structure between
the two chains.

Mass matrix

Both ε and L are scalar values with no distinction for each individual parame-
ter αi and thus cannot be used to compensate for differences in scale between
parameters. Like M-H, and unlike emcee, HMC is sensitive to such differences
of scale and we need a way to account for them. This is the role of the mass
matrix.

As an example, picture a two-dimensional Gaussian target distribution
with identical variances σ2

1 = σ2
2 = 1 for the two parameters, as shown in

Figure 3.4 (a). Assuming we are using an identity mass matrix, M = I,
the sampler will explore both parameters with equal efficiency, travelling a
distance of order εL in both directions. But what if we have σ2

1 6= σ2
2 , e.g.

Σ = diag(σ2
1 , σ

2
2) = diag(1, 100), (3.36)

where Σ is the covariance matrix of the target distribution, as in Figure 3.4
(b)? The sampler will still travel a distance of about εL in both directions. The
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Figure 3.4: Two-dimensional Gaussian pdfs N (0,Σ). The indicated contours enclose
39% and 86% of the probability mass, respectively. (a) Σ = diag(1, 1). (b) Σ =
diag(1, 100).

result is that about ten times more samples are needed to explore the second
parameter, i.e. we will have correlated samples of the second parameter.

The solution to the issue of disparate scales is, in a continuation of the
physical analogy, to decrease the mass of the MCMC particle in the less con-
strained direction, thus increasing its velocity. A more suitable mass matrix
for the second example above will be

M = diag(m2
1,m

2
2) = diag(1, 0.12) (3.37)

where we have decreased m2 by the same factor that σ2 increased. Note
that M = Σ−1. M will in the most general case have non-zero off-diagonal
elements to reflect correlations between the target parameters αi.

I have found that constructing a mass matrix that captures the most im-
portant features of the target distribution is critical to the performance of
HMC. An improper choice of M may degrade the performance by several
orders of magnitude. I have tested four different methods for constructing
M, two of which—(a) and (d)—are completely general, and two—(b) and
(c)—that are specific to sampling χEFT LEC posteriors:

(a) M = I. This is the least informed mass matrix, but the easiest to
construct. It is the default mass matrix in montepython.
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(b) Exploiting the naturalness expectation of the LECs, i.e. the expectation
that the LECs should be O(1) in suitable units of the breakdown scale
of χEFT. The contact LECs at LO-NNLO are expected to be of size [4]

∣∣∣C̃i
∣∣∣ ∼ 4π

F 2
π

, |Ci| ∼
4π

F 2
πΛ2

b

(3.38)

where Fπ ' 92 MeV is the pion decay constant. Inserting Λb = 600
MeV (see Section 2.3.1) yields

∣∣∣C̃i
∣∣∣ ∼ 0.15 104 ·GeV−2, |Ci| ∼ 0.4 104 ·GeV−4. (3.39)

A diagonal “naturalness” mass matrix can be constructed given the
assumption that the relative sizes of C̃i and Ci also hold for the corre-
sponding standard deviations.

(c) Exploiting published LEC uncertainties from a previous study, e.g. Ref. [19]
or [18], to construct a diagonal mass matrix.

(d) Performing a preliminary sampling with a mass matrix based on the
method in (c) and estimating the covariance matrix Σ~α of the parameters
based on the resulting Markov chain. The mass matrix is then set to
the inverse of the estimated covariance matrix, i.e. M = Σ−1

~α [67].

I have found that only Method (d) yields high performance in practice. The
mass matrices used to produce the posteriors presented in the next chapter
were constructed using Method (d). Around 500 preliminary samples were
necessary, although I used 2,000 at LO and NLO due to an abundance of
samples. Note that the initial sampling required in Method (d) does not
have to be performed using HMC at all; indeed, it may be preferable to use a
tuning-insensitive MCMC sampler such as emcee for the preliminary sampling.

It may be necessary to revisit the tuning of ε after the mass matrix has
been updated. In some cases it is necessary to perform another full iteration
of tuning if the sampler shows signs of sub-par performance.
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Chapter 4

Posteriors, efficiency, and
convergence

In this chapter I present the extracted LEC posteriors at LO, NLO, and NNLO
of χEFT from inference using 2N scattering data and assess the efficiency of
HMC. I also address the question of MCMC convergence, as is necessary to
judge the reliability of the results.

4.1 Sampling procedure

As noted in the previous chapter, the sampling performance of HMC is sensi-
tive to the topography of the target pdf and hyperparameter tuning is usually
required in order to achieve high performance. Here I will summarize the
procedure I have used to produce the results presented in this chapter. The
procedure is essentially the same for each chiral order, with a minimal sim-
plification at the lowest order. It should readily generalize to an extended
analysis at higher orders and also to different fields of research.

A starting point ~α0 that is reasonably close to the mode of the pdf is a
valuable base for the tuning procedure. Such a point is now fairly easy to
acquire in the context of χEFT due to numerous previous studies, see e.g.
[17–19, 70]. In the absence of such explicit prior information one may try
to locate the mode using e.g. optimization or history matching [71]. I have
used the preliminary LEC values ~αprel, see Section 2.3.1, as starting points.
It should be noted that HMC itself is rather adept at finding regions of high
probability density as the HMC “particle” will tend towards the mode (or one

41



Table 4.1: Detailed statistics of the HMC chains during the tuning and sampling
phases. ntune is the number of samples gathered during the tuning procedure. M is
the number of parallel chains. ntotal refers to the total number of samples across all
M chains. The HMC parameters ε and L denote the step length and total number
of steps taken with the leapfrog algorithm to integrate Hamilton’s equations for each
HMC step, and ā is the average acceptance rate during the production runs.

Order ntune M ntotal ε L ā
LO 2,000 3 50,063 0.1 8 99%

NLO 2,000 10 57,134 0.09 20 99%
NNLO 591 3 10,155 0.08 20 99%

of the modes in the case of a multimodal pdf), so while tools such as history
matching are certainly helpful, they are not mandatory.

Once a region of interest has been identified it is time to tune the three
hyperparameters of the HMC sampler: the step size ε, the number of leapfrog
steps L, and the mass matrix M. I did this in two stages, where the purpose
of the first stage is to acquire the mass matrix and the second stage is for fine-
tuning ε and L. The objective of the first stage is to approximate a covariance
matrix of the sampled parameters; this covariance matrix is then inverted to
yield the mass matrix. I achieve this by performing an initial HMC sampling
with a basic mass matrix constructed following Method (c) from Section 3.4.5.
In the second stage I adjust ε (if necessary) to yield an acceptance rate ā of
approximately 90% and perform short sampling runs to find the smallest L
that yields uncorrelated samples as judged from visual inspection of traceplots.
This procedure uses HMC for the preliminary samplings, but as noted in
the previous chapter, it may be advantageous to employ another sampling
algorithm for this purpose.

Summary sampling statistics are shown in Table 4.1, including the number
of samples used during tuning, number of parallel chains, total number of
samples, and acceptance rate. In general, at least M = 3 chains produced
with identical sampling hyperparameters—but different starting points—are
needed to assess convergence. I used M = 10 at NLO in order to see if this
yielded any appreciable advantage beyond faster collection of samples (it did
not). I have discarded the first samples of each chain in order to avoid bias
from the choice of starting point; this procedure is called “burn-in”. The
number of burn-in samples varies between chains, but is of the order of 100
samples.
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4.2 Extracted LEC posteriors

4.2.1 LO

As we shall see in Chapter 5, the LO chiral potential using Weinberg power
counting often yields insufficiently accurate predictions to be of practical value,
yet sampling its parameters has high instrumental value for a couple of rea-
sons. First of all there is generally a dearth of information regarding the
EFT convergence pattern and the leading order provides a highly influential
piece of information for characterizing the EFT truncation error. Second, this
sampling is very manageable due to its low number of parameters (two) and
relatively low computational cost, which is about 2.5 s per likelihood evalua-
tion in our implementation on modern CPUs. The LO posterior thus bridges
the gap between toy models and the truly challenging higher-order posteriors.
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Figure 4.1: LO posterior sampled with HMC. The sampling consists of three inde-
pendent MCMC chains totalling 50,063 samples with the first ten samples of each
chain discarded as burn-in. The LECs are shown in units of 104 ·GeV−2. The inner
(outer) gray contour line encloses 39% (86%) of the probability mass. The dot-
dashed vertical lines indicate a 68% equal-tailed credibility interval (see Chapter 5).
White areas indicate zero counts.
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The HMC sampling at LO was performed following the recipe outlined
earlier. A short preliminary sampling was performed using an identity mass
matrix. A parameter covariance matrix was extracted from the chain using
the cov function in NumPy [65], and the mass matrix was set to the inverse
of the extracted covariance matrix. The two leapfrog parameters ε and L (see
Table 4.1) were chosen by inspecting acceptance rates and trace plots, fol-
lowed by production runs using M = 3 parallel chains totalling about 50, 000
samples. This rigor is not strictly necessary at LO because the posterior is
not particularly challenging; the identity mass matrix already performed quite
adequately in this case. I chose to optimize the sampling performance anyway
as it provided valuable hands-on experience in a relatively controlled setting.

