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ABSTRACT: During diffusion of nanoparticles bound to a
cellular membrane by ligand—receptor pairs, the distance to the
laterally mobile interface is sufficiently short for their motion to
depend not only on the membrane-mediated diffusivity of the
tethers but also in a not yet fully understood manner on
nanoparticle size and interfacial hydrodynamics. By quantifying
diffusivity, velocity, and size of individual membrane-bound
liposomes subjected to a hydrodynamic shear flow, we have
successfully separated the diffusivity contributions from particle
size and number of tethers. The obtained diftusion-size relations
for synthetic and extracellular lipid vesicles are not well-described
by the conventional no-slip boundary condition, suggesting partial

_25
®
~N 2t
&
=15}
>
S 1t
4
E05f
a
O i i i
0 20 40 60 80

Vesicle radius [nm]

slip as well as a significant diffusivity dependence on the distance to the lipid bilayer. These insights, extending the understanding of
diffusion of biological nanoparticles at lipid bilayers, are of relevance for processes such as cellular uptake of viruses and lipid

nanoparticles or labeling of cell-membrane-residing molecules.

KEYWORDS: Multivalent interactions, single-particle tracking, lipid vesicles, confined diffusion, slip length

M any biological processes involve interfacial biomolecular
interactions in confined geometries. In the case of
nanoparticles near biological interfaces, nanoparticle diffusivity
can be used to estimate both the nature of the interfacial
interactions and nanoparticle size.'”> However, confined
nanoparticle diffusion is significantly influenced by hydro-
dynamical boundary conditions in general and especially when
the distance between the nanoparticle and an interface is
shorter than the size of the particle,"* which naturally occurs
during the initial interaction between biological nanoparticles
and cellular membranes.” Characterizing nanoparticle diffu-
sivity at such a short distance to an interface is therefore crucial
for in-depth understanding of fundamental hydrodynamical
effects, which are relevant in a multitude of biological
processes, including viral infection,” exosome-controlled intra-
cellular communication,” nanoparticle-assisted drug delivery,®
as well as when nanoparticles are used as labels for molecules
residing in laterally fluid cell membranes.”

Since the hydrodynamics around hydrophilic interfaces often
is well-described by the no-slip boundary condition,'® this
boundary condition is typically employed for biological
interfaces, as they often consist of lipid bilayers with
hydrophilic headgroups facing the surrounding fluid. Previous
studies using a dynamic surface force apparatus to determine
the boundary conditions of supported lipid bilayers (SLBs)
indicate that the gel-phase DPPC (dipalmitoylphosphatidyl-
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choline) bilayers appear to fulfill this condition,'"'* whereas a
slip length of 6 + 0.5 nm has been observed for fluid DOPC
(dioleoylphosphatidylcholine) bilayers."' Hence, the assump-
tion of no slip is not necessarily generally valid and should in
many situations be replaced by partial slip, characterized by a
slip length b defined as the distance below the surface at which
an extrapolation of the velocity profile parallel to the interface
becomes zero (see schematic illustration in Figure la).b!31#
However, it remains difficult with existing methods'>™"7 to
directly measure slip for nanoparticles in general and biological
nanoparticles in particular, primarily due to sample hetero-
geneity, small buoyancy forces, and a lack of means to
simultaneously determine both nanoparticle size and mobility.
Thus, there is a need for new approaches to quantify the
hydrodynamic boundary conditions for nanoparticle systems.

In the context of nanoparticles near fluid lipid bilayers, the
distance between a nanoparticle and an SLB is often
constrained due to the formation of ligand—receptor pairs or,
in other words, molecular tethers,'® making it comparable to
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Figure 1. [llustration of the two-dimensional flow nanometry (2DFN) concept. (a) Nanoparticles are linked to a supported lipid bilayer (here using
cholesterol—DNA tethering) within a microfluidic channel. A shear flow is applied, and the movement of the vesicles is tracked using total internal
reflection fluorescence (TIRF) imaging (see inset). Here, b is the slip length of the lipid bilayer, and h is the distance to the surface from the center
of the vesicle. (b) The calibration parameters in eq 1 are obtained by relating the modal hydrodynamic radius measured in bulk using NTA to the

modal force measured using 2DFN.

