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Boreal Forest Properties From TanDEM-X Data
Using Interferometric Water Cloud Model and

Implications for a Bistatic C-Band Mission
Jan I. H. Askne , Fellow, IEEE, and Lars M. H. Ulander , Fellow, IEEE

Abstract—Data from TanDEM-X in single-pass and bistatic in-
terferometric mode together with the interferometric water cloud
model (IWCM) can provide estimates of forest height and stem
volume (or the related above-ground biomass) of boreal forests
with high accuracy. We summarize results from two boreal test
sites using two approaches, i.e., 1) based on model calibration using
reference insitu stands, and 2) based on minimization of a cost
function. Both approaches are based on inversion of IWCM, which
models the complex coherence and backscattering coefficient of
a homogeneous forest layer, which includes gaps where free-space
wave propagation is assumed. A digital terrain model of the ground
is also needed. IWCM is used to estimate forest height or stem vol-
ume, since the two variables are assumed to be related through an
allometric equation. A relationship between the fractional area of
gaps, the area-fill, and stem volume is also required to enable model
inversion. The accuracy of the stem volume estimate in the two sites
varies between 16% and 21% for height of ambiguity <100 m. The
results clearly show the importance of using summer-time acqui-
sitions. Based on the TanDEM-X results at X-band, C-band data
from the ERS-1/ERS-2 tandem mission are revisited to investigate
the potential of a future bistatic C-band interferometric mission.
Out of nine ERS-1/ERS-2 pairs, only one pair was found to be
acquired at summer temperatures, without precipitation and with
high coherence. A simulated bistatic phase height is shown to give
approximately the same sensitivity to stem volume as TanDEM-X.

Index Terms—Biomass, bistatic SAR interferometry, boreal
forest, C-band, X-band.

I. INTRODUCTION

B IOMASS is a key variable in climate models and of
high importance for management of natural resources and

economic values related to forestry. Various remote sensing
techniques are used in order to determine, e.g., above ground
biomass, AGB, forest height, and density with sufficient accu-
racy for the different needs. The ESA BIOMASS mission [1]
will use the lowest possible frequency from space, P-band, to
achieve high penetration even into tropical forests and in this
manner be able to characterize the important AGB components
of the forest. On the other hand, satellites sensors such as

Manuscript received September 30, 2020; revised April 21, 2021; accepted
August 3, 2021. Date of publication August 13, 2021; date of current version
September 9, 2021. (Corresponding author: Jan I. H. Askne.)

The authors are with the Department of Space, Earth and Environment,
Chalmers University of Technology, SE-412 96 Gothenburg, Sweden (e-mail:
jan.askne@chalmers.se; lars.ulander@chalmers.se).

Digital Object Identifier 10.1109/JSTARS.2021.3104631

ICEsat/GLAS [2] are used to characterize height and density
of forests by means of lidar. Another promising technique is
single pass SAR interferometry using X-band, made possible
with the TanDEM-X satellites available, since 2010 [3], [4]. In
this article, we will review and extend a technique to model and
estimate AGB in boreal forests taking into account the boreal
forest structure in terms of height and density. The model used is
the interferometric water cloud model, (IWCM) [5], [6], which
was first suggested and applied to ERS-1 3 day repeat period
and ERS-1/ERS-2 tandem period with a 1 day repeat cycle. The
repeat time between the two observations, 1 or 3 days, means
that temporal decorrelation had to be taken into account and for
good results stable meteorological conditions were necessary,
e.g., snow covered ground and subzero temperatures, and a
breeze of, e.g., 6–7 m/s or even lower in order for the canopy
to be disturbed and cause a temporal decorrelation, resulting
in a contrast between canopy and ground. With the launch
of TanDEM-X using two satellites simultaneously viewing the
same area, the temporal decorrelation is assumed not to affect
the results and stable information of the scattering phase center
height (simply denoted phase height below) can be obtained,
resulting in three-dimensional (3-D) information of the forest.

In order to interpret the remote sensing observations in terms
of forest properties, a model involving a number of parameters
characterizing the relation between the observations and the
forest properties can be used. Physical or empirical relations
are used as guiding information.

IWCM has been applied to a number of boreal/hemiboreal
field sites with good results for ERS-1/2 when the tempo-
ral ground decorrelation is low, and more recently to bistatic
TanDEM-X observations together with a DTM. The goal so far
has been to apply the model to areas for which accurate field
conditions are available, and in this way, determine the potential
of the model to produce highly accurate stem volume or AGB
and also other forest properties such as height and vegetation
density. High accuracy field data give the possibility to investi-
gate the errors associated with the model approximations, since
the model is a semiempirical approximation of major scattering
properties.

The goal of the present article is to summarize earlier in-
vestigations using IWCM in combination with a DTM with
results regarding stem volume or AGB, forest height, and hor-
izontal density, including effects of management actions. For
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illustration, one TanDEM-X observation is used from each one
of two sites, a boreal site (Krycklan) and a hemiboreal site
(Remningstorp). Since IWCM is using allometry for estimating
stem volume or AGB, it is investigated how the selected al-
lometry can be supported by an estimate of the maximum stem
volume or AGB for the investigated area. The close relation
between phase height and the product of H95 and vegetation
ratio derived from lidar data is studied and properties of winter
relative summer scenes and the optimal conditions using repeat
pass or bistatic data are discussed. In order to investigate the
potential of a bistatic C-band mission, a set of ERS-1/ERS-2
tandem data is revisited and conclusions drawn.