The extracted LO posterior pdf is shown in Figure 4.11. The LECs, es-
pecially C̃1S0, are well-determined with almost vanishingly small uncertain-
ties and are not significantly correlated. Quantitatively, this result closely
resembles central values and uncertainties reported in previous (frequentist)
studies such as Ref [18], which is unsurprising because the likelihoods used
are very similar and the prior used here is essentially uniform in the region
of the likelihood peak. However, the interpretation is fundamentally differ-
ent. Figure 4.1 shows an extracted probability distribution for the parameters,
whereas Ref. [18] reports the maximum likelihood estimator of the data, with
covariances estimated from the local gradients at the MLE.

4.2.2 NLO

The NLO potential in χEFT introduces seven k = 2 renormalizing contact
LECs in partial waves with orbital angular momentum l ≤ 2. Furthermore,
the LO 1S0 LEC is split into three LECs—C̃nn1S0, C̃

np
1S0, and C̃np1S0—to account

for charge-independence breaking effects seen in e.g. 1S0 2N scattering lengths
stemming from differences in the up and down quark masses and electromag-
netic interactions between quarks [4]. The C̃nn1S0 LEC can be estimated from
e.g. scattering lengths extracted from low-energy scattering cross sections.
I have omitted this LEC from my samplings, bringing the total number of
LECs to estimate at NLO to ten. This is a far more challenging problem than
the LO sampling, and proper tuning is required in order to keep the com-
putational cost within reasonable limits. The tuning procedure is the same
as at LO, except that the mass matrix used in the preliminary sampling was
informed by parameter uncertainties from a previous study [19].

1The software package used to produce this and subsequent so-called corner plots is
available at https://github.com/svisak/prettyplease.git
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Figure 4.2: NLO posterior sampled with HMC. The LECs are shown in units of
104·GeV−2 for the LO LECs and 104·GeV−4 for the NLO LECs. The inner
(outer) gray contour line encloses 39% (86%) of the probability mass. The dot-
dashed vertical lines indicate a 68% credibility interval.
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The extracted NLO posterior pdf is shown in Figure 4.1 and the standout
feature of this pdf compared to the LO pdf—beyond the increased number of
parameters—is that several pairs of parameters now show strong correlations
or anticorrelations (indicated by tilted 2D marginal distributions) hinting at
possible parameter redundancies. For example, the isospin symmetry break-
ing LECs discussed above are quite strongly correlated and display nearly
identical distributions. The LO LECs in the 1S0 and 3S1 partial waves are
also anticorrelated with their higher-order counterparts. Beyond these corre-
lations, most parameters are notably uncorrelated. In general the NLO LECs
are less constrained than the LO LECs in terms of the widths of the credibility
intervals.

The computational cost of a single evaluation of the NLO likelihood is only
modestly higher than at LO, with each evaluation taking around 4 s compared
to the 2.5 s at LO. The increased sampling difficulty stems largely from the
increased dimensionality of the posterior.

4.2.3 NNLO

The three πN LECs c1, c3, c4 entering at NNLO bring the number of param-
eters to be estimated to thirteen. This posterior presents a more difficult
sampling problem than the NLO posterior. The reason for this is not pri-
marily the greater dimensionality of the sampled pdf, but rather a significant
increase in the cost per sample which is around three to four times higher at
NNLO compared to NLO. This increase originates from the increased number
of diagrams that need to be calculated. The specific cost increase is of course
specific to the implementation I am using.

The NNLO posterior, shown in Figure 4.3, again reveals a strong corre-
lation and overall similarity between the isospin breaking LECs. However,
the anticorrelations between the LO and NLO LECs in the S-waves have van-
ished. This is likely a result of allowing the πN LECs, which act in all angular
momentum channels, to vary; as we shall see shortly, the strong C̃1S0–C1S0 an-
ticorrelations return if the πN LECs are fixed. In general, more contact LECs
show correlations at NNLO than at NLO, but the correlations are rather weak.
The πN LECs show some notable correlations with the 2N LECs. In partic-
ular, c1 correlates strongly with the two C̃1S0 LECs. c3, on the other hand,
correlates with virtually all NLO contact LECs. The LECs c1 and c3, which
appear in combination in the central potential term [4], show little internal
correlation. The correlations between the remaining πN LEC, c4, and the
other parameters are weak.
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Figure 4.3: NNLO posterior sampled with HMC. The LECs are shown in units of
104·GeV−2 for the LO contact LECs, 104·GeV−4 for the NLO contact LECs, and
GeV−1 for the πN LECs. The inner (outer) gray contour line encloses 39% (86%)
of the probability mass. The dot-dashed vertical lines indicate a 68% credibility
interval.
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Figure 4.4: Prior and posterior pdfs for the πN LECs c1, c3, and c4, indicated
with black-line ellipses and colored (purple jagged) regions, respectively. The inner
(outer) black ellipses enclose 39% (86%) of the prior probability mass, and the
jagged gray lines do the same for the posterior probability mass. The posteriors
were obtained using HMC. The LECs are shown in units of GeV−1. See text and
Figure 4.3 for further details.

Are there any notable differences between the prior and posterior distri-
butions for the πN LECs? Remember that the prior for the πN LECs comes
from an R-S analysis of πN scattering data. It is therefore interesting to study
how the 2N data updates our knowledge. Figure 4.4 shows both the prior for
the πN LECs and the corresponding marginal posteriors. The shape of the
distribution has largely remained the same in the transition from prior to
posterior, except that the c3 marginal distribution has narrowed somewhat.
However, the central values have shifted by about 5-10 % in the direction of
less attraction on the potential level and the pdfs do not show any significant
overlap except for a small interval of the LEC c1. This is indicative of ten-
sion between the 2N and πN sectors and hints at possible underestimation of
the uncertainties for either the πN LECs or the 2N LECs, or both. Ideally,
the difference should be reconciled and the pdfs should show a considerable
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overlap; further research is needed to shed more light on this result.

4.2.4 Naive maximum likelihood versus Bayesian param-
eter estimation

As I have performed two related, but conceptually very different, parameter
estimations of the 2N LECs at NNLO, it is instructive to compare the two
results. In Paper A, I extracted a tightly constraining prior for the 2N LECs
by finding an MLE with local covariance estimation on a simplified version of
the NNLO likelihood that was later used in Paper B. Important differences
between the two likelihoods include that we, somewhat naively, set the value
of c̄ to unity in Paper A while c̄ was estimated from order-by-order differences
in Paper B (see Table 2.2), and that the πN LECs were fixed in Paper A but
allowed to vary in Paper B.

The resulting pdfs are jointly shown in Figure 4.5. Here I have only in-
cluded the LECs that were allowed to vary in both studies, i.e. I have omitted
the C̃nn1S0 LEC from the Paper A prior and the πN LECs from Paper B. The
HMC sampled posterior is shown in purple as before, while the 39% and 86%
contours extracted from the MLE curvature are shown in black.

Two differences stand out. The majority of the LECs have notably differ-
ent central values between the two pdfs. This is a result of the different values
of c̄, an effect I have also encountered when performing HMC samplings of
the NLO and NNLO posterior with different values for c̄. However, the most
notable qualitative difference is in the correlation structure between the C̃1S0

and C1S0 parameters. While the HMC sampled NNLO posterior shows no
discernible correlation between these parameters, the MLE-based prior shows
strong anticorrelations similar to those found in the HMC-sampled NLO pos-
terior. It is likely that allowing the πN LECs to vary softens these correlations
and that the strong anticorrelations seen in the Paper A prior would vanish
had the πN LECs not been kept fixed.