the length scale of the potential slip. Since the motion of
tethered nano})articles is largely determined by the diffusivity
of the linker,'” it is common to neglect the potential influence
on mobility of the nanoparticle itself.” It was recently shown,
however, that in the limit of single or few tethers between gold
nanoparticles and an SLB, the nanoparticle size had an
appreciable influence on the resulting mobility down to
particle diameters as small as 10 to 20 nm.”” This suggests
in turn that quantification of the size-dependent mobility of
nanoparticles bound to an SLB could offer a novel opportunity
to gain new insights about the hydrodynamic boundary
conditions and confined nanoparticle diffusion near planar
interfaces of both experimental and theoretical importance,
especially since the current theoretical representations of
confined diffusion contain several approximations that are in
need of experimental validation. However, in contrast to
synthetic nanoparticles with narrow size distributions,
quantification of diffusion-size relations for biological nano-
particles, which typically have broad size distributions, requires
means to simultaneously determine both size and mobility on
the level of individual nanoparticles.

Herein, we take a new step toward addressing the challenge
of measuring the hydrodynamic boundary conditions for
biological nanoparticles using two-dimensional flow nanometry
(2DFN), which enables simultaneous quantification of both
size and mobility for synthetic lipid vesicles and cell-derived
extracellular vesicles (EVs) when bound to an SLB.*' 2DFN is
based on optical tracking of the flow-induced motion of
nanoparticles tethered to an SLB formed on the floor of a
microfluidic channel (Figure 1a), which enables simultaneous
measurement of the flow-induced velocity, v,, and the mobility
of the combined nanoparticle—tether system, y = DksT (D is
here the measured diffusion constant). When combining these
independently determined parameters, they can be used to
calculate the hydrodynamic force, F = v, acting on the
particle.”’”**  Assuming spherical nanoparticles, which is
reasonable considering the deformation force for a ~50 nm
radius lipid vesicle (Supporting Information, Section 2.2), F
can be related to the 2DFN nanoparticle radius, Rgy, as”™'

F= Vxﬂ_l = AnuoRpn(Rey + 4) (1)

where 7 is the dynamic viscosity, u, is bulk liquid flow velocity,

and A and A are channel- and interface-specific calibration
21 I

parameters.” Here, the calibration was performed by

associating the maximum of the distribution of hydrodynamic
radius, Ry, obtained from nanoparticle tracking analysis (NTA)
of suspended nanoparticles, with the maximum of the
measured v~ distribution as shown in Figure 1b (Supporting
Information, Section 2.3). Since the measured size distribution
of particles at the surface is not necessarily identical to the size
distribution in bulk, Rgy is close, but not strictly identical, to
Ry. In fact, the corresponding difference is small, ~1 nm for
~30 nm radius vesicles (Supporting Information, Section 2.4),
and accordingly, we set Rgy = Ry,

In general, the mobility of the combined nanoparticle—
tether system depends on both the nanoparticle mobility pyp
and the mobility of an individual tether pr.”’ To specifically
quantify the mobility of the nanoparticle, it is necessary to
disentangle the two mobility contributions, keeping in mind
that the nanoparticle may be bound to the SLB by more than
one tether. Concerning these aspects, we note that the
nanoparticle and tether mobilities are determined by two
approximately independent frictions: between the nanoparticle
and solution and between tethers and lipids, respectively.
According to previous experiments,' > the friction associated
with yp agrees well with the free-draining model** and can
thus be represented as a sum of independent frictions from the
individual tethers. By also considering that the frictions are
inversely proportional to mobilities, we have

P (Ry) = pp(Ry) + Nus! @)

where N is the number of tethers. Since N can here only attain
discrete values, this suggests that the two different mobility
contributions in eq 2 can be separated, provided that particle
populations linked by different numbers of tethers can be
distinguished from the combined particle size and mobility
measurements offered by 2DFN.

To explore this opportunity, 2DFN was employed to analyze
fluorescently labeled POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine) lipid vesicles, with R; centered around
35 nm, as well as EVs, with R, centered around 45 nm,
tethered to an SLB (consisting of POPC and 0.5 mol%
PEG2000-PE (1,2-dioleoyl-sn-glycero-3-phosphoethanol-
amine-N-[methoxy(polyethylene glycol)-2000])) formed on
the glass floor of a rectangular PDMS microfluidic channel
(height 80 pm, width 400 pm). The POPC vesicles were
prepared by the freeze—thaw extrusion method (Supporting
Information, Section 1). Experimental details for the EV data
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Figure 2. (a) Flow-directional velocity versus inverse diffusivity for POPC vesicles in TE buffer containing 150 mM NaCl. The three different
colors designate the selection based on the number of tethers (1, 2, and >3), with the solid lines in the histograms representing the contribution
from each subpopulation and the gray areas representing the ensemble histograms. (b) Inverse diffusivity versus Rpy for the first two clusters in (a).
The estimated values from the least-squares fit (yellow lines) are b = 24.8 + 7.5 nm and Dy = 2.50 + 0.07 um?/s (mean + 95% CI, visualized

using the shaded blue region).

