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ABSTRACT: Because of the strong relationship between the desired molecular activity and its
structural core, the screening of focused, core-sharing chemical libraries is a key step in lead
optimization. Despite the plethora of current research focused on in silico methods for molecule
generation, to our knowledge, no tool capable of designing such libraries has been proposed. In
this work, we present a novel tool for de novo drug design called LibINVENT. It is capable of
rapidly proposing chemical libraries of compounds sharing the same core while maximizing a
range of desirable properties. To further help the process of designing focused libraries, the user
can list specific chemical reactions that can be used for the library creation. LibINVENT is
therefore a flexible tool for generating virtual chemical libraries for lead optimization in a broad
range of scenarios. Additionally, the shared core ensures that the compounds in the library are
similar, possess desirable properties, and can also be synthesized under the same or similar
conditions. The LibINVENT code is freely available in our public repository at https://github.
com/MolecularAI/Lib-INVENT. The code necessary for data preprocessing is further available
at: https://github.com/MolecularAI/Lib-INVENT-dataset.

■ INTRODUCTION

With the recent advances in deep-learning techniques, such
techniques are becoming increasingly popular tools in a range of
areasfrom automated vehicles to medicinal chemistry.1,2 This
is especially true for drug discovery, where the symbiosis
between machine-learning models and human experts has the
potential to significantly speed up the process of early drug
discovery.3 Because of their generalization abilities, deep
generative models have become the core engine in most recent
de novo design tools.4,5 Despite the progress in the field of deep
learning, such tools are still in the early stages of development, as
they are adapting to satisfy the more specific needs of drug
design.6

One of these specific requirements is in the lead optimization
stage, when aiming to use focused libraries of small molecules to
identify a promising lead compound.7,8 In general, the purpose
of lead optimization is to retain the favorable properties of the
compound while optimizing the properties that still prevent the
compound from becoming a drug candidate.9 Because the
desired activity is normally tied up to a given scaffold,10 this use
case boils down to retaining a certain molecular core and varying
only specific moieties to satisfy the complex demands for the
properties of the candidate molecule.7 In practice, this can be
addressed by screening very focused libraries that share the same
core.11 As an ideal scenario when synthesizing such a library, it
should be possible to introduce the proposed moieties via the
same or similar reactions to ensure that the reactions can be
carried out under the same conditions. Related investigations

have been conducted on a much smaller scale in the works on
matched molecular pairs12 and fragment linking;7 however, the
explorations have not been previously extended to library
generation or to considered chemical reactions.
For the purpose of this Article, we define a chemical library as

follows:
Def inition 1: Given a scaffold, s, the library is a set of molecules

with the following conditions:

1. All include substructures

2. All molecules are accessible by the same sequence of
synthetically relevant chemical transformations

In this Article, we propose a solution based on a de novo
generative model capable of addressing the use cases outlined
above. The model is built on the REINVENT13 framework
where a pretrained prior with a knowledge of general chemical
syntax is focused via reinforcement learning to generate
compounds optimized for a specific, user-defined task. In this
work, we extend the objective from a single compound design to
a library design. Specifically, the model can suggest moieties to
decorate an input scaffold with a variable number of attachment
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points for these decorations. In addition, the model can be put in
a reinforcement learning (RL) scenario to learn to maximize a
user-defined set of objectives. The resulting ideas will therefore
be focused according to specific lead optimization goals. In
contrast with prior work on scaffold decoration, these goals may
include a set of reactions assigned to each attachment point of
the scaffold so that the model learns to produce moieties
attachable to that specific attachment point, in agreement with
the given reactions. This way of generating chemical libraries
gives the user a significant level of control over the output,
enabling them to focus the model’s creativity and leverage prior

knowledge.14 Satisfying condition 2 of the library definition
further means that the generated library is more suitable for
automation in the design and execution stage by reducing the
number of reagents and reactions required in synthesis, provided
that the specified reactions are selected to be amenable to
automated synthesis. This further allows the chemist to
optimally select reactions with a desired profile, which includes
but is not limited to considerations of efficiency, literature
coverage, or safety. Thus the number of DMTA (design−make−
test−analyze) cycles required in the drug discovery process

Figure 1. General workflow of the model. In the first stage (a), a generative decorator is trained on the preprocessed data. This model, called prior, is
subsequently used in a reinforcement learning loop to generate a library for any user-defined task, as illustrated in panel b. It serves as both an
initialization of the agent and a regularization component in the scoring function.
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decreases, improving the productivity of the incorporation of a
generative model in the lead optimization pipeline.
The original REINVENT algorithm13 proposes compounds

optimized for solving a specific user-defined objective, and the
recent GraphINVENT extends this to work to molecular
graphs.15 The algorithm introduced here, called LibINVENT,
takes the work further and closer toward the utilization of
chemistry automation platforms by building focused, easy
synthesizable libraries. Related models have appeared in the
literature over the recent years, focusing on the scaffold
decoration itself or the usage of RL to guide the decorative
process.14,16,17 The major enhancement that LibINVENT
brings to these methods lies in the volume and diversity of its
output within a focused chemical space. Crucially, the fact that
the generated libraries can be produced from the same starting
scaffold using specific chemical reactions facilitates the uptake of
the ideas in a wet lab environment and contributes to the
possibility of automation of the drug-design process. By focusing
on the design and synthesis of libraries instead of single
molecules, the learning in each DMTA cycle can be increased,
and accordingly, there is a need for fewer cycles to reach a
clinical candidate.

■ GENERAL WORKFLOW
This section gives a high-level overview of the individual steps of
the data preparation and model training and the usage of the
algorithm to optimize various user-defined objectives. Figure 1
shows an overview of the workflow. Specific technical details will
be further discussed in the Methods section. The motivation for
the choices made in both the data preparation and the model
design is further explained in the Discussion.
The model is a recurrent neural network (RNN) that takes a

scaffold as an input and returns complete compounds obtained
by attaching decorations to the input scaffold. There are two
stages in the training: First, a general model is trained to learn
the syntax of the SMILES language. We will henceforth refer to
this model as the prior and stress that the training of the prior is
not specific to a particular task and thus only occurs once. The
second step corresponds to the general usage of this model,
which is analogous to REINVENT: The prior is focused to solve
a user-defined objective. In the case of LibINVENT, this is
achieved through RL and might involve a requirement for
specific chemical reaction types. Starting from a scaffold of
interest, the general prior thus rapidly adapts to propose a
focused chemical library consisting of thousands of compounds
sharing a scaffold and chemical properties. Importantly, the
generated compounds are collected during the RL process and
not after, meaning that themodel is typically no longer used after
the completion of the RL run.
Data Preparation. Compounds from the publicly available

ChEMBL Database, version 27,18 represented by SMILES
strings, were used to train the prior model. This choice of
representing the chemical compounds by sequences of
characters has several advantages and is common in the
cheminformatics literature.20 First, despite losing a certain
level of chemical information,11 this representation is signifi-
cantly more memory efficient than the use of molecular graph
data while implicitly retaining the molecular graph structure.
Moreover, the SMILES strings are compatible with the chemical
reactions expressed using the SMARTS language. This is crucial
in the context of this work, which focuses on directly
incorporating knowledge of chemical pathways into the
generative model.