4.3 HMC performance evaluation

Having presented the extracted posteriors at three chiral orders, two questions
arise:

1. Is it actually beneficial to use HMC?

2. Can the results be trusted not to change as we continue to collect more
samples?
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Figure 4.5: Side-by-side comparison between the prior from Paper A (black con-
tour lines) and the posterior in Paper B (filled purple contours) at NNLO. Only
parameters estimated in both projects are included.
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The remainder of this chapter will be dedicated to answering these questions.
The first is a major motivation for Paper B, whereas the second should always
be addressed in any application of MCMC.

4.3.1 Efficiency

The efficiency of an MCMC sampler can be boiled down to a simple number:
the number of effective samples—see Equation (3.9)—per unit time. An in-
crease in efficiency enables us to either explore more aspects of an inference
problem, or attack problems that are otherwise out of reach. Two factors
primarily affect the efficiency and need to be balanced appropriately: the
computational cost of a single MCMC sample and the integrated autocorrela-
tion time τ . Here I will compare the efficiency of HMC and emcee, which take
different approaches to maximizing efficiency. While emcee opts to gather
many correlated samples quickly, HMC aims to produce costly samples with
minimal correlations.

It is very common in Bayesian inference that the evaluation of the likeli-
hood functions accounts for the vast majority of the computational cost. This
is also the case here, and I therefore judge the sampling efficiency based on
the number of likelihood evaluations per effective sample, NL/ESS. As the
gradient extraction (carried out using AD) required by HMC incurs an addi-
tional overhead I will also take this into account when judging the efficiency.
The measured overhead factors AD-cost are 1.1, 1.24, and 1.43 at LO, NLO,
and NNLO, respectively, and I use these figures in my efficiency assessment.
I also account for the cost of the tuning samples required by HMC, but it is
worth noting that this cost is partially offset by a reduction in the number of
necessary burn-in samples. Thus, the relative efficiency S of HMC compared
to e.g. emcee can be calculated as

S =
[NL/ESS]emcee

[NL/ESS]HMC × [AD-cost]
. (4.1)

There is an immediate advantage for emcee here, because while emcee only
needs one likelihood evaluation per sample, HMC requires (on average) L
evaluations per sample, where L is the number of leapfrog steps. Recall that
I use LLO = 8 and LNLO = LNNLO = 20. To be competitive, HMC must
counter this by achieving integrated autocorrelation times τHMC that are at
least a factor L×AD-cost smaller than the emcee counterpart τemcee, i.e.

τHMC(L×AD-cost) ≤ τemcee. (4.2)
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Figure 4.6: Autocorrelation functions of the MCMC chains at LO-NNLO. The chains
produced with HMC are shown in the first row and chains produced with emcee

are shown in the second row. The gray lines show autocorrelations in individual
parameters whereas the colored lines show the average over all parameters. The
results are averaged over all walkers in the plots showing the emcee autocorrelations.
See Table 4.1 for details about each sampling.

The expression for τ , Equation (3.8), reveals that the autocorrelation function
ρ(h) must be kept small for all lags h 6= 0 in order to achieve a short integrated
autocorrelation time. In Figure 4.6 I show ρ(h) for both HMC and emcee sam-
plings at all three chiral orders. All autocorrelation functions were computed
using emcee’s built-in function emcee.autocorr.function 1d, which uses an
efficient algorithm based on the fast Fourier transform. It is apparent that
the emcee samples are much more correlated than the HMC samples across
all three orders, but especially at NLO and NNLO. A closer look at the first
two panels in the top row reveals that subsequent HMC samples at LO and
NLO are slightly anticorrelated; as discussed in Section 3.3, this means that
we have τ < 1 and that the ESS will actually be greater than the length of
the chain.

Table 4.2 shows vast reductions in the integrated autocorrelation time with
HMC compared to emcee. These results are for the parameter samples; the
results will generally be different for functions of these samples. The estimate
of τ for the emcee sampling at NNLO is likely underestimated, for reasons
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Table 4.2: Integrated autocorrelation times τ achieved with HMC and emcee at
LO, NLO, and NNLO.

Order τHMC τemcee
LO 0.58 34

NLO 0.78 154
NNLO 1.2 > 111

that will be discussed in the next section. As indicated by Figure 4.6, we
see τ < 1 for the HMC samplings at LO and NLO; at LO we have τ = 0.58
which will result in an ESS that is nearly twice as large as the length of the
MCMC chain. Using Equation (4.1), the results from Table 4.2, and recorded
information regarding the exact number of likelihood evaluations during the
tuning and burn-in stages of the samplings, I can estimate the HMC speedups
S at each chiral order to

SLO = 5.9,

SNLO = 5.2,

SNNLO > 3.3.

These speedups enable us to efficiently extract LEC posteriors and make more
precise observable predictions than previously possible. Employing HMC sam-
pling is indeed beneficial.

4.3.2 Convergence

Efficient sampling is nice—and, in many real world scenarios, required—but
a fundamentally more important question is whether or not the result can be
trusted not to change as more samples are added. In the world of MCMC the
question of trust can be summarized by the crisp word convergence, and every
MCMC study should include an assessment of convergence. Unfortunately it
is not possible to prove convergence in most realistic settings, and the best we
can do is to look for—and, if all is well, fail to find—signs of non-convergence.
For notational simplicity I will use the word convergence throughout this
section, but please keep in mind that when I say that a chain has converged,
what I actually mean is that I have tried and failed to find evidence of non-
convergence.

An array of convergence tests have been developed over the years, see e.g.
Ref. [72] for an overview of methods. Some convergence measures, notably the
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standard Gelman-Rubin diagnostic R̂ [73, 74] and its derivatives, are premised
on running multiple identically-prepared chains and looking for systematic
differences, while others can be applied to individual chains. In this thesis I
apply the R̂ criterion and a single-chain diagnostic premised on monitoring
the evolution of the integrated autocorrelation time τ [57]. I will discuss R̂
first.

R̂ is based on comparing variances both within and between MCMC chains
that have different starting points but are otherwise identical. The method
proceeds in four steps, which are repeated for each parameter (LEC) αi:

1. Compute the between-chain variance B.

2. Compute the within-chain variance W .

3. Estimate the variance V of the marginal posterior for αi.

4. Compare V and W to estimate the potential variance reduction.

Assuming that we have M chains of length N , B and W for the ith LEC can
be calculated as

B =
N

M − 1

M∑

m=1

(
ᾱ

(m)
i − ᾱi

)2

(4.3)

W =
1

M

M∑

m=1

1

N − 1

N∑

n=1

(
α

(nm)
i − α(m)

i

)2

. (4.4)

where the mean of all chains, ᾱi, is given by

ᾱi =
1

M

M∑

m=1

ᾱi
(m), (4.5)

the within-chain mean for the mth chain, ᾱi
(m), is given by

ᾱ
(m)
i =

1

N

N∑

n=1

α
(nm)
i , (4.6)

and α
(nm)
i is the nth sample of the ith LEC in themth MCMC chain. For finite

chain lengths N , B will overestimate the marginal variance provided that the
chains are initialized at overdispersed locations, i.e. with greater variability
than the true posterior. Similarly, W will underestimate the marginal variance
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because the full posterior has not been explored. A weighted average of B and
W can therefore be used to estimate the variance of the marginal posterior
for the LEC αi according to

Var+[αi] =
N − 1

N
W +

1

N
B (4.7)

The plus sign indicates that this quantity overestimates the posterior variance
provided that the M chains are initialized at overdispersed locations. Apply-
ing finite-N corrections leads to a Student’s t distribution for αi with variance
estimated by

V = Var+[αi] +
B

MN
. (4.8)

The Gelman-Rubin measure then expresses the potential scale (i.e. variance)
reduction by forming the ratio

R̂ =

√
V

W
, (4.9)

which approaches 1 as N → ∞. The Gelman-Rubin diagnostic declares con-
vergence once R̂ is sufficiently close to 1. Any threshold will necessarily be
arbitrary; a commonly used value is R̂ < 1.01 [51].

