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ABSTRACT 

 
Deterioration of concrete leads to reduced structural strength implying high societal challenge 

with huge economic impact. In the Oslofjord subsea tunnel, complex microbial biofilm activity 

together with abiotic attack from saline groundwater are responsible for concrete matrix 

degradation and steel fiber corrosion. Previous research has revealed that microbial attack 

causes disintegration of cement paste matrix and thinning of sprayed concrete at rates varying 

from 0.5-10 mm/year in areas with leakages of saline groundwater. General knowledge about 

biodegradation of concrete infrastructures in marine environment is lacking and research in this 

area is therefore needed. A long-term study of biofilm microbial community composition and 

dynamics was performed between 2015-2020 in the Oslofjord subsea tunnel. Due to its 

complexity it was necessary to work multi-disciplinary, including studies of the microbial 

community structure by using advanced molecular techniques in combination with chemical 

analysis to get a comprehensive picture of the prevailing micro-environmental conditions 

within the biofilm. High throughput amplicon sequencing of 16S rRNA gene together with 

metagenomics shotgun sequencing revealed temporal dynamics in microbial community 

structure, and metabolic potential of biofilms in the Oslofjord tunnel. Water chemical analysis 

and microsensor measurements of oxygen and pH profiles within the biofilm were performed 

on-site to assess environmental conditions in the biofilms. Additionally, SEM microscopy 

together with XRD analyses were used to investigate concrete degradation beneath the biofilms 

over time. In parallel, a mesocosm experiment was performed over a period of 65 weeks to 

study the role of concrete material properties and fiber reinforcement for microbial colonization 

and composition. The long-term study preformed in the Oslofjord subsea tunnel revealed a 

complex microbial community involved in cement paste matrix degradation and steel fiber 

corrosion. The microbial communities at the different tunnel localities were composed of 

nitrogen converting bacteria, iron-oxidizing bacteria, sulfur oxidizing bacteria, heterotrophic 

aerobic bacteria, putative manganese-oxidizing bacteria and many microorganisms that could 

not be assigned to any function. Microsensor measurements showed relatively stable pH around 

7-8 throughout the biofilm, whereas the dissolved oxygen profiles decreased with biofilm depth. 

Significant differences in community structure and richness between biofilms at the different 

tunnel locations were revealed with alpha and beta-diversity analysis. However, the microbial 

communities at the three sites shared many taxa. Pairwise comparisons suggested that 

deterministic factors were important for the assembly of the microbial communities of mature 

biofilms. Results from the mesocosms study indicate that stochastic factors were important 

during the initial colonization and time was the main factor which drives turnover in the biofilm 

communities on concrete material. Presence of steel fiber reinforcement was found to have a 

greater effect on the biofilm community composition than the surface roughness. The results 

obtained in this thesis help us to understand the complexity of microbial induced concrete 

deterioration and corrosion of steel fiber reinforcement observed in the subsea tunnel 

environments. 

 

 

Keywords: microbially induced deterioration, biofilm, marine environment, concrete, subsea 

tunnels, surface structure, steel fibers, amplicon sequencing, metagenomics. 
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1 Preface 

This doctoral thesis is based on research performed at the Division of Water Environment 

Technology at the Department of Architecture and Civil Engineering, Chalmers University of 

Technology, between May 2015 and July 2021 under the supervision of Britt-Marie Wilén, 

Frank Persson and Per Hagelia. This research project was funded by the Norwegian Public 

Road Administration (NPRA) as part of the “Coastal highway route E39” programme.  

 

1.1 Research motivation and scope of thesis 
 

The overall goal of this thesis was to increase the understanding of the mechanisms behind 

biologically induced degradation of sprayed concrete and accelerated corrosion of steel fibers 

in subsea tunnels caused by biofilm development. 

 

The specific objectives were to:  

− Investigate the microbial biofilm composition associated with degradation of sprayed 

concrete and corrosion of steel fiber reinforcement in the Oslofjord subsea tunnel (Paper I- 

III); 

− Assess the biofilm and water chemical composition (Paper II and III); 

− Determine the micro-environmental conditions within the formed biofilm (Paper II); 

− Investigate microbial succession and biofilm evolution on sprayed concrete in subsea tunnels 

in terms of both time and space (Paper I-III); 

− Investigate microbial colonization and succession on concrete in a marine environment 

(Paper IV); 

− Determine how concrete surface type, including surface roughness and presence or absence 

of steel fibers, affects biofilm microbial community composition (Paper IV); 

− Asses the metabolic potential of the Oslofjord subsea tunnel biofilms (Paper III) and; 

− Determine how the biofilm interacts with sprayed concrete surface and eventually 

deteriorates it (Paper II-IV). 

 

The four papers comprise the following studies: 

• Paper I: In this initial study, microbial community composition and diversity of 

selected biofilm samples from the Oslofjord tunnel were assessed. In order to find and 

select appropriate methodology for isolation and analysis of concrete microbial 

biofilms, two different DNA extraction methods were compared. 

• Paper II: In this study, the microbial community structures of three different locations 

in the Oslofjord tunnel were assessed. Chemical micro-environmental conditions within 

the biofilm as well as water and biofilm chemical compositions were also presented. 

• Paper III: In this study, the structure of the microbial community over time, at three 

locations in the Oslofjord tunnel was assessed. Analysis of biominerals, water 

chemistry, sources of nutrition, concrete deterioration over time was also performed. 

Metagenomics analysis was performed on selected biofilm samples to assess the 

metabolic potential of the microorganisms in the biofilms. 
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• Paper IV: In this study, biofilm formation and microbial succession on four different 

concrete surfaces, smooth and rough surface with absence or presence of steel fibers, 

exposed to the seawater in controlled laboratory environment, was investigated. 

 

1.2 Scientific approach and limitations 
 

Biodegradation of concrete is caused by a combination of biotic and abiotic factors. Biofilm 

communities are usually composed of a complex consortia of microorganisms with intricate 

interactions with the abiotic environment (Javaherdashti, 2017). Most of the studies of 

microbiologically induced deterioration (MID) has relied on bacterial cultivation techniques for 

detection and isolation of MID-related microorganisms and has resulted in simplified models 

to reduce the complexity inherent in multi-species biofilms (Dang et al., 2011). Standard 

microbial cultivation technique can only detect a small fraction of the microorganisms present 

(0.1-10%) (Theron & Cloete, 2000). Therefore, isolation of microorganisms from particular 

environments is not sufficient to be able to relate these microorganism to the biodegradation 

problem and has often failed to produce effective strategies for biocorrosion and biodegradation 

control (Machuca Suarez, 2019).  

 

Deterioration mechanisms and microbial processes involved in MID of sewer systems are well-

known and widely studied using cultivation techniques and simplified models (Wu et al., 2020), 

whilst knowledge about biodeterioration mechanisms related to subsea tunnels with reinforced 

sprayed concrete is limited. Degradation mechanisms involved in MID on reinforced concrete 

structures in marine environments are complex, and in-depth knowledge about MID in seawater 

is lacking. Difficulties to isolate specific microorganisms from the biofilm in order to analyse 

their effect on concrete biodegradation and separating various biotic and abiotic processes 

involved in MID are the main reasons for limited knowledge in this field. 

 

Modern molecular microbiological methods are recognised as essential identification tools to 

overcome the limitations of cultivation techniques. In particular, next generation sequencing 

(NGS) of conservative V4 region of 16S rRNA gene, provides insight into biofilm communities 

from complex environments including identification of uncultured microorganisms which have 

not been studied before. Amplicon sequencing is a cost-effective method to investigate 

taxonomic composition of microbial communities of many samples which enables large scale 

projects. In this thesis, microbial identification, diversity, localization and successional patterns 

on sprayed concrete was investigated by NGS. Nevertheless, novel techniques come with 

limitations and challenges such as detection of numerous unknown species which increases the 

complexity of the problem even further. These microorganisms can directly be involved in MID 

or indirectly by interaction between different microbial populations in the biofilm (Machuca 

Suarez, 2019). Since NGS of 16S rRNA provide limited information about microbial diversity 

and identification of biofilm communities, shotgun metagenomics was used to assess microbial 

composition and potential metabolic profiles of biofilm samples from the Oslofjord subsea 

tunnel (Paper III). Reconstructed metagenome-assembled genomes (MAGs) in combination 

with NGS provide us with a more powerful methodology that gives better understanding of the 

complex MID mechanisms and microbial community involved in such processes. 
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The thesis presents two different and connected projects that I have carried out during the five 

years of my doctoral studies; 1) experiments on site in the Oslofjord subsea road tunnel (Paper 

I-III); and (2) a mesocosm study at defined conditions at the laboratory (Paper IV). Paper I-

III describe the assessment of the composition, diversity, stratification and metabolic potential 

of the biofilm microbial communities in association with the sprayed concrete degradation and 

steel fiber corrosion. Biofilm composition and water chemistry were analysed at regular 

intervals during five years. The experimental work in the Oslofjord subsea tunnel was allowed 

to be performed only on specific dates planned for tunnel maintenance and our work in the 

tunnel could only be performed at night. All samples had to be kept frozen in dry ice during the 

290 km drive to the laboratory. Preparation of samples for the microbial analysis and chemical 

analysis were performed at the Environmental Chemistry Laboratory at Chalmers. The DNA 

extraction and PCR amplification of the biofilm samples proved difficult, probably due to high 

metal concentrations, and different protocols for extraction had to be tested prior to collection 

of samples.  

 

In parallel to the Oslofjord subsea tunnel study, a controlled mesocosm experiment was 

performed during 65 weeks in the laboratory where different types of concrete samples were 

exposed to seawater. We investigated how microorganisms colonize concrete surfaces over 

time in marine environment and how concrete surface and presence of steel fibers affect 

microbial community structure in the biofilm (Paper IV).  
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2 Introduction 

 

In natural habitats and man-made systems, microorganisms, including bacteria, archaea, algae 

and fungi, colonize and grow on abiotic and biotic surfaces forming complex structures- 

biofilms (Flemming & Wingender, 2010). Biofilms consist of heterogeneous microbial cells 

embedded in a matrix of extracellular polymeric substances (EPS) which make up a three-

dimensional scaffolding consisting mainly of polysaccharides, proteins, lipids and extracellular 

DNA (Flemming & Wingender, 2010). The EPS produced by microorganisms promote 

microbial adhesion to surfaces, keep the cells close together and enable cell-cell 

communication. The composition and structure of EPS depend on the type of biofilm cells, 

surrounding environment, local shear stress and availability of nutrients (Flemming et al., 

2016). However, this is a simple description of biofilms as they are highly organised and 

dynamic structures that provide survival advantages for microorganisms such as easy access to 

nutrients, protection from hydration, facilitated gene transfer and promote resistance to extreme 

environments and aggressive compounds. Therefore, microbial biofilms are able to grow on 

most types of surfaces under large ranges of temperature, pressure, pH, salinity, UV radiation 

and nutrient conditions (Donlan, 2002; Flemming & Wingender, 2010; Stoodley et al., 1999). 

 

The initial bacterial attachment to the surface depends on the physical and chemical surface 

characteristics. Nutrient presence provides a trigger for microbial communication (“quorum 

sensing”) leading to microbial colonisation, adhesion and biofilm formation (Busscher & van 

Der Mei, 1995). Early colonizers determinate the structure and function of more mature 

biofilms (Dang & Lovell, 2016). In mature biofilms, the cells are embedded in EPS and 

separated by water channels which act as a crude transport system for the movement of nutrients 

and waste products. Mature biofilms are multi-layered structures and their response to the local 

environment is the result of community interactions that cannot be predicted by studying 

planktonic or single-species biofilms (Okabe et al., 2007; Stoodley et al., 1999). 

 

Microbial colonization of man-made surfaces and their activities can have detrimental effects 

such as transmission of harmful microorganisms causing diseases, biofouling, biocorrosion, 

and damage to infrastructure. Ultimately undesired microbial activates may cause material 

changes with time (Little & Lee, 2007; Little et al., 2008) This phenomenon is known as 

biodeterioration or microbiologically induced deterioration (MID). MID involves the 

interaction of chemical, environmental, and biological factors which makes diagnosis of the 

degradation by biotic factors extremely difficult (Cwalina, 2008; Trejo et al., 2008). 