II. STUDY SITES AND DATA

In situ observations from three sites, Remningstorp, Krycklan,
and Kättböle will be used in this article. The two first mentioned
sites, which are more than 700 km apart, have been used as
reference sites for remote sensing of boreal forest many times
and the sites have then been described in detail in several
publications, e.g., [7]–[17].

Remningstorp (Lat. 58 30° N, Long. 13 40° E) is an estate
with 1200 hectares (ha) of productive forest area in the hemibo-
real zone. The forest consists mainly of Norway spruce (Picea
abies Picea abies (L.) Karst.), Scots pine (Pinus sylvestris Pinus
sylvestris L.), and birch (Betula spp.). The test site is fairly flat
with elevations ranging from 120 to 145 m above sea level.

Krycklan (Lat. 64 16° N Long. 19 46° E) is a river catchment
in northern Sweden and covers approximately 6800 ha, in the
boreal zone. The forest consists mainly of Norway spruce (Picea
abies Picea abies (L.) Karst.), Scots pine (Pinus sylvestris Pinus
sylvestris L.), and birch (Betula spp.). It is a topographic area
with ground elevation varying between 145 and 400 m above
sea level.

Kättböle, (Lat. 60° N, Long. 17° E) is a forest estate covering
550 ha, located at the southern edge of the boreal zone and char-
acterized by almost flat ground topography. Boreal coniferous
species dominate (Scots pine and Norway spruce) even though
some broad-leaf trees, mainly birch, are also present.

For Krycklan, 16 TanDEM-X acquisitions from the period
June 17, 2011 to Aug. 26, 2014 have been used with HoA
varying between 36 and 220 m. The acquisitions correspond to a
range of meteorological conditions, i.e., temperatures between
−12 °C and 19 °C, and daily precipitation up to 27 mm. For
Remningstorp, 18 TanDEM-X acquisitions with HoA varying
between 49 and 359 m have been used, acquired between Jun.
4, 2011 to Aug. 2, 2012. Meteorological conditions included
temperatures between −4 °C and 24 °C and daily precipitation
up to 4 mm. The ERS-1/ERS-2 and TanDEM-X satellite data
used in this article have been described in more detail in earlier
publications [8], [9], [18]–[21], i.e., the reference data from
Kättböle in [6], [18], and [19], from Krycklan in BIOSAR 2008
[22], and from Remningstorp in the BIOSAR 2010 [23].

The number of stands with in situ observations used was 42
and 29 for Kättböle and Krycklan, respectively. Airborne Lidar
Scanning (ALS) observations were used as reference observa-
tions in Krycklan and Remningstorp. In Kättböle, the maximum

stem volume of the 42 stands was 334 m3/ha, in Krycklan 357
m3/ha of the 29 stands, while the stem volume reaches 569 m3/ha
for the stands in the ALS area. In Remningstorp, we have studied
202 stands larger than 1 ha with ALS coverage and stem volumes
up to 519. By including smaller areas (> 0.01 ha), the number of
stands increases to 454 and the maximum stem volume reaches
617 m3/ha.

The dataset includes seasonal variations covering mainly sum-
mer conditions, but also snow melt, frozen conditions, and high
precipitation. However, conditions outside summer conditions
are relatively few.

A. Examples of Forest Properties

Important variables used in forestry are basal area (BA, i.e.,
average cross-sectional area at breast height of trees per hectare),
Lorey’s height (hL, i.e., average tree height weighted by the
basal area), stem volume (V, i.e., average volume of trees per
hectare, including bark but excluding stumps and branches), and
above-ground biomass (AGB, i.e., average above-ground dry
biomass per hectare). Estimation of these variables from field
measurements is costly and remote sensing techniques are be-
coming cost-effective alternatives, e.g., using ALS. Vegetation
ratio and H95 are common parameters from ALS. Vegetation
ratio is defined as the fraction of returned lidar pulses reflected
from a point located higher than a threshold height of 1.37 m
above ground. H95 is defined as the 95 percentile height of the
returned lidar pulses reflected above the same threshold height.
As will be described below, IWCM uses two other parameters,
i.e., forest height and area-fill, as will be described further
below. Area-fill is defined as the fraction covered by vegetation,
i.e., which affects the electromagnetic wave by attenuation and
scattering. In the following, we will use H95 or hL as proxy for
forest height h and vegetation ratio corrected by a factor κ as
proxy for area-fill.

For Remningstorp with relatively high stem volume values,
we find a slightly nonlinear relation between BA and stem
volume, see Fig. 1. The vegetation ratio is reaching a plateau
value at higher stem volumes and the vegetation ratio times H95
is slightly nonlinear.

The dotted lines in Fig. 1 are BA(V) = (0.65V)0.67, and

h (V) = (2.44V)0.46 (1)

η (V) = 0.9
(
1− e−0.01V

)
(2)

where h(V) and η(V) are used allometric relations in the analysis
of IWCM below. The units of BA(V), h(V), and V are m2/ha, m,
and m3/ha, respectively. η(V) is a fraction and therefore unitless.
h(V) is based on NFI (National Forest Inventory in Sweden)
observations from large parts of Sweden and has been used
since [5], [6] for InSAR, interpretation from sites in Sweden
and Finland. h(V) is also shown in the dotted line the upper
right figure of Fig. 1. η(V) is an allometric expression for the
area-fill introduced more recently [20]. The dotted line in the
lower right figure is the interferometric phase height determined
by IWCM from TanDEM-X observations from Jun. 4, 2011,
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Fig. 1. ALS based estimates from Remningstorp of 454 areas ≥ 0.01 ha.
For explanation of dotted lines, see text below.