are described in ref 25. The vesicles were subjected to a
volumetric flow of TE buffer (50—200 mM NaCl, 10 mM
TRIS, 1 mM Na,EDTA) at 30 uL/min. The POPC vesicles
contained 2 mol% ATTO488PE, whereas the EVs were labeled
using the self-inserting lipophilic dye 3,3-dioctadecyl-$,5-di(4-
sulfophenyl)oxacarbocyanine (SP-DiO). The particles were
linked to the SLB using complementary DNA-—cholesterol
tethers (Supporting Information, Section 1.3), with a total
length of about 15 nm, and imaged using total internal
reflection fluorescence (TIRF) microscopy.

To test whether the two experimentally obtained mobility-
dependent particle properties, v, and D, can be used to resolve
the expected discrete effect from different number of tethers, v,
was plotted versus D™ as shown in Figure 2a for POPC
vesicles. It is evident from this graph that the data cluster into
groups with similar D™ values, and that v, increases with
increasing D7!. Furthermore, two clusters, characterized by
high diffusivity values, are clearly separated from each other,
while vesicles with lower diffusivity are more homogeneously
distributed. Such distribution of the data is expected from eq 2,
since a subpopulation corresponding to a certain number of
tethers becomes separated from other subpopulations when
the relative change in diffusion is larger than the statistical
spread of the diffusion estimation, which is set by the track
length N, according to AD = D/,/N,

distinction for one, two, and more tethers, a minimum track
length of 100 frames was used (Supporting Information,
Section 1.4).

Since the radius Rgy of each vesicle can be determined using
eq 1, also the dependence of the measured diffusivity on vesicle
size can be inspected. This is in Figure 2b illustrated by
plotting D™' versus Rpy for the two clearly separate
subpopulations seen in Figure 2a. From this plot, it becomes
evident that D™' displays a clear dependence on Rpy, with
similar slopes for both subpopulations.

Since the observed dependence of D™' on Ry agrees with
the general structure of eq 2, a unique opportunity to compare
the measured size dependence with theories for confined
nanoparticle diffusion is rendered possible. In general, the
mobility of a nanoparticle close to an interface depends on its
Ry, the distance from the center of the particle to the interface
h (Figure 1), and the slip length at the interface b;, and can be
expressed as"?°

.- To achieve this

/’th = ﬂNpoo(Rh)r(th h) bl) (3)

where fiypeo(Ry,) is the mobility of the nanoparticle in bulk and
T'(Ry, h, b;) is the correction factor due to the interface. With
the no-slip boundary condition for both interfaces, an explicit
expression of the correction factor is given by"”’

R R\ R\ R\
b =0y 1 - {5 2[R LSRR
16\ h sl 256\ h 16\ h

(4)
Since the geometrical size of the particle R is the same as Ry, in
the case of no slip, the two sizes are often used interchange-
ably. In our context, the use of Ry, is preferable, because it can
naturally be kept when introducing the correction factor
representing partial slip.”® Furthermore, although T is derived
under the assumption that k& >> Ry,"* it is essentially identical
to other expressions derived to represent confinement effects
in the close proximity re%ime when Ry/h < 0.8 (Supporting
Information, Section 2.5).”®
In the partial-slip case, the hydrodynamics can be described
by shifting the no-slip boundary below the interface.
Practically, h in eq 4 is replaced by the effective height h =

h + b,”" whereas the slip at the particle b, is implicitly
R+2b

included via Ry, = RR+3;. In our case, we can use the small
P

slip-length approximation, R ~ Ry, + b, and accordingly, we

have h & Ry, + b, + 5, where § is the distance from the vesicle

to the SLB. Thus, he = Ry, + b where b =6 + b; + b,. With

these specifications, the mobility of a particle close to an

interface can be expressed as

MNP(Rhlhef)
o(R,) 1(R,) 4s5(R) 1(R)Y
S N L e B e B e e
Nbeo 16\he) 8\ hy 256\ by 16| hye
(%)

Considering that Rpy &~ Ry, (Supporting Information, Section
2.4), we find that b can be determined by fitting eq S to the
2DFN data.

Taking these specifications into account, a fit using eqs 2 and
S to the data in Figure 2b yields b = 24.8 + 7.5 nm and Dy =
2.50 + 0.07 um*/s (mean + 95% CI), where Dy is the
diffusion coefficient of a single tether. Note that this outcome
is valid irrespective of the type of the boundary conditions.
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Figure 3. Velocity versus inverse diffusivity (a—d) for all particles, with the single-tether population highlighted in black as well as inverse diffusivity
versus Ryy for the single-tether population (e—h) of POPC vesicles at different NaCl concentrations in the TE buffer: (a,e) S0 mM, (b,f) 150 mM,
(c,g) 200 mM NaCl, and (d,h) extracellular vesicles (EVs) in TE buffer with 125 mM NaCl, all fitted using Dy = 2.47 um?*/s (obtained from
independent FRAP data). The estimated values from the least-squares fit (yellow lines) are b; = 20.5 + 3.7, 26.4 + 5.1, and 27.4 + 5.3 nm for 50,
150, and 200 mM, respectively, and b,; = 30.4 + 5.8 nm for the EVs (mean + 95% CI, visualized using the shaded blue region). The red dashed

lines correspond to b = 4 nm (i.e,, no slip with § = 4 nm) and b = 100

nm. The EV data were adopted from ref 25.

More specifically, b.; corresponds to the distance J in the case
of no slip, whereas if slip occurs, b, corresponds to the sum of
0 and the slip lengths b; and b,,. Furthermore, Dy is in excellent
agreement with a diffusion constant of 2.47 + 0.04 um?/s
obtained from fluorescence recovery after photobleaching
(FRAP) measurements of fluorescently labeled DNA tethers
(Supporting Information, Section 1.5), suggesting that the
separate clusters of data points in Figure 2 indeed correspond
to subpopulations with one and two tethers. Also note that the
mean diffusivity of the single-tether subpopulation is ~1.4
um?/s, illustrating the significant underestimation one would
make if the friction between the vesicle and solution is
assumed to be negligible when using nanoparticles in this size
regime to quantify the diffusivity of membrane-bound
molecules. In addition, since the slope for D™ versus Ry is
similar for both subpopulations (see Figure 2b), the size-
dependent friction from the vesicles appears to be identical in
the two cases, which in turn suggests that the measured
nanoparticle contribution to the diffusion coefficient in the low
tethering regime can be used to compensate for the

nanoparticle contribution when interpreting diffusion in the
multivalent case (N > 2).

It is in this context worth noting that the derivation of eq 2
relies on the assumption of independent friction forces. Since
the presence of a PEG cushion on the SLB is expected to
prevent direct vesicle—SLB interaction, this assumption is
reasonable in the case of a single tether; however, in the case of
multiple DNA—cholesterol tethers, electrostatic and steric
interactions between the linkers cannot be excluded. Using the
diffusion constant of a single tether obtained from the FRAP
analysis and considering the single-tether population only
(Figure 3a—d), the slip length becomes the only free fitting
parameter. This was used to assess the generality of the
obtained value of b, by analyzing measurements performed
for (i) the POPC vesicles at different NaCl concentrations in
TE buffer (Figure 3e—g) as well as (ii) cell-derived EVs
(Figure 3h) with similar size to that of the POPC vesicles, but
with a significantly more complex membrane composition.
Using the single-tether population only, b, values of ~21 to
~27 and ~30 nm were obtained for POPC vesicles and EVs,
respectively.
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To relate the value of b¢ (=6 + b; + b,) to the slip lengths b;
and by, the distance & needs to be specified. In previous work
using 2DFN under similar experimental conditions, it was
shown that the nanoparticle size determination was not
influenced by neither the length of the linkers nor the flow
rate.”’ This suggests that nanoparticles tethered with flexible
linkers are pushed by the flow toward the SLB to a minimum
possible distance. To avoid nonspecific interactions between
the SLB and the vesicles, we incorporated 0.5 mol% PEG2000-
PE within the bilayer for all measurements, which thus defines
the distance between vesicles and upper surface of the SLB to
the ~4 nm thickness of this protruding PEG layer.”” Under the
assumption that the slip length is identical at the POPC SLB
and POPC vesicles (b; = b, = b), this suggests an effective slip
length b of around 8—12 nm. If the distance between the
particles and the surface would not be defined by the PEG
cushion but rather by the maximum extension of the
cholesterol—DNAlinker (~15 nm), the analysis would suggest
a b of around 3—6 nm. Further, since the slip lengths for EVs
and POPC vesicles are expected to be similar, the most likely
reason for the higher b obtained for EVs is an increase in 0
caused by their more complex composition, with protruding
proteins and glycans.” This is consistent with the assumption
that both POPC vesicles and EVs are indeed pushed by the
flow toward the PEG-modified SLB, with molecular
protrusions on the EV extending ~3 to 10 nm from the
membrane envelope.

Although being clear from this analysis that the no-slip
boundary condition fails to represent the data, with the larger
b, for the EVs being in good agreement with expectation of
protruding membrane molecules,” it is crucial to recall that a
number of assumptions, by necessity, had to be made to
perform this analysis. One assumption is the choice of the
representation describing the change in diffusivity due to the
proximity to a planar interface and in particular the fact that
the expression is originally derived under the assumption that
the particle is far away from the surface. When comparing b,
obtained using different representations of the change in
diffusivity, both using a different number of expansion terms
for eq 4 as well as the Brenner formula, which is derived to
handle the limit of short distances between the particle and the
surface,”*" the obtained b, values differ by less than 1.5 nm,
which is expected since Ry/hy S 0.75 (Supporting
Information, Section 2.5). Another assumption in eq S is a
neglectable effect from the finite viscosity of the SLB. Confined
diffusion is dependent on the viscosity at both sides of the
interface, where the magnitude of this effect here is dependent
on the ratio between the viscosity of the SLB and surrounding
liquid.”® However, since the ratio in this case is expected to at
least be ~100,”" its contribution to b, is no more than 1 nm
(Supporting Information, Section 2.6). A third assumption
utilized is that Rgy = Ry,. Since the measured size distribution
using 2DFN can be slightly different from the size distribution
in bulk, the calibration parameters of eq 1 may introduce an
error that affects the obtained b, However, by analyzing the
magnitude of this effect using the size distributions measured
using NTA, the difference is estimated to be around ~1 nm for
the used vesicle sizes, which in turn contributes to b by no
more than ~2 nm (Supporting Information, Section 2.4). On
the contrary, the approximation hy = R, + by ie., the
linearization of the slip effect, contributes to a slight (<1-2
nm) underestimation of b (Supporting Information, Section

2.7).* Combined with the fact that eq S is indeed valid for no
slip, the obtained b values are inconsistent with no-slip.

In conclusion, our analysis provides a general approach to
experimentally quantify and compare the friction contribution
of different nanoparticles when tethered to a lipid membrane.
This information makes it possible to clarify the size-
dependent mechanistic aspects concerning the mobility of
membrane-attached nanoparticles, of importance for systems
ranging from viral infections to nanoparticle-assisted drug
delivery and mobility quantification of membrane-residing
biomolecules using nanoparticle labels. Specifically, we have
demonstrated that the size-dependent mobility of SLB-
tethered nanoparticles can be quantified using a single
measurement if the particle size distribution is sufficiently
wide, which is different from previous work that instead relied
on measurements of several samples with narrow size
distributions.”® The possibility to analyze wide size distribu-
tions on the individual nanoparticle level without relying on
the particle signal—size relation is a key asset for the analysis of
biological nanoparticles, such as EVs, exosomes, and viruses,
since their size distribution is typically broad, and the
fluorescence signal depends strongly on the highly variable
membrane composition.””*> The identification of tether
subpopulations combined with measurements of both size
and diffusivity enabled a direct quantitative comparison with
theoretical expressions of the size-dependent mobility. The
measurements for POPC and EVs were found not to be well-
described by the equations obtained using the conventional
no-slip boundary condition. Instead, the obtained b values for
POPC vesicles were similar to the reported slip-length value of
6 + 0.5 nm for mobile DOPC SLBs,'" albeit the latter was
obtained for macroscopic interfaces, whereas the slightly larger
b for EVs is likely due to protruding proteins and glycans.”

We foresee that the possibility to conduct measurements of
this type for not only lipid vesicles but for SLB-tethered
nanoparticles in general will inspire the development of refined
theoretical approaches for more accurate descriptions of
nanoparticle diffusivity in close proximity to mobile interfaces
with partial slip, to thereby further the understanding of
diffusion of nanoparticles near lipid bilayers.
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