 

2.1 Microbial induced concrete degradation 
 

Biodeterioration of concrete is here termed MID whereas it is referred to as microbially induced 

concrete deterioration (MICD) or microbially induced concrete corrosion (MICC) in many 

research publications (Bertron, 2014; Gutierrez-Padilla et al., 2007; Márquez et al., 2013; 

Sanchez-Silva & Rosowsky, 2008; Wei et al., 2013). MID has mostly been observed in concrete 

structures exposed to aggressive environments such as sewer systems, drinking and wastewater 

systems, transportation in industries, marine structures, landfill leachate structures, acid mine 

drainage and offshore placements (Cwalina, 2014; Machuca Suarez, 2019; Wei et al., 2013). 

MID involves complex interactions driven by specific environmental conditions, substratum 

composition and nutrient availability (Harbulakova et al., 2013; Hudon et al., 2011; Monteny 

et al., 2001; Peyre-Lavigne et al., 2016). Microbial biofilms cause corrosion of concrete by 
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producing biogenic acids and minerals that dissolve or decompose the concrete matrix, which 

is a societal challenge with huge economic impact (Gaylarde et al., 2003; Wei et al., 2010). It 

has been estimated that repair and maintenance of biodeteriorated concrete cost billions of 

dollars per year in infrastructure and is often underestimated due to the fact that ongoing 

microbial interactions accelerate processes that would occur also in their absence (Gaylarde et 

al., 2003; Grengg et al., 2015; Roberts et al., 2002; Sanchez-Silva & Rosowsky, 2008). MID is 

considered to significantly reduce the lifetime of concrete structures from expected 100 years 

down to 30-50 (Wu et al., 2020). Microbial activity on concrete structures changes structural 

and functional properties of concrete, increases the concrete porosity, accelerates cracking, 

spalling, pitting and leaching of concrete matrix compounds (Harbulakova et al., 2013; 

Márquez et al., 2013). Additionally, by-products of MID such as hydrogen sulfide (H2S) and 

ammonia (NH3) are toxic even at low concentrations and can cause significant health related 

problems (Grengg et al., 2015). 

 

Concrete is a heterogenous material, typically consisting of cement, water, aggregates (stone 

material and sand) and additional mixtures (optional) (Figure 1). Portland cement is the basic 

ingredient of concrete mixture consisting of Dicalcium Silicate (2CaO·Si2), Tricalcium Silicate 

(3CaO·Si2), Tricalcium Aluminate (3CaO·Al2O2), Tetracalcium Aluminoferrite 

(4CaO·Al2O3Fe2O3), Calcium Sulfate or Gypsum (CaSO4·2H2O) and other minerals (Mehta & 

Monteiro, 2014) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Diagram of standard concrete composition 

 

Due to excellent compressive strength and lower tensile strength, concrete is the most applied 

construction material all around the world. To improve ductility and increase tensile strength, 

traditional cement concrete is reinforced with fibers or/and rebars (Simões et al., 2017). The 

fibers are bonded to the concrete mix and they are acting as a single structural elements (Figure 

2). Fibers used in reinforced concrete include steel, glass, synthetic, and natural fibers. Steel 

fibers are one of the most commonly used fibers for reinforcement (Behbahani et al., 2011). 

Since steel fiber reinforcement reduces the possibility of concrete cracking or water permeating 

the concrete, it is commonly applied in tunnel construction, slabs and airport pavements 

(Berrocal et al., 2013; Berrocal et al., 2016). 
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Figure 2. SEM images of steel fiber reinforced sprayed concrete.    

 

In aggressive environments, various physical, chemical and biological factors can contribute to 

degradation of the cement paste matrix resulting in material deterioration and loss of strength. 

Concrete surfaces provide favourable conditions for microbial colonization due to suitable pH 

and high roughness with pores and cracks generated by the erosive action of water (Gaylarde 

et al., 2003; Hughes et al., 2013; Miller et al., 2012; Percival et al., 1999; Wei et al., 2013). 

Environmental conditions such as availability of nutrients, high relative humidity, certain 

temperature, high carbon dioxide concentration, high chlorine ion concentration and low pH 

facilitates biofilm formation on concrete surfaces (Noeiaghaei et al., 2017; Hughes et al., 2013). 

Microorganisms penetrate inside the concrete matrix through microcracks or capillaries that 

increases concrete porosity and permeability and facilitates chloride ingress leading to concrete 

deterioration (Little et al., 2008; Torres-Luque et al., 2014; Wei et al., 2010). Concrete pH is a 

critical parameter in determining bioreceptivity (Hughes, 2014). After construction, fresh 

concrete has pH in range of 11-13 as a result of hydration of Portland cement. The reaction with 

carbon dioxide can drop concrete pH to range 9–10 and leads subsequently to corrosion of steel 

fibers (Cwalina, 2008). Microorganisms have not been associated with this initial stage of MID 

(Gutierrez-Padilla et al., 2007; Permeh et al., 2019). Microbial colonization occurs once the pH 

of the concrete surface has dropped to around 9 (Noeiaghaei et al., 2017; Satoh et al., 2009). 

Microbial activities and succession on concrete can further reduce pH to less than 4 due to 

significant release of biogenic mineral acids such as sulfuric acid, carbonic acid, nitric acid and 

biogenic organic acids (acetic, lactic and butyric acids) (Alexander et al., 2013; Bertron, 2014; 

Peyre-Lavigne et al., 2015). Deterioration of concrete cannot be explain only by the effect of 

biogenic acids due to the many simultaneously ongoing microbial interactions within biofilms 

(Magniont et al., 2011).  

2.2 Biodeterioration of concrete in sewer environment  
 

Biodeterioration of concrete in sewer system is the most widely studied type of deterioration 

and general mechanisms of MID in sewer environments are well known (Dyer, 2017; Hughes 

et al., 2014; Noeiaghaei et al., 2017). In aquatic environments where sulfate ions are widely 

distributed, biogenic hydrogen sulfide (H2S) is produced by sulfate reducing bacteria (SRB) 

under anaerobic condition in the bottom layer of sewer pipes (Wei et al., 2013). The presence 
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of hydrogen sulfide is usually the reason for further corrosion of concrete in sewer systems 

(Satoh et al., 2009). Once the pH of the concrete surface has dropped to ∼ 9, and with sufficient 

nutrients available, moisture and oxygen, some species of sulfur-oxidizing bacteria (SOB) can 

attached to the concrete surface and oxidize hydrogen sulfide. Hydrogen sulfide can be oxidized 

into sulfur components with various oxidation states such as elemental sulfur (S0) and 

thiosulfate (S2O3) (Wu et al., 2020). The neutrophilic SOB (NSOB) including Thiobacillus 

thioparus, T. neapolitanus, and T. novellus have a range of growth between 9 and 5 (Gutierrez-

Padilla et al., 2007; Peyre-Lavigne et al., 2016) (Figure 3). The NSOB are replaced by 

acidophilic sulfur-oxidizing bacteria (ASOB) such as Acidithiobacillus thiooxidans and 

Thiobacillus intermedius when pH of concrete surface drops to around 4 (Hvitved-Jacobsen et 

al., 2002). ASOB can survive at very low pH such as 0.5 (Islander et al., 1991; Nica et al., 2000; 

Noeiaghaei et al., 2017). This microbial succession leads to accelerated concrete deterioration 

due to the ability of ASOB to create a highly acidic local environment by production of sulfuric 

acid. Sulfuric acid reacts with calcium hydroxide present in the concrete and causes concrete 

degradation due to formation of gypsum, ettringite and sometimes also the thaumasite (Peyre-

Lavigne et al., 2016; Soleimani et al., 2013; Zhang et al., 2008).  

 

Figure 3. Adopted from (Peyre-Lavigne et al., 2016): Illustration of the microbial succession of sulfur-

oxidizing bacteria (NSOB and ASOB) at the concrete surface of exposed cementitious materials. 

 

Besides SOB, nitrifying bacteria are considered important for the degradation of concrete. 

Nitrogen converting bacteria are responsible for the oxidation of ammonia via nitrous acid and 

nitric acid (Cwalina, 2008; Sand & Bock, 1991). Nitrous acid (1) is produced by ammonia 

oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) and nitrite-oxidizing bacteria 

(NOB) convert nitrous to nitric acid (2) (Table 1). The action of these acids on concrete 

promotes the formation of water-soluble calcium nitrate (3) and causes severe corrosion of the 

building materials (Ferrari et al., 2015; Gaylarde & Morton, 2003) (Table 1). However, 

biodeterioration of concrete caused by attack of nitrifying bacteria is less than biodeterioration 

caused by SOB, since this type of bacteria cannot grow at low pH (Soleimani et al., 2013). 
 

Table 1.  Biodeterioration of concrete caused by acid-producing microorganisms. (1) ammonia 

oxidizing bacteria and ammonia oxidizing archaea (AOB & AOA) oxidize ammonia to nitrous acid; and 

(2) nitrite oxidizing bacteria (NOB) convert nitrous to nitric acid; and (3) formation of calcium nitrate.  
 

(1) 2NH4
+ + 3O2 → 2NO2

-+2H2O +4H+ ammonia to nitrous acid 

(2) 2NO2
- + O2→2NO3

-                nitrous acid to nitric acid 

(3) Ca(OH)2 +2HNO3 → Ca(NO3)2 +2H2O calcium nitrate 
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2.3 Biodeterioration of concrete in marine environment 
 

In marine environments, mechanisms that govern microbial induced degradation of concrete 

seem to be more complex and quite different from those observed in freshwater environments.  

MID in marine environments is a complex phenomenon due to the fact that biological attack 

occurs in conjugation with abiotic processes such as carbonation, chlorine ingress and sulfate 

attack. These processes tend to increase the concrete permeability that reduces the strength of 

the structure and facilitates cracking (Mehta & Monteiro, 2014).  

 

Fresh reinforced concrete structures have high pH values (around 12) that allow reinforcement 

to be protected by an oxide layer. When high concentrations of chloride ions ingress into the 

concrete matrix and come into contact with steel reinforcement, the protective cover may be 

reduced, leading to accelerated corrosion of the concrete reinforcement (Little et al., 2008; 

Torres-Luque et al., 2014; Wei et al., 2010). The main groups of microorganisms related to 

microbial induced corrosion (MIC) have been sulfate reducing bacteria (SRB), sulfur-oxidizing 

bacteria (SOB), iron-oxidizing/reducing bacteria (IOB or IRB), manganese oxidizing bacteria 

(MOB), and bacteria secreting organic acids and slime (Beech & Sunner, 2004; Ma et al., 2020). 

The role of these microorganisms can vary significantly depending on environmental conditions 

and parameters, such as temperature, pH, water flow and availability of nutrients, that support 

microbial proliferation on particular substratum.  

 

Degradation mechanisms involved in MID of reinforced concrete in the marine environment 

are complex, and the knowledge about these mechanisms is relatively limited. The difficulty in 

separating various processes and groups of microorganisms involved in MID of reinforced 

concrete structures is the main reason for the lack of knowledge about the mechanisms 

involved. 

2.4 Biodeterioration of sprayed concrete in subsea tunnels 
 

Biodeterioration of sprayed concrete has been detected in several Norwegian subsea tunnels 

such as the Oslofjord, Freifjord and Flekkerøy tunnel resulting in cement paste matrix 

degradation and  steel fiber corrosion in areas with leakages of saline groundwater (Hagelia, 

2011a). Sprayed concrete reinforced with steel fibers is widely used in combination with rock 

bolts for rock support in Norwegian subsea tunnels. Concrete degradation and fiber corrosion 

in road subsea tunnels, due to abiotic and biotic attack, can result in destabilization of the rock 

mass, leading to potential safety risks, increased costs for maintenance and reduced overall 

lifetime of the tunnel. Degradation rates due to MID in subsea tunnels range from <0.5 to 10 

mm/year, but in an extreme case more than 100 mm in less than five years has been observed. 

The sprayed reinforced concrete is designed for 100 years’ service life, but detail investigations 

show that nowadays sprayed concrete lifetime in subsea tunnels is around 25 years (Hagelia, 

2011b). 

 

Since sprayed concrete has a very porous structure with high surface roughness, exposure to 

ion-rich water containing organic material, can facilitate microbial colonization on its surface. 

High ion concentrations in tunnel water are derived from dissolution of minerals within the rock 

mass and from saline groundwaters entering subsea tunnels. The presence of concrete cracks 

with water leakages in subsea tunnel environments further promotes microbial growth and 

biofilm accumulation on the outer surface of sprayed concrete.   
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Figure 4. SEM images of biofilm (2005). A: Iron encrusted twisted stalks; and B: Sheet-forming 

microorganisms with internal disc-shaped cells and extracellular Mn-oxide deposits (Karačić et al., 

2018). 