Figure 4.7 shows the evolution of R̂ for the HMC samplings (with burn-in
removed) at LO (M = 3), NLO (M = 10), and NNLO (M = 3). Clearly,
R̂ < 1.01 is achieved virtually as soon as the samplings have started and a
stricter criterion of R̂ < 1.001 is also achieved. In short, no signs of non-
convergence can be detected here, and there is also little reason to continue
sampling for the purpose of reducing the variance. The R̂ values for the emcee
samplings are slightly larger, but still within the R̂ < 1.01 threshold.

Convergence may also be assessed by studying the evolution of τ over time.
Accurately determining the integrated autocorrelation time requires a chain
that is significantly longer than τ . If this is not the case, τ will generally
be underestimated (with a corresponding overestimation of the ESS). This is
the reason why τemcee at NNLO is reported as greater than 111 in Table 4.2;
this chain’s τ estimate has not yet stabilized. A τ -based convergence criterion
asserts that the chain length N should be some multiple (typically a few tens
of times) greater than the τ estimate; examples include N ≥ 10τ [56] and
N ≥ 50τ [75]. I employ the latter criterion here.

Figure 4.8 shows the evolution of τ for both HMC and emcee at the three
chiral orders, along with the convergence criterion N ≥ 50τ . Here I have only

55



0 5000 10000

Number of samples

0.996

0.998

1.000

1.002

1.004

R̂
LO

0 2000 4000

Number of samples

0.996

0.998

1.000

1.002

1.004

NLO

0 1000 2000 3000

Number of samples

0.996

0.998

1.000

1.002

1.004

NNLO

Figure 4.7: The Gelman-Rubin convergence diagnostics R̂ corresponding to the
HMC sampled chains at LO, NLO, and NNLO. R̂ for each individual parameter is
shown in gray, while the mean R̂ is shown in green, blue, and purple, respectively.

plotted the results for a single chain for each case, but the results are simi-
lar for the identical chains used for computing R̂. The HMC chains achieve
convergence within a couple of hundred samples in each case and remain rela-
tively stable at around τ = 1, although it is noteworthy that τNNLO increases
somewhat until around N = 1000. As for the emcee chains, it is obvious that
τ is initially underestimated; the curves continue to rise deep into the sam-
plings, and only at LO can convergence comfortably be declared. The NLO
sampling manages to just cross the convergence threshold, while the NNLO
sampling fails to achieve convergence although its τ estimate appears to be
on the verge of stabilizing.
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Chapter 5

Model checking

We now have a statistical model of the strong nuclear interaction that may
be used to produce posterior predictive distributions—ppds—for low-energy
scattering observables. Like all models, it is wrong [76] due to approximations,
omissions and incomplete understanding of the underlying physics. The im-
portant question is not, however, if the model is right or wrong, but rather if
it is useful? In this chapter I investigate this question by extracting predic-
tive distributions of 2N elastic scattering cross sections, checking the results
against empirical data and higher-order results, and analyzing the quality of
the statistical model for the EFT uncertainties.

5.1 Predictive distributions and credibility in-
tervals

The procedure for sampling a predictive distribution is explained in Sec-
tion 2.4. As a brief reminder, I model the true value Õ of an observable
as

Õ(k) = O(k)
theo + δO(k)

theo (5.1)

where O(k)
theo is the observable value computed at chiral order k and δO(k)

theo is

the corresponding truncation error. The index k on Õ(k) indicates that the
prediction is made at order k. Both terms on the right hand side are uncertain:
Otheo due to parameter uncertainty, and δOtheo due to the truncation error
being unknown. Sampling the pdfs of these stochastic variables is straight-
forward and—relative to the sampling of the LEC posteriors—undemanding
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Figure 5.1: Extracted NNLO predictive distributions pr(Õ(3)|Dcal, I) for the np total
cross section at (a) Tlab = 33 MeV and (b) Tlab = 260 MeV. N = 2000 samples were
used in both cases. The black dashed lines indicate experimental results gathered
from Ref. [33].

thanks to the short (but information-packed) HMC chains and the closed-form
expression (2.20) for the truncation error pdf.

Applying the procedure above for a given observable type, energy, and
(if applicable) scattering angle yields a one-dimensional ppd, pr(Õ(k)|D, I),
wherein all available information that in principle summarizes all we know
is contained. Variables that can be chosen freely are often called control
variables; the primary control variables here will be the scattering (lab) energy

Tlab and the scattering angle θ. Two NNLO examples pr(Õ(3)|Dcal, I) are
shown in Figure 5.1, where I have predicted the total np scattering cross
section σtot (NPSGT) at (a) Tlab = 33 MeV and (b) Tlab = 260 MeV; these
cross sections are both present in the validation data set Dval. The pdf in (b)
is much wider than in (a) due to the increased truncation error at the higher
energy, in accordance with the EFT expectation that δOtheo increases with
Tlab. Note that the pdf in (b) stretches into negative values of σtot; this is
obviously unphysical and a more advanced statistical model for the truncation
error should not allow it.

It is instructive to compare the contributions from the two terms in Equa-
tion (5.1). Figure 5.2 shows the same pdfs as Figure 5.1, but I have added

pdfs extracted by letting δO(k)
theo = 0, i.e. without any truncation error. The

uncertainty in these (yellow-colored) pdfs comes from the uncertainty of the
LECs only. By comparing figures (a) and (b) it is evident that the truncation
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pr(Õ(3)|D, I)

pr(O(3)
theo|D, I)

Figure 5.2: The purple pdfs pr(Õ(3)|Dcal, I) are identical to Figure 5.1. The yellow

pdfs pr(O(3)
theo|D, I) are identical to the purple ones except that the truncation error

has been neglected. Note that the maximum heights of the pdfs are arbitrary and
chosen in such a way that the pdf shapes may be easily compared visually.

error becomes increasingly dominant at higher energies, and that the trun-
cation error contributes the majority of the uncertainty in both cases. The
parameter uncertainty provides a non-negligible contribution at 33 MeV, but
the truncation error is totally dominating at 260 MeV. This indicates that
extracting parameter pdfs is important for predicting low-energy cross sec-
tions, but that point estimates (e.g. MAP points found by optimizing the
relevant posterior, eqivalent to approximating the pdf with a delta function)
may suffice when predicting observables close to or above scattering energies
equal to the pion production threshold. Neglecting the truncation error would
however be inadvisable in either case.

A ppd like those shown in Figure 5.1 (a) or (b) is the final product of a
study designed to predict an observable of intrinsic interest. Here, however,
the main purpose of extracting ppds is to assess the validity of the statistical
model of the EFT errors, and manual inspection of each ppd in its entirety
is impractical as the validation data set Dval encompasses over two thousand
cross sections. Some quantity that summarizes the most important aspects of
the ppd is therefore necessary. In frequentist statistics this is often achieved
with a confidence interval. The Bayesian analog is called a credibility (or
credible) interval (CI). Multiple choices of CIs exist, for example the so-called
equal-tailed interval (ETI) in which there is equal probability mass below and
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Figure 5.3: Differences between 68% ETIs and HDIs for two example pdfs. The pdfs
are (a) Γ(1.99, 1) and (b) N (−3, 1) +N (3, 1).

above the interval, i.e. for a (1− a) · 100% ETI

pr(X ≤ qa) = pr(X ≥ q1−a) (5.2)

where qa and q1−a are the a and 1−a quantiles of the pdf, respectively, and X
is some stochastic variable. Another example is the highest posterior density
interval (HPDI or HDI) [77], which in the one-dimensional case is the smallest
possible interval encapsulating the specified probability mass. Visualizations
of 68% ETIs and HDIs are shown in Figure 5.3 for two example pdfs. The
ETI of the skewed gamma distribution in (a) excludes highly probable points
to the left of the mode for the sake of keeping the tails equal, while the
narrower HDI includes all the most probable points. In (b), the HDI becomes
disjoint as it excludes the low probability region between the two modes.
HDIs are in my opinion a natural choice for summarizing ppds of scattering
observables as they do not exclude any high-probability regions of the ppd,
and do exclude low-probability regions in case of multimodal ppds. I will
hence employ HDIs throughout the remainder of this chapter. Figure 5.4
shows the same distribution as in Figure 5.1a with a corresponding 95% HDI
shown in purple.
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Figure 5.4: The same distribution as in Figure 5.1a with a 95% highest density
interval indicated in purple.