Fig. 2. Two stem volume models are shown. 1) Model based on basal area
and height [0.4 BA(V)h(V)], shown in black solid line, 2) Model based on phase
height as proportional to ρh(V)η(V)/κ, to be discussed below, shown as red
dashed line. The phase height model is based on TanDEM-X observations of
Remningstorp Jun. 4, 2011.

illustrating that the phase height varies with stem volume in the
same manner as the vegetation ratio times the height.

The stem volume, V, can be expressed as f BA h, where f is a
tree form factor [24], and BA is the basal area. f BA h is illustrated
in Fig. 2 as function of stem volume as well as ρh(V)η(V)/κ, with
ρ = 20 m2/ha and κ = 1.2, which will be shown to be a good
approximation of phase height, Ph, for the observations studied.
From Fig. 2, we see that f BA h is a good measure of stem volume
but ρh(V)η(V)/κ or ρPh only is proportional up to ≈350 m3/ha,
cf. [25]

III. INTERFEROMETRIC WATER CLOUD MODEL

A. The Model

A general view of X- and C-band microwave interaction with
a forest is that the penetration of the vegetation is limited or
even negligible and that the dominating backscatter is caused
by twigs and small branches located in the upper part of the
canopy and with sizes of the order of the wavelength. However,

microwaves can propagate without significant loss through gaps
in the canopy and reach lower levels and even the ground level.
If the forest is not too dense, which is typical for boreal forest,
we have gaps of all sizes within and in between the trees. The
gaps or openings do not need to be large, typically the size
of a few wavelengths in order for the radiation to propagate
through relatively unperturbed. This is known since long and
was illustrated recently in the case of L-band with a wire grid
above a dielectric surface [26]. We therefore introduce in the
model, describing the interaction between microwaves and for-
est, a measure of the fractional area of ground reached by the
microwave radiation directly in line of sight from the satellites,
and the backscatter from different layers of the dense (no gaps
down to ground) forest fraction plus the attenuated part from
the ground. The latter fraction of the forest is denoted the
area-fill, η. An important empirical result in [21] is that the phase
height is observed to be proportional to H95 times the vegetation
ratio. This illustrates the importance of the forest density for the
model analysis.

In IWCM, the backscatter is expressed as the incoherent sum-
mation of the direct backscattering coefficient of the ground,σ0

gr,
plus the backscattering coefficient of the vegetation layer, σ0

veg,
including parts transmitted through and attenuated by the vege-
tation. Similarly, the complex coherence, γ̂, is expressed as an
incoherent sum of the contribution from the ground directly and
from the vegetation layer including the volume decorrelation,
γ̃vol, related to the vegetation and caused by the decorrelation
due to the phase shifts between the different height layers as seen
from the satellites. γveg and γgr are terms describing system
decorrelation and any extra decorrelation, respectively.

IWCM has been described in several papers, most recently
in [21]. The basic expressions for backscattering coefficient and
complex coherence are included for completeness.

σ0
for = (1− η) σ0

gr + η
[
σ0
gre

−αh + σ0
veg

(
1− e−αh

)]

= σ0
gr e

−αtoth + σ0
veg

(
1− e−αtoth

)
(3)

γ̂ =
γvegγ̃vol + γgrm

1 +m
and γ̃vol =

∫h0 e−α(h−z′) · e−jkzz
′
dz′

∫h0 e−α(h−z′)dz′
(4)

with

e−αtoth = 1− η
(
1− e−αh

)
andm =

σ0
gr

σ0
veg

1−η
η + e−αh

1− e−αh
.

(5)
kz = 2π/HoA. One possibility to introduce a stem volume
dependence is to assume exp(-αtot h) = exp(-βV) [27], which
will be discussed below.

The phase of γ̂ determines the phase height, and the amplitude
of γ̂ the coherence. γveg and γgr represent temporal and system
related decorrelation terms, respectively, while m represents the
ground to volume influence. α, Np/m, is the two-way vertical
attenuation of the dense forest. η and h represent the horizontal,
respectively, the vertical variation of the stands and are assumed
to vary with stem volume or AGB, which is assumed to be related
to stem volume by a constant typical for the tree mixture.
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The ALS-based vegetation ratio is a proxy for area-fill η as
mentioned above. Due to the longer wavelengths and different
incidence angle of the microwaves compared to ALS, η is
assumed to reach higher values than the vegetation ratio by a
factor κ. Lorey’s height hL or the ALS-based H95 are used as
proxy for forest height h.

To determine the parameters involved in the model, we may
use reference areas with known properties cf. [8]. Another
alternative is to use allometric relations h(V) and η(V), derived
from field measurements representative for the forest in question
[9], [20], [21], [28], [29]. Our primary goal is to estimate stem
volume or AGB and we assume that η and h can be expressed as
allometric functions of stem volume. In the case of h(V) such an
expression can be determined from, NFI, plots, while η(V) has to
be estimated from lidar measurements. The expressions can be
assumed to be related to the type of forest and its management.
With satellite lidar instruments such as ICESat GLAS, see e.g.,
[30], [31], we may find relations between h and η although the
type of measurements are different, in particular, the resolution
of the sensors.

B. Fitting the Model to Observations

Here, we will only give a principal description on how to
use the model to estimate forest parameters. For a mathematical
description, see [9] for the case HoA < 100 m and γveg = γgr =
γsys. The model includes the forest variables stem volume V and
the four model parameters, σo

gr, σ
o
veg, γsys, and α. The obser-

vation is also characterized by the known height of ambiguity,
HoA.

We require that the model phase height should be equal to the
observed phase height. From this relation, we have an indirect
expression for the stem volumes of the observed forest stands
expressed in the phase height according to the model, the param-
eters, and the observed phase height. Equations (3) and (4) define
the models for coherence and backscatter. The relative RMSE
between the model values and observed values for coherence
and backscatter, respectively, are denoted by RMSEcoh and
RMSEσ . We define a cost function as the combined RMSE
according to

RMSE−1 = RMSE−1
coh +RMSE−1

σ . (6)

RMSE, which is a function of the model parameters, is now
minimized starting from initial guess values. For details, see [9].
When HoA >100 m, we may need to assume γgr � γveg and
the minimization is more complex, see [20].

Minimization of RMSE leads to expressions for the model
parameters,σo

gr, σ
o
veg, α, γsys, which together with the observed

phase heights result in estimates of stem volume of each forest
stand. The forest height, h(V), and the area-fill η(V) for the
stands are determined by the allometric relations (1) and (2).

An alternative manner for solution is given in [28] using a
nonlinear least-squares optimization by including a random error
between the observed and modeled phase height.

As an extension of the solution, denoted IWCM2 and IWCM
can be expressed as functions of h and η and the estimated
model parameters when HoA < 100 m. By equating the model

coherence and phase height to the observations, see [21] stand
values for h and η are determined. Since γsys is determined as a
mean parameter for all stands and the exact value for a specific
stand is unknown the results for h and η are uncertain for stands
with phase height less than ≈ 5 m and were excluded.

A computer program in Mathcad 15 for acquisitions with
HoA < 100 m, can be obtained from the first author. Mathcad
is a commercial calculation tool in which equations are created
and manipulated in the same graphical format in which they are
presented. Any other engineering math software program can be
used.

IV. MODEL PROPERTIES

A. Dependence of Phase Height on Forest Properties

An important result in [21] was that the phase height can
be approximately equal to H95 times vegetation ratio (denoted
Vegratio in figures) for the summer observations, illustrated
when HoA < 100 m. This result illustrates the importance of
vegetation density to understand phase height. The phase height
is expected to be obtained as the sum from the gap area, 1-η,
from which we have zero phase height, and from the dense
forest area, η, for which the phase height is determined from
(4) and (5) with η = 1. The contribution from ground is small
when exp(-αh) << 1 and then the phase height is determined
by the volume decorrelation to h – 1/α if also 2π/(α HoA)
<<1 [8], [18]. This means that the phase height Ph can be
approximated as

Ph (V ) ≈ η (V ) [h (V ) − 1/a]. (7)

If 2π/(αHoA) is not too small, we may change α to αeff

[8] by comparison with the full expression for Ph(V). The
approximation is illustrated in Fig. 3.

Treuhaft et al. [32] introduced the mean canopy height, MCH

MCH (α, V ) =
∫h(V )
0 zeαdz

∫h(V )
0 eαdz

=
h (V )− 1

α

(
1− e−αh(V )

)

1− e−αh(V )

(8)
which is a good approximation for the phase height when the
complex coherence is determined by γvol. When exp(-αh) <<
1 MCH tends to h – 1/α. With α= αeff there is for Krycklan and
Remningstorp in practice no difference between the expressions
and the phase height tends to η(V)MCH(αeff,V).

B. Sensitivity of Allometry for Stem Volume or AGB

Height is the primary variable for which the bistatic InSAR
observations are sensitive, but since stem volume or AGB is the
most important forest property the relation to stem volume is
introduced through the allometry h(V). The allometric relation
is then of major importance for the accuracy of stem volume
estimation. In addition, we require a model for the area-fill
η(V). Based on the empirical fact that phase height is directly
proportional to H95 times vegetation ratio, or by h(V)η(V)/κ
in model expressions, we came to the conclusion that κ ≈ 1.2
[21] assuming h(V) = (2.44 V)0.46. Now, we will investigate
the model dependence on h(V) by comparing the earlier case
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Fig. 3. (a) and (c) Illustrating the relation between the phase height according
to IWCM and its approximate relation η(V)[h(V)-1/αeff] (red line) and (b) and
(d) approximate phase height versus h(V) η(V)/κwithκ= 1.2 and observations.
The upper figures are for Remningstorp 2011-06-04 with 2π/(αHOA) = 0.48,
α = 0.27 Np/m and αeff = 0.38 Np/m, and the lower figures are for Krycklan
2011-06-17 with 2π/αHOA = 0.85, α = 0.14 Np/m and αeff = 0.30 Np/m.

with the assumption that h(V) = (2.44 V)0.44 or (2.44 V)0.48.
The result derived from TanDEM-X observations from Jun. 17,
2011 from Remningstorp is illustrated in Fig. 4.

By using known stem volume these act as constraints on the
solution, since we know, for example, the highest stem volume
(511.7 m3/ha) corresponds to a phase height 21.9 m. If we
can estimate the highest stem volume for the area investigated,
e.g., from NFI-plots to ≈ 500 m3/ha, we may plot the obser-
vations together with the model solutions for stem volumes
up to 500 m3/ha, see Fig. 5. The end point of the model line
corresponds to 500 m3/ha and is marked with a dot. If we connect
this dot to the origin of the coherence diagram, we see that all
the phase heights of the observations are included for the blue
dashed case and this is the case corresponding to the best fit of
the three h(V) allometries. The same is seen in the backscatter
diagram.

The coefficient of determination, r2, between estimated stem
volumes and in situ stem volumes are in all cases 0.92, but in
the first case, we over estimate and in the last case, we under
estimate stem volume, cf. Fig. 4(c) resulting in relative RMSE
values for stem volume in the three cases of 41.4%, 16.6%, and
32.8%, indicating the need for accuracy in the h(V) allometry,
but also the possibility to control the used allometry by means
of an estimate of the highest stem volume values in the area as
a calibration point together with the TanDEM-X observations.

In [21], it was shown how the allometric properties of η(V)
can be checked.

Fig. 4. (a) Illustrating the different allometric models for h(V) together with
ALS observations; (b) Illustrating the phase height estimated with the differ-
ent h(V) using all stands with known ALS-based stem volumes for training;
(c) Illustrating the phase height estimated with the different h(V) assuming
unknown stem volumes, and (d) comparing the phase height estimated with the
different h(V) assuming unknown stem volumes and compared with h(V)η(V)/κ
with κ = 1.24, 1.20, and 1.06, respectively. The exponential 0.44 corresponds
to red solid line, 0.46 to dashed blue line and 0.48 to dashed-dotted green line.

Fig. 5. Illustrating the observations together with the model solved with the
allometries, notations as in Fig. 4.

V. EXPERIENCE FROM TANDEM-X OBSERVATIONS

Remningstorp and Krycklan are test sites in Sweden in the
hemiboreal and the boreal area, respectively, with extensive field
measurements [22] [23]. With the in situ data available, a goal
has been to test the properties and the estimation accuracy of
IWCM in [8], [9], [20], [21], [28], and [29]. Many other studies
have also been carried out based on these campaigns giving
possibility to compare different techniques and different models,
see the above references related to the sites.

The major goal has been to estimate stem volume or
AGB. Stem volume is the main forest variable of interest in
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Fig. 6. Relative RMSE for stem volume and forest height for acquisitions in
Remningstorp using the βV-approach and training stands (+),without rain (•)
and using allometry without training stands (x). Part of the results is from [20].

characterizing the economic value of a forest. For this reason, the
original goal of IWCM was focused on estimating stem volume.

A. Obtained Results From Remningstorp

For stem volume or AGB, the relative RMSE is estimated to be
in the range 17% < RMSE < 19% for HoA < 100 m and < 33%
for HoA < 400 m. For a multitemporal combination of all the
acquisition the RMSE for stem volume or AGB was obtained to
16% in [8] using the exp(-βV)-approach combined with training
stands, and 17% using the allometry approach without training
stands in a manual iterative manner [20]. The results with the
two methods are approximately the same. The relation between
height and stem volume is determined by h(V) and RMSE for
height and stem volume or AGB are illustrated in Fig. 6. The
RMSE is expected to increase approximately linearly with HoA,
since the phase height is of major importance for height and then
also for stem volume estimation, but RMSE is also dependent
on meteorological conditions, in particular rain.

Based on ALS measurements from 2010 and 2014, the forest
change of 3 x 12 plots of 0.28 ha each and with different
management actions plus 12 stands with natural growth were
investigated. The latter stands resulted in a height growth of
2.7%/year with TanDEM-X/IWCM versus a 2.1%/year growth
with ALS, and a biomass growth of 4.3%/year versus 4.2%/year
from ALS [21]. The stands with different management actions,
representing precommercial thinning, commercial thinning, and
clear-cutting, resulted in much insight into the sensitivity of
IWCM. A principal diagram over height versus area-fill for the
different types of management actions as an alternative to ALS
characterization of the different stand actions was given.

B. Decorrelation Effects

Observations from Remningstorp include acquisitions with
HoA up to 358 m [8], [20]. The vegetation and ground decor-
relation were included separately in the solution approach, cf
(4). γgr and γveg were found to be slightly different, see Fig. 7,
with a ratio decreasing with HoA, i.e., increasing with the normal
baseline between the satellites or with 2π/(αHoA) i.e., the phase
shift over the penetration depth. The effect does not seem to be
related to wind decorrelation (wind speeds up to 6 m/s) and not to

Fig. 7. γveg/γgr estimates for measurements with HoA < 100 m, �; those
with HoA > 100 m and a wind speed < 3 m/s, •; and those with wind speed
>3 m/s, o.

Fig. 8. RMSE for stem volume and forest height versus BIOSAR 2008 in
situ measurements in Krycklan using allometry without training stands. Three
measurements not affected by precipitation are marked by •,while additionally
three measurements are affected by limited precipitation and marked by o in
addition to x. Results partly from [9].

the along track distance, ATB (up to 267 m). Generally temporal
decorrelation is not expected in the bistatic InSAR case.

When HoA is large the volume decorrelation is small and
the coherence is close to γsys. However, in order to obtain
agreement with the observed coherence γveg < γgr = γsys have
to be included in the model. This complicates the estimation
procedure since one more unknown parameter is included, see
[8] and [20]. It should be noted that the acquisitions with HoA
> 100 m are from another orbit with another angle of incidence
than those with HoA < 100 m. which also means another noise
equivalent sigma zero. This will be a topic for future work.

C. Obtained Results From Krycklan

For stem volume or AGB, the relative RMSE is estimated
to be in the range 16% < RMSE < 21% for HOA < 63 m,
and for forest height 10% < RMSE < 16%, see Fig. 8. In the
Krycklan case, HoA for all the summer acquisitions were in the
range 36–80 m and γveg = γgr = γsys was assumed. In Fig. 8,
the RMSE summer values are illustrated as function of time in
order to illustrate that the RMSE values are degraded by growth
effects relative the 2008 reference values. Acquisitions when
there is no precipitation show a consistent growth.

Using the IWCM2 approach, the RMSE for heights with
phase heights above 5 m varied between 6% and 8% but for
one acquisition it was 11%.
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The 12 summer time observations from 2011 to 2014 were
used to determine AGB growth. Summer time acquisitions are
preferred due to the larger span of phase heights and the asso-
ciated higher sensitivity to stem volume. The maximum growth
rate of AGB, was 4.0 Mg/ha/yr with a mean rate of 1.9 Mg/ha/yr
for 27 stands, varying initially between 23 to 183 Mg/ha.

D. On Optimal Conditions for Stem Volume or AGB
Estimation

From single baseline bistatic TanDEM-X data combined with
a DTM, we obtain phase height, coherence, and backscatter
as observables, and an important question is which conditions
are optimal for estimation of forest properties by means of
IWCM. A wide range of seasonal variations in Krycklan has
been investigated in [9] and [28]. The largest difference of the
observables is between summer and winter conditions due to
the freezing water in the canopy. The acquisition with lowest
temperature studied here, cf. [9], is from Krycklan Feb. 25, 2012
with a temperature of −9 °C and a 1 m snow layer. In Fig. 9, the
observations from Jun. 26, 2011 and Feb. 25, 2012 are illustrated
as function of stem volume together with IWCM model results.
The observations from Feb. 25, 2012 have also been analyzed
with the DTM corrected by 1 m due to a likely dense snow or ice
layer related to the temperature history with temperatures around
zero on Feb. 20, 2012. For comparison, the acquisition from Jun.
17, 2011 is also illustrated. In Krycklan, AGB is estimated by
ALS and in IWCM AGB is estimated as 0.512 Mg/m3 times the
estimated stem volume.

Typical for frozen conditions is a low canopy attenuation,
which also means that the ground contribution to coherence
is more important winter than summer. More stable proper-
ties associated with (a snow covered) ground result in smaller
variability in coherence of the observations. The phase height,
however, is formed in the canopy with variable properties. It has
been noted that TanDEM-X coherence shows a high sensitivity
to forest height in winter cf. [33], [34]. In Fig. 9, we note the
small variability of coherence with the stem volume. We also see
the low range of phase height values during winter (<10.6 m Feb.
25, 2012 relative the DTM compared to<16.5 m Jun. 17, 2011).
This can be compared to the range of coherence values, ≈ 0.33,
summer as well as winter. The phase height range is significantly
higher during summer due to the higher attenuation and lower
penetration into the canopy. The larger phase height range in
summer improves the estimation of stem volume and AGB.

From the IWCM analysis, we obtain an RMSE for AGB esti-
mation of 26.9% for the winter case without the 1 m correction of
the DTM and 19.3% with the correction. The IWCM parameters
in the DTM corrected case are similar to those obtained when
reference AGB are used, which strengthens the hypothesis of
an ice layer in the snow. This result illustrates the problem of
using phase height during the winter due to the uncertainty of the
effects related to a possible snow or ice layer. For the summer
acquisition, the AGB estimation is characterized by RMSE =
16.7%.

The above results underline the importance of phase height
relative coherence for summer acquisitions and a question is

Fig. 9. Illustrating TanDEM-X data from Krycklan, in the upper row from
Feb. 25, 2012, in the middle row from Feb. 25, 2012 with the phase height
decreased by one meter and in the lower row from Jun. 17, 2011. The solid blue
lines represent the IWCM model solution on respective dataset.

to what extent phase height varies over the seasons. Due to
the close relation to the product HV = H95•Vegetation ratio
as determined by ALS 2008 (Krycklan) and 2010 (Remn-
ingstorp), we investigate the variation of the coefficient of
determination and root mean squared error, r2(Ph,HV), and
RMSE(Ph,HV). We find that due to growth r2(Ph,HV) de-
creases and RMSE(Ph,HV) increases with time from the first
TanDEM-X summer measurements. For the latter cases, we
obtain r2 ≈ 0.95 and RMSE ≈ 10% for HoA around 50 m.
The results worsen for increased HoA due to the decreasing
height sensitivity, which also worsens the result for stem volume
and AGB estimation. The values worsen for conditions with
subzero temperatures and a snow layer in Krycklan, and in
Remningstorp for temperatures close to 0 °C with precipitation
as well as a snow layer. We also note a clear relationship between
a decrease in r2(Ph,HV) and an increase in RMSE(Ph,HV)
with an increase in the RMSE between the AGB estimated by
IWCM and the corresponding reference values based on in situ
data.

We conclude that for bistatic InSAR using a DTM, the optimal
conditions to estimate stem volume or AGB are mainly due to
a large range of phase height values as obtained during summer
time with less penetration into the canopy combined with HoA<
80–100 m. Cases with precipitation should be avoided due
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to effects primarily on the backscatter, but also on complex
coherence.

VI. PROSPECTS OF BISTATIC C-BAND INSAR OBSERVATIONS

The introduction of IWCM was originally associated with
the 3-day repeat data from the C-band ERS-1 satellite and later
the ERS-1/ERS-2 1-day tandem repeat pass data. Due to the
time interval between the observations temporal decorrelation
of ground as well as canopy had to be taken into account in the
original version of IWCM, [5], [6], [35]. The observed phase
height was in addition corrupted by different phase shifts from
the atmosphere at the two acquisitions [19] and only coherence
and backscatter were used for estimating stem volume. The
model parameters were obtained by means of the exp(-βV)-
approach and using training stands together with an assumption
regarding the attenuation at C-band.

A bistatic configuration at C-band, cf [36] would have elimi-
nated the temporal decorrelation and made accurate phase height
measurements possible. With the information of the IWCM
parameters from the most accurate ERS-1/ERS-2 observations,
it may be possible to investigate the potential of a bistatic C-band
mission.

Nine C-band observations from Kättböle, 35 km NW Upp-
sala, studied in [6], [18], and [19] were previously solved with
the exp(-βV) approach, and will now be investigated with the
method in [9] and [20] using the same allometry as above. In
order to determine the IWCM parameters with as high accuracy
as possible, the estimation will be done using the known in situ
stem volumes. Due to the temporal decorrelation related to the
1 day time difference between the acquisitions the associated
terms, γgr and γveg (including the effect of γsys) were included
in the model analysis. The IWCM parameters are illustrated in
Fig. 10 as function of temperature.

From [6], [18], and [19], we note that four of the nine pairs are
acquired during stable weather conditions, and five under chang-
ing weather. If stem volume is determined from ERS-1/ERS-2
coherence the optimal conditions are for high ground coherence
as in winter cases with snow covered ground combined with a
relatively low vegetation coherence related to wind effects. In
this case, we have a range of coherence values giving sensitivity
to stem volume. For bistatic SAR, the optimal conditions are
different and a large range of phase height values during summer
time with less penetration into the canopy are optimal combined
with HoA < 100 m.

To simulate bistatic conditions, we have to look at those
acquired under stable weather conditions and we will only
consider summer conditions, due to the higher range of phase
height values, and in particular that from Aug. 20/21, 1995 with
temperature 16 °C, γgr = 0.82, and γveg = 0.41, and HoA =
119 m, indicating a high ground coherence and a relatively high
vegetation coherence. Only this acquisition as well as that from
Jul. 20/21, 1995 has summer temperatures of at least 16 °C, but
for the latter pair, we had rain at one of the acquisitions. The
simulated phase height for a bistatic C-band mission (γveg =
γgr) corresponding to the Aug. 20/21, 1995 pair is illustrated in
Fig. 11 together with h(V)η(V)/κC, where κC is adjusted to 1.10

Fig. 10. Illustrating ERS-1/ERS-2 tandem data as function of the mean tem-
perature of the two acquisitions. The acquisition at 2.1 °C is marked since the
temperature is the mean of +4.1° and 0° combined with 3 mm precipitation i.e.,
risk for thawing and freezing. γveg and γgr are marked with a connecting line.
The simulated phase heights for bistatic observations (γveg = γgr) at 350 m3/ha
are illustrated in the lower right corner.

Fig. 11. Illustrating the simulated phase height for bistatic C-band InSAR
based on ERS-1/2 observations from 1995-08-20/21. The solid line is the phase
heights, the dashed black lines is h(V)η(V)/κC with κC = 1.10.

for agreement between the two expressions. A κC value of 1.1 at
C-band is smaller than 1.2 at X-band and the two-way attenuation
of 0.39 Np/m is larger than the X-band value of 0.15 Np/m typical
for Krycklan and 0.26 for Remningstorp. If the attenuation in the
dense forest is dominated by gaps down to different levels, the
X-band radiation with smaller wavelength than C-band would
propagate to lower levels, which would correspond to a smaller
attenuation.

The result indicates that the sensitivity for stem volume or
AGB would be similar for a C-band bistatic mission as for
TanDEM-X, not taking into account other X- and C-band dif-
ferences such as, e.g., resolution. However, it should also be
stressed that the results are only indicative since the comparison
with observations suffering from a one day interval and asso-
ciated temporal decorrelation is problematic, but it is the only
information available.
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VII. DISCUSSION AND CONCLUSION

A. Some Properties of IWCM

This article is focused on IWCM observations from single-
baseline bistatic VV-polarization TanDEM-X and lidar-based
DTM. It also includes IWCM analysis based on C-band ERS
data and discusses properties of a possible future bistatic C-
band mission. Stem volume or AGB has been in focus in this
article due to its importance as an essential climate variable, but
estimation of height, density, growth, and management actions
using IWCM have also been described and summarized from
[8], [9], [20], [21], [28], [29].

Although bistatic InSAR is primarily sensitive to the forest
height, IWCM is based on using the allometry for stem volume
or AGB inherent in the model. The equations are then adjusted
to the observations over an area covering a range of forest
properties and IWCM parameters and stem volume or AGB are
estimated. The IWCM parameters for the area can also be used to
estimate height and density. The extinction coefficient estimated
with IWCM is representative of a dense forest.

IWCM is using the information from backscatter as well as
complex coherence. The extra information from backscatter is
expected to increase the accuracy but can create a problem at
times of heavy rain, which seems to affect backscatter more
than phase height and coherence.

DTM information can be obtained from lidar-investigations
as in this article, or possibly from the BIOMASS mission in the
future [1]. In [37], a possibility to determine the ground level
from TanDEM-X data is studied.

B. Other Model Approaches

Other model approaches to analyze bistatic TanDEM-X data
in the boreal or hemiboreal region without the use of known
reference data for training the model parameters are the Random
Volume over Ground, RVoG, [38]–[41] and the Two Level
Model, TLM [42]–[44].

RVoG is based on estimates of height and extinction, and by
means of allometry the height can be related to stem volume or
AGB [33], [45], [46]. TLM is used to estimate height and density
properties and, by training using NFI plots, stem volume or AGB
estimates can be obtained [47].

Some studies of particular interest in relation to the present
study with focus on the specific test sites Krycklan and Remn-
ingstorp are [4], [46]. Kugler et al. [4] studied the potential of
RVoG for forest height estimation of TanDM-X acquisitions in
different sites including Krycklan. They used a DTM for phase
height estimation using single-pol and dual-pol inversion, then
without a DTM, and obtained an RMSE of 1.6 and 2.0 m,
respectively. The inversion was achieved by assuming a zero
ground-to-volume amplitude ratio for at least one polarization
independent of height. Caicoya et al. [33] studied the potential
of RVoG in single polarization TanDEM-X without the use
of DTM, using one or two baselines in Remningstorp and
Krycklan. Then only coherence information is used and fixed
extinction and ground-to-volume parameters are estimated from
experience. From height AGB was estimated, resulting in a

classification of AGB in four classes. An interesting result is
that winter acquisitions are favored for stem volume estimation
in this article based on coherence analysis. Investigations of
TanDEM-X coherence from observations of a hemiboreal site
are illustrated in [34]. The observations illustrated the small
variability of coherence during winter time.

The BIOSAR 2008 and BIOSAR 2010 in situ data from
Remningstorp and/or Krycklan have been used in many remote
sensing investigations and can then be compared with results
derived by TanDEM-X results in this article, e.g., PolInSAR
using RVoG for L- and/or P-band, e.g., [12], [17] or only L-band
[48] or the influence of forest density on forest height using
RVoG [11] or vertical structure [49] using RVoG.

C. Conclusion

A major goal in forest remote sensing is to determine stem
volume or AGB, since AGB is an essential climate variable
[50], and stem volume is the important property of interest
in characterizing the economic value of a forest. Stem volume
and AGB can be approximately related by means of a constant
depending on tree species and composition. Note that remote
sensing techniques are not directly sensitive to stem volume (or
AGB) but indirectly in the form of sensitivity to, e.g., forest
height and canopy gaps, and the measured properties must be
related to stem volume (or AGB) by empirical relations. In
IWCM two such relations are used, c.f. 1) for the height to stem
volume relation and 2) for the area-fill to stem volume relation,
which both are given in terms of allometric equations. The
former is known with good accuracy for some forest types, e.g.,
managed boreal forests, but less accurate for, e.g., unmanaged
forests and tropical forests. This is a limitation of the inversion
which future research should investigate and study mitigation
techniques. We showed one example that suggests progress in
this direction, i.e., the correctness of the allometric relation by
using independent knowledge of the maximum stem volume in
the area. The allometric equation for the area-fill has previously
been shown [21] to be related to the vegetation ratio.

The RMSE for stem volume given in this article for the two
sites 700 km apart are in the range of 15–20% as long as the
height of ambiguity is less than 100 m. Estimates of height
and density are more directly related to the measurements than
stem volume (or AGB) and can be estimated with high accuracy
when the mean properties describing the microwave interaction
with the forest are first determined, and in particular if the
phase height is larger than ≈ 5 m. Then, the knowledge of the
system noise for a specific forest stand is of less importance.
The RMSE for the height of such stands was found to be in
the range for Krycklan stands 6–8% and in one case 11%. A
computer program is made available for application of IWCM
to TanDEM-X data.

The close relation between phase height and the product H95
times the vegetation ratio is discussed and used to illustrate
the variability of phase height over the seasons. During winter
conditions, the penetration depth is larger and the phase height
lower causing a lower sensitivity to stem volume or AGB.
Consequently, the TanDEM-X acquisitions during summer days
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without precipitation and with HoA < 100 m have been found
to be most useful.

The TanDEM-X mission has been important for illustrat-
ing the potential of single pass and bistatic InSAR, but for
TanDEM-X no follow up is planned. One future possibility
is a bistatic C-band mission as a complement to ESA:s long
term commitment to C-band SAR missions. For C-band as well
as X-band, the penetration to ground through dense forest is
relatively small, which simplifies the modeling approach and
results in phase heights, with a DTM available, close to the tree
tops resulting in high accuracy. For this reason, an investigation
of the potential of such a mission is investigated based on
observations with ERS-1/ERS-2 repeat pass observations. Such
observations are sensitive to several decorrelation effects and
only in a single case out of nine observations from 1995/1996
are the conditions found to be relevant for analysis of a single
pass bistatic mission. A simulation indicated that the sensitivity
to stem volume (or AGB) would be similar to that obtained at
X-band. Such a mission would be valuable also in tropical areas
as a complement to BIOMASS, since the sensitivity to forest
variables is significantly different due to large differences in
operating frequencies.

It should be stressed that the results are based on specific
datasets and study sites with related reservations for the gener-
ality of the results, but we have seen that forest properties such as
stem volume, AGB, forest height and density can be determined
with high accuracy from single baseline bistatic TanDEM-X
acquisitions, particularly from summer time with HoA < 80
to 100 m. For these results, we have used an available lidar
DTM and a height versus stem volume allometry based on NFI
observations, and an expression for the area-fill based on lidar
measurements.
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