 

The abiotic attack was found to mainly affect concrete adjacent to the rock mass and it was 

governed by infiltration of magnesium, sulfate and bicarbonate enriched saline ground water 

with pH ≈ 7.5-8 (Hagelia, 2011a). Abiotic degradation was characterised by calcium leaching, 

Mg-substitution for Ca in C-S-H, thaumasite, sulfate attack, decalcification and pop-corn 

calcite deposition. Biofilm accumulations was detected already after a few weeks after spraying 

operations in the Oslofjord subsea tunnel. Chemical reactions with iron-rich orange slime and 

manganese-rich dark/black soft to solid material were observed on concrete surfaces, caused by 

acidification of saline tunnel water (pH ≈ 7.5-8) and drop in pH down to 5.5-6.5. The studies 

performed by Per Hagelia between 2004-2011, showed that microbial biofilms, with iron- and 

manganese-oxidizing bacteria were involved in the degradation processes of the Oslofjord 

subsea tunnel concrete, but microbial identification was based on morphology only. Scanning 

electron microscopy (SEM) indicated two microorganisms, being Fe-rich or Mn-rich (Hagelia, 

2007; Hagelia, 2011a, 2011b). Microorganisms with variably iron-encrusted twisted stalks were 

similar to Gallionella ferruginea or Mariprofundus sp. (Figure 4A) (Emerson & Moyer, 2002) 

and sheet-forming microorganisms with internal disc-shaped cells and extracellular Mn-oxide 

deposits similar to possible Leptothrix discophora (Emerson & Ghiorse, 1992) (Karačić et al., 

2018) (Figure 4B). 

 

The outer affected concrete material below the biofilms was rich in the biominerals Na-buserite, 

todorokite and ferrihydrite, along with Mg-calcite, calcite, aragonite, gypsum, thaumasite and 

brucite (Hagelia, 2007, 2011a). A multi-proxy study, involving SEM, concrete petrography, X-

ray diffraction, microchemical analysis, and stable sulfur isotopes, demonstrated that: 

 

a) acidification and calcium leaching were caused by biomineralisation and redox reactions 

within the biofilm  

b) abiotic degradations involved thaumasite sulfate attack, magnesium attack, popcorn calcite 

deposition and chloride attack due to infiltration of saline ground waters. 
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The acidification processes were complex and presumably caused by oxidation of Fe(II) and 

Mn(II), redox reaction between dissolved Fe and Mn compounds, sulfuric acid formed by 

oxidation from temporarily formed sulfides within biofilms and formation of organic acids 

(Hagelia, 2007, 2011a; Hagelia, et al., 2020). 

 

In a previous study in the Oslofjord tunnel, microbial community analysis using sequencing 

16S rRNA gene was performed in 2011 by Thomas H.A. Haverkamp at the Centre for 

Ecological and Evolutionary Synthesis (CEES), the Department of Biosciences, University of 

Oslo, Norway. However, the dataset was small due to the use of Sanger sequencing of clone 

libraries that only enabled 61 sequences to be analysed. It was found that the biofilm microbial 

community at one specific tunnel locality was dominated by Marinicella sp., and a few 

chemolithotrophic bacteria; ammonia-oxidisers within Nitrosomonas and nitrite-oxidisers 

within Nitrospinaceae. However, no known sulfur converters or iron-  and manganese-

oxidizing bacteria were detected in this dataset (Karačić et al., 2018). The results of this pre-

study clearly showed that biofilm communities involved in subsea concrete biodegradation are 

much more complex than initially anticipated. In order to understand and prevent 

biodegradation of concrete in subsea tunnels, further investigation of biofilm microbial 

diversity and metabolic activity is needed.  
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3 Materials and Methods 

3.1 Site description - Oslofjord subsea tunnel 
 

The Oslofjord subsea tunnel is located near Drøbak in Norway (59°39′53″N 

10°36′47″E / 59.66472°N 10.61306°E) (Figure 5). The 7,306 m long tunnel has a width of 11.5 

m and a maximum depth below the sea level of 134 m (Figure 6). The tunnel was opened in 

2000. Few weeks after construction and spraying of the reinforced concrete, biofilms started to 

appear (Hagelia, 2007, 2011a) (Figure 7). 

 

 
 

Figure 5. Geographical location of the Oslofjord subsea tunnel 

 

 
 
Figure 6. Overview of the Oslofjord tunnel showing the total tunnel length and depth/height relative to 

the sea level. 
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Figure 7. The Oslofjord tunnel entrance (left) and microbial biofilm material on sprayed concrete on 

the tunnel wall (right). 

 

Biofilm samples were collected from the three different tunnel localities called: the Main tunnel 

(M), Test site (T) and Pump station (P) (Figure 8). These localities have been investigated at 

regular intervals since their establishment. 

 

 

 

 

 

 

Figure 8. Schematic map of the tunnel site positions: the Test site (T),  the Main tunnel (M) and the 

Pump station (P). Numbers refer to distances in meters. 

The Main tunnel and the Pump station localities represent original concrete sprayed during 

tunnel construction in 1999 as permanent rock support. Sprayed concretes at these localities 

were based on a rapid setting cement (CEM I) and made with steel fibre and 5 % silica fume 

(by cement weight), using Al-sulfate as setting accelerator. The binder content (i.e. cement and 

silica fume) was 514 eq. kg/m3 with water/binder (w/b)-ratio equal to 0.42. The concrete mix 

represents strength class B45 and durability class M45. The Oslofjord Test site was established 

by the Norwegian Public Roads Administration in March 2010 at a location where well-

developed deterioration caused by microbial biofilm formation was observed on a 10-year old 

steel fiber reinforced sprayed concrete. In order to understand the effect of fiber type on 

concrete biodegradation, three subsites (T1-T3) were established with steel fiber and/or 

polypropylene fiber. The concretes at the Test site were based on CEM II/AV 42,5R and made 

with steel fiber (SF) and polypropylene fiber.  

T
M

P
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Figure 9. The biofilm appearance at the different sites of sampling performed in September 2015 (A-

C) and September 2020 (D-F). From left to right: Test site; Main tunnel; and Pump station. 

Concrete mixture at the Test subsites T1 and T2 were made with w/b = 0.43 (M45) and SF = 4 

%, whilst the mixture at T3 subsite was made with w/b = 0.39 and SF = 10 %. Al-sulfate was 

used as setting accelerator. After new spraying operation in 2010, concrete thickness was 

increased ranging from 5-20cm. Soon after establishment of the new concrete at the Test site in 

2010, biofilms were detected, suggesting that microbial colonization takes place at a very early 

stage (Hagelia, 2011a; Wilén et al., 2014). The bedrock is predominantly granitic gneiss and 

some pegmatite with joints and fault zones carrying clay minerals. The water temperature was 

close to 13oC at the Pump station and 8-9 oC at the Main tunnel and Test site locations all year 

around. Light conditions varied from mostly very faint light to episodes with strong light once 

in a while during maintenance. Water flow was characterised by slow water seeping at all 

locations. Water from a large part of the tunnel Test site was fed to a local ditch - Ditch A. In 

2013, rock coring at the Pump station location had caused new leakage points which led to new 

formations of yellowish-brown biofilms. Figure 9 shows changes in biofilm appearance in 

period of 2015-2020 at the three observed localities. 

A B C 

D E F 
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3.2 Mesocosms experiment  
 

In order to understand the effect of concrete type and surface structure on microbial colonization 

and growth, a mesocosm experiment was set-up in the Environmental Chemistry Laboratory, 

Chalmers University of Technology and operated for 455 days (65 weeks). The mesocosm 

(Figure 10) was composed of 72 concrete samples divided in four separate recirculating 

systems: 1) smooth concrete surface without steel fiber reinforcement 2) smooth concrete 

surface with steel fiber reinforcement 3) rough concrete surface without steel fiber 

reinforcement 4) rough concrete surface with steel fiber reinforcement. Each system was 

containing: 1) an upper vessel with a drainage port 10.5 cm from the bottom to maintain a 

constant volume of water in the vessel (14 L), 2) a middle vessel (17.5 L) with a bottom drainage 

pipe, 3) a bottom container of 25 L. The water was recirculated from the bottom container to 

the upper vessel at 9 L/h by a peristaltic pump. Tube regulators at each upper vessel were 

controlled flow at 2mL/min. The mesocosm set-up was placed in a dark room and located in a 

fridge kept at 13ºC. More technical details about mesocosms set-up are explained in method 

section of Paper IV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10. Overview of the mesocosms showing one of four parallel lines/systems (A); and photo of 

the experimental set-up (B). 

 

Seawater used in the mesocosms experiment was collected at the Kristineberg Marine Research 

Station (University of Gothenburg) in Fiskebäckskil, Sweden. During collection, the seawater 

from 70 m depth was filtered through a 50 µm filter for debris removal. The water in the 

mesocosm was regularly replaced with new sea water, approximately every 3 weeks. The 

concrete samples were made with 5% microsilica ELKEM grade 920 added to RAPID Aalborg 

cement. Sand of Dmax=0.4 mm was used for a water/binder ratio of 0.80. One batch of 20L 

concrete mix was prepared with addition of steel fibers, GSF 0520 (0.8kg), and another batch 

without steel fibers. The concretes were cast in 10×10×10 cm standard wooden moulds (EN 

12390-1). After demoulding, the concrete blocks were cut diagonally into triangular prisms 

using a diamond blade. Thereafter, half of the samples were sand blasted to increase the surface 

roughness. All concrete pieces were stored in water for 30 days prior to starting the experiment.  
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3.3 Sampling 
 

For studies presented in Paper I-III, biofilm sampling in the Oslofjord subsea tunnel was 

performed regularly during several years: 2015, 2016, 2017, 2019 and 2020. Friable biofilm 

material, ∼10–15 mm thick, was gently sampled using metallic cores, whilst thin biofilms were 

harvested with a sterile scalpel (Figure 11). Sampling was aiming at obtaining a cross section 

of the biofilms, including a bit of degraded concrete underneath (Figure 12). Immediately after 

sampling the samples were frozen in dry ice/ethanol and stored in dry ice during transportation 

to the laboratory where they were kept at -80°C until nucleic acid extraction. Biofilm sampling 

were performed at three tunnel localities (the Pump station, the Test site and the Main tunnel) 

at different spots (in the x-y dimension).  

 

 

 

 

 

 

 

 

 

Figure 11 Sampling procedures to capture the biofilm material. From left to right: Sampling of thin 

biofilm with a scalpel; Core sampling of thick biofilm; and hole after core sampling showing the 

concrete beneath (arrow). 

 

. 

 

 
 

 

 

Figure 12. Frozen core of biofilm sample from the Oslofjord tunnel (A). Hole after core sampling 

showing depth of sampled biofilm material (B). 

 

Biofilm material from each concrete sample (Figure 13) of the mesocosms set-up (Paper IV) 

were harvested using scalpel.  Sampling was conducted after 21, 35, 43, 51 and 58 weeks of 

running the experiment and at each sampling occasion triplicate concrete pieces were taken out 

from the each mesocosm system. Biofilm material was scraped off from the concrete surface 

and collected in DNA-free tubes. Planktonic microorganisms in the water from the mesocosms 

systems and seawater were collected on 0.2 µm membrane filters (Sartorius Stedim Biotech, 

47mm). Filters were stored at -20°C until DNA extraction was performed. 
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Figure 13. Concrete samples from the mesocosm. Day 1 (left), Day 301 (middle), Day 413 (right). (A) 

System 1, (B) System 2, (C) System 3, (D) System 4. 

 

3.4 DNA extraction, PCR amplification and high throughput 

amplicon sequencing 
 

Total genomic DNA was extracted using the Fast DNA spin kit for soil (MP Biomedicals) 

following the manufacturer’s recommendations (Paper I-IV). In Paper I, a subset of the 

samples was split in half, where one half was extracted using Fast DNA spin kit for soil and the 

other half with the Zymo ZR-Duet DNA/RNA MiniPrep (Zymo Research). The concentration 

of the extracted DNA was measured using a Qubit 3.0 fluorometer (Thermo Fisher Scientific). 