5.2 Analyzing selected observables

At this point I am in a position to extract a predictive distribution for any
low-energy np or pp elastic scattering cross section by applying the procedure
outlined above for different observables and/or control variables Tlab and θ.
Such distributions are of interest if a specific cross section is desired (e.g. if
experimental data is unavailable), but more importantly for this work it allows
me to check the validity of the statistical model by comparing the theoretical
predictions with the N = 2018 data points in the validation data set Dval. If
I, for example, compute a 50% HDI for each of the N data points, these HDIs
should cover the empirical data roughly 50% of the time if the statistical model
is working well. I will perform this exercise in a systematic way in the next
section, but first I will present a few examples of ppds for specific observables
across a limited range of control variables.

Figure 5.5 (a)-(b) shows predictions of the np total cross section across
a wide range of energies with a separate ppd for each energy. In (a) I have
plotted 100 predictive samples at each energy to give a visual representation
of the ppds, and in (b) I have plotted 68% and 95% HDIs of the same ppds
using 2000 samples to increase the precision of the intervals. All three studied
chiral orders are included: LO in green, NLO in blue, and NNLO in pur-
ple. Also shown (in orange) are empirical data points with error bars, and
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Figure 5.5: Posterior predictive distributions pr(Õ(k)|Dcal, I) at LO (green), NLO
(blue), and NNLO (purple) for two scattering observables. a) Uncorrelated samples

of pr(Õ(k)|Dcal, I) for the np total cross section. Empirical data with error bars is
shown in orange and N3LO point estimates in yellow. b) 68% (dark shaded regions)
and 95% (light shaded regions) HDIs of the ppds in a). c) Uncorrelated samples

of pr(Õ(k)|Dcal, I) for the pp differential cross section at Tlab = 98.8 MeV. d) 68
and 95% HDIs of the ppds in c). The empirical data is gathered from the Granada
database; see Tables II-III in Ref. [32] for the references indicated in brackets.
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theoretical N3LO point estimates (yellow) calculated as O(4)
theo(~αprel) where

~αprel are preliminary LEC values found by optimization (see Section 2.3.1).
The error bars for the empirical data are nearly invisible as the data is very
precise. Note that the 95% HDI represented by the purple dashed region at
Tlab = 33 MeV in Figure 5.5 (b) is also shown more clearly in Figure 5.4. As
expected, the predictive distributions widen with increasing energy, and the
predictions for these observables appear to converge to the empirical data with
increased chiral order. Unlike NLO and NNLO, the LO MAP points differ
significantly from the empirical results between (approximately) 50-200 MeV,
indicating that this order does not include enough physics to accurately repro-
duce empirical results at higher energies. Other authors have drawn similar
conclusions, see e.g. Ref. [18]. As we will see, the CIs here are overly confident
and should be wider to reflect this lack of accuracy at LO. As expected, the
NNLO HDIs are consistently narrower than the corresponding NLO intervals.
The LO intervals show an interesting trend, however: they are significantly
wider than their higher-order counterparts at lower energies, but are about
the same width as at NNLO at high energies. This is not expected and indi-
cates that the expansion coefficient c̄ (see Table 2.2) has been underestimated,
resulting in overly confident LO predictions at high energies in particular.

Figure 5.5 (c)-(d) show predictions analogous to (a)-(b), but for the pp
differential cross section at 98.8 MeV across a range of scattering angles θ.
The trends are similar to figures (a)-(b), with the predictions converging to the
empirical results with increasing order. The LO predictions do not overlap the
data in this case, while the NLO-NNLO predictions reproduce the data well.
The NNLO results capture the subtle trends visible in both the empirical data
and the N3LO point estimates. Figure 5.6 show predictions of spin observables
at energies above the pion production threshold: pp spin correlations at 294.4
MeV in (a)-(b) and np beam polarization at 325 MeV in (c)-(d). The LO
ppds are remarkably narrow in both cases, reinforcing the suspicion that the
truncation error is underestimated. Figure (b) also shows that the NNLO
predictions reproduce empirical data better than the N3LO point estimates
in this particular case.

5.3 A frequentist probability makes a surprise
appearance

The ppd plots presented in the previous section provide valuable hints and
insights about how different observables are reproduced, but are the ppds
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Figure 5.6: Posterior predictive distributions pr(Õ(k)|Dcal, I) at LO (green), NLO
(blue), and NNLO (purple) for two scattering observables. a) Uncorrelated samples

of pr(Õ(k)|Dcal, I) for the pp Ay spin correlation at 294.4 MeV. Empirical data
with error bars is shown in orange and N3LO point estimates in yellow. b) 68%
(dark shaded regions) and 95% (light shaded regions) HDIs of the ppds in a). c)

Uncorrelated samples of pr(Õ(k)|Dcal, I) for the np beam polarization at Tlab = 325
MeV. d) 68 and 95% HDIs of the ppds in c). The empirical data is gathered from
the Granada database; see Tables II-III in Ref. [32] for the references indicated in
brackets.
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actually reliable? To answer this question I investigate the so-called coverage
probability of the credibility intervals (see e.g. Ref. [78] for an introduction
with examples). As mentioned previously, a 100 · p% CI should cover about
100·p% of the corresponding empirical data in order to be reliable. A coverage
probability plot is generated by systematically computing CIs of probability
p for predictions corresponding to each datum in a data set and checking
whether each interval covers the datum. The CI probability p is then varied
between 0-1. The resulting coverage probabilities p̃ are plotted against the
specified probability p, and should ideally be equal to each other for all p.

The coverage probabilities are shown in Figure 5.7 (a) using the usual
color coding: green for LO, blue for NLO, purple for NNLO. As suspected
based on the prediction plots in the previous section, the LO truncation error
is considerably underestimated, which can be seen by observing that the LO
HDI coverage falls below the p · 100% expectation. The NLO and NNLO
predictions are also overconfident, but to a lesser degree. The root cause can
be traced to the method of computing c̄(k); recall that c̄ for the truncation
error at order k is calculated as the RMS value of all expansion coefficients
~cn from order n = 0 to order n = k. The issue here is that the coefficients
~c0 are uninformed by order-by-order differences, and essentially determined
by the choice of Oref. With the particular choice of reference scale I employ,
this results in c̄(0) = 1.17, but by inspecting the values of ~cn where n > 0 we
expect that a more realistic value for c̄ is around 3-4, i.e. the truncation error
at LO should probably be about 3-4 times larger than currently specified. The
inclusion of ~c0 in the RMS determination of c̄ at the higher orders effectively
reduces the truncation error. The effect is partly counteracted by the larger
expansion coefficients at orders 2 and 3.

The observed success rates should follow a binomial distribution under
the assumption that the observables are uncorrelated. We use the continuous
version of the binomial distribution, the β distribution, to assign a likelihood
for the proposition that p is the true success rate and compute 95% confidence
intervals for this likelihood. These confidence intervals are shown in gray
in Figure 5.7. The observed success rates should largely overlap with the
computed confidence intervals if the observed success rates are consistent (at
the 2σ level) with a true success rate of p [21]. In Figure 5.7 (a), this is not the
case, and we can conclude that the true success rate is lower than p. However,
it should be noted that the assumption that all observables are uncorrelated
is not quite realistic.