As is standard for computational applications in drug
discovery, the first step of the data preparation process involves
data purging and sanitization.19 The purpose of purging is to
remove undesirable compounds and outliers from the data set.6

These, among others, include molecules containing rare
SMILES tokens or elements that the model is unlikely to be
able to learn and thus merely pollute the model’s vocabulary,
molecules with extremely large or low molecular weights, and
salts, which are neither drug-like nor chemically friendly.
Approximately 25% of the compounds present in the database
are removed in this stage. For details of the implementation and
filter criteria and the exact number of molecules present in the
data sets, see the Supporting Information.
The second preprocessing step necessary to train a scaffold

decorating model is compound slicing. There are many ways of
slicing a molecule to obtain scaffold−decoration pairs for
training a decorator model.20 Recently, the exhaustive slicing of
single bonds according to RECAP21 rules has been explored.16,17

Whereas this approach appears natural at a glance, it is not
always effective for a wet lab chemist attempting to synthesize
the proposed compounds.22 Whereas the default RECAP rules,
which include 11 bond cleavage types (amide, amine, ester, urea,
ether, olefin, quaternary nitrogen, aliphatic carbon with aromatic
nitrogen, lactam nitrogen with aliphatic carbon, aromatic carbon
with aromatic carbon, and sulphonamide), aim to slice the
molecules and identify preferred structural motifs, they still leave
some cleaving possibilities out. The ability to follow real
chemical reactions when decorating the scaffold is crucial; our
experiments demonstrate that training on data sliced according
to RECAP rules does not teach the prior to understand these
chemical principles. This means that the model is unable to
satisfy reaction requirements when designing chemical libraries.
Practical synthesis and chemical considerations should thus

be taken into account when slicing the molecules to ensure that
the reverse process (forward synthesis) is synthetically valid.23

In their recent paper, Horwood and Noutahi24 propose
incorporating chemical synthesis routes directly into the
model by designing a de novo generator based on chemical
reactions. Given the starting reactants, their model proposes
drug-like molecules by selecting other appropriate reactants and
specific reactions used to transform and connect the molecules
into a resulting compound. This novel approach significantly
improves the synthesizability of the proposed molecules;
however, it still lacks the ability to design libraries and the
degree of flexibility and generality that is desirable in de novo
generators. Specifically, training has to occur on a data set
relevant to the final task at hand, and there is a limited capacity
for knowledge transfer and extension to more specific tasks
without retraining.
In this work, an alternative data preprocessing approach to the

one used by Aruś-Pous et al.25 is proposed to build a knowledge
of chemical reactions directly on the training data set composed
of the filtered ChEMBL database. Thirty-seven handcrafted
reaction-based rules are used to slice the training compounds
into scaffolds and decorations so that each split is a result of a
known, easily implementable chemical reaction. A complete list
of the reaction SMIRKS can be found in the tutorial section of
our LibINVENT data set public repository; moreover, the
Supporting Information provides details of the exact steps taken
and the number of compounds, scaffolds, and decorations used
at each step. We demonstrate that the reaction-based slicing
method enables the generative model to propose decorations
according to the chemical reactions used in training. The output
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therefore benefits from high validity and a better likelihood of
being synthetically feasible. An illustration of the process is
provided in Figure 2.
Model Training. The prior model is trained using the

teacher forcing algorithm26 to maximize the conditional
likelihoods of the generated compounds given the scaffolds.
Even a single pass through the data set teaches the model to
generate chemically valid SMILES strings; the optimal state
balancing the coverage of the chemical space and the overfitting
is, however, reached after approximately eight epochs. At each
epoch, a different randomized representation of the training and
validations SMILES is used, as this further prevents overfitting.27

As previously mentioned, it is crucial to note that this training
needs to happen only once because the prior can be reused for a
wide range of tasks without the additional transfer learning
stages that were often required in the previously introduced
models.28 The resulting prior model is provided in our public
GitHub repository along with the code and data necessary to
reproduce the training.
Case-Specific Usage: Focusing a Prior via Reinforce-

ment Learning. The case-specific usage of the model involves
focusing the prior on a specific task. This fine-tuning is efficiently
achieved by setting up an RL loop in which the prior iteratively
proposes compounds and receives task-specific rewards for its
output. During the run, all high-scoring compounds are stored in
a virtual chemical library that we will refer to as the resulting data
set; the production of the library therefore begins instanta-
neously once an RL run is set up and continues throughout the
training of the RL agent.
The rewards are shaped by a scoring function defining

desirable chemical or structural properties to guide the model
toward producing compounds of interest.8 However, because
the objective is to explore a rather narrow space of solutions
(molecules) designed for a given scaffold, this may lead to a
mode collapse.29 To achieve a stable RL process, we introduce a
mechanism that relies on diversity filters (DFs) previously
described by Blaschke et al.13 DFs and the prior likelihoods of
the proposed compounds can be included when calculating the
reward. DFs penalize the RL agent for repeatedly generating the
same compound, which significantly reduces the risk of mode
collapse toward a single high-scoring solution (molecule). The
prior likelihood serves as an additional regularizer, anchoring the

agent to the previously learnt chemical space and ensuring that
the SMILES syntax is not forgotten.30

Another reward-modifying factor is the reaction filter (RF).
The introduction of RFs to the learning process means that the
proposed libraries can be synthesized using selected reactions,
facilitating the creation of focused libraries. RFs are designed to
be selective, so that a reaction or a set of reactions can be
specified for each attachment point of the scaffold. This gives the
user significant control over the output of the model and enables
leveraging prior chemical knowledge. The full practical
implementation of the RL procedure is described along with
its mathematical background in the section Focusing the Prior
via Reinforcement Learning. A number of reaction definitions is
further published in our public repository.
We emphasize that focusing the pretrained prior using RL

makes the LibINVENT decorator model widely applicable to a
variety of real-world scenarios with a range of reactants. Libraries
containing thousands of high-scoring, synthesizable molecules
can be obtained within minutes or tens of minutes, and the more
expensive training of the prior model does not need to be
repeated for new libraries.

■ METHODS
Model Architecture. The architecture of the model is

analogous to the scaffold decorator introduced by Aruś-Pous et
al.16 The decorator model uses an encoder−decoder architec-
ture where both the encoder and decoder are RNNs with three
hidden layers of dimension 512, and the embedding is of size
256. During training, dropout at rate 0.1 has been used.
We refer to the collection of tokens recognized and used by

the model as the vocabulary. This is composed of all of the
SMILES characters present in the pruned training data set and
enriched by the special “END” and “START” tokens
determining the beginning and ending of a SMILES string.
The length of the vocabulary corresponds to the dimension of
the multinomial distribution over which the tokens are sampled.
For details of the tokens included, see the Supporting
Information.

Validation Set. As in any machine-learning model, a good
validation set is required to fairly evaluate the performance.31

The objective of the prior model training is to learn to decorate
scaffolds so that the resulting compounds lie in the drug-like

Figure 2. Example of a sliced molecule resulting in a scaffold with two attachment points and the corresponding decorations.
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chemical space spanned by the training data set. This nature of
the modeling objective affects the choices made when preparing
the validation set. Whereas it is common to randomly hold out a
portion of the training data and use these for evaluation,32 the
sliced data set used here does not lend itself well to this
approach. To be able to fairly judge the generalization ability of
themodel in previously unseen scaffolds, it is necessary to ensure
that the validation scaffolds are not present in the training data
set. Optimally, even compounds structurally similar to these
need to be removed from the training set to fairly validate the
performance of the model.33 At the same time, the general
distribution of the validation scaffold properties should mimic
that of the training set to evaluate how well the model learns to
follow the data distribution.
With these considerations in mind, we handcrafted the

training−validation split by selecting one scaffold with each
number of attachment points at random. Because the
compounds in the data set were sliced up to four times, the
maximum possible number of attachment points is four. Then,
all scaffolds sharing a Murcko scaffold34 with one of the four
compounds used to define the seed for the validation set are
removed from the data set and used for validation. The choice to
consider only the molecular cores consisting of ring structures
stripped of side chains is motivated by the fact that the removed
sets of compounds resemble the concept of “chemical series”, as
used by medicinal chemists.10 Removing entire chemical series
based on a specific Murcko scaffold thus naturally reduces the
bias in the model evaluation and objectively tests its general-
ization ability.
We have selected the dopamine receptor D2 (DRD2) as the

biological target of interest. This is a commonly used target in
molecular generative models studies by our group30,35,36,25 and
other groups24,37,38 in this field and allows access to large
publicly available structure−activity relationship (SAR) data
sets.
We remove all compounds sharing a scaffold with compounds

found in the data set obtained by slicing the DRD2 scaffolds
according to the set of reactions previously used to slice
ChEMBL.39 These compounds are not included in either the
validation or the training set. In this way, the training and
validation sets are kept independent, and the subsequent
external validation on DRD2 remains unbiased.
Representative scaffolds for the held-out compounds used for

validation are shown in Table 1 along with their Bemis−Murcko
representations. The resulting validation set excluding the
DRD2 data contained 241 137 unique entries. The training set
contained the remaining 23 080 572 entries. These numbers
show that the consideration of Bemis−Murcko scaffolds filters
out a non-negligible number of compounds, very similar to the
original held-out scaffold. At the same time, the size of this data
set means that despite the validation representing only ∼1% of
the data, sufficient information is still included to assess the
generative ability of the decorator.
Until now, all SMILES have been canonicalized to ensure

uniqueness. However, using different SMILES representations
during the training of deep-learning models leads to improve-
ments in the generalizability in activity modeling,40 representa-
tion learning,41 and SMILES generation. Before training the
generative model, a different randomized representation of the
training data set is obtained for each epoch of teacher forcing
training. The same is applied to the validation set.
Pretraining the Prior via Teacher Forcing. Asmentioned

before, the training process of LibINVENT resembles the

training of REINVENT 2.0.13 First, teacher forcing42 is used to
train the prior model capable of creating chemically valid
compounds containing a given scaffold. In our case, the prior is
an RNN taking a scaffold as an input and returning relevant
decorations to connect to all available attachment points of the
scaffold, much like the model recently introduced by Aruś-Pous
et al.25 The number of resulting molecules corresponds to the
batch size.
The generation process can be seen as a sequential conditional

likelihood maximization problem. The output of the model
represents a probability distribution over the token space
containing all of the possible SMILES tokens present in the
training data set enriched by the “START” and “END” tokens,
given the scaffold and previously generated tokens in the
decoration. The objective function to be maximized can thus be
written as

l
m
ooo
n
ooo

|
}
ooo
~
ooo

∏ ∏θ θ

θ

| = = | = × = |

= = =

=
−

−

J S s P X S s P X x X

x X x S s

( ) ( , ) (

, ..., , , )

i

T

i i i

i

decoration points
1

2
1

1 1 1
(1)

Table 1. Held-Out Validation Scaffolds Picked from the Data
and Their Bemis−Murcko Forms, Based on Which the
Remainder of the Held-Out Scaffolds Were Chosen
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Here θ represents the network parameters to be determined, Xi,
where i = 1, ..., T are the random variables corresponding to the
tokens, whereas xi are the observed (or in this case previously
generated) tokens. Analogously, S and s refer, respectively, to the
random variables corresponding to the input scaffold and the
specific scaffold themselves. In this work, the scaffold is given a
priori, and the distribution is therefore deterministic. Finally,T is
another random variable that determines the length of the
decoration SMILES string. In practice, we do not sample its
distribution. Instead, the process ends when the “END” token is
sampled.
The implementation and training details are described in the

Supporting Information.
Focusing the Prior via Reinforcement Learning.

Motivation. Because of the vastness of chemical space, it is
typically not sufficient to be able to produce drug-like molecules;
indeed, depending on the specific design objective, the
exploration of a narrower chemical subspace is many times
desirable, in particular, in lead optimization.43 Specific focusing
is thus a crucial step in developing a generative model capable of
proposing compounds that are useful in a context like lead
optimization. To achieve this, the parameters of the pretrained
prior network need to be modified to target a narrower chemical
subspace. At the same time, it has been observed that deviating
too far from the prior can have catastrophic consequences where
the model loses its knowledge of the valid SMILES syntax.43,44

To focus the model, an RL agent is initialized as a network
with weights and architecture identical to those of the pretrained
prior. To define the task, a reward function is constructed to
guide the agent’s learning, taking SMILES strings as input and
returning scores in the range of [0, 1]. The function rewards
compounds with desirable properties, promotes varied output
through DFs, and specifies desired reactions to be used via RFs.
Then, standard policy iteration RL is applied: In successive
iterations, the agent proposes decorations for the scaffold and
updates its parameters in a gradient ascent fashion based on the
rewards these decorations receive. During the training, all
syntactically valid compounds (SMILES strings) with a score
exceeding a user-defined threshold are stored in the resulting
data set and made available to the user at the end of the run. A
successful run results in a constantly increasing data set because
the model produces new relevant outputs at each step during the
run. In an optimal scenario, the resulting data set increases
linearly with the number of steps, with the gradient
corresponding to the batch size. This motivates the following
definition of a yield metric used to evaluate the degree of success
of the runs

=
| |

×
yield

resulting data set
batch size number of steps (2)

The consideration of yield as opposed to the raw number of
molecules produced is important because the produced
numbers ultimately depend on the selected batch size. A
model trained with a batch size of 32 returns twice as many
compounds at each epoch as one with a batch size of 16. The
important question, however, is howmany of the 32 compounds
are relevant and unique.
Mathematical Background. The starting point for a

mathematical description of the RL procedure is defining a
state space St and the corresponding action spaceAt(st) as well as
rewards rt ≔ R(at) for all st ∈ St, at ∈ At. In the context of
molecule decoration, an action is a proposed decoration (or

decorations) for the scaffold, whereas the state contains
information about all previously proposed decorations and the
rewards assigned to those, that is, st = ∑τ=1

t−1 rτ. Note the reward
function R is fixed throughout the training.
At each step, the RL agent randomly samples an action (i.e.,

proposes a decoration) according to its policy πθ. The aim is to
find the value of the parameters, θ, leading to an optimal policy,
πθ*, maximizing the expected cumulative rewards across the
whole run. In other words

∑θ* = | =θ π
=

∼ θ
 R A S sargmax ( ( ) )

t

T

A t t
0 (3)

The expected value is maximized at each time step in a greedy
manner. The RL objective function at each step can therefore be
written as

θ θ= |π∼ θ
J R A S( ) ( ( ) , )A t (4)

where the expectation is taken over the distribution of the
actions.
Gradient ascent methods are typically used to maximize the

objective. Exploiting the fact that ∇ = ∇f xlog ( ) f x
f x

( )
( )

, the

gradient of eq 4 at step t + 1 can be written as

∑θ π θ∇ = ∇ = | =θ θ
∈ +

J R a A a S s( ) ( ) log ( , )
a A

t t
t 1 (5)

Equation 5 is the basis of many popular RL algorithms such as
REINFORCE.45 If the goal is to maximize the cumulative
rewards acrossN training epochs, then it suffices to add an extra
summation over all of the time steps, which results in a similar
expression, the key feature of which is the fact that it is sufficient
to compute the gradients of the log likelihoods of obtaining a
gradient ascent update step.
Without further regularization or adjustments, these methods

are known to suffer from high variance and instability.46 In the
case of molecular generation, however, the aim is to produce a
large number of varied, interesting molecules.24 This means that
a certain level of variance is desirable to promote the exploration
of the chemical space and to prevent mode collapse toward a
single, high-scoring solution. Our experiments show that with an
appropriate choice of the reward function, high variance does
not hinder the models from producing relevant output.

Policy Iteration Rewards. A crucial requirement for a
successful setup of an RL run is a good definition of the reward.
In our case, this has to guide the agent in the right direction to
solve the specific practical task and promote diversity. Similar to
Blaschke et al.,13 we investigate rewards assembled from a
combination of two elements: the scoring function S(a) ∈ [0,1]
quantifying how well the proposed compound solves the task
and the prior likelihood πθprior(a) = π(a,θprior). Because the agent
and prior share architecture, their likelihood functions differ
only in the values of the parameters θ.

Scoring Function. The S(a) itself is composed of multiple
weighed elements that are summed or multiplied; the final score
is then normalized to lie in the unit interval [0,1]. A range of
components is supported frommolecular descriptors such as the
molecular weight, the topological polar surface area (TPSA),
pretrained predictive models, docking,47 and the ROCS
similarity.48 As previously mentioned, DFs and RFs may be
imposed to further restrict the space of relevant output and to
promote diversity.
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The DF works by penalizing the model for producing an
identical compound multiple times in a single batch. This is
beneficial in preventing the agent from repeatedly proposing the
same, high-scoring compound multiple times, which can lead to
mode collapse.49 A well-selected DF therefore balances the
exploration and exploitation of the chemical space.
Finally, RFs are a feature that give the user greater control over

the generated compounds. Two types of RFs are implemented: a
general filter determining what reactions should occur to
decorate the scaffold and a selective filter assigning the specific
reactions to the individual attachment points. RFs use
retrosynthetic reaction definitions that are compatible with
RDKit.50 Any valid reaction definition can be applied here;
however, we provide, together with the code repository, a list of
37 predefined reactions that were used for the generation of
training data. For each attachment point, the user can
simultaneously provide a variable number of reactions within
the same run. RFs serve as a penalty component; however, if any
of the listed reactions is satisfied, then for the given attachment
point, the score is not penalized. This requires a chemical
understanding of the nature of the problem to avoid the
situation where a nonfeasible reaction is required for a given
attachment point; it is nevertheless a novel and efficient way of
generating libraries of similar drug-like compounds that are
readily synthesizable.
Different Reward Strategies. The motivation for the use of

the prior likelihood in the reward function is identical to that of
Olivecrona et al.44 The pretraining ensures that the model is
capable of generating valid SMILES of drug-like molecules. This
serves as an anchor; it is desirable to discourage the agent from
deviating too far from its prior state because a strong focus on
maximizing the score can alone lead to either a mode collapse or
a loss of generative ability altogether. Once the agent moves to a
parameter space that does not lead to a valid SMILES syntax, it
does not receive any rewards at all and cannot continue learning
through gradient ascent.
On the basis of the above discussion, we follow previous work

in defining the augmented log likelihood logπA(a) = logπθprior(a)
+ σS(a). Here σ is a constant hyperparameter scaling the output
in the same range.We note that the log likelihood is amonotonic
increasing function that takes values in (−∞, 0), which means
that the reward is a monotonic increasing function in (−∞, σ).
In experimental setups, this likelihood is shown to serve well as a
directional guide, leading the agent to more focused and
interesting chemical spaces. The intuitive rationale for this is that
the augmented likelihood balances the prior anchor with the
task-specific objective.
Finally, four different RL learning strategies are proposed

based on four different reward functions:

1. R(a) = S(a). This method, henceforth referred to as
MASCOF (Maximize Scoring Function), is a simple
implementation of the standard REINFORCE algorithm
where the scoring function directly serves as the reward.45

This standard approach to solving an RL problem by
maximizing the scoring function without anchoring it to
the prior is a natural first step and can be seen as a baseline
for the other methods. However, our experiments
demonstrate that the RL agent struggles to remain in
the valid chemical space without the anchor. Similar
observations have been made in the past, typically arguing
that the initial sparseness of rewards leads to the model
struggling to begin learning.49

2. R(a) = logπA(a). Because the augmented likelihood
attempts to balance the prior likelihood and the scoring
function, it can be seen as a reward itself. We call this
method MAULI (Maximize Augmented Likelihood).

3. R(a) = logπA(a)− logπθ(a). This approach, dubbedDAP
(Difference between Augmented and Posterior), can be
shown to be equivalent to the strategy introduced by ref
44. Their work frames the RL slightly differently, focusing
on loss minimization of the square loss between the
augmented and pos t e r io r l og l i ke l ihoods :

θ π π= − θa a( ) (log ( ) log ( ))A
2. Whereas it is not a

standard policy iteration approach, it does perform well
in focusing the agent. For a full derivation of the
equivalence of these two approaches, we refer the
interested reader to the Supporting Information.

4. R(a) = −(logπA(a) − logπθ(a))
2. Noting that the

rationale behind the DAP strategy is minimization of
the difference between the two likelihoods, the fact that
the likelihoods are unbounded means that with the
formulation in number 3, the reward may, in theory, keep
increasing infinitely as the posterior probability ap-
proaches zero. In practice, this is rarely observed. For
mathematical rigor, however, we define a final strategy
called SDAP (Squared Difference between Augmented
and Posterior). The negative of the squared loss is directly
used as a reward function here, meaning that the agent is
always encouraged to approach the augmented like-
lihood; maximizing the reward is equivalent to minimiz-
ing the square loss.

■ EXPERIMENTS
LibINVENT implements a novel deep-learning-based drug
discovery approach for the generation of focused chemical
libraries, given an input scaffold, by taking into account specific
chemical reactions. This approach was designed to improve the
productivity in the DMTA cycle through proposing a library of
compounds that can be synthesized though the same chemical
reactions. Thus more compounds can be synthesized with the
same effort in an DMTA cycle and, accordingly, each DMTA
cycle will be more informative.51 We therefore introduce a range
of experiments with the aim to demonstrate the potential of our
proposed models to improve productivity. Specifically, we focus
on promoting diversity of output, generating molecules that are
readily synthesizable by a given reaction and determining R-
group substitutions for lead optimization projects.
The objectives of the experiments are as follows:

• Determine the optimal learning strategy for the RL loop.
• Demonstrate the ability to follow specified reactions to

decorate a given scaffold and contrast this with a model
trained on a data set obtained using RECAP rules as
opposed to reaction-based slicing.

• Demonstrate the ability to decorate scaffolds with various
numbers of attachment points.

A baseline objective for the experiments is the generation of
ligands that are optimized against DRD2. Two sets of tasks,
based on two approaches to steer themodel toward the desirable
chemical space, have been executed. In the first set of
experiments, a QSAR predictive model for the activity of the
generated compounds is used as a component of the scoring
function. This model is subsequently replaced by a 3D shape and
pharmacophore similarity ROCS52 scoring component to
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promote the 3D similarity of the output to haloperidol, a known
DRD2-active ligand. The details of the implementations can be
found in the Supporting Information; our public repository
further holds both the trainedQSARmodel and the ROCS input
used. In all of the experiments, a DF is further added to the
scoring function to promote variation in the output, along with
custom alerts preventing the agent from proposing compounds
with too-large rings and non-drug-like groups.
Figure 3 displays the testing scaffold. The choice is motivated

by it being a good starting scaffold for generating DRD2 actives.

Furthermore, it has two attachment points, which is common in
real-world applications. Whereas we demonstrate the ability of
the LibINVENTdecorator to work with scaffolds with up to four
attachment points, library synthesis is most commonly executed
on fewer attachments because this gives a better balance
between the flexibility and the complexity of the library
production step.
Evaluation Metrics. The complexity of the task of molecule

generation means that the choice of a metric for model
evaluation needs to be carefully considered to ensure that all
relevant issues are addressed. For library generation, it is
desirable to produce libraries based on user-defined criteria.
Within these criteria, however, the libraries still differ in size,
diversity, and scores achieved according to the scoring function.
We have previously defined the yield metric, which helps
evaluate what fraction of the generated ideas is scored above a
given threshold. Nevertheless, this alone is not sufficient to give a
fair comparison of the libraries.
We address the question of the diversity of the output via two

approaches, as appropriate in the given scenario. To determine
the effect of a change in the scoring function, we evaluate the
overlap between the output libraries. This would show whether
themethods produce significantly different results. When testing
the effect of specific RFs, it may be more interesting to analyze
the variation in the chemical properties of the proposed
decorations for each attachment point. This smaller-scale view
offers a more fine-grained picture of the level of control the user
has over the design of their specific library.
Results. Comparison of the Learning Strategies. For each

of the four learning strategies, two experiments are set up to
contrast their abilities to propose molecules according to a given
set of criteria. In the first experiment, only a QSAR predictive
property is used. The motivation for this experiment is to

benchmark the abilities of the models to generate compounds
when unconstrained by chemical reactions. The results of the
experiments are displayed in Table 2, which gives an overview of
the average results over three individual runs. For a detailed
breakdown over the runs, refer to the Supporting Information.

In a second experiment, a selective RF is added to the scoring
function. Attachment point R1 should be decorated using amide
coupling, whereas the second attachment follows the Buchwald
reaction. The exact implementation and SMIRKS definitions of
the corresponding equations can be found in our public
repository. The results of the experiment are shown in Table 3.
The numerical results show that in agreement with past

observations,44 the DAP learning strategy is the most successful
strategy on multiple counts. First, the high average score of the
compounds in the resulting data set for both runs indicates the
ability of this model to consistently produce high-scoring
molecules throughout the run. This is further supported by the
size of the output and the correspondingly high yield: Even
when selective RFs are applied, >80% of the proposed
compounds have a score higher than the threshold of 0.4
chosen as the condition for inclusion in the resulting data set.
Moreover, nearly 90% of the resulting data set compounds satisfy
both of the RFs, which gives strong support for using this
strategy in virtual chemical library creation.
Finally, to understand the training of the four respective

strategies, we plot the average scores achieved at each step. It is
crucial to note that thanks to the pretraining of the prior, a
steeply increasing training curve is not expected to occur
because the choice of the starting scaffold is task-specific and
typically leads to high scores from the first iteration. The
comparison is nevertheless a useful aid in the comparison
because it further explains the process.
The evolution of the average scores across the runs is

displayed in Figure 4. In both scenarios, the DAP strategy clearly
outperforms the remaining optimization methods, quickly
increasing from the starting point and then plateauing at the
highest level. When RFs are introduced, this dominance
becomes even more significant. As displayed in Figure 5, the
DAP strategy is the only strategy capable of rapidly adapting to
this requirement and satisfying these filters. The SDAP strategy
also demonstrates learning but is much slower in adapting to the
specific task. Both MASCOF and MAULI, on the contrary,
decline slightly from the initial point, as they struggle to retain
the prior knowledge of the chemical space, which is
demonstrated by the dropping validity. No evidence of learning
to follow the required reactions is apparent.
In both Figures 4 and 5, the shaded areas correspond to the

minimum and maximum values achieved over the three runs,

Figure 3. Testing scaffold. We note that in SMILES syntax, the
decoration points are labeled by [*:0] and [*:1], which correspond to
R2 and R1, respectively, in the molecular graph.

Table 2. Comparison of the Four Learning Strategies for a
QSAR Model with No Reaction Filtersa

number of
compounds found yield

average mean score in
resulting data set

DAP 10510 ± 69 0.821 ± 0.005 0.722 ± 0.005
MAULI 8573 ± 271 0.670 ± 0.021 0.658 ± 0.015
MASCOF 4432 ± 50 0.346 ± 0.004 0.657 ± 0.022
SDAP 4755 ± 153 0.372 ± 0.012 0.695 ± 0.011

aUncertainty boundaries correspond to the largest deviation from the
mean observed over the three runs. We note that these are very low,
showing a strong consistency between the trials. The yield metric is
calculated as previously defined in eq 2.
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whereas the solid lines represent the mean. In addition to the
expected stochasticity arising from the randomness in the
optimization procedure, the plots indicate that the general
behavior of the strategies is consistent across runs. This
observation is in agreement with the previous analysis of
numerical data. In the subsequent experiments, we therefore
restrict all in-depth analysis to only a single run per model, as the
stochasticity does not significantly affect the output, justifying
the low levels of variance between runs by numerical tables.
Moreover, because the analysis above shows a clear dominance
of the DAP learning strategy, it is our method of choice in all of
the subsequent experiments.

Comparison of Slicing Strategies. Reaction-based slicing
used to preprocess the data set is one of the key aspects of this
work. We therefore design a second set of experiments aimed at
evaluating the effect of pretraining on data sliced according to
chemical reactions, as opposed to RECAP rules when tackling
RFs. To this end, we use the model of Aruś-Pous et al. as an
alternative against which to benchmark.16 This model provides a
fair comparison because its architecture and training procedure
are exactly equivalent to those of our LibINVENT prior, with a
crucial difference in data preparation.
Two experiments are conducted with these two priors. In

both, the same RFs as before are imposed, decorating

Table 3. Results of the Four Learning Strategies When a QSAR Predictive Model and a Selective Reaction Filter Are Employed

number of compounds found yield average mean score in output ratio of fully satisfied reaction filters

DAP 10454 ± 192 0.817 ± 0.015 0.729 ± 0.008 0.892 ± 0.032
MAULI 5179 ± 518 0.405 ± 0.012 0.564 ± 0.009 0.230 ± 0.027
MASCOF 2846 ± 854 0.222 ± 0.067 0.574 ± 0.030 0.297 ± 0.076
SDAP 4033 ± 302 0.315 ± 0.024 0.622 ± 0.019 0.457 ± 0.136

Figure 4. Average score across a generated batch of compounds per epoch for each of the running strategies. The presence of reaction filters increases
the superiority of the DAP strategy. Both MAULI and MASCOF are incapable of adapting the production to the user-defined objective.

Figure 5. Validity of the output and reaction filter scores for each learning strategy when a reaction filter is imposed. The DAP learning strategy clearly
outperforms the remaining approaches.
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attachment point 1 by amide coupling and attachment point 2
through the Buchwald reaction. The difference lies in the scoring
function component, which uses a predictive QSAR model in
the first experiment and replaces it by a ROCS 3D similarity
scoring in the second task. The purpose of this change is to
uncouple the effect of the scoring function from the RF and
evaluate the effect of the preprocessing method as accurately as
possible. The definition of the shape and pharmacophore ROCS
query based on haloperidol is displayed in Figure 6.

A numerical comparison of the experiments is displayed in
Table 4. The key difference in the results is the ratio of high-

scoring molecules capable of satisfying the imposed RFs.
Whereas the model trained on data sliced according to reaction
rules consistently scores very highly and therefore produces
libraries synthesizable via these two reactions, the model trained
on data preprocessed using RECAP rules struggles to fulfill these
criteria. With the exception of one run, the model fails to learn to
follow the reaction routes. This gives clear evidence of the
positive effect of the reaction-based slicing method for
applications involving specific chemical reactions.
It can be further noted that the ROCS task appears to be more

difficult for the models to learn, which is not surprising because
the RL agent is asked to learn 3D features with only a 2D
representation of its input. This has also been observed in
previous work byGrebner et al.,53 where ROCSwas used as a 3D
similarity scoring component for an RL-based molecular deep
generative model. As expected, both the yield and the ratios of

compounds satisfying the RFs are not significantly affected by
the change between QSAR and ROCS scoring components; the
difference lies in the average scores achieved by compounds in
the resulting data set. As the training plots in Figure 7 show, this is
due to the fact that the scores start relatively low and gradually
increase throughout the runs as the agents learn to satisfy the
ROCS input.
To understand the diversity of the compounds proposed by

agents trained with these two different scoring function
components, we further contrast the molecular properties of
the decorations proposed by the respective methods when
trained on a data set obtained using reaction-based slicing.
Figure 8 demonstrates that the change in a scoring function
component guiding the training affects the proposed deco-
rations. In the example of attachment point 2, we see that
whereas the groups proposed by an agent trained using ROCS
are generally lighter, they tend to contain more rings and have
more hydrogen-bond acceptors. In some cases, we can further
note that the RF has not been satisfied for a share of the output,
for example, in the cases where the Buchwald reaction fails to
propose a compound containing an aromatic ring. This
demonstrates the need for a careful consideration of the scoring
function design along with the RFs to achieve the optimal results
for a given task. The sample compounds proposed by each of the
methods are plotted in Figure 9 for comparison. We can observe
the formation of the amide bonds, as required by the RFs, and
the previously noted tendency of the ROCS-guided model to
propose decorations with multiple rings.
The experiments discussed in this section demonstrate the

benefit of reaction-based slicing over the more traditional
RECAP rules. This approach to preprocessing implicitly teaches
the decorator model to follow chemical reactions and thus
increases the probability of learning to satisfy a RF. Figure 7
demonstrates that whereas it is possible for a model trained on
compounds sliced using RECAP rules to learn to satisfy a RF, the
likelihood of this happening is much lower. The models trained
using reaction-based slicing consistently fulfill RFs and other
user-defined criteria.

Following Specific Reactions. Using the optimal learning
strategy and the prior model pretrained on data sliced using
reaction rules, we propose a new set of experiments to
demonstrate the effect of selective RFs on the produced
libraries. For each of the attachment points, we select a relevant
plausible chemical reaction that can serve to introduce desirable
moieties. Specifically, sulphonamide coupling is used as an
alternative to amide coupling for attachment point 1, and the
Buchwald reaction of attachment point 2 may be replaced by a
nucleophilic heteroaromatic substitution (SNAr). We experi-
ment with each of the four possible combinations of these RFs to
demonstrate the effect of these filters on the produced
compounds. For illustrative purposes, a high-scoring compound
discovered for each of these combinations of RFs by a QSAR-
guided predictive model is plotted in Figure 10. The RFs have a
clear effect on the proposed molecules, enforcing the formations
of appropriate bonds.
All of the sets of RFs are applied to the two different setups of

the scoring function, as in the previous experiments, using either
the QSAR predictive model or the ROCS similarity component
to direct the model toward the target chemical subspace of
compounds active in the DRD2 data set. The reason for using
different scoring functions in this experiment is to demonstrate
the effect the scoring function has on the output and decouple

Figure 6. ROCS shape and pharmacophore query definition for
haloperidol.

Table 4. Comparison of Reaction-based Slicing and RECAP
Slicing Rulesa

preprocessing
method model

number of
compounds

found yield

average
mean score
in resulting
data set

ratio of
fully

satisfied
reaction
filters

reaction-
based slicing

QSAR 10454 0.817 0.729 0.892
ROCS 10326 0.807 0.597 0.890

RECAP
slicing rules

QSAR 8388 0.655 0.506 0.154
ROCS 8339 0.651 0.462 0.000

aWe note that the relatively low scores for the ROCS component
arise from the fact that it is more difficult to satisfy the query
completely; unlike for a QSAR model, scores nearing 1 are not
expected.
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this from the effect of RFs. The numerical results of these
experiments are displayed in Table 5.
The performance of the ROCS model when RFs are

exchanged is more stable than that of QSAR, showing similar
patterns and an ability to learn to follow different reaction

routes. This is presumably caused by a lower degree of inductive
bias built into the model through this scoring component. The
consistently lower average scores in the resulting data set can be
attributed to the greater difficulty of learning this component in
general; it is more difficult to score highly the structural

Figure 7. Comparison of the two preprocessing approaches. For both QSAR- and ROCS-guided learning, the model trained using reaction-based
slicing is consistently superior in terms of the overall score and, moreover, satisfies both reaction filters.

Figure 8. Example molecular properties of decorations for attachment point 2 when the Buchwald reaction filter is imposed.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00469
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

K

https://pubs.acs.org/doi/10.1021/acs.jcim.1c00469?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00469?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00469?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00469?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00469?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00469?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00469?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00469?fig=fig8&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


similarity (and match) requirements of a ROCS component.
Nevertheless, this does not mean that themodel performs badly;
on the contrary, the high yields show that it is an effective guide
toward a desirable area of the chemical space. Moreover, the
highest achievable scores of the ROCS component are typically
lower than those for a QSAR model and commonly lie around
the value 0.8.
To quantify the differences in the properties of the

decorations arising from various RFs, we examine the
distributions of the key molecular properties of the proposed
functional groups for each attachment point based on the

applied RFs. A selection of molecular descriptors of decorations
generated for attachment point 1, decorated via amide or
sulphonamide coupling, is displayed in Figure 11. A significant
increase in the weight of the proposed decorations, caused by
the presence of more heavy atoms, occurs when the
sulphonamide coupling is introduced. Figure 12 further shows
selected discrete properties of the decorations proposed for the
second attachment point. In both plots, a variation in the
distributions can be observed across all four combinations of
RFs; the effect of the RFs imposed for the given attachment
point is nevertheless clearly notable. This is to be expected

Figure 9.High-scoring compounds proposed by a model guided by a QSAR predictive property (left) and by a ROCS scoring component (right). All
of these compounds satisfy both the amide coupling and Buchwald reaction filters.

Figure 10. Comparison of compounds proposed by models optimizing for various reaction filters. The formation of the amide and sulphonamide
bonds can be seen.
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because the agent receives rewards based on all of the
compounds proposed, but each attachment point is strongly
influenced by the prescribed reaction.
As a final point of comparison of the RFs, Figure 13 displays

the distribution of selected molecular properties for each of the
two attachment points using the original RF composed of amide
coupling and the Buchwald reaction. In general, amide coupling
produces somewhat smaller and lighter decorations. Moreover,
the distributions tend to be less peaked and centered around the

mode, which is to be expected for this reaction because it is more
general. Once again, we further note that not all proposed
compounds satisfy the Buchwald RF because decorations
missing an aromatic ring are proposed for attachment point 2.

Scaffolds with Varied Numbers of Attachment Points. So
far, all experiments focused on a two-attachment point scaffold.
To give a fair picture of the decorator’s abilities, we additionally
introduce tasks working with scaffolds containing one to four
decoration points. Because the purpose of this section is

Table 5. Comparison of Varying Reaction Filters for QSAR and ROCS Modelsa

preprocessing
method reaction filter

number of compounds
found yield

average mean score in resulting data
set

ratio of fully satisfied reaction
filters

QSAR model Buchwald−amide 10454 0.817 0.734 0.892
Buchwald−sulphonamide 10083 0.788 0.688 0.847
SNAr−amide 9809 0.766 0.585 0.359
SNAr−sulphonamide 9228 0.721 0.641 0.577

ROCS model Buchwald−amide 10326 0.807 0.596 0.890
Buchwald−sulphonamide 10207 0.797 0.592 0.871
SNAr−amide 9837 0.768 0.545 0.551
SNAr−sulphonamide 9560 0.747 0.552 0.541

aBuchwald−amide filter most easily satisfies both models.

Figure 11. Continuous molecular descriptors of decorations of attachment point 1 for each of the four reaction filters applied, trained using a QSAR
model. This attachment point is decorated by either amide or sulphonamide coupling.

Figure 12. Discrete molecular descriptors of the decorations of attachment point 2 for each of the four reaction filters applied. Note that this
attachment point is decorated using either the Buchwald reaction or the SNAr substitution; the differences observed in this plot therefore primarily arise
as a result of this reaction filter.
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primarily proof of concept, we restrict our attention to simple
experiments aiming to force the model to start growing large
enough decorations to satisfy molecular weight requirements.
For simplicity, a RF is not implemented here. The experiments
nevertheless demonstrate that the decorator is capable of
working with these scaffolds to produce unique and valid
compounds.
For the purpose of these simple experiments, we use two

scaffolds from the DRD2 data set with one and three attachment
points. In both cases, the weight requirement on the final
compound is for it to lie between 450 and 650. These values have
been chosen to force the original scaffolds to grow significantly
without leaving the domain of chemically reasonable com-
pounds in the output because there are no other constraints to
guide the model. The scaffolds are displayed in Figure 14.

As demonstrated in the plots in Figure 15, the model does not
struggle with any of these tasks and rapidly adjusts to the
requirement and starts to generate compounds in the
appropriate molecular weight range. Similarly, the validity of
the proposed output is consistently >90%. These experiments
clearly show that the use cases of the decorator model include
working with scaffolds of varying numbers of attachment points.

■ DISCUSSION

We have designed and executed a range of experiments to
establish the abilities of the newly proposed LibINVENTmodel.
Most importantly, the results clearly demonstrate the model’s
superiority in learning to follow specific chemical reactions,
which is achieved by the introduction of a compliant compound
slicing strategy. The decorator model has proven to be capable
of rapidly designing libraries of molecules that are synthesizable
from a given scaffold by following a set of reactions, as defined by
the user. This enables fine control over the output andmakes the
model widely and readily applicable in a multitude of scenarios.
This expands the capabilities of the REINVENT family of
generative models with the introduction of a dedicated
capability to design focused molecular libraries.
The first task was to determine an optimal learning strategy for

setting up the RL rewards. Four different strategies have been
proposed based on arguments discussed in the literature.

Figure 13. Comparison of the properties of the decorations proposed for each attachment point. The first attachment is decorated using amide
coupling; the second attachment is decorated via the Buchwald reaction.

Figure 14. Scaffolds with one and three attachment points used in the
final experiment.
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Whereas it is not immediately intuitive, the DAP learning
strategy has proven to be the most successful strategy. The
motivation for this reward setup is a “carrot on a stick” scenario.
A combination of the prior likelihood and the scoring function is
used to guide the agent toward a desirable region of the chemical
space while ensuring that the underlying chemical syntax is not
forgotten. Two of the remaining strategies, on the contrary,
attempted to maximize the score or a sum of the score and the
prior likelihood directly. Despite appearing more natural at first
glance, this approach does not work as well because the models
struggle to retain the ability to propose valid molecules, as they
start focusing toomuch on the score. A possible rationale for this
is the notoriously high variance typically observed for policy
iteration RL; whereas we note that the generativemodel requires
this variance to explore the chemical space, too much variation
combined with a lack of anchor to the prior knowledge is
detrimental to the performance. The final method explored in
the Article minimizes the square of the loss used for the optimal
DAP strategy. This is more mathematically sound because the
reward is bounded, but it does not appear beneficial in practice
because edge scenarios where the unboundedness of the DAP
reward could be an issue rarely arise. We therefore confirm the
observations of Olivecrona et al. in selecting the DAP strategy as
the method of choice.44

Two different scoring components have been used to guide
the model to propose new ligands for the DRD2 receptor. A
simple QSAR property prediction model has the advantage of a
faster execution and an overall higher score, but its stronger
inductive bias restricts the model to a narrower domain.54 As a
result, a QSAR-based model strongly favors certain decorations
and therefore struggles to fulfill some reaction routes
incompatible with these functional groups. In the second use
case scenario, the ROCS similarity measure was used to
demonstrate that various scoring function components may be
used to guide the model to a desirable chemical space. A certain
degree of experimentation or user intuition is often required to
determine the optimal combination of guidance for the model
and freedom to explore to obtain the best possible libraries, as
each of the scoring components introduces its own biases and
benefits. The results nevertheless confirm that LibINVENT is a
flexible tool that admits a wide range of inputs and is able to
return appropriate output.
An important note regarding the selective RF is that the user is

responsible for providing correct and valid reactions for correct
attachment points to get a good result. Whereas a range of

reaction definitions is provided in the public repository, the
reactions prescribed to a given attachment point have to be
feasible. RFs enable the user to specify a variable number of
reaction definitions for each attachment point. If an infeasible
reaction is required, then the model is not going to be able to
fulfill this RF and will always receive a score of 0. Depending on
the setup, this can lead to a failed run with a very small and
irrelevant output, as the low scores do not guide the agent in the
right direction. It is therefore essential that the user is aware of
this potential pitfall. A consistently low RF score, plateauing at a
value lower than one, is often an indicator of a wrong reaction
requirement.
Normally, the idea selection process does not stop with simply

generating the final data set. Because the resulting output can
contain thousands of entries, it is a common practice to apply
additional postprocessing steps to narrow it down to the most
relevant molecules. Although we do not demonstrate it here,
there are many additional profiling calculations (various
ADMET properties and physics-based calculations) that have
not been included to the RL run due to performance or accuracy
considerations. These are normally applied afterward to help the
library selection. Once the right candidates for synthesis are
identified, the building blocks can be queried either for in-house
availability or for adequate retrosynthetic suggestions by tools
such as AiZynthFinder.55

Because the current work is focused on the development of
the generative method and on the general guidelines for its
optimal application, we did not consider conducting a further
downstream postprocessing and comprehensive evaluation of its
output. However, we do provide an analysis of the combination
of one specific scaffold (Figure 3), RFs (Buchwald and amide
coupling), and two different scoring components (QSAR and
ROCS scoring) in the Supporting Information (in “Comparison
with Other Methods”). This analysis is based on metrics loosely
inspired by the screening library guidelines from Bayer.56 The
example shows novelty measured as the percentage of generated
molecules that are not accessible from commercially available
building blocks (aryl halides and carboxylic acids in our
example). Both scoring components result in the generation of
novel R1, R2 substitutions of the scaffold (ROCS: 15.9%,
QSAR: 28.6%, Supporting Information, Table 5). It is obvious
that this metric is dependent on the database of commercially
available building blocks. Here we used the eMolecules
database.57 We also compare our generative approach with a
traditional enumerative approach that would require the

Figure 15. Satisfying weight requirements for varying numbers of attachment points. Both models are capable of proposing valid compounds of
required molecular weights.
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construction of a virtual library with all combinations of available
carboxylic acids and aryl halides and the provision of
substituents for the given scaffold and subsequent filtration of
the virtual molecules with the same scoring functions (either
QSAR or ROCS) used in LibINVENT. We show that even the
first step of the construction of the virtual library is computa-
tionally infeasible because its size is of the magnitude of 1012

virtual molecules. The subsequent step of evaluating each and
every compound from such a library, especially with the ROCS
scoring function, is even more computationally demanding. In
contrast, LibINVENT does fewer than 2 × 104 evaluations in
total for the provided examples and identifies good scoring
molecules for >70% of the evaluations made (yield shown in
Table 5). In other words, brute force enumeration may lead to a
quite extensive evaluation and thus become rather impractical.
Also, generative methods are shown to have a broader chemical
space coverage,58 thus providing the potential to cover solutions
that are not reachable through enumeration.
It is important to stress that the resulting data set is primarily a

product of the input scaffold, the scoring function, the generative
model, and the learning algorithm. Given that we propose an
optimal learning algorithm and a working generative model, the
user has the full freedom (and responsibility) to tailor the
learning objectives and combine them with input scaffolds that
are of relevance to concrete projects.

■ CONCLUSIONS

To achieve an efficient and natural symbiosis between
computational and traditional wet lab methods in drug
discovery, it is essential to overcome a few prevailing
bottlenecks. One of the key issues is the low efficiency of
incorporating deep learning into the production pipeline caused
by complicated lead synthesis and an overly diverse output from
generative models. The objective of this work has been to
provide a method that can help bridge this gap between in silico
and in vitro drug design by developing a tool that takes the needs
of real-life synthesis into consideration and increasing the
productivity by reducing the number of DMTA cycles
performed.59

In this work, we have introduced a flexible tool capable of
proposing optimal decorations given a scaffold and a set of user-
specified objectives. Thanks to the custom chemical reaction
definitions, we can also include in the objectives RFs.
LibINVENT therefore enables the rapid generation of focused
virtual chemical libraries that can be used for lead optimization
and are readily synthesizable in vitro. Even when these filters are
not specified, the output of the model still benefits from the high
synthetic accessibility. The design of the RL loop further
introduces a rapid way to focus the model to a desirable part of
the chemical space. As the experiments demonstrate, the
learning is instantaneous and results in the design of varied
and focused chemical libraries.
LibINVENT is a deep-learning-based tool capable of

following specific reaction constraints in the design of entire
chemical libraries within which the diversity is narrowly focused
to a domain determined by the user. This makes it readily
applicable in a broad range of scenarios. Themodel is released in
our public repository along with the corresponding code.

■ DATA AND SOFTWARE AVAILABILITY

The training data set used for pretraining the prior model is
available in our public GitHub repository at https://github.

com/MolecularAI/Lib-INVENT/. It includes both the purged
data set resulting from the removal of non-drug-like compounds
from the ChEMBLDatabase, version 2718 and the sliced data set
obtained by slicing the purged data according to the handcrafted
reaction SMIRKS.
The reaction SMIRKS and the software necessary for

performing the purging and slicing are available in the
LibINVENT data set repository at https://github.com/
MolecularAI/Lib-INVENT-dataset. This repository moreover
contains tutorials, structured as Jupyter notebooks, detailing the
workflow of the data preparation process.
The LibINVENT repository holds all of the code necessary

for the training of the decorator model. The pretrained models
used to perform the experiments reported in this Article are
provided, along with the predictive DRD2model and the ROCS
inputs. Using these, the results reported here can be replicated
by following the tutorials included in the repository.
ROCS52 is a proprietary licensed software released by

OpenEye. Version 2019.10.2 of the openeye-toolkits package
was used for all of the experiments reported in the Article.
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