The V4 hyper-variable region of the 16S rRNA gene was amplified in duplicates using the 

forward primer 515′F and the reverse primer 806R to cover both bacteria and archaea (Caporaso 

et al., 2011; Hugerth et al., 2014), with dual-index labelling (Kozich et al., 2013) with the 

following thermal cycle programming: activation at 98°C for 30 sec, denaturation at 98°C for 

10 sec, annealing at 55.8°C for 30 sec, and extension at 72°C for 30 sec for 30 cycles, followed 

by final elongation at 72°C for 10 min. PCR reactions were conducted in 20μl reaction volume 

using Phusion Hot Start II DNA Polymerase (0.2μl) (Thermo Fisher Scientific), 5X Phusion 

HF Buffer (4μl), 10 mM dNTPs (0.4μl), DMSO (0.6μl), template DNA (1μl) and primers 

(10µM, 1µl each of forward and reverse primers). The duplicated PCR products were pooled 

and purified using the MagJet NGS Cleanup and Size Selection Kit (Thermo Fisher Scientific) 

and concentrations were measured by using the Qubit 3.0 and normalized at 6nM. The PCR 

products were pooled in equimolar amounts, the concentration and size were confirmed by 

TapeStation 2200 (Agilent Technologies) and sequencing was performed on an Illumina MiSeq 

using the MiSeq Reagent Kit v2 (Papers I and II) and MiSeq Reagent Kit v3 (Papers III and 

IV). 
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3.5 Bioinformatics and statistical analysis 
 

Raw sequence reads were processed following two principally different approaches in this 

thesis. In Paper I, the reads were clustered into operational taxonomic units (OTUs) using the 

UPARSE workflow (Edgar, 2013), while in Papers II-IV, the more recent approach of 

amplicon sequence variants (ASVs) was used, with either UNOISE (Edgar, 2016; Edgar & 

Flyvbjerg, 2015) within USEARCH (Paper II) (Edgar, 2010), or a combination of DADA2 

(Callahan et al., 2016) and VSEARCH (Rognes et al., 2016) (Papers III and IV). With the 

approach of OTUs, the reads within a specified similarity threshold (97%) are clustered together 

into the OTUs. Although this approach can be robust for grouping sequences, the centroid 

sequence, which represent the OTU, depends on the other sequences in the run and is therefore 

not comparable to OTUs generated from other samples in other runs  (Modin et al., 2020). The 

approach of ASVs is based on denoising using algorithms to differentiate between true ASVs 

and erroneous sequences. The resulting ASVs therefore represent true biological entities that 

can be compared between samples from different studies. The ASV approach also has higher 

precision for detecting rare taxa (He et al., 2015; Modin et al., 2020). The OTUs or ASVs are 

collected in count tables. For the Papers III and IV, the resulting count tables from DADA2 

and VSEARCH were combined in a consensus table of ASVs detected in both pipelines to 

minimize presence of low abundant and potentially erroneous ASVs (Modin et al., 2020). For 

classification of the OTUs or ASVs in the count tables, the Silva taxonomy was used, either 

within MIDAS v2.0 and 2.1 (McIlroy et al., 2015) in Paper 1 and II, or Silva v132 (Quast et 

al., 2012) in Paper III and IV. Classification was carried out using the RDP classifier (Wang 

et al., 2007) in Paper I, and later on with Sintax (Edgar, 2016) in Paper II-IV. Detailed 

information on pipeline settings is available in the method section of each appended paper. 

 

In Papers I and II, multivariate statistics, richness and evenness calculations; and data 

visualization were conducted within the R packages ampvis 1.14 (Albertsen et al., 2015), vegan 

(Oksanen J, 2017) and picante (Kembel et al., 2010). Beta diversity was estimated using 

pairwise Sørensen and Bray-Curtis dissimilarities and visualized using principal coordinate 

analysis (PCoA). Differences in beta diversity were tested for using permutational multivariate 

analysis of variance (PERMANOVA, adonis). The standardised effect size (SES) for pairwise 

Sørensen dissimilarities was estimated in vegan to test for random community assembly, with 

a null-model that preserves species richness and species incidence. Unweighted nearest taxon 

index was estimated using picante with the null-model “taxa.labels” at 999 iterations to test for 

phylogenetic clustering among closely related taxa (Webb et al., 2002). Differences in 

community richness and evenness was tested for using Welch’s test followed by post-hoc 

analysis using the Games-Howell test. 

 

In Papers III and IV, taxonomic Hill numbers were used to calculate alpha and beta diversity 

(Chao et al., 2014; Jost, 2006). The parameter q is the diversity order. At a q of 0, all ASVs are 

considered equally important, whilst at q=1 each ASV is weighted according to its relative 

abundance in a sample. Therefore, 0D is equal to the number of ASVs found in a sample 

(richness) while 1D can be interpreted as the number of “common” ASVs for  α-diversity  (Jost, 

2007; Modin et al., 2020). In order to determine the dissimilarity caused by compositional 

turnover between samples and to assess the roles of deterministic and stochastic factors for 

microbial community assembly, the Raup-Crick null model (Chase et al., 2011; Raup & Crick, 

1979) adapted for Hill-based dissimilarities (Modin et al., 2020) was used. Permanova (9999 

permutations) was used to assess the statistical significance of differences between groups of 

samples (Anderson, 2001).  
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Data visualisation, calculation of alpha and beta diversity, null modelling, and permanova tests 

presented in Papers III and IV were conducted in qdiv. Univariate statistical tests were 

performed using the Real Statistics add-in to Excel. The DESeq2 method (Love et al., 2014) to 

tests differential abundance of ASVs with time and between systems was carried out in R (R 

Core Team, 2020). Details about the analysis are provided in the methodology section and 

supplementary of Papers III and IV.  

 

Eight samples from the long-term study (2016-2020) in the Oslofjord tunnel were selected for 

shotgun metagenomics (Paper IV). Libraries were prepared with a TruSeq PCR-free kit 

(Illumina) and sequencing was performed on NovaSeq6000 with a 2x151 setup, yielding 268 

million pair-reads. Detail information about further bioinformatic procedure metagenomics 

could be found in methods section in appended Paper III. The relative abundance of 401 

constructed metagenome assembled genomes (MAGs) was estimated with coverM 

(https://github.com/wwood/CoverM). MAGs had >50% completeness and <10% 

contamination. Taxonomic classification was done with GTDB-Tk (Chaumeil et al., 2020) 

using the GTDB R06-RS202 reference (Parks et al., 2018; Parks et al., 2020). Protein coding 

sequences in all the MAGs were identified with Prodigal (Hyatt et al., 2010). HMM profiles 

from TIGRFAM and PFAM were used to identify key genes in the nitrogen and sulfur cycle 

with HMMER3 (Eddy, 2011). Genes linked to iron oxidation and iron reduction were identified 

with FeGenie (Garber et al., 2020). 

3.6 Water and biofilm chemical analysis 
 

In Paper I, water samples were analysed by different commercial laboratories according to 

their routines. In the field, pH was measured using either indicator strips (accurate to pH ± 0.1), 

or pH meter (accurate to pH ± 0.01) (Paper I-III). The water samples from the Oslofjord subsea 

tunnel were collected directly in 500 ml sterile bottles, from the dripping water with care taken 

to avoid contamination from the biofilms (in papers presented as WR- water from rock mass 

without contact with biofilms), and from dripping water with biofilm and concrete interaction 

(in papers presented as WCB – water in contact with biofilm). Bottles with water samples were 

stored in dry-ice during transportation to the laboratory and filtered through 0.45 µm filters 

before analysis (Paper I-III), whilst 0.2 µm filter was used for filtration of the water samples 

from the mesocosms systems and from the new seawater (Paper IV). Selected metals were 

quantified by quadrupole Inductivity Coupled Plasma-Mass Spectrometry (ICP-MS) using 

Thermo Fischer Scientific iCAP Qc. and dissolved ions were analysed using a Dionex ICS-900 

ion chromatograph (Paper II-IV).  

 

In Paper II, biofilm samples for chemical analyses were homogenized and dried at 105°C. 

Total solids (TS) and volatile solids (VS) of the biofilms were analysed according to Standard 

Methods 2490 A-D (APHA, 1998). 

 

In Paper IV, total organic carbon (TOC), dissolved organic carbon (DOC) and total nitrogen 

were measured using a Shimadzu TOC analyser and alkalinity was measured (TitroLine X800) 

according to Standard methods (APHA, 1998). At regular intervals, pH and conductivity of 

water samples from the mesocosms systems and from the new seawater were measured by a 

WTW Multiliner 363IDS.   
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3.7 Microsensor measurements (Paper II) 
 

In Paper II, in-situ profiles of pH and oxygen in the biofilms were measured at several 

occasions in 2017. Measurements were performed from the outer surface of the biofilm to the 

inner parts towards the concrete surface (Figure 14). The Clark-type oxygen microsensors (tip 

diameter 50 μm; OX-50, Unisense) were calibrated prior to measurements at the Pump station 

site with 100% oxygen saturated saline groundwater at a temperature of 13°C and 30% salinity 

in a calibration chamber (CAL300) following Unisense calibration protocol. The pH 

microsensor (tip diameter 50 μm, linear range pH 4-9; pH-50, Unisense) was used in 

combination with a reference electrode (tip diameter of 50 µm; REF-50, Unisense) and linearly 

calibrated in-situ with three pH buffer points (pH 4, 7 and 9). Microelectrodes were connected 

to an eight-channel Field microsensor multimeter (Unisense) and fixed in a motorized 

micromanipulator (MM33-2, MC-232; Unisense A/S) controlled by software (SensorTrace 

PRO; Unisense A/S). Before measurements, biofilm depth was estimated using a spent 

microsensor needle. The microsensor tip was positioned at the water/biofilm surface defined as 

the starting position (0 μm on graphs) and microprofiling was performed in steps of 500 μm 

with 10 seconds of waiting period before each measurement. Profiling measurements using 

microsensor at the Oslofjord Pump station location proved very difficult due to electrical 

disturbance and water leakage from the tunnel ceiling. 

 

 
Figure 14. An oxygen microsensor with the tip positioned at the biofilm-water interface. Microsensors 

were used for measurements of profiles of pH and oxygen through the biofilm. 

3.8 Analysis of concrete, biominerals and biota (Papers II-IV) 
 

Scanning Electron Microscopy (SEM)  

Uncoated handpicked samples and thin sections were mounted on carbon tape for analysis by 

SEM (Paper II). Chemical point analyses (1-2 μm2) were performed on pristine untreated 

sample materials and a few thin sections, using a Hitachi 3600 N scanning electron microscope 

with an energy dispersive spectroscope (EDS) unit from Thermon Electronic Corporation. The 

instrument was operated with an accelerating voltage 15 kV at high vacuum. The vacuum 

chamber had an option for freezing, and bacterial wet samples were frozen to - 30oC prior to 

analysis. In Paper III, selected domains of biofilm, concrete chips and thin sections were 

analysed by SEM using a Hitachi S–3600N. X-ray element maps and back scatter electron 

images were captured and followed by spot analyses (spot size 5 µm). For XRD, small samples 
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were ground in agate mortars under ethanol and left to dry before being mounted on sample 

holders and run in a Siemens D 5005 Spectrometer. Diffractograms were recorded from 2o to 

60o with step size 0.05o on the 2-Theta scale for 58 minutes. The instrument was set to 40 kV 

and 40 nA using Ni-filtered CuKα radiation with wavelength λ=1.54 Å. The diffractograms 

were checked versus the Powder Diffraction Files database from the International Centre for 

Diffraction Data (PDF4+ 2020 database). In Paper IV, small pieces of selected concrete 

samples from the mesocosm were mounted on a metal stub for SEM. Pristine and uncoated 

samples were investigated under high-vacuum mode at an acceleration voltage of 20kV and 

working distance 10.2–14.3mm using a Quanta200 ESEM (FEI) The Oxford Inca Energy 

Dispersive X-ray (EDX) was used for chemical characterisation and chemical point analysis 

and  INCA EDS software was used got data analysis. Other samples were analysed in a Hitachi 

S–3600N Scanning Electron Microscope (SEM) available at the GeoLAb, Natural History 

Museum, University of Oslo. The instrument is equipped with a Bruker XFlash® 5030 energy 

dispersive X-ray detector (EDX), running on Quantax 400 (Esprit 1.9), for semi-quantitative 

elemental analysis and hyperspectral mapping, with <127 eV FWHM at MnKα energy 

resolution. Samples were mounted on carbon tape and analysed in variable pressure (VP) mode 

(20 Pa), 15.0 kV accelerating voltage, ca 50nA beam current.  
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4 Results and Discussion 

4.1 Does the DNA extraction method work? (Paper I) 
 

In order to find a suitable method for DNA extraction of biofilms samples from the Oslofjord 

subsea tunnel concrete, two different bead-beating based methods were tested on three parallel 

samples. Previously, it has been shown that the choice of DNA extraction methods may have 

large impact on the microbial composition, even for methods using the same principles of bead-

beating followed by separation of DNA (Vanysacker et al., 2010). The two DNA extraction kits 

produced similar results in microbial composition, as seen by the fact that the three biological 

samples separated well in the PCA (principal component analysis) ordination, with no apparent 

effect on the separation by the choice of DNA extraction methodology (Figure 15). However, 

to be consistent, the DNA extraction of biofilm samples, in preformed studies presented in 

appended Papers I-IV, was based on one method only, the FastDNA spin kit for soil.  