It is prudent to investigate the effect of using different methods of comput-
ing c̄. Ideally, the LEC posteriors should be resampled after each modification
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Figure 5.7: Coverage probabilities of predictions at LO (green), NLO (blue), and
NNLO (purple) of the observables in Dval. The first column was obtained with
the assumption Λb = 600 MeV and the second with Λb = 500 MeV. Each row
corresponds to different methods of computing c̄(k); c̄ is computed from the RMS
values of c at (1) orders 0, . . . , k (2) orders 2, . . . , k (3) order k+ 1. The computed c̄
values are (a) c̄(0) = 1.17, c̄(2) = 2.08, c̄(3) = 2.72 (b) c̄(0) = 1.17, c̄(2) = 1.65, c̄(3) =
2.22 (c) c̄(2) = 4.95, c̄(3) = 4.19 (d) c̄(2) = 3.44, c̄(3) = 2.77 (e) c̄(0) = 4.95, c̄(2) =
2.72, c̄(3) = 4.12 (f) c̄(0) = 3.44, c̄(2) = 1.65, c̄(3) = 1.99.
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of c̄, but this is very time consuming. Fortunately, since the LEC uncertainties
are relatively small compared to the truncation error for an overall majority
of the data (see e.g. Figure 5.2), I merely resample the pdf for the truncation
error. Figure 5.7 (b) shows the effect of excluding ~c0 from the calculations
of c̄(k), i.e. letting c̄(k) = RMS(~c2,...,k). This method is obviously inapplica-
ble at LO so only results for NLO and NNLO are shown. This immediately
improves the predictive power of the statistical model. Indeed, the NLO pre-
dictions are a bit conservative, but the NNLO predictions are very close to the
ideal, although still not quite consistent with a true success rate p according
to the gray confidence intervals. The overly conservative predictions at NLO
may be understood by inspecting Table 2.2. The RMS value of the expan-
sion coefficients ~c2, here used to characterize the truncation error at NLO,
are rather large (c̄2 = 4.95). But the expansion coefficients ~c3, which better
represent this truncation error, are smaller, indicating that c̄ = 4.95 is an over-
estimation. I have also computed c̄4 = RMS(~c4) = 4.12, which together with
the lower-order results indicates that the size of the truncation error tends to
oscillate: odd-order contributions are small relative to even orders, where new
contact LECs are introduced. This somewhat irregular convergence pattern
of the chiral expansion, which complicates the estimation of c̄, calls into ques-
tion the assumption I make that all expansion coefficients are drawn from the
same underlying distribution.

Inspired by the reasoning above I have tried one more method for com-
puting c̄: using the RMS value of the expansion coefficients ~ck+1, i.e. the first
omitted order. Intuitively, this is the most logical choice as it directly esti-
mates the contribution of the first omitted order, which provides the largest
contribution to the overall truncation error. As can be seen in Figure 5.7 (c),
this method further improves the performance of the statistical model, with
coverages that are close to the ideal diagonal curve; the NNLO coverages, in
particular, largely overlap with the 95% confidence intervals for a true success
rate p. If possible, this method should be preferred over the others, but infor-
mation from higher orders are nearly always unavailable. If so, the method
showcased in (b) should be preferred.

The breakdown scale Λb is an important property of the physical system
and it is of interest to see the sensitivity of predictions to different assumptions
about this quantity. In Figures 5.7 (d)-(f) I repeat all the coverage probability
calculations described thus far, with one important difference: I have scaled
the EFT breakdown scale by introducing a dimensionless scaling factor λb
according to [21]

Λb = λbΛ
def
b . (5.3)
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where Λdef
b is the (in this work) default value Λdef

b = 600 MeV. By inspecting
Equation (2.18) it is easy to see that decreasing (increasing) Λb yields smaller
(larger) values for the expansion coefficients, since (2.18) can be rewritten as

cn =
O(n)

theo(~αprel)−O(n−1)
theo (~αprel)

Oref · (max(mπ,p)

λbΛdef
b

)n
= (λbΛ

def
b )n

O(n)
theo(~αprel)−O(n−1)

theo (~αprel)

Oref ·max(mπ, p)n
,

(5.4)
i.e. the expansion coefficients are rescaled by a factor λnb . The calculated ex-
pansion coefficients have so far been rather large yet resulting in overconfident
ppds, suggesting that λb = 1 may be too high. This finding is somewhat at
odds with Ref. [21], but direct comparison is difficult not least because the
validation data set used here is orders of magnitude larger in size. Melendez
et al. [23] expanded the analysis in Ref. [21] and found that λb = 1 generally
performs fairly well, without ruling out other values. To see the effect of de-
creasing λb, I let λb = 5/6, yielding the rescaled breakdown scale Λb = 500
MeV and c̄ values closer to the naturalness expectation. The size of the trun-
cation error has a complex dependency on Λb according to Equations (2.20)
and (2.21), since the latter can be rewritten as

(σ
(k)
theo)2 =

c̄2O2
ref ·max(mπ, p)

2(k+1)

(Λb)2(k+1) − (Λb)2kmax(mπ, p)2
. (5.5)

Figures 5.7 (d)-(f) show that the overall performance of the statistical model
improves with the rescaled breakdown scale, especially at NNLO. It also de-
creases the model’s sensitivity to the exact value of c̄. This indicates that the
true EFT breakdown scale may be smaller than 600 MeV. Rather than tak-
ing Λb to be a given quantity and checking whether the predictive ppds are
consistent with data, Melendez et al. [23] developed a method for inferring
Λb by deriving Bayesian posteriors for Λb. Such posteriors, conditioned on
extracted expansion coefficients at predetermined kinematic points, can then
be sampled to yield a pdf for the EFT breakdown scale. In Paper A, we also
extracted a pdf pr(c̄, Q|D, I) for c̄ and Q.

It is instructive to study how the statistical model performs with regards
to different subsets of the validation data. This is shown in Figure 5.8,
where I have used Λb = 600 MeV and c̄(k) = RMS(~c2,...,k). In (a), only
total cross sections are considered. We see that the credibility intervals ap-
pear too conservative here, but keep in mind that the size of this data sub-
set is relatively small with just 84 points, accounting for 4.2% of the full
validation data set Dval. The points are also highly correlated since (e.g.)
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σtot(198 MeV) ≈ σtot(200 MeV) and the precision of the data is high. Subfig-
ures (b) and (c) take into account data below 100 MeV and above 290 MeV,
respectively; overall, the coverages are similar, indicating that the statistical
model works roughly equally well in both energy ranges. The biggest differ-
ence is that the NLO HDIs are overly conservative at high energies. Further
increasing the granularity beyond what is shown here, e.g. by studying each
observable type (see Table 2.1) separately, do not reveal much more in the
way of systematic differences beyond what is shown in Figure 5.8. The NLO
ppds are consistently too conservative, while the NNLO ppds are generally
somewhat overconfident. An intriguing exception to this is that the NNLO
coverage of DSG observables (figure omitted) follow the ideal diagonal curve,
i.e. these predictions are neither too confident or conservative. Tracing the
cause of this result is difficult; it may well be a coincidence. Another possibil-
ity may be that the prescription for the reference value of DSG observables is
more reliable than that of spin observables (recall that I use Oref = 0.15 for
spin observables and Oref = OLO for non-spin observables). Of course, I also
use Oref = OLO for SGT observables, but as noted previously these data are
few and strongly correlated. The DSG data are far more numerous and the
corresponding coverages are thus supported by more statistics.

Finally, as a central feature of EFTs is the systematic improvability, it
is of interest to see not only if the predictions are consistent with empirical
data, but also with higher-order point estimates. To do this I replicate Fig-
ure 5.7 (b) but exchange the empirical data for N3LO point estimates (“N3LO
data”). The coverage probabilities of the NLO ppds are indistinguishable be-
tween Figures 5.7 (b) and 5.9, which is in line with expectations. There is,
however, a notable difference regarding the NNLO coverages; where the cover-
age probabilities against empirical data are consistently slightly too low, their
equivalents versus N3LO data are too high at HDI probabilities below 50%
and too low above 50%. Here, a closer look at individual observable types
reveal strong systematic trends. The coverage probability is very high for dif-
ferential cross sections (DSG) and spin polarizations (P, PB), but very low for
spin correlations (e.g. AXX, AYY). This indicates that the N3LO results align
closely with the NNLO predictions for the DSG, P, and PB observables, while
they differ substantially from both the NNLO predictions and the empirical
data for e.g. AXX, AYY, and AZX. Figure 5.6 shows an explicit example of
this trend. The conclusion that can be drawn here is that the expected con-
vergence pattern from NNLO to N3LO fails to materialize in this case. The
probable cause is that the utilized LECs ~αprel at N3LO lead to relatively poor
predictions of spin correlation observables.
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Overall, the reliability of the statistical model is high considering its sim-
plicity, as long as c̄ is modelled with some care. While multiple improvements
can (and should) be implemented (see Chapter 6), the model is indeed useful
provided that c̄ is estimated without contamination from the uninformative
first order expansion coefficients ~c0.
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Figure 5.8: Coverage probabilities of predictions at NLO (blue) and NNLO (purple)
of subsets of the observables in Dval. I compute c̄ as RMS(~c2,...,k) as in Figures 5.7
(c) and (d) and use Λb = 600 MeV. (a) Only SGT observables, (b) all validation
data with Tlab ≤ 100 MeV, (c) all validation data with Tlab > 290 MeV.
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Figure 5.9: Coverage probabilities corresponding to those in Figure 5.7 (c), except
that the coverages are computed against N3LO point estimates (or ”N3LO data”
for short) rather than empirical data. The N3LO data types match the empirical
data Dval in every way (i.e. quantity, observable types, control variables, etc.),
except that the value of each datum is a theoretical prediction at N3LO instead of
an experimental result.
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Chapter 6

Conclusion and outlook

The χEFT model of the nuclear interaction potential [4, 7–13] encompasses
multiple sources of uncertainty, all of which influence predictions of low-energy
nuclear observables. In this work I employ Bayesian analysis to define poste-
rior distributions of the unknown LECs that govern interaction strengths at
LO, NLO, and NNLO in Weinberg power counting. These posteriors, condi-
tioned on experimental data and other information and assumptions, take into
account the two dominant sources of uncertainty in χEFT: the uncertainty
of the data and the theoretical uncertainty arising from the truncation of the
EFT expansion at a finite order. I model the truncation errors for different
observables as uncorrelated random variables drawn from the same underly-
ing distribution [21, 24]. Once defined, the posteriors need to be numerically
evaluated. Straightforward function evaluation of the posteriors, i.e. random
sampling without any guidance, becomes futile beyond LO due to the rapid
increase in dimensionality of the LEC domain, forcing us to turn to MCMC
sampling [52, 79]. With the intent of decreasing sample autocorrelations and
increasing efficiency I investigate the prowess of HMC [27, 28] for sampling the
LEC posteriors. Equipped with the LEC posteriors I produce ppds for low-
energy scattering cross sections, and perform model checking by comparing
theoretical predictions with experimental data.

I find that using HMC brings significantly increased sampling efficiency at
all three studied chiral orders, resulting in runtimes that—for a given sampling
error—are up to six times shorter than if emcee [55, 56], a popular implemen-
tation of an affine invariant ensemble MCMC algorithm, is used. These gains
enable us to either
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1. sample more challenging pdfs—e.g. LEC posteriors with more parame-
ters or more included diagrams—than previously possible, or

2. increase the statistical precision of previously extracted pdfs.

The increase in efficiency emerges from HMC’s ability to move long distances
through the parameter space without straying into low-probability areas while
simultaneously maintaining a high acceptance probability for the proposed
samples. These great strides diminish autocorrelations between subsequent
samples, which leads to a large ESS. In order to gauge the sampler’s efficiency,
the increase in ESS must then be weighed against the large per-sample cost
incurred by the need to solve Hamilton’s equations for each proposed MCMC
step, which in turn requires access to gradients of the posterior with regards
to the LECs. My results show that, with proper tuning, the benefit of shorter
autocorrelation times outweigh the increased per-sample cost. Furthermore,
the benefit of using HMC is expected to increase along with the dimensionality
of the posterior, as HMC theoretically scales better than other algorithms in
this regard [27]. However, it can be a rather formidable task to tune the
hyperparameters of HMC algorithm in practice, especially finding a suitable
mass matrix M. Successful tuning cannot be guaranteed a priori, which
introduces an element of risk attached to the deployment of HMC. Employing
an easier-to-use algorithm, e.g. emcee, may therefore be advisable as a safer
option for less challenging sampling problems, e.g. the LO posterior in this
work, even though the sampling efficiency is likely to suffer.

The successfully extracted LEC posteriors allow me to inspect to what
extent the statistical model for the EFT errors yields predictive distributions
consistent with empirical data, quantified using an empirical coverage mea-
sure. The employed model makes simplifying assumptions especially regarding
the correlation structure of the expansion coefficients ~cn that are introduced
to characterize the EFT truncation error, and it is not obvious at the outset
whether these simplifications are acceptable. My results indicate that the ex-
tracted observable ppds are approximately consistent with empirical data if
the method used to estimate c̄—the width of the Gaussian distribution from
which all EFT expansion coefficients are assumed to be drawn—is modified
so as to not be influenced by the zeroth-order expansion coefficients ~c0. In
practice, this modification prevents the predictions from being overly confi-
dent. The predictive power of the statistical model is overall consistent across
different types of low-energy scattering observables, energies, and scattering
angles. The truncation error contributes greatly to the total error.

Several avenues of further research based on this work are possible. The
most obvious outlook is to extend the study to extract LEC posteriors and
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observable ppds at N3LO; all methods presented here are directly applicable
to this problem, and even higher orders. Sampling the N3LO LEC posterior
is a formidable challenge due to the large number of LECs at this order, which
is ∼ 30. I expect HMC to be able to efficiently sample the posterior assuming
that an appropriate mass matrix can be extracted. Another improvement
is to employ Gaussian processes to model the correlation structure of the
expansion coefficients ~cn [25] and infer, rather than prescribe a priori, the
EFT breakdown scale Λb [23].

In my experience, the most important step for a successful application
of HMC is the choice of a suitable mass matrix M. I have primarily used
HMC itself, with a preliminary mass matrix, to extract M. However, other
methods may be more efficient and/or reliable. For example, a short emcee or
M-H sampling could potentially provide an excellent mass matrix. Another
interesting idea is to use optimization and local second-order derivatives to
extract an approximation of the parameter covariance matrix and use (the
inverse of) this matrix as M; this option bypasses the need for extensive
preliminary samplings and could be very efficient. The extracted covariance
matrix could potentially even be used to approximate the gradient of the
posterior, required to solve Hamilton’s equations; the efficiency gain would be
enormous if this works. I have tried this approach briefly and the results are
promising.

In Paper B, all empirical data on which the likelihoods are conditioned
are np and pp scattering cross sections. First, this may be extended to in-
clude an nn scattering length and effective range, such that we can extract
the C̃nn1S0 LEC. Second, the inclusion of 3N scattering data would be very
interesting, but evaluating such a likelihood is expensive; the efficiency gains
S obtained with HMC (see Section 4.3.1) are instrumental for a successful
sampling of such posteriors. The computational burden may be eased by em-
ploying efficient methods, such as emulators [80] or wave-packet continuum
discretization [81], for evaluating the likelihood. Finally, the posteriors may
be conditioned on bound state data, but it is currently unclear how to model
the corresponding truncation error as bound states do not have well-defined
external momenta.

An exciting prospect is the ability to extract reliable ppds for observables
that cannot readily be experimentally measured, such as the pp fusion cross
section [50]. Clearly, quantifying relevant LEC posteriors for models of the
2N and 3N interaction is crucial for computational statistics analyses of exotic
nuclei and infinite nuclear matter.
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Appendix A

montepython

Here I present a brief overview of the montepython package that I have de-
veloped. It contains the HMC sampler used throughout this thesis.

A.1 Installation

The package is hosted on GitHub. To acquire a copy, clone the repository:

git clone https://github.com/svisak/montepython.git

To install, go to the base directory and run

pip install .

or

pip install . --user

This will install montepython to your site-packages directory, which is in the
Python path. If you do not want a system-wide (or user-wide) installation
you can simply put the package in the same folder as your script.

A.2 Design

The code is designed to be easily extendable to incorporate different MCMC
algorithms. At the time of writing, two algorithms are implemented: HMC
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and Metropolis-Hastings (denoted RWM, short for ”Random Walk Metropo-
lis”). Despite the significant differences between these two algorithms, both
share the same basic code, implemented in the abstract base class MCMC. The
main user-facing method is MCMC.run which runs the sampler for a specified
number of iterations, or alternatively the equivalent MCMC.run for method
which runs the sampler for a specified period of time. The MCMC.run method
repeatedly calls the MCMC.sample method which proposes new samples, ap-
plies the Metropolis rejection criterion, and stores the resulting sample. The
MCMC class also provides a variety of user-accessible methods to make the pack-
age user-friendly, including methods to access the MCMC chain, acceptance
rates, and run time, and a method to save the MCMC chain to disk along
with relevant metadata (e.g. the used mass matrix).

Specific MCMC algorithms are implemented by creating classes that ex-
tend the MCMC class and implement the abstract methods MCMC.propose state,
which as the name suggests proposes a new state, and MCMC.joint lnprob,
which returns the (log) probability of a state (a state is essentially a sample),
see e.g. Equation (3.13). The log probability of a state is used to vet proposed
states via the Metropolis rejection criterion.

The HMC algorithm is implemented in the HMC class. HMC creates a
Leapfrog object, which implements the leapfrog integrator as defined in Sec-
tion 3.4.4, in its constructor. The HMC.propose state method draws a ran-
dom momentum, calls the Leapfrog.solve method, and returns the proposed
joint position-momentum state, which is then handed over to the MCMC.sample
method to be either accepted or rejected. The link between energy and prob-
ability, see Section 3.4.1, is implemented in the HMC.joint lnprob method.

The interface to define the posterior pr(~α|D, I) is implemented in the
abstract Bayes class. The user must extend this class and implement the
Bayes.evaluate method. In this method, which takes a parameter vector ~α
as its only argument and is called repeatedly by the Leapfrog.solve method,
the user is responsible for providing the log prior, log likelihood, and—in the
case of HMC—negative log posterior values for different values of the parame-
ter vector ~α. This approach gives the user a lot of flexibility regarding how the
posterior is evaluated and in the case of HMC makes it easy to incorporate e.g.
necessary derivatives from external applications in the gradient calculation.

A.3 Usage

This example demonstrates how to sample a multivariate Gaussian distribu-
tion. (See also the README file in the git repository, which contains a similar
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example.) First import packages:

import montepython

import numpy as np

Then define the distribution to be sampled by extending the abstract base
class Bayes:

# This class can be given any descriptive name as desired

class MultivariateGaussian(montepython.Bayes):

# Optional custom constructor

def __init__(self, mu, cov):

super().__init__()

self.mu = mu

self.cov = cov

self.cov_inv = np.linalg.inv(cov)

# This method is mandatory,

# Note how values are set using the

# self.set_* methods

def evaluate(self, alpha):

# Prior, in this case an infinite uniform prior

self.set_lnprior_value(0)

# Likelihood

diff = alpha - self.mu

lnlikelihood_value = -0.5 * diff.T @ self.cov_inv @ diff

self.set_lnlikelihood_value(lnlikelihood_value)

# Gradient of the negative log posterior (HMC only)

nlp_gradient_value = self.cov_inv @ diff

self.set_nlp_gradient_value(nlp_gradient_value)

Note that the nlp gradient value is an array. It is only used in the HMC
sampler, and not in the RWM sampler. Next instantiate the Bayes object:

ndim = 2 # Specify a bivariate N(0,1) distribution

mu = np.zeros(ndim)

cov = np.eye(ndim)

bayes = MultivariateGaussian(mu, cov)
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Next, set run parameters. The mass matrix specified here is the default one
and only included for illustration purposes.

startpos = np.zeros(ndim)

ell = 20 # number of leapfrog steps

epsilon = 0.3 # leapfrog step size

mass_matrix = np.eye(ndim)

Set stepsize (scalar or matrix) instead of ell, epsilon, and mass matrix if
you are running RWM. Now initialize the sampler:

hmc = montepython.HMC(bayes,

startpos,

leapfrog_ell=ell,

leapfrog_epsilon=epsilon,

mass_matrix=mass_matrix)

# A vanilla Metropolis-Hastings sampler,

# montepython.RWM, is also available

And run it for e.g. 100 iterations:

hmc.run(100)

If it turns out that 100 samples was not enough, you can continue where you
left off:

hmc.run(2000)

The length of the chain is now 2100. Alternatively, you can specify that the
sampler runs for a specified amount of time, e.g.

hmc.run_for(1) # Default unit is ’hours’

hmc.run_for(2.5, unit=’minutes’)

hmc.run_for(30, unit=’seconds’)

The sampler will then have run for one hour and three minutes. The length
of the chain will depend on the computational expense of each sample. You
can then access some information about the chain:

print(hmc.acceptance_rate())

print(hmc.ndim())

chain = hmc.chain()
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The MCMC samples are contained in chain, which is a NumPy ndarray of
shape (nsamples,ndim) where nsamples is the number of collected samples.
See the methods in the MCMC class for other information that you can access.
You can optionally save the chain to disk in HDF5 format:

metadata = {}

metadata[’some_info’] = ’HMC sampling of a Gaussian’

hmc.to_disk(**metadata)

# or simply hmc.to_disk(some_info=’My info’)

This saves the MCMC chain in a file called hdf5/hmc.hdf5 assuming that the
HMC algorithm is used. The (optional) dictionary metadata can hold many
types of variables, such as strings, scalars, lists and arrays. In addition to
the MCMC samples themselves, the to disk method also saves a variety of
metadata by default, such as acceptance rate, run time, and so on. You can
set the HDF5 path, filename and dataset name:

path = ’path/to’

filename = ’toy_example.h5’

dataset_name = ’gauss2d’

hmc.to_disk(path=path,

filename=filename,

dataset_name=dataset_name)

If the dataset name conflicts with an existing dataset the default dataset name
(based on the MCMC type and a timestamp) will be used instead. The chain
can subsequently be retrieved from disk:

import h5py

f = h5py.File(’path/to/toy_example.h5’, ’r’)

dset = f.get(dataset_name)

chain = dset[...]

acceptance_rate = dset.attrs[’acceptance_rate’]

print(acceptance_rate)

You can use e.g. prettyplease1 to visualize the result:

import matplotlib.pyplot as plt

import prettyplease

fig = prettyplease.corner(chain)

plt.show()

1https://github.com/svisak/prettyplease.git
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Appendix B

Covariance matrix for the
uncorrelated EFT error

Let X1, . . . , XN be N independent, normally distributed random variables
with mean 0 and variances σ2

1 , . . . , σ
2
N . Then the sum Y =

∑N
i=1Xi is dis-

tributed according to

pr(Y ) = N
(

0,

N∑

i=1

σ2
i

)
. (B.1)

More generally, if we multiply each random variable Xi by a constant λi, the
sum is distributed as

pr

(
N∑

i=1

λiXi

)
= N

(
0,

N∑

i=1

λ2
iσ

2
i

)
(B.2)

and if σi = σ, i = 1, . . . , N , then

pr

(
N∑

i=1

λiXi

)
= N

(
0, σ2

N∑

i=1

λ2
i

)
. (B.3)

Consider now the EFT truncation error introduced in Chapter 2

δO(k)
theo = Oref

∞∑

n=k+1

cnQ
n (B.4)
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where each cn is drawn from a normal distribution according to

pr(cn|c̄) = N (0, c̄2). (B.5)

Following Equation (B.3), δO(k)
theo is distributed as

pr(δO(k)
theo|c̄, Q) = N

(
0, c̄2O2

ref

∞∑

n=k+1

Q2n

)
(B.6)

With

Λ = O2
ref

N∑

n=k+1

Q2n (B.7)

we have

Λ−Q2Λ = O2
refQ

2(k+1) −O2
refQ

2(N+1) (B.8)

⇔ Λ(1−Q2) = O2
refQ

2(k+1) −O2
refQ

2(N+1) (B.9)

⇔ Λ =
O2

refQ
2(k+1) −O2

refQ
2(N+1)

1−Q2
. (B.10)

Letting N →∞ yields (since 0 < Q < 1)

Λ =
N→∞

O2
ref

Q2(k+1)

1−Q2
(B.11)

and

c̄2Λ =
N→∞

c̄2O2
ref

∞∑

n=k+1

Q2n = c̄2O2
ref

Q2(k+1)

1−Q2
(B.12)

Hence δO(k)
theo is distributed according to

pr(δO(k)
theo|c̄, Q) = N (0, σ2

theo) (B.13)

with

σ2
theo = c̄2(Oref)

2Q
2(k+1)

1−Q2
. (B.14)

In the multivariate case it can be shown that [24]

pr(δ ~O(k)
theo|c̄, Q) = N (0,Σtheo) (B.15)

where, under the assumption that the truncation errors are uncorrelated,

Σtheo = σ2
theo,iδii. (B.16)

Here the index i refers to the ith datum.
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