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ABSTRACT
Marine propeller design can be carried out with the aid of automated optimization, but
experience shows that a such an approach has still been inferior to manual design in
industrial scenarios. In this study, the automated propeller design optimization is evolved by
integrating human–computer interaction as an intermediate step. An interactive
optimization methodology, based on interactive genetic algorithms (IGAs), has been
developed, where the blade designers systematically guide a genetic algorithm towards the
objectives. The designers visualize and assess the shape of the blade cavitation and this
evaluation is integrated in the optimization method. The IGA is further integrated with a
support-vector machine model, in order to avoid user fatigue, IGA’s main disadvantage. The
results of the present study show that the IGA optimization searches solutions in a more
targeted manner and eventually finds more non-dominated feasible designs that also show
a good cavitation behaviour in agreement with designer preference.
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1. Introduction

The selection and design of the propeller is an iterative
process and involves matching towards the hull and
the machinery system, considering often contradicting
techno-economic requirements and objectives. The
type of vessel in combination with the operational
conditions play a key role in decision-making and
lead to a unique propeller to be developed for each
vessel. To efficiently handle this, it is important to
have a well developed design process.

The selection of a good baseline propeller is nor-
mally straight-forward and performed early in the
ship design process; this yields a propeller that fulfils
the geometrical requirements and delivers the needed
thrust. The final blade design is, however, developed
late and the process runs under strict time constraints.
So while the considerations in this phase involve com-
plex phenomena related to propeller induced vibration,
erosion, and noise and pressure pulses, the analysis
tools must be very fast; high-fidelity simulations or
experiments are not feasible. The success of a good
design is thus dependent on approximate analysis
tools and the expertise of an experienced designer.

In recent years, there has been a considerable effort
in developing automated optimization procedures to
support the blade designer. Since it concerns a multi-
objective constrained design problem, the typical
approach involves some stochastic population-based
optimization algorithms combined with a mollified
constraint handling using semi-empirical analysis of

cavitation nuisance. Although promising results have
been presented it has failed to be useful in an industrial
framework. The main reasons for this are that:

. The optimization algorithm is difficult to set-up to
reach a converged solution; this involves the
definition of the design space and the parameters
that control the optimization process.

. The constraints handling fails, both in the sense
that semi-empirical evaluations do not represent
the reality well enough and that the number of feas-
ible designs developed during the optimization is
too low to be useful.

. The different requirements on the design are
difficult to formulate into a single well-posed
optimization problem; e.g. several operating con-
ditions may need to be considered, with different
cavitation nuisance requirements in each.

All things considered, it has been considered more
reliable and efficient to use a traditional manual design
process than struggling with managing a fully auto-
mated optimization (Vesting 2015; Kongsberg Hydro-
dynamic Design Team 2020).

In this paper, we propose an interactive optimiz-
ation procedure as a path to overcome the issues
noted above; instead of using solely quantitative con-
straints, the user is being called during different stages
of the optimization and evaluates the solutions at that
stage. This then constitutes a procedure where the
designer guides a more loosely formulated stochastic
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optimization towards the desired design space. This
optimization methodology is called interactive genetic
algorithms and belongs to the area of interactive evol-
utionary computation (IEC) (Takagi 2001). A first step
towards this was presented in Gypa et al. (2020), where
the blade designer was called during intermediate
steps of the optimization to visualize and assess
specific areas of interest of the Pareto plot. The results
showed it is indeed possible to steer the optimization
to a desirable direction and to obtain a more refined
Pareto frontier with a large number of feasible designs.
Here, we extend the method by letting the blade
designer visualize and assess design characteristics
thereby evaluating constraints related to cavitation.
More specifically, this concerns the shape of sheet
cavitation on the blade that could lead to potential ero-
sion damages, a critical constraint but typically very
difficult to automate. In addition, this manual con-
straints evaluation is used in the early phase of the
algorithm to train a machine learning algorithm.

Thus, the purpose of this study is to investigate the
behaviour of a user-guided interactive optimization
method as one component in an improved industrial
propeller design process.

The procedure is evaluated on a simplified design
scenario involving a propeller design where efficiency
should be maximized and the maximum cavity
volume should be minimized at the maximum con-
tinuous rating (MCR) condition. The study shows
that the interactive approach leads to a well-populated
Pareto frontier and generates a larger number of feas-
ible designs compared with a fully automated
approach.

This paper is organized as follows: First, a review of
published efforts in automated propeller design is per-
formed in Section 2. Section 3 then reviews different
existing techniques using interactive computations.
In Section 4, we present our IGA methodology
coupled with a support-vector machine (SVM)
model for constraint evaluation. In Section 5, the
user scenario and the results are provided together
with a discussion. Finally, in Section 6, the conclusions
of this study are presented.

2. Automated optimization in propeller
design

Due to the numerous design parameters, objectives,
and constraints to consider in propeller design, the
development in automated optimization processes
has focused on stochastic nature-inspired popu-
lation-based algorithms, as they quickly offer a set of
optimal solutions spread in a wide design space (Wu
et al. 2019). In blade design optimization, as a conse-
quence of the limited time, an additional consider-
ation is the use of analysis tools with limited

reliability and some semi-empirical evaluation of cavi-
tation nuisance constraints.

A significant amount of research has been pub-
lished by several hydrodynamic research groups on
automated blade design optimization with various
implementations of evolutionary algorithms com-
bined with the utilization of faster computational
tools of lower fidelity. In Berger et al. (2014), a two-
stage optimization methodology for full-scale propel-
lers working behind a ship is presented. In a first
stage, an evolutionary algorithm coupled with a
panel code was utilized for a multi-objective optimiz-
ation problem and in a second stage, some of the best
propeller designs of the first stage were chosen in
order to be investigated further by a hybrid Reynolds
Average Navier-Stokes (RANS) and Boundary
Element Method (BEM) approach for the hull and
propeller flow, respectively. The choice of the optimal
designs was executed manually as an intermediate step
between the two stages. Although better designs were
obtained at the end of the optimization, some of these
optimal solutions led to infeasible propeller designs.

Attempts at developing fully automated blade
design optimization processes were presented in Vest-
ing et al. (2016) and Vesting et al. (2016). The non-
dominated sorting genetic algorithm II (NSGA-II)
and particle swarm optimization (PSO) were evalu-
ated, including extensions with meta-models, as well
as different geometrical modifications and constraint
handling methods. The proposed processes were eval-
uated for several commercial design cases, and while
the outcome was satisfactory, it was still deemed
inferior to the manual design. It was concluded that
the manual design requires a large number of work-
hours, making it difficult to obtain more than a few
different designs. These designs were, however, of
higher quality than the ones generated by the auto-
mated process that suffered from a large number of
infeasible designs.

In Huisman and Foeth (2017), a parametric geome-
try model was used together with the NSGA-II for sol-
ving two propeller optimization problems with
different objectives and constraints in each case,
while a BEM was utilized for the calculation of the
hydrodynamic performance in behind condition.
This method delivered optimized designs with a
high-computational cost. Note that the authors men-
tion the importance of having a robust engineering
environment for the automated optimization and
that the manual design is still part of the process.

The previously mentioned issues have led to a need
of having an intermediate step that would involve the
blade designers in the optimization process, as
suggested also in Vesting (2015). The pre-set con-
straints of the automated optimization guide the
optimization to a desirable direction, but often they
restrict the problem too much and the outcome is a
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narrow design space and a small set of solutions that in
fact only satisfy the constraints with slight perform-
ance improvement. In cases when there are no con-
straints, the solutions are found in a wide design
space. However, the common problem then is that
those solutions may have high performance, but
most of the designs are unrealistic or infeasible, due
to erroneous predictions by the fast and approximate
numerical codes utilized; they would never be used
in reality.

An example of such a practical optimization tool
for the hydro-acoustic optimization of naval propel-
lers was presented in Valdenazzi et al. (2019), where
the optimization was done in three different levels
and GAs were utilized. At first, a large design space
was explored with the performance in open water as
the main objective. The obtained designs from the
first step defined the design space of a second round,
where more objectives were set and the performance
was assessed in behind conditions. Finally, a specific
number of designs was chosen by the users and eval-
uated using a CFD solver of higher fidelity. Main pri-
ority of this optimization tool has been the low
computational time and the good usability of the
tool and this becomes more achievable when the
users are included in the optimization process.

3. Background in interactive evolutionary
computation

IEC is an optimization methodology that combines
evolutionary computation with the use of subjective
human evaluation. It is increasingly used for optimiz-
ation problems where qualitative criteria are entailed.
Traditionally, in optimization problems that use evol-
utionary computation with quantitative objectives/
constraints, explicit functions for each one of the
objectives/constraints are defined and the perform-
ance of the individuals is calculated through those
functions. On the contrary, when qualitative criteria
are involved, it is impossible to evaluate them through
fitness functions and it becomes necessary to include
the designers/engineers (they will be mentioned as
users from now on) in the optimization process.
This is achieved by frequently presenting some design
features of the optimization individuals to the users,
who subsequently evaluate those features based on
their own judgement and experience. Therefore,
instead of automatically calculating the performance
through the fitness functions, the users assign fitness
values according to the design characteristics they
are presented with. Then the information elicited
from the users is integrated in the optimization algor-
ithm and utilized for the next generations of
individuals.

The first IEC algorithm was proposed by Dawkins
(1986) and since then, IEC has been used in various

areas, for instance in music, design, image processing,
virtual reality, database retrieval, data mining and
graphic arts (Takagi 2001). Nowadays, multidisciplin-
ary design optimization processes have become more
complicated and the integration of the human thought
in the optimization loop is of great importance in
order to acquire feasible solutions quickly (Simpson
and Martins 2011). Several algorithms of the evol-
utionary computation, such as GAs, PSO and ant col-
ony optimization, have been applied coupled with
multiple user interactions; with the IGAs being the
most commonly used. More specifically, IGAs have
been extensively utilized in applications that require
a small number of individuals per generation. A pro-
duct design application is presented in Lee and
Chang (2010), where they developed an interactive
creative system for the conceptual design of a mobile
phone aiming at improving the design procedure at
an early stage. In their implemented IGA method-
ology, a hybrid fitness assignment strategy (Sugimoto
and Yoneyama 2002) was applied, where the users
selected only two individuals in each generation that
were closer to a target design and the fitness of the
remaining individuals was dependent on the distance
between the selected and the remaining individuals. A
similar approach was followed in Poirson et al. (2013),
where IGAs were used for better understanding of the
user’s preferences in two product design applications.
Their optimization methodology had two modes, the
manual and the automatic. In the manual mode, the
users evaluated all individuals of each generation,
while in the automatic mode a pre-set product was
randomly chosen, and the individuals of each gener-
ation were evaluated by calculating the Euclidean dis-
tances between the individuals and the target product.
The latter mode was used for tuning the IGA par-
ameters for the assessment of the code’s convergence.
The optimization had only nine individuals per gener-
ation and the users could assess a maximum of 30 gen-
erations before they became fatigued. Another
application was presented in Yannou et al. (2008),
where IGAs were used for the design of car silhouettes.
Each generation had 100 individuals and the users
ranked all of them with values 0–6. After a number
of generations, the individuals became infeasible, so
the authors suggested adding one more intermediate
step, where the users would have the possibility to
directly modify the designs of the individuals.

The main drawback of the IEC is that it leads easily
to user fatigue (Wahde 2008). In applications where
several generations of large populations are required
in order to increase the performance, the users have
to do numerous manual evaluations of designs and
this becomes exhausting and time-consuming after a
number of evaluations. This difficulty can be over-
come by combining the IGAs with surrogate models
(Sun et al. 2012); models that are trained with the
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information elicited from the users’ evaluation for a
part of the population and approximate the perform-
ance of the remaining non-evaluated individuals. In
this manner, a system is created where it is possible
to produce large populations through the IGAs and
avoid the users’ fatigue through the surrogate model,
while the users are asked to evaluate the system’s phe-
notypes a limited number of times. Such a system has
the structure shown in Figure 1.

Various types of surrogate models can be coupled
with the IGAs, such as neural networks (NNs), SVMs,
and others. In Sun et al. (2012), the problem of user fati-
gue is eased by utilizing a model that uses two radial-
basis function NNs trained by a semi-supervised learn-
ing method. Ohsaki and Takagi (1998) utilized two
methods for predicting the users’ evaluations, a NN
and Euclidean distances, with the latter one delivering
better results. Additionally, a new display method of
the phenotypes was suggested for the easier user evalu-
ations, where the individuals were presented in fitness
value order. For a music application in Biles et al.
(1996), where the evaluations were even more labor-
ious, as the users had to evaluate each individual separ-
ately making the comparison impossible, surrogate
models were essential. A NN with the cascade corre-
lation technique was used, but the network overfitted
the training data and the results did not converge.
SVMs have been used as surrogate models in Ren and
Papalambros (2011) coupled with an efficient global
optimization algorithm and in Llorà et al. (2005) in
combination with partial ordering concepts and non-
domination from multi-objective optimization.

Blade design optimization problems require large
populations of individuals in order to increase the per-
formance and, as previously described, the involve-
ment of the blade designers in the optimization
process is necessary. Thus, in our methodology
we use IGAs coupled with SVMs, used as a binary
classification model, which is described in more detail
in Section 4.

4. IGA methodology and SVM

A flowchart of the implemented IGA methodology is
presented in Figure 2 and is described in this section.
The aim of our methodology is to produce several
design alternatives, present some of their design

features to the users for manual assessment and add
that user information to the optimization method in
order to guide it to areas of the design space that
will offer more suitable designs. Before starting the
optimization, a blade design is created manually,
which referred to as baseline design, and the goal is
to increase the performance of it in the best possible
way. In order to increase the performance, several
designs with small geometrical alterations are created
through the optimization algorithm. The users run the
optimization algorithm and at a certain point they are
asked to evaluate some qualitative constraints of the
problem interactively. When the users are finished
with the manual evaluations, they can choose to con-
tinue the optimization process by selecting designs
that they find interesting for further evolution. This
procedure is iterated until desirable results are
obtained.

In more detail, the optimization process begins
with an optimization round using the NSGA-II algor-
ithm (Deb et al. 2002). Every optimization process
usually consists of several smaller optimization cycles,
the optimization rounds, which last from initiating
them with a new set-up or input until pausing them
manually or finishing the loop. The users pre-define
the number of generations, individuals per generation,
objectives, constraints, design variables and optimiz-
ation parameters. The design variables of the optimiz-
ation range between a lower and an upper boundary
relative to the values of the design variables of the
baseline design.

After a pre-set number of generations (N), the
optimization is paused and the evaluation stage fol-
lows, where there are two options. If the population
of the individual designs is large, then a smaller part
of the total population is presented to the users. This
part consists of unique designs that are selected ran-
domly from the total generations up to that point. If
the population is small, all designs are presented.
The information that is displayed on screen, in the
specific scenario, is the cavity shape that has been
developed on the blade of each individual propeller,
as shown in Figure 3. For both small and large popu-
lations of individuals, the users evaluate the designs on
the screen by rejecting or accepting them, according to
their own preference and design experience. In the
case of a large population, the users evaluate a smaller

Figure 1. Structure of surrogate model.
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part of the total population, while a prediction is made
for the rest of the individuals by an SVM model. As
previously mentioned, the SVM model is used for
avoiding user fatigue from having to evaluate too
many designs. For both cases, the non-satisfactory
designs are rejected.

At the end of the evaluation stage, the users have
the possibility to update the settings for the continuing
optimization, e.g. number of generations, individuals
per generation, objectives, constraints, design vari-
ables and optimization parameters. One of the key
parameters here is the number of individuals per gen-
eration, as the first generation of the next optimization
round will be comprised of only accepted designs from
the previous round. If the required number of individ-
uals for the next round is larger than the number of
accepted designs, then mutation and crossover are

Figure 2. IGA methodology flowchart.

Figure 3. Cavity on blade.
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used for the accepted individuals to create new ones in
order to fill in the missing individuals; if the number is
smaller, then the accepted individuals are ranked and
the non-dominated solutions are kept, similarly as in
the NSGA-II; if the number is equal, then the first gen-
eration is comprised of all previously accepted designs.

When the first generation of the second optimiz-
ation round has been created, the optimization is
resumed. The optimization is paused again after a M
number of generations and the designs of the Pareto
frontier, together with the corresponding cavitation
plots, are displayed on the screen. If the results are
satisfying, the whole process is finished;
otherwise the loop goes back to the evaluation stage.
This process is repeated until desirable results have
been achieved.

4.1. Support-vector machines

SVMs are broadly used in engineering as supervised
machine learning methods. They were initially
designed for binary classification and nowadays they
are also used in applications for regression and
multi-class classification (Vapnik 1995). A simple
case in binary classification is shown in Figure 4.
The input is data points with two features, x1 and
x2, that are separated in two classes. When a new
data point is introduced, the SVM determine in
which of the two classes it will belong. In order to
attain this, the optimal hyperplane is determined
that separates the classes in the best way possible
and offers the maximum margin between them. A
hyperplane in a n-dimensional space is a (n-1)-dimen-
sional subspace. In the figure, the hyperplane of the
2D-space is the red straight line and the margin that
has to be maximized is the distance 2

‖b‖. Also, the
two parallel hyperplanes, or marginal hyperplanes,
define the boundary of the margin and the 4 data

points that are on the marginal hyperplanes are the
support-vectors.

The main objective of the SVMs in binary classifi-
cation is to find the optimal hyperplane that classifies
the data correctly and to maximize the margin
between the classes. A brief mathematical formulation
for the binary classification follows according to Has-
tie et al. (2001). A training set (xi, yi) is assumed that is
comprised of the multi-dimensional training data xi,
where i = 1, . . . , n and xi [ Rd, and the class labels
yi [ {− 1, 1}. The hyperplane is defined as,

xTb+ b0 = 0, (1)

where β is a unit vector with ‖ b ‖= 1 and b0 a real
number.

Additionally, the marginal hyperplanes are defined
as xTb+ b0 = 1 and xTb+ b0 = −1. This means that
data points should be classified according to,

yi(x
T
i b+ b0) ≥ 1, i = 1, . . . , n. (2)

The optimal hyperplane can be found by solving the
convex optimization problem with linear inequality
constraints,

min
b, b0

‖ b ‖
subject to yi (xTi b+ b0) ≥ 1, i = 1, . . . n.

(3)

The above description regards data that can be entirely
linearly separable, but in data sets of real-world appli-
cations linear separation is not possible. A solution to
this is to use soft margins that are hyperplanes that
separate the data by allowing some misclassifications
with the introduction of non-negative slack variables
j = (j1, . . . , jn).

In this case, the optimal hyperplane can be calcu-
lated by solving the optimization problem,

min
b, b0

1
2
‖ b ‖2 +C

∑N

i=1

ji

subjectto ji ≥ 0, yi(xTi b+ b0) ≥ 1− ji, ∀i,
(4)

where C is a penalty parameter for the compromise
between margin maximization and training error
minimization and

∑N
i=1 ji is the training error. Finally,

in the case of non-linearly separable data, kernels can
be used. They map the input data into a high-dimen-
sional space and the optimal hyperplane with the
maximum margin is calculated in this space where
the data can be linearly separable; this process is called
Kernel trick. The Kernel function is described as,

K(x, x′) = 〈h(x), h(x′)〉, (5)

where h(xi) are the transformed feature vectors.
Broadly used kernels are the linear, the polynomial,
the radial basis function and the sigmoid.

In this paper, we use the Scikit-learn python code
(Pedregosa et al. 2011) for implementing the SVM

Figure 4. SVM with 2 classes that are separated from the opti-
mal hyperplane with the largest margin.
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model in our method. As mentioned in the description
of the methodology, the SVM model is utilized when
the optimization algorithm is used for large popu-
lation sizes, in order to reduce user fatigue. A smaller
part of the total designs is chosen and their cavitation
figures are displayed on screen. The users see them,
observe them and evaluate them by accepting or
rejecting them. Instead of labelling the designs with
−1 and 1 as in the theory, in this code they are labelled
with 0 and 1. The rejected designs take the label 0 and
the accepted the label 1. This is the training process of
the SVM model. The users can choose the number of
times they wish to pause the algorithm and evaluate
the designs. Every time new designs are evaluated,
the SVM model is updated with the new information
and the margin of the hyperplane is recalculated.
The designs that have not been evaluated and labelled
by the users, are classified in one of the two classes
according to the prediction of the model. The
implementation of the SVM model in the IGA meth-
odology makes the whole optimization process faster,
as it will be shown in Section 5.

5. Results and discussion

5.1. Computational tools

The hydrodynamic analysis tool that is utilized in this
scenario is the MPUF-3A (He et al. 2010) code, which
is based on lifting surface theory. More specifically, it
follows a vortex lattice method, where the geometry of
the propeller blade is represented by a lattice of dis-
crete vortices and sources, distributed on the mean
camber surface of the blade (Vesting 2015). In
addition to the fundamental assumptions of potential
flow theory, for the strength of the vortices, the kin-
ematic boundary condition on the blade surface
must be considered, where the wetted portion of the
blade surface is impermeable to the fluid, and the
Kutta condition at the trailing edge, where the flow
should leave the trailing edge in a tangential direction
(Lee 1979).

The cavity prediction is based on an iterative
process, according to Kerwin et al. (1986), where
for a 2D cavitating profile section, the cavitation
is represented by sources and the source strengths
must be solved for each time step. For the 3D sol-
ution, the cavity length must be adjusted for all sec-
tions at one time step. More specifically, radial
stripes of the blade must be solved until conver-
gence is accomplished, starting from the hub until
the tip of the blade and back. Each blade section
depicts a set of stripes in the flow field by combin-
ing the undisturbed inflow and the induced flow of
the other stripes. The solutions are computed for
only one blade, the key-blade, with the aim to
save computational cost. Subsequently, it is assumed

that the strengths of the vortices and sources on the
other blades, correspond to those that were calcu-
lated for the key-blade (Vesting 2015). In addition
to this, a fixed wake is being taken into consider-
ation. MPUF-3A includes also the effect of the
hub, the wake alignment in circumferentially aver-
aged inflow with an arbitrary shaft inclination
angle and the nonlinear thickness loading coupling
(Kinnas et al. 2003). An example of how the cavity
is being shaped on the blade of one propeller
design in 9 consecutive time steps, is presented in
Figure 5, where the cavity shape for each 2D stripe
is plotted. Finally, it should be emphasized that it is
possible to combine the developed methodology
with other computational tools instead of the
MPUF-3A code.

5.2. User scenario

We have developed a user scenario for the design of a
fixed pitch propeller for a single-screw car-carrier.
There are six design parameters: the pitch over the
propeller diameter and the maximum camber, at
14%, 70%, and 100% (pitch) or 95% (camber) blade
radii and range +15% from the values of the baseline
design. Additionally, there are two objectives: the
maximization of the efficiency and the minimization
of the maximum cavity volume at the MCR condition,
while operating in a fixed wake. The input for the wake
has been computed from model testing. There is one
quantitative constraint, a pitch adjustment based on
given threshold values for propeller thrust (+2%
from baseline thrust).

5.2.1. User evaluations
For this problem, the risk of cavitation erosion is a
constraint that is difficult to quantify numerically
but we need to rely on user experience. More
specifically, the user evaluates the designs, solely
based on one criterion: the cavity shape on the
blade of the designs displayed on screen, when
they have reached the maximum cavity volume, as
shown in Figure 6. After communication with
blade designers (Kongsberg Hydrodynamic Design
Team 2020), it has been concluded that based on
design experience and knowledge, it is sufficient
to present the cavity only at the time step where
there is maximum cavity volume. In the scenario
studied here, cavitation shapes as in propeller (a)
are preferred, because the cavitation grows and col-
lapses smoothly when the blade passes though the
wake. On the contrary, propellers (b) and (c)
would certainly be rejected, since there is large
cavity thickness on the tip of the blade, which
could potentially lead to cavitation erosion. It
should be noted, that the optimization is driven
by the objectives, but in order to consider the
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cavitation behaviour as well, the user evaluation of
the cavity is used as a qualitative constraint in the
optimization process. Thus, even designs with low
performance, in terms of objectives, are being dis-
played on screen, so that the user evaluates their
cavity shapes, with the aim to reach a Pareto fron-
tier with designs with high performance and satis-
factory cavitation behaviour. In the following
subsections, the results of the IGA methodology
and the SVM model are presented and discussed
and a comparison with a fully automated approach
is done.

5.3. Interactive optimization

In order to investigate the capabilities of the IGA
methodology, the user scenario was examined with
four sequential optimization rounds, where the users
were asked to interact with the code in between
these rounds for three times. The following procedure
was developed: an optimization round was run and
paused after a certain number of generations. The
users were asked to evaluate the cavitation of the
unique designs and they would accept or reject them
according to their own preference. Subsequently, the

Figure 5. Cavity shape on blade in 9 time steps.

Figure 6. Cavity shape of three propellers at the angle of the maximum cavity volume.
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users would choose some or all the accepted designs in
order to construct the first generation of the following
optimization round and at the same time they had the
option to change the optimization set-up. Similarly, at
the end of the next two small optimization rounds the
same approach was followed, while the fourth optim-
ization round was run for more generations.

Figure 7 shows the plots of the two objectives for all
four optimization rounds and the designs are divided
in accepted and rejected with green triangle markers
and red x markers, respectively. In the first round,
which had in total 40 designs, of which 19 unique
designs, the users accepted 6 and rejected 13. In the
second round, out of the 25 unique designs, 23 were
accepted and 2 were rejected. The third round was a
bit longer than the first two, with total 100 designs,
of which 55 were unique designs, where 51 were
accepted and 4 were rejected. The final round had
960 designs, out of which 213 were unique and the
users accepted 185 and rejected 28 designs.

As shown in Figure 7(a), the optimization started
with a small population of mostly rejected designs
and ended up, as depicted from Figure 7(d), with a
large population, where the majority of the individuals
were accepted. It was decided to run first three small
optimization rounds, so that the users were enabled
to interact frequently with the optimization code and
their information led to the final round where the
designs fulfilled the objectives without being infeas-
ible. It should be mentioned that in the last round
all designs were in the end evaluated manually, in
order to present a comprehensive overview of the
optimization’s progress. In most cases, when the last
round finishes, the blade designers are only interested
in the non-dominated solutions, thus they would
manually evaluate only the interesting designs of the
Pareto frontier. Figure 8 shows the evolution of the
process with respect to the fitness of the objectives
from all four rounds. It is observed that we manage
to obtain a detailed final Pareto frontier with a large
decrease in the cavity volume, yet with a slight increase
in the efficiency, when compared to the values of the
baseline design.

5.4. Automated optimization

We also performed an automated optimization for the
same problem according to Vesting et al. (2016). The
same user scenario was used, in order to be able to
compare the two approaches, as it will be described
in 5.5. For this type of optimization, the users pre-
defined the design and optimization parameters, simi-
larly as in each optimization round of the interactive
approach, but for more generations. Then, the optim-
ization was run and at the end the users assessed the
designs of the Pareto frontier. Again, here we manu-
ally evaluated all designs to show the complete picture

of the optimization’s evolution and the feasibility of
the designs. A total of 1100 designs were produced,
no cavitation-related constraints were set and the
same thrust constraint was set as in the interactive
optimization.

5.5. Comparison between interactive and
automated approaches

A comparison of the two approaches is carried out
in this section. The results from all four rounds of
the interactive approach have been collected in one
plot for the two objectives, presented in Figure 9(a)
and the corresponding plot of the automated
optimization is shown in Figure 9(b). The auto-
mated algorithm generates 436 unique designs,
while the interactive results in 236 unique designs,
due to the fact that the user evaluations constrain
the problem and guide it in a direction according
to their preference, while the automated optimiz-
ation in this case is completely unconstrained.
The obtained solutions of the automated approach
are more spread, but at the same time, they are
more irrelevant to the non-dominated solutions.
Regarding the evaluation of the solutions, the two
plots show that the interactive approach offered
189 accepted and 47 rejected unique designs,
while the automated approach offered 258 accepted
and 178 rejected unique designs. It is also evident
that the majority of the automated optimization’s
diverse solutions are rejected, something that leads
to unnecessary increased computational cost. As
presented on the Pareto frontiers of the two
approaches in Figure 10(a,b), the interactive optim-
ization gives 49 accepted and 10 rejected designs
and the automated optimization gives 38 and 7,
respectively. This means that the users would obtain
11 more non-dominated solutions – useful propeller
designs – at the end of the interactive optimization.

The design space of the two approaches is demon-
strated in the parallel coordinates’ visualization of
Figure 11. The first six vertical axes represent the
range of values of the six design variables of the pro-
blem, the next two axes show the values of the two
objectives and in the last axis the binary user evalu-
ation of the individuals is presented. Thus, each line
represents one design and shows the values of its
design variables, objectives and finally if it was
accepted or rejected. The green and red colours of
the lines depict the accepted and rejected designs,
respectively. This type of plot can become a useful
tool for the blade designers, as it is interactive and
they can filter the range of the variable they are inter-
ested in.

The first observation is that the design variables
of the interactive approach have not been explored
as broadly as in the automated process. The reason
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for this is twofold: the automated approach pro-
duces more unique designs, while for the interactive
approach the users accept specific designs that
belong to specific areas of the design space and
these are promoted to the next generations. These
areas of the design space are more evident in

Figure 12(a). It is observed that there is a tendency
to accept designs with a pitch over propeller diam-
eter distribution that has values over 0.9 at 70%
radius and values lower than 0.75 at 100% radius,
combined with camber distribution that increases
at the tip of the blade (higher than 27 mm). The

Figure 7. Accepted and rejected designs of four optimization rounds. (a) First round, (b) second round, (c) third round, (d) fourth
round.

Figure 8. Evolution of four optimization rounds with IGA. (a) First round, (b) second round, (c) third round, (d) fourth round.
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same trend is observed in Figure 12(b), but the
algorithm has not searched in areas where the cam-
ber at 95% radius is as increased as in the interac-
tive approach. More specifically, 26 individuals,
where the camber at 95% radius has values higher
than 30 mm ended up being in the final Pareto
frontier of the interactive optimization. Finally, by
comparing the objectives of the two approaches,
their values are at the same level, but the limited
exploration of the design space becomes the
benefit of the interactive approach, since it gives
eventually more non-dominated solutions of equal
fitness to the designers.

5.6. Interactive optimization with SVM
implementation

In Section 5.3, the results of the IGA methodology
were presented without involving the SVM model.
As it was described, after the end of the fourth optim-
ization round, all designs were manually evaluated by
the users, with the purpose of showing precisely how
the code evolves according to the user preference.
However, this is a labour-intensive process for the
designers and can be improved by using the SVM
model during the last stage of the optimization. The
user manually evaluated 99 designs in the first three
optimization rounds by the binary choice of accepting

or rejecting them; this corresponds to a labelling with
1 and 0 respectively in the code. Furthermore, the
input to the SVM consists of this binary labelling
together with the following cavitation parameters:
maximum non-dimensional cavity volume at the
most critical angle, chord-wise centroid harmfactor,
maximum non-dimensional length of each cavitating
blade section, cavity closure line harmfactor, cavita-
tion thickness at the three outermost blade radii and
non-dimensional cavity change. More information
about these cavitation parameters can be found in
Vesting et al. (2016). The fact that the 99 user evalu-
ations take place in three different steps, with the
optimization running in between them, causes less
fatigue to the users. The input trains the SVM model
and when the final round finishes, the model classifies
the new designs as accepted or rejected. The total
number of unique designs were 236, so the train
data are the 42% of the total and the test data the
remaining 58%. For the validation of the accuracy of
the SVM model, the model’s predicted classification
was compared to the manual evaluations of 5.3. As
shown in Table 1, by using either the linear or the
polynomial Kernel the predictability is very high,
98.5% and 97%, respectively.

In Figures 13 and 14, the class separation is pre-
sented through decision function contours for linear
and polynomial kernels, respectively. The input of

Figure 9. Accepted and rejected designs of two approaches. (a) Interactive optimization, (b) automated optimization.

Figure 10. Final Pareto frontiers. (a) Interactive optimization, (b) automated optimization.
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the SVM model is 8-featured, so it is impossible to
present the 8-dimension class separation in a 2D
plot. Thus, for the demonstration of the class separ-
ation, the principal component analysis (PCA) is
used here. PCA is a multivariate technique that
reduces the dimensionality of a large data set with
several possibly correlated variables, by

transforming it to a new set of variables that are
uncorrelated and at the same time they maximize
the variance. These new variables are the principal
components and their calculation reduces to the
solution of an eigenvalue/eigenvector problem Jol-
liffe (2002). Figures 13(a) and 14(a) show the
class separation according to the manual

Figure 11. Parallel coordinate visualization of design variables, objectives, evaluations. (a) Interactive optimization, (b) automated
optimization.
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evaluations. The penalty parameter C is set equal to
1 and there are two misclassified points (outliers)
from the separating hyperplane. The higher the

value of C parameter, the more training points
will be classified correctly, but the maximization
of the hyperplane will become more complicated.
In Figures 13(b) and 14(b), the predicted values
are presented that have two and four outliers,
respectively. It is evident that the predictability of
both models is satisfactory.

Additionally, the data of the automated approach
were used to do a sensitivity analysis on the SVM

Figure 12. Parallel coordinate visualization – accepted designs. (a) Interactive optimization, (b) automated optimization.

Table 1. SVM predictability of last optimization round in
interactive approach.

% of Training data Predictability

Linear Kernel Polynomial Kernel

42 0.985 0.97
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model’s prediction accuracy by comparing the SVM
prediction with the manual evaluations. This is
shown in the summary statistics of Figure 15 for the
linear and polynomial kernels. Different training
data were chosen randomly as subsets of the whole
data set and were input in the SVM; 9 different sizes
of training data were considered and the process was
repeated 150 times for each size. Both kernels have
good accuracy, with the linear kernel being a bit
higher. It is observed that when the training data is
50–90% of the data set the mean accuracy is

approximately the same, with the lower standard devi-
ation being at 50–70% of the data set. According to
these results, for the specific problem, the users should
choose to manually evaluate 50% of the unique
designs, in order to have as few manual evaluations
as possible with accurate prediction.

6. Conclusions

In this paper, we developed a novel, general user-com-
puter interactive optimization methodology for the

Figure 13. Class separation in SVM model with PCA – Linear Kernel. (a) Manual evaluations, (b) predicted data.

Figure 14. Class separation in SVM model with PCA – Polynomial Kernel. (a) Manual evaluations, (b) predicted data.

Figure 15. Summary statistics of SVM prediction accuracy. (a) Linear kernel, (b) polynomial Kernel.
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design of ship propellers. Specifically, a fixed-pitch
propeller for a single-screw car-carrier was used in
this study. Furthermore, IGAs were utilized and
were combined with an SVM model for solving the
problem of user fatigue that is the main disadvantage
of the IEC. According to our methodology, the users
start a NSGA-II optimization and in different stages
they can pause it and visualize and assess images
that show the cavity shape that has been developed
on the blade at the most critical angle. The user’s
evaluations separate the designs in accepted and
rejected and the optimization code evolves by only
using the accepted solutions. Through the proposed
methodology, the results show that the users obtain
at the end of the optimization a detailed Pareto fron-
tier, with non-dominated and feasible design solutions
that have a good cavitation behaviour in line with the
designers’ preference. When compared to the results
of the automated approach, both have approximately
the same objective fitness, but in the automated
approach, the design space is searched more broadly;
at the same time, most of those diverse solutions are
rejected by the users, as they do not fulfil the cavitation
requirements. Thus, the interactive approach finds
more solutions in a more targeted manner. Regarding
the SVM model, it is needed when the populations are
large in order to reduce user evaluations and its pre-
dictability accuracy proved to be very high for both
linear and polynomial kernels.

The proposed methodology is a start for involving
the designers in the optimization loop of marine pro-
peller designs problems and using the designer knowl-
edge on obtaining better designs faster. However, we
believe that the benefits of our interactive approach
will be more evident in a more complex scenario
with more objectives and operational conditions. In
such a scenario with contradictory objectives that
make compromises necessary, the designer’s assess-
ments should guide the code to the correct design
space areas. Additionally, a more technical point for
further development is the way the designs are pre-
sented to the users for assessment. Currently, they
are presented to the users one by one, but if more
designs would be displayed simultaneously, then the
users would be able to compare different designs at
once. The presentation of designs affects also how
fast the user fatigue is developed and it defines
whether a population is small or large for the IGAs.
For example, manual evaluations of total 100 designs
that take place in groups of 10, will lead to less fatigue
than executing 100 single evaluations. Lastly, it would
be potentially beneficial to investigate how the data of
large marine propeller databases can be used for train-
ing SVMs or other machine learning models with the
purpose of assisting blade designers to design blade
designs of higher quality and in less time.
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IEC Interactive Evolutionary Computation
IGA Interactive Genetic Algorithm
MCR Maximum Continuous Rating
NN Neural Network
NSGA-II Non-dominated sorting genetic algorithm II
PCA Principal Component Analysis
PSO Particle Swarm Optimisation
RANS Reynolds Average Navier-Stokes
SVM Support-Vector Machine
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