 

 

Figure 15. PCA ordination of microbial community data obtained by the two DNA extraction kits: 

FastDNA spin kit for soil (FastDNA) and Zymo ZR-Duet (Zymo).  

4.2 What are the local environmental conditions?  

4.2.1 Chemical characteristics of the water in the Oslofjord subsea tunnel (Papers 

I-III) 
Water samples from the Oslofjord tunnel were taken from dripping water that had passed 

through rock mass without interaction with the concrete and biofilm and from the water after 

interaction with the concrete and biofilm. Generally, water samples of saline groundwater from 

the Oslofjord subsea tunnel had a composition quite similar to the seawater with high 

concentrations of chloride, sodium, sulfate and magnesium. Concentrations of calcium, 

magnesium and vanadium were higher in the water that had been in contact with biofilm and 

concrete, compared to the water that had only been in contact with the rock mass. The 

concentrations of iron, manganese and ammonium were in very low concentrations in all water 

samples taken either after contact with biofilm and concrete or only in contact just with the rock 

mass (Table 2). 
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Table 2. Chemical composition of the water samples taken either after contact with biofilm and concrete 

or only in contact with rock mass. *=Water interacted with Concrete and Biofilm (WCB), **=Water 

interacted only with Rock mass (Paper II).  

  
Pump station 

2015 
Pump station 

2016 
Pump station 

2016/2017 
Test site 

2016 
Test site 

2017 
Main tunnel 

2017 

Sample 

type 

 
WCB

* 

WR** WCB* WR** WCB* WR** WCB* WR** WCB* WR** WCB* WR** 

Sample 
 

SK1 SK2 SK3 SK4 SK5 SK6 SK7 SK8 SK9 SK10 SK12 SK11 

Mg  mg/l 2232 1147 1323 1201 1150 821 1416 1400 1121 1224 1879 1291 

Al  mg/l 0.35 0.67 0.31 0.37 0.32 0.35 0.64 0.38 0.53 0.39 0.78 0.55 

Ca  mg/l 604 292 343 297 274 236 362 314 384 360 513 486 

Ti  mg/l 0.96 0.84 1 0.88 0.81 0.78 0.99 0.89 0.62 0.67 0.83 0.82 

V  mg/l 0.26 0.13 0.15 0.13 0.13 0.11 0.16 0.15 0.14 0.16 0.21 0.15 

Cr  mg/l 0.01 0.00 0.01 0.21 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 

Mn  mg/l 1.32 1.28 1.31 1.28 1.03 1.28 1.36 1.54 2.11 1.7 1 1.09 

Fe mg/l 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.17 0.17 0.01 0.02 

Co  mg/l 0.003 0.002 0.002 0.004 0.001 0.005 0.003 0.002 0.002 0.003 0.003 0.003 

Ni  mg/l 0.74 0.24 0.78 0.94 0.80 1.19 1.56 1.23 0.004 1.16 5.32 0.03 

Cu  mg/l 0.42 0.26 0.33 0.39 0.29 0.46 0.49 0.47 0.23 0.46 0.23 0.88 

Zn  mg/l 1.02 0.80 1.07 5.98 1.14 3.38 3.37 3.24 0.09 3.24 0.24 4.77 

Cd  mg/l 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.006 0.004 0.002 0.009 

Pb  mg/l 0.032 0.037 0.039 0.082 0.048 0.172 0.097 0.125 0.068 0.167 0.32 0.006 

Cl mg/l   20000 22400         

 SO4 mg/l   2700 3260         

 NO3 mg/l   3.2  0.5         

NH4 mg/l   0.74  0.32         

 

4.2.2 Chemical characteristics of the water in the Mesocosms experiment (Paper 

IV) 
The chemical composition of the water that had percolated over the concrete blocks in 

mesocosms systems 1-4 and seawater used in the mesocosms experiment is presented  in  Table 

3. The water in systems 1-4 had significantly higher pH, alkalinity and conductivity compared 

to the seawater although the average values were in the same range.  

 
Table 3. Characteristics of the concrete (presence/absence of steel fiber reinforcement and surface 

structure) and chemical composition of the water in systems 1-4 and in the sea water.  

 
Parameter System 1 System 2 System 3 System 4 Seawater 

Reinforcement no fiber steel fiber no fiber steel fiber - 

Surface structure smooth smooth rough rough - 

pH 8.32±0.08 8.36±0.07 8.35±0.07 8.38±0.075 8.18±0.12 

Conductivity 

(mS/cm) 

52.93±1.70 52.81±1.36 53.22±1.30 53.89±1.65 50.41±1.07 

Alkalinity 

(mgHCO3/l) 

126±14 130±4 123±7 135±9 102±15 

DOC (mg/l) 4.32±2.21 5.23±3.27 4.84±2.80 4.27±2.87 2.65±1.38 

Ntot(mg/l) 0.068±0.067 0.100±0.079 0.092±0.073 0.066±0.053 0.066±0.066 

Ca (mg/l) 503±100 513±152 471±113 464±128 458±175 

Si (mg/l) 2.361±1.310 2.187±1.074 2.212±1.257 2.137±1.207 1.909±1.027 

Fe (mg/l) 0.214±0.023 0.216±0.015 0.202±0.023 0.216±0.026 0.217±0.024 

   



Results and Discussion 

 

 

 

 

25 

Differences in pH values of water from the systems indicated that the iron fiber and surface 

structure had an impact. However, concentration of ions, metals, and dissolved organic carbon 

(DOC) were not significantly different between the water from mesocosms systems, indicating 

that the experiment had minor effect on these parameters. 

 

4.2.3 Biofilm chemical characteristics (Paper II) 
Concentrations of selected metals of several biofilm samples from the Oslofjord tunnel taken 

in period the 2015-2017 are shown in Table 4. Higher iron and calcium concentrations were 

detected in orange/dark rusty samples, whilst dark/black biofilm samples contained higher 

concentration of manganese. Very low concentration of Cu, Cr, Ti and Pb were detected in the 

both types of biofilms. The average volatile solids concentration of the selected biofilm samples 

was 12.6 ± 0.7% (average ± st.dev.). The positions of the biofilm samples are presented in the 

Supplementary material of Paper II. 

 
Table 4. Biofilm chemical characteristics. Samples collected in 2015, 2016 and 2017. 

   
Pump station Test site  Main tunnel  

Biofilm 
description 

 
black orange orange  orange/mix orange/mix black black mix black 

Mg  mg/g 23.04 36.97 39.65 17.77 14.20 17.14 29.19 27.75 2.40 

Al  mg/g 2.91 0.55 2.00 1.58 1.25 1.94 14.56 13.69 0.72 

Ca  mg/g 
 

30.94 38.20 22.10 20.84 23.24 17.85 50.47 6.99 

Mn  mg/g 284 260 75 90 133 225 40 39 33 

Fe  mg/g 157 538 792 209 246 103 23 18 17 

Ti  mg/g 0.19 0.09 0.21 0.13 0.06 0.13 1.14 1.03 0.01 

Cr  mg/g 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.03 0.00 

Co  mg/g 0.01 0.03 0.00 0.02 0.01 0.01 0.02 0.02 0.00 

Ni  mg/g 0.33 0.11 0.24 0.18 0.08 0.07 0.07 0.08 0.19 

Cu  mg/g 0.09 0.07 0.25 0.16 0.15 0.04 0.14 0.15 0.08 

Zn  mg/g 0.50 0.79 0.61 1.06 0.51 0.53 2.46 0.36 0.40 

Pb  mg/g 0.05 0.04 0.09 0.07 0.07 0.04 0.04 0.04 0.03 

TSS g/L 240 219  220  280 363 350 166 131.8 93 

Volatile 

fraction 

% 11.7 13.80 12.8 12.76 13.56 12.0 11.87 12.59 12.3 

 

4.2.4 Biofilm microgradients of pH and dissolved oxygen (Paper II) 
The measured dissolved oxygen (DO) profiles at the Pump station site revealed a relatively 

stable aerobic microenvironment with differences among local spots with varying superficial 

water flow rate. Measured DO decreased from 9 mg/l at the biofilm-water interface to below 3 

mg/l in the inner biofilm regions close to the concrete at approximately 10000 µm biofilm depth 

(Figure 16A). In biofilm with high water flow, the DO concentration profiles were steeper 

compared to lower flow. Results from pH microsensor profiling showed that pH slightly 

decreased from 8.2 to 7.78 from the biofilm-water interface towards the bottom of the biofilm 

(Figure 16B) 
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Figure 16. Profiles measured with microsensors; DO profiles across 1 cm thick biofilm exposed to 

different water flow rates (A); pH  profile across 0.5 cm thick biofilm (B). For each data point, the mean 

value and standard deviation of 3 profiles is shown. 

 

4.3 Who is there?  

4.3.1 Microbial community composition in the Oslofjord subsea tunnel biofilms 
Taxonomic analysis of the 16S rRNA gene sequences from biofilm samples from the Oslofjord 

subsea tunnel, taken in the period 2015-2020, revealed that the microbial communities from the 

three tunnel locations were composed both of Bacteria and Archaea. The major phyla detected 

at the Pump station, the Main tunnel and the Test site were Proteobacteria, Planctomycetota, 

Crenarchaeota, Bacteroidota, Nitrospinota, Actinobacteriota, Cyanobacteriota, Nitrospirota,  

Verrucomicrobiota and Acidobacteriota (Paper I-III) (Figure 17). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 17. Relative abundance of phyla discovered in the biofilm communities at three tunnel locations 

(the Main tunnel, the Pump station and the Test site) 
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The microbial community composition of the subsea tunnel biofilms was different from 

biofilms associated with concrete degradation in sewer pipes, where sulfur-oxidizing and -

reducing clades are numerically and functionally important contributors (Gomez-Alvarez et al. 

2012; Cayford et al. 2017). The subsea tunnel biofilm communities had similarities in 

composition to sediments in the Oslofjord (Håvelsrud et al. 2012), as well as other marine 

sediments and biofilms (Choi et al. 2016; McBeth and Emerson 2016), with high abundance of 

autotrophic nitrogen- and iron-oxidizing microorganisms and several taxa of marine 

heterotrophic bacteria. 

The top 25 ASVs from the Oslofjord subsea tunnel sites are shown in Figure 18. At genus level, 

high abundance of autotrophic nitrogen converting microorganisms (Nitrosomonas, 

Nitrosopumilus, Nitrospina, Nitrospira) were observed at the three tunnel locations.  

Figure 18. Heatmap showing the 25 most abundant SVs in the biofilm at the Pump station (P), Test site 

(T) and the Main tunnel (M). Abundance data showing average values of sampling at each sampling 

occasion (2015, 2016, 2017, 2019, 2020) 
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The archaeon Nitrosopumilus sp. was most abundant microorganisms detected in all biofilm 

samples. Ammonia-oxidizing archaea are ubiquitous in marine water and well-adapted to low 

substrate concentrations and low oxygen environments (Park et al., 2010). Nitrite-oxidizing 

bacteria (NOB) of genus Nitrospina, typically found in marine environments, was observed in 

high abundance in the Oslofjord subsea tunnel biofilms with several samples having >6% 

relative abundance. Genus Nitrosomonas sp. belonging to the anoxic marine sediment group of 

AOB (Urakawa et al., 2006) was present at an average relative abundance of 2.1%. Genus 

Nitrospira sp. capable of nitrite oxidation (NOB) and presumably also ammonia oxidation 

(AOB) (Daims et al., 2015), were detected in  relative abundance of 1.2% in samples taken 

during the period of November 2015 and October 2016 (Paper II). However, Nitrospira sp. 

was not observed in high abundance in all biofilms samples. Ammonia-oxidizing archaea, 

ammonia-oxidizing bacteria and nitrite-oxidizing bacteria are ubiquitous in marine water and 

well-adapted to low substrate concentrations and able to tolerate low oxygen environments 

(Lucker et al., 2010; Lucker et al., 2013; Park et al., 2010; Urakawa et al., 2006) which may 

assist in explaining their abundance in the biofilms, having a large range of DO concentrations. 

Besides typical AOB and NOB, genus Brocadia sp. affiliated to the group of the anaerobic 

ammonium-oxidizing bacteria (anammox) was detected in the biofilm. In biofilm samples taken 

in the period 2015-2017, genus Scalindua sp., typical marine anammox bacteria (Schmid et al., 

2007), were observed in high abundance.  

Biodeterioration of concrete associated with the nitrifying bacteria activities has been observed 

in various concrete infrastructures (Cwalina 2008; Noeiaghaei et al. 2017). In the Oslofjord 

tunnel, ammonia-oxidizing Nitrosopumilus sp., AOB and NOB may have locally contributed 

to acidification and the deterioration of the sprayed concrete.  

Furthermore, heterotrophic bacteria within Kordiimonas, Woeseia, Rhodothermus and 

Euryhalocaulis were detected in high abundance in biofilm samples (Figure 18). They were 

presumably utilizing the bioavailable fraction of dissolved organic matter in the water and/or 

organic matter originating from the biofilms. In the study preformed in the period 2015-2017 

(Paper II), several SVs, Kordiimonas, Marinicella, Parvularcula, Phycisphaera, and 

Bythopirellula, were observed in high abundance. In the initial study (Paper I), the archaeon 

Methanobacteria sp. was observed in two SVs of a few biofilm samples with relative 

abundances <4%. The presence of methanogenic archaea suggesting that anaerobic zones 

occurred in the biofilm even though we could not observe it with microsensor measurement. 

The genus Mariprofundus sp., within Zetaproteobacteria, were present in high abundance in 

some biofilms samples especially at the Pump station site (relative abundance <4.1%). The 

marine iron-oxidizing bacterium (IOB) Mariprofundus sp. oxidizes Fe(II) to Fe(III) at 

microaerophilic conditions, at which abiotic iron oxidation is of limited importance. The typical 

twisted stalks of Mariprofundus sp. was also observed in biofilms by the SEM-EDS point 

analysis preformed in 2016 (Karačić et al., 2018). The presence of IOB helps in explaining the 

observed steel fiber corrosion in the sprayed concrete, the orange/rusty biofilm colour, and the 

high iron concentration in biofilms (Table 4).  

Since previous analysis by SEM showed presence of microbes with sheathed morphologies and 

chemical analysis of dark/black biofilms has shown manganese containing biofilm (Table 4), 

the presence of manganese-oxidizing bacteria (MOB) such as Leptothrix was expected. 

However, taxonomic analysis of biofilm samples from the Oslofjord subsea tunnel, based on 

the 16S rRNA gene sequences, did not reveal the presence of any known MOB. Biogenic 

manganese oxidation has been detected without identification of any known MOB based on 

16S rRNA genes, suggesting that manganese oxidation could be performed by different groups 
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of microorganisms, not only restricted to the phylogenetically group of established MOB (Cao 

et al., 2015). In the initial study of microbial community composition (Paper I), OTU200 

identical to Geobacter sp. M168B-09 (Blast, Genbank: AB721177), capable to reduce 

precipitated Fe(III) and Mn(IV) when oxidizing organic matter, was detected in a several 

biofilm samples. Putative SRB within Desulfobacterales were also observed in the biofilm 

samples from 2015 and 2016 (Paper I and II).  

SRB would have been an indication of sulphur cycling, which leads to concrete degradation 

(Satoh et al. 2009). But since these OTUs / ASVs could not be assigned at higher precision than 

order (Desulfobacterales), their function remains unknown. 

Interestingly, many of the OTUs / ASVs could not be assigned to any genus or species, just like 

in most studies in marine environments using high throughput sequencing methods (Bech et al., 

2020). 

4.3.2 Microbial community composition of Mesocosms biofilms  

Similar to the microbial community composition of biofilm samples from the Oslofjord subsea 

tunnel, microbial community of the mesocosms biofilms contained high abundances of 

microorganisms affiliated to the phyla Proteobacteria, Planctomycetota, Bacteroidota, 

Verrucomicrobiota, Actinobacteriota, Chloroflexi, Myxococcota and Bdellovibrionota. The 20 

most abundant taxa, grouped by order, are presented in Figure 19. Similarity between microbial 

composition of mesocosms and tunnel Oslofjord biofilms was observed. 

 

Figure 19. The 20 most abundant orders in the microbial communities. The colour bar indicates 

percentage relative abundance in the samples. For the biofilms (B1-B4) triplicate samples were merged. 

The water samples were merged into three groups representing the early phase (day 49-147), the middle 

phase (day 168-280) and the later phase (day 315-413). For the sea water (SW), all samples were 

merged. 
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Microorganisms belonging to Caulobacterales and Rhodobacterales were detected in high 

abundance in all mesocosms biofilm and water samples. Decrease in relative abundance over 

time was observed for these microorganisms, while increasing trends were observed for 

Planktomycetales, Rhizobiales, and Pirellulaes orders. Similar temporal trends for the 

mentioned orders were seen in the water samples. However, several orders such as 

Cellvibrionales, Salinisphearales, Flavobacteriales and SAR86 clade was observed in higher 

relative abundance in the water samples in comparison to the biofilm sample from the four 

mesocosms systems. Some orders, such as Marine Group II and Nitrosopumilales, was detected 

in high relative abundance in the sea water samples but they did not remain the mesocosm 

systems. However, similar to microbial composition of biofilm samples from the Oslofjord 

subsea tunnel, most ASVs detected in the mesocosms biofilms communities could not be 

assigned to either family or genus level. In order to understand the roles of the major 

contributors in environmental biofilm samples, complementary methods such as metagenomic 

analysis and/or advanced enrichment and isolation studies are needed. 

4.4 How are the microorganisms distributed? 

4.1 Alpha diversity of microbial communities 
In Paper II, alpha-diversity was measured as taxonomic richness and evenness of the total 

biofilm microbial communities from March 2015-November 2016 from three tunnel locations. 

(Figure 20). The richness was significantly different between the sites (Welch’s test, p<0.001), 

with Test site having significantly higher richness than the Main tunnel and Pump station (post-

hoc, Games-Howell, p<0.001). However, evenness was rather similar between three tunnel 

locations with no significant differences.  

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Richness as observed number of SVs and Simpson’s evenness of the total microbial 

communities from March 2015-November 2016 from three tunnel locations. The boxes show median, 

25 and 75 percentiles. The vertical lines show minimum and maximum values excluding outliers, and 

the dots show outliers. 

In the timeline study presented in Paper III, alpha diversity was measured at the diversity order 

of 0 (0D), equivalent to richness giving equal weight to all ASVs, and 1 (1D), taking the relative 

abundances of the ASVs into account.  
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Figure 21. Alpha diversity of biofilm samples at the Pump station (P), and Test site (T) sampled in 
period of 2015-2020. Diversity (D) as Hill number with diversity order 0 (A) and 1 (B). 

 

Alpha diversity of the Pump station and Test site biofilm communities were increased over time 

for both diversity orders, with particularly high values observed in the biofilm samples taken in 

September 2020 (Figure 21). Interestingly, biofilm that had existed for almost 20 years, still 

show patterns of increasing alpha diversity. 

 

The same pattern of linear increase of alpha diversity over time was observed in the mesocosm 

biofilm communities across all four experimental systems for both 0D and 1D (ANOVA, 

p<0.001 and p<0.01, respectively) (Figure 22). Although alpha diversity was also different 

between the four types of biofilm (B1-B4) for both 0D and 1D (ANOVA, p<0.01), post-hoc 

testing could not separate the biofilm types (Games-Howell, p>0.05). Alpha diversity of 

seawater microbial communities was higher compared to the planktonic communities in the 

water samples for both diversity orders 0D and 1D.  

 

Several studies of biofilm communities have shown linear increases of richness and alpha 

diversity over time (Redford & Fierer, 2009; Veach et al., 2016) which follows general patterns 

of species-time relationships observed in many microbial ecosystems (Shade et al., 2013). 

 
 

Figure 22. Alpha diversity of the mesocosms biofilm samples over time for the four different treatments 

(B1-B4). Diversity (D) presented as Hill number with diversity order 0 (A) and 1 (B). 
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4.5 Does microbial community differ between tunnel sites?  
 

The beta-diversity of the biofilm communities from the three Oslofjord subsea tunnel sites, 

visualized with PCoA based on Hill number with diversity order 0D, showed dissimilarities of 

microbial communities of biofilms sampled during period of five years, 2015-2020, (Paper IV) 

(Figure 23). This was confirmed by Permanova, showing that three locations had microbial 

community structures that were significantly different to each other. Although differences in 

community structure between the three tunnel locations were evident, the composition of the  

biofilm communities were comparable with many shared abundant taxa (Figure 18). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 23. PCoA plot show significant difference in biofilm community of tunnel sites: the Pump station 

(P), the Test site (T) and the Main tunnel (M). 

 

4.6 How do concrete characteristics affect biofilm formation and 

microbial community composition? 
 

Microbial colonization of cementitious materials submerged in seawater is influenced by 

concrete composition and surface roughness. Surface roughness has been determined as the 

most important physical factor for biofilm formation on concrete in marine environment 

(Gaylarde, 2020). Many studies show that surface roughness has large effect on microbial 

colonization of different material and in different environments (Hayek et al., 2021). 

 

In the mesocosm study, the steel fiber reinforcement was found to have a greater effect on the 

biofilm community composition than the surface roughness. The biofilm samples on PCoA plot 

were clustered based on the presence/absence of steel fibers in the concrete (Figure 24A). The 

dissimilarity between biofilm samples collected from the concrete surface with/without steel 

fibers were consistently significantly higher than the dissimilarity between biofilm samples 

from rough and smooth concrete surface, which in turn was had higher dissimilarity that 

replicate samples (Figure 24B). 
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Significant difference in microbial biofilm composition between the four mesocosms systems 

(p=0.0001, Permanova) was observed, but all biofilm communities followed a similar temporal 

trajectory (Figure 24A). To investigate how steel fiber content, concrete surface structure and 

time affect the abundance of individual taxa in the biofilms, DESeq2 analysis was used (Love 

et al., 2014). Significant difference in abundance based on the concrete surface structure was 

observed for only 10 ASVs, while 38 ASVs had significant differential abundance based on the 

presence/absence of steel fiber reinforcement in the concrete samples (Figure 25). Most of the 

ASVs, that had higher abundance on concrete samples with steel fibers, have unknown roles in 

the biofilm community  

 
 

 

 

Figure 24. Beta diversity based on 1d dissimilarities. PCoA of the biofilm samples, where the ellipses 

encircle replicate samples from the same time point (A). The time point (day of the experiment) is 

denoted at each ellipse. Dissimilarities between the biofilm samples of replicates (grey), concrete 

surfaces with different roughness (blue), and concrete with and without iron fibers (red (B)). The average 

and standard error of pairwise dissimilarities is shown. Asterisks (*) indicate that that the dissimilarity 

between samples from concrete with and without iron fibers is significantly greater than the dissimilarity 

of samples from concrete with different roughness (p<0.05, Welch’s t-test). 

 

Some of the taxa that appeared to favour steel fiber reinforced concrete were Magnetospiraceae, 

Portibacter, Rubripirellula, and Rhodopirellula. Interestingly, the typical marine iron-oxidizer 

Mariprofundus was not enriched on the steel-fiber containing concrete samples. However, 

Mariprofundus was presented in several biofilm samples from concrete without steel fiber 

reinforcement (System 1). Instead, an ASV286 within Magnetospiraceae was significantly 

more abundant in biofilms on steel reinforced concrete samples. This taxa had high relative 

abundance in the first sample taken on day 147 and then decreased over time. Magnetospira 

species are known to be involved in iron oxidation and/or reduction of iron oxides (Schüler & 

Frankel, 1999). This may suggest that ASV286 contributed to iron oxidation in the early stage 

of biofilm development and then decreased in relative abundance when most of the exposed 

iron surface had been converted into iron oxides (Figure 26). Additionally, ASVs within genus 

Portibacter, Rubripirellula, and Rhodopirellula, had high abundance in steel-fiber reinforced 

concrete samples although they were also present on concrete without steel fibers. Portibacter 

has previously been found to thrive on iron slag (Ogawa et al., 2020) and Planctomycetes, which 

include Rubripirellula and Rhodopirellula, have been found in iron-hydroxide deposits in 

marine habitats, suggesting that these microorganisms may be involved in iron metabolism 

(Storesund & Øvreås, 2013) 

A B
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Figure 25. ASVs with significant differential abundance based on DESeq2 results (padj < 0.001). 
Positive log2 fold change means that the ASV increased in abundance with time (black squares), had 

higher abundance on steel fiber containing surfaces (red circles), or had higher abundance on smooth 

surfaces (orange X). Each point represents one ASVs. They are grouped based on genus classification 

on the left y-axis. The right y-axis shows taxonomic order. The red/pink and blue/light blue bars on the 

right x-axis shows how the orders are grouped into classes and phyla, respectively. If a point is 

surrounded by a blue circle, it means that ASV had a significantly higher abundance in the biofilm in 

comparison to the water samples (padj < 0.05). 
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Figure 26. Relative abundance of some ASVs with significantly higher abundance in biofilms on 

steel-fiber containing concrete. The point at time 0 is the relative abundance in seawater samples. 

Error bars show standard deviations of triplicate samples. 

 

In order to understand how concrete structure effect microbial communities composition in the 

subsea tunnels, concrete blocks with/without steel reinforcement were kept for one year (2019-

2020) in Ditch A at the Test site. After one year, the biofilm communities developed on the 

concrete blocks with steel fibers were different compared to the biofilms formed on concrete 

without reinforcement (Figure 27). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

Figure 27. Heatmap showing 15 most abundant taxa in biofilm communities. Triplicate samples were 

merged. CB1&CB2- concrete blocks without fibers reinforcement; CBWF1& CBWF2 – concrete 

blocks with steel fibers; Ditch A- water from the ditch A 
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The most abundant taxa of one-year old biofilms concrete blocks were Nitrosopumilus sp., 

Alcanivorax sp., Nitrospina sp., Nitrosomonas sp., and ASV7, SM1A02, ASV2, ASV19, ASV3 

taxa. It was found that many taxa were shared with microbial communities from the ditch water. 

Several taxa such as Alcanivorax and Marinobacter had much higher abundance in the biofilms 

formed on reinforced concrete. 

4.7 Is there any difference between biofilm and planktonic microbial 

communities (Paper IV)? 
 

PCoA plot based on Hill number diversity 1d revealed that the biofilms formed on the concrete 

surfaces in the mesocosm study, the planktonic microorganisms in the water that had percolated 

over the concrete blocks in systems and the planktonic microorganisms in the seawater formed 

three distinct microbial communities (Figure 28). Significant differences between the three 

groups were confirmed with Permanova (p=0.0001). Although all sample types shared many 

ASVs, the relative abundance of the sequence reads differed. However, only 7 ASVs had 

significantly higher abundance in the water than in the biofilm, while 81 ASVs were more 

abundant in the mesocosms biofilms (p<0.05, DESeq2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 28. PCoA plot showing separation between microbial communities from the mesocosms biofilm, 

water and seawater samples. Beta diversity based on 1d dissimilarities. 

 

4.8 How does microbial communities change over time?  

4.8.1 Temporal dynamics of Oslofjord subsea tunnel biofilms (Papers II-III) 
The changes in appearance and in observation of different microorganisms being present from 

2004 to 2020 suggest temporal dynamics in the Oslofjord subsea tunnel biofilms. To 

systematically investigate temporal microbial dynamics, sampling was performed during a 

period of five years (2015-2020). To investigate beta diversity over time, the dissimilarity 

values were plotted at increasing time differences. Although the slope was rather flat for both 
0d and 1d, longer time differences between two samples correlated with higher dissimilarity, 

indicating a slow and gradual succession of the biofilm communities (Figure 29).  
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Figure 29. Dissimilarity between biofilm communities analysed at different time points analysed using 

Hill-based indices with diversity order 0 (A) and 1 (B). Average values for each year and time difference 

are shown. The error bars represent the standard error of the mean. 

In Paper II, temporal dynamics of the microbial communities was observed even in a period 

of less than one year (November 2015-October 2016) at the Pump station (p = 0.002), and to 

some degree at the Test site (p = 0.043), while for the Main tunnel, no clear changes in microbial 

community were observed (p = 0.61) (Table 5). 

 

Table 5. PERMANOVA based on Sørensen dissimilarities to test for differences in microbial 

community structure. P = Pump station, T = Test site, M = Main tunnel. 

 

 
df = degrees of freedom; SS = sum of squares; MS = mean squares; Pseudo F = F value by permutation, p-values 

based on 999 permutations.  

 

 

The differences in biofilm microbial community at the Pump station location were visualized 

with NMDS ordination (Figure 30), which illustrates that the biofilm composition at the Pump 

station was in fact dynamic even within a time frame of less than a year.    

df SS MS Pseudo F p

Between Sites (M, P, T) 2 2.05 1.02 9.61 0.001

Residuals 61 6.50 0.11

Total 63 8.55

Between occasions, T 2 0.29 0.14 1.49 0.043

Residuals 20 1.93 0.097

Total 22 2.22

Between occasions, M 1 0.98 0.098 0.84 0.61

Residuals 7 0.82 0.12

Total 8 0.91

Between occasions, P 2 0.53 0.26 2.70 0.002

Residuals 29 2.84 0.098

Total 31 3.37
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Figure 30. NMDS ordination shows significant difference in biofilm community at the Pump station 

from November 2015 until October 2016.  

Temporal dynamics of microbial communities at Pump station location in period of five years 

(2015-2020) was confirmed with PCoA plot  based on 1D beta-diversity dissimilarities (Figure 

31) (Paper III). The observed microbial community dynamics over time at the Pump station 

was associated with higher water flow at this location. The flow of saline groundwater was 

greater at the Pump station then at the other sites. It is known that differences in water flow 

rates affect the transport of nutrients and diffusion gradients within the biofilm (Stewart, 2003) 

which influence the microorganisms within the biofilm. Additionally, higher immigration of 

planktonic microorganisms from the saline groundwater could be expected, which should affect 

the  biofilm community composition (Flemming et al., 2009).  

 

 

 

 

 

 

 

  

 

 

 

Figure 31. PCoA based on 1D beta-diversity dissimilarities show significant change of microbial 

biofilms at the Pump station locality sampled in 2015, 2016, 2017, 2019 and 2020. 
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This might explain the fast development of biofilm microbial community at the early stage 

(2004-2005), when the water flow was considerably lower as well as differences in the concrete 

biodeterioration. Later on, when flow increased, the environmental conditions apparently 

became less aggressive, with higher pH and less leaching of Ca from the concrete. Besides, the 

salinity of interacting waters appears to have increased in the period 2004-2016, which by itself 

is a sign of sustained aggressiveness (Karačić et al., 2018). Additionally, increased water flow 

may lead to enhanced erosion in an already weakened subsea tunnel concrete surface. 

 

4.8.2 Temporal dynamics of Mesocosms biofilms (Paper IV) 
Biofilm communities and planktonic microbial communities from the four mesocosm systems 

followed a temporal trajectory (Figure 32A). It was observed that time was an important 

parameter affecting biofilm community composition in the mesocosms. Figure 32A shows that 

higher dissimilarity is correlated with longer time difference between two biofilm sampling 

occasions. 

 

  

 
Figure 32. (A) The effect of time difference on dissimilarities. Each point shows the average of several 

pairwise dissimilarities. Error bars show standard error (too small to be seen in the graph). At a time 

difference of 0, the 1d represents dissimilarity between biological replicates. (B) Box plots showing the 

rate of change in microbial community composition in Bray-Curtis dissimilarity per day for samples 

collected from biofilms in the same system but at different time points 

 

The temporal rate of change in biofilms community composition was determined by dividing 

the dissimilarity between a pair of biofilm samples from the mesocosm system with the time 

difference in days between the sampling occasions (Figure 32B) (Paper IV). The Bray-Curtis 

dissimilarity index was used to allow comparison to previous studies of temporal microbial 

community dynamics in various environments and it gives weight to the relative abundance of 

ASVs  (Shade et al., 2013). The observed rates were the same as those determined for microbial 

communities in lakes, freshwater streams, air, wastewater treatment plants, marine 

environments, soil, flowers, and humans (Shade et al., 2013). 

4.9 How do microorganisms colonize the concrete surfaces?  

4.9.1 Biofilm development on concrete in the mesocosm experiment 
The microbial colonization of concrete and biofilm development are complex processes that are 

affected by many factors, such as environmental conditions, the microbial properties and the 

physical and chemical characteristics of the material surface (Hayek et al., 2021). Several 
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studies have shown that biofilm formation in different ecosystems is not random and it depends 

of species traits (Ali et al., 2019; Besemer et al., 2012). 

The biofilm communities on concrete in the mesocosm were distinctly different from the 

planktonic communities in the flowing water and the seawater as shown on Figure 33 (Paper 

IV). It was observed that several taxa had higher abundance in the biofilms than in the water 

and had decreasing trend over time (Figure 19). This observation indicates that these 

microorganisms were early colonizers of the concrete in the mesocosm. Early colonizers are of 

great importance, because after adhering to the concrete surface, they provide conditions for 

colonization of subsequent microorganisms and influence the succeeding stages of biofilm 

formation. The relative abundance of early colonizers decreases over time because of 

competition for resources with later bacterial colonizers. Early colonizers observed in 

mesocosm study were affiliated to Chitinophagales, Bacteroidia, Blastopirellula, Pirellulales 

Pir4 lineage, Ponticaulis, Hyphomonadaceae, Roseobacter, Glaciecola, Paraglaciecola, and 

Leptospiraceae (Figure 33).  

 

 
Figure 33. Relative abundance of early colonizers. The point at time 0 is the relative abundance in 

seawater samples. Error bars show standard deviations of triplicate samples. 

 

The genus Ponticaulis was detected in high abundance in the all biofilm samples and has 

previously been found to play an important role in colonization and biofilm formation on steel 

in marine environments (Procópio, 2020). Several ASVs within the phylum Planctomycetota 
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increased over time in the biofilm samples from the mesocosm. Particularly ASV3 affiliated to 

genus Planctomicrobium, became dominant in mesocosms systems 1, 2, and 4, reaching over 

30% relative abundance. Interestingly, the strain Planctomicrobium piriforme,  was isolated 

from boreal lake and it was not able to grow at NaCl concentrations above 0.5% (Kulichevskaya 

et al., 2015). ASV3 had 87.75% nucleotide identity to this strain. However, a BLASTn search 

of NCBI Genbank resulted with 100% match with nucleotide identities from both wastewater 

treatment systems (LR637872.1) and coastal seawater (JF948432) suggesting that this ASV3 

represented a species that can grow in many different environments. 

 

For several taxa, it was observed that one ASVs was replaced by other ASVs within the same 

genus or family. This indicates competitive exclusion where two species /ASVs within the same 

genus/family occupy similar environmental niches in the biofilm. It is observed that two ASVs, 

affiliated to Hyphomonas, showed significant changes with time. ASV18 decreased with time 

and had higher relative abundance on concrete without steel fibers while ASV105 increased 

with time and had higher relative abundance on concrete with steel fibers.  

4.10 How do biofilm communities assemble?  
A long-standing challenge is to understand ecological mechanisms governing the microbial 

community composition in natural ecosystems. Traditionally, these complex mechanisms have 

been grouped into stochastic and deterministic factors (Widder et al., 2016). Stochastic factors 

include unpredictable disturbance, probabilistic dispersal and random birth-death events (Zhou 

& Ning, 2017) whereas environmental conditions, species traits and interactions are considered 

as deterministic factors (Chase & Leibold, 2009). Since natural environments consist of a large 

diversity of microorganisms with integrations and processes that are hard to predict and separate 

from random processes, knowledge about the detail mechanisms involved in biofilm formation 

in natural ecosystems is limited. Interestingly, only few studies have investigated biofilm 

succession in natural ecosystems. 

 

To shed light on microbial community assembly mechanisms in the Oslofjord tunnel biofilms, 

standard effect size (SES) based on null-models were used (Chase et al., 2011; Stegen et al., 

2012) in Paper II. The variation between the samples within each Oslofjord tunnel location 

(M_M, T_T, S_S), was lower than predicted by chance, while the variation between sites (M_P, 

M_T, T_P) was larger than predicted by chance (Figure 34).  

 

 
Figure 34. Standard effect size (SES). The hatched horizontal lines designate two standard deviations 

from the variation predicted by the null-model. The boxplot depicts the median (horizontal bold line); 

25th and 75th percentiles (box delimiters); minimum and maximum values excluding outliers (vertical 

lines); and outliers (dots). 
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SES suggests that deterministic factors were important for shaping the biofilm microbial 

communities at the three Oslofjord subsea tunnel sites. It has been shown that niche 

differentiation caused by differences in water flow are important for microbial community 

assembly (Besemer et al., 2012). Therefore, in Paper II we hypothesized that the more stable 

and lower flow of water at the Test site location and the Main tunnel would enable the 

establishment of more niches driving selection for a biofilm that would harbour a higher 

diversity than the higher water flow at the Pump station location. However, the effect of water 

flow on biofilm community composition may not be caused only by deterministic factor 

selection (via niche differentiation), since stochastic factor such as dispersal of microorganisms 

from the water to the biofilm could also have considerable impact (Woodcock et al., 2013). 

Since stochastic dispersal refers to the passive movement of microorganisms among 

communities, at environmental conditions with heterogenous water flow and rough concrete 

surface as in the Oslofjord tunnel, it has failed to explain biofilm community assembly. For 

example, in free-floating biofilms in wastewater reactors and freshwater stream biofilms, the 

early stages of succession was influenced by stochastic factors, while niche-based deterministic 

factors were dominated in matured biofilms (Liébana et al., 2019; Veach et al., 2016). 

 

In order to investigate mechanisms involved in the early stages of biofilm succession on 

concrete surfaces, the mesocosm experiment was performed (Paper IV). Microbial community 

assembly of the mesocosms biofilms was assessed using the Raup-Crick null model (Raup & 

Crick, 1979). Detail explanation of null-model used in this experiment can be found in Paper 

IV. Null model results for the incidence-based based dissimilarity index (0RC) and relative 

abundance-based index (1RC) are presented in Figure 35. The incidence-based based 

dissimilarity index  (0RC) shows 0 value for time differences less than approximately 150 days 

which means that when it comes to presence/absence of ASVs, the compositional similarity is 

much higher than what would be expected at random assembly processes. The results of relative 

abundance-based index (1RC) show intermediate values, which means that the difference in 

relative abundance between the detected ASVs could be explained by random processes. At 

longer time intervals (>250 d), the 0RC index has intermediate values or is close to 1 in some 

systems., whilst 1RC  is close to 1 in all systems. This means that there has been a significant 

change in the identity of ASVs and especially in the relative abundance of ASVs. 

  

 
Figure 35. Null model results (qRC) for the incidence-based based dissimilarity index (A, 0d) and the 

relative-abundance based dissimilarity index (B, 1d). The x-axis shows the time difference between the 

samples being compared. The average value of pairwise comparisons of samples from the same system 

are shown. The error bars show the standard error of the mean. 
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A comparison of null model results between mesocosms systems revealed that at all time points, 

the 0RC was close to 0 and the 1RC had intermediate values (Paper IV). These results suggest 

that it is primarily time that drives turnover (compositional differences) in mesocosms biofilm 

communities.   

4.11 What is the metabolic potential of the Oslofjord subsea tunnel 

biofilms? (Paper III)  
 

The relative abundance of the top 40 MAGs and their genes for iron oxidation, iron reduction, 

nitrogen- and sulfur metabolisms of selected biofilm samples from the Oslofjord subsea tunnel 

are presented Figure 36. Cyc2 is the key protein for iron oxidation in bacteria (McAllister et al., 

2020). Well known iron-oxidizing Zetaproteobacteria were observed among other MAGs with 

the Cyc2 gene detected in the biofilm samples. The iron reduction predictions were made by 

looking at presence of porin-cytochrome clusters (porin, periplasmic c-type cytochrome and/or 

an outer-membrane c-Cyt) in the genome (Shi et al., 2014). These gene clusters may potentially 

be involved in Fe(III) and Mn(III, IV) reduction. 

Figure 36. Abundance heatmap of the 22 genes for potential iron-oxidation, iron-reduction, nitrogen, 

and sulfur cycles in the top 40 MAGs. 
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Several genes were used for detection potential sulfur oxidisation/reduction (Sat: sulfate 

adenylyltransferase (sulfate to APS), AprAB: adenylylsulfate reductase (APS to sulfate), dsrAB: 

dissimilatory sulfite reductase (sulfite to sulfide), SoxA ,B C, Y: thiosulfate oxidation). The gene 

dsrAB can operate in the reductive direction (sulfite - sulfide), but sometimes sulfur oxidizing 

bacteria can use it in opposite direction (sulfite - sulfide). Actually, the oxidative and the 

reductive dsrAB are phylogenetically distinct, and thus it is possible to tell them apart. A 

phylogenetic tree of all the dsrAB sequences from the Oslofjord tunnel biofilms shows that most 

MAGs with a dsrAB will likely use this gene for sulfur oxidation (Figure 37). The only detected 

sulfate reducing bacteria (SRB) in the study was OFTM352 affiliated to the 

Thermodesulfovibrio. Thus, relative abundance of SRB was only 0.05% of total community. 

 

  
Figure 37. Phylogenetic tree of all dsrAB sequences of selected  biofilm samples 

 

In order to detect nitrogen converting microbes several genes were used: nirA and nirB 

(assimilatory nitrate reductases), nrfA (dissimilatory nitrate reductase), napA/narG (nitrate 

reductase), nirk/nirS + norB + nosZ (denitrification), amoA (ammonia oxidation) and nxrB 

(nitrite oxidation). The MAGs affiliated to the ammonia oxidizing archaea (AOA) and aerobic 

ammonia oxidizing bacteria (AOB) were observed in low abundance. Genes linked to 

denitrification were common within the constructed MAGs and 70% of the MAGs had a nitrate 

reductase (Nar and Nap), and hence could reduce NO3
- to NO2

-. Figure 38 shows abundance of 

denitrifying genes within constructed MAGs from the biofilm samples from two tunnel 

locations (the Pump station and the Test site).  

 

 Interestingly, within the Nitrospirales MAGs, several MAGs contained the Cyc2 gene (for 

potential iron/manganese oxidation). One cluster affiliated to the Nitrospirae belonged to 
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Manganitrophus cluster (Figure 39). Yu & Leadbetter (2020) showed that Manganitrophus 

noduliformans is chemolithoautotrophic manganese-oxidizing microorganism related to 

formation of manganese-oxide nodules. In this bacterium, manganese oxidation is proposed to 

be mediated by Cyc2 and other proteins. Presence  and activity of M. noduliformans may 

explain formation of observed Mn-oxide nodules and Mn-biominerals (todorokite 

(predominantly MnIV), rhodochrosite (MnCO3) and manganosite (MnO)) in the Oslofjord 

subsea tunnel biofilms and concrete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 38. Abundance of denitrifying genes in the MAGs from the Pump station (P) and the Test site 

(T). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 39. Phylogenetic tree of MAGs classified as Nitrospiria, based on 74 single copy genes. 

Thermodesulfovibrio was used as an outgroup. The tree scale represents amino acid substitutions per 

site  
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4.12 How does the biofilm look under the microscope? 

In Paper II, SEM-EDS point analysis of biofilm sampled in 2016 confirmed presence of the 

iron-oxidizing twisted stalked bacteria Mariprofundus (points 1 and 2 in Figure 40; Table 6). 

Mariprofundus sp. oxidize iron at microaerophilic conditions and natural pH and excrete 

extracellular stalks rich in Fe during growth. Apart from twisted stalks (points 1 and 2 in 

Figure 40; Table 6), non-specific biomass (points 3 and 4) and anticipated mineral material 

(point 5) were observed with SEM. Observed stalks were particularly rich in iron, but even 

the non-specified biomass (3-4) contained a lot of iron compared to the anticipated mineral 

material, which was high in silicon, confirming its mineral nature. 

Figure 40. SEM micrograph with of biofilm biomass; magnification 10000×. Points 1-5 refer to 

measurements by EDS (see Table 6). 

Table 6. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) analyses 

(atomic %) of biofilm samples with suggested iron-oxidizing bacteria. Analysed points correspond to 

Fig. 39.  

Anal.Pt. O C Fe Si Cl Na Ca S Mg Mn 

1 20.05 24.83 37.59 7.07 3.64 1.68 2.30 0.46 0.38 0.52 

2 22.45 32.48 28.00 6.82 3.06 1.93 1.85 0.58 0.47 0.67 

3 28.66 27.56 25.13 9.36 2.86 1.76 1.67 0.40 0.53 0.27 

4 37.70 30.63 18.40 5.10 2.46 2.70 1.31 0.41 0.44 

5 45.47 28.87 3.36 20.11 0.92 0.48 0.36 

Previous SEM analysis suggested presence of sheathed morphologies similar to the Leptothrix 

(Paper II), but no OTU similar to known MOB were detected. SEM analysis of biofilms 

samples in September 2020 at Pump station site assessed Mn-nests, iron-rich filaments and 

iron-rich twisted stalks (Figure 41). 
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Figure 41. SEM images of biofilms and thin concrete layers beneath biofilms at the Pump station 

showing (A) Mn-biofilm (globules); (B) Deposits of Fe-rich nodules (Fe) and gypsum (Gy) on degraded 

sprayed concrete; and (C) Fe-rich filamentous material ad Mn-rich nodules. 

 

In the mesocosm, biofilms sampled on concrete with fiber reinforcement after 357 and 413 days 

of exposure, mineralised microbes and stalks rich in iron were predominant (Paper IV). 

However, manganese globules were not observed in analysed samples (Figure 42). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 42. SEM-back scatter images: Surfaces of S4 after 357 (A) and 413 days exposure (B).  

 

4.13 Concrete degradation products and biomineralisation in 

contact with saline water (Paper II- III) 
 

SEM and XRD analysis of thin sections of concrete beneath the biofilms and biofilm material 

sampled in the autumn 2020 assessed the presence of buserite, todorokite and amorphous 

ferrihydrite at the Pump station and the Test site locations. Marcasite (FeS2) was observed 

within thick biofilm at Pump station location. Additionally, thin section of concrete samples 

shows that leaching of calcium from the cement paste matrix underneath biofilm was common. 

The leached zone was characterised by Ca-depleted paste with Mg and S substitution and most 

notably dissolution of pre-existing thaumasite (Figure 43). Also, Popcorn calcite deposition 

(PCD) occurred in leached domains. It was evident that these degradation reactions were well 

developed at least 35 mm below the biofilms. This is in keeping with previous results from 

studies performed by Per Hagelia in the period 2004-2011 (Hagelia, 2007, 2011a, 2011b).  

Mn-oxide and Mn-nodules were observed outside carbonate and brucite in outer deposits of 

concrete samples (Paper III).  
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Water chemistry analysis confirmed calcium dissolution from the sprayed tunnel concrete in 

contact with saline water (Paper I, and Paper II). Another evidence was precipitation of 

calcite, aragonite, Mg-calcite, magnesite and occasional gypsum just outside main water 

streams. Mn-oxide and Mn-nodules were observed outside carbonate and brucite in outer 

deposits of concrete samples (Paper III). 

 

 
 
Figure 43. Thin section P2 with characteristic zonation and porosity shown with blue dye. Concrete and 

biofilm age about 21 years. Zone 1: Deposits of outermost Mn-oxide underneath Fe-rich slimy biofilm 

(not preserved in the thin section) with deposits of calcium carbonate derived from leaching of the 

cement paste, and inner magnesium silicate hydrate (MSH) (B). Most of Zone 1 was extremely porous, 

characterised by partial dissolution of pre-existing thaumasite (Th) (D: plane polarised light with blue 

dye showing secondary porosity). Zone 2: Ca-depleted cement paste substituted by Mg and S with 

extensive secondary shrinkage cracks (A) and occurrence of intact thaumasite (Th) in air voids towards 

Zone 1 (C). Image E shows the sprayed concrete core with layered Fe and Mn biofilm outside friable 

and leached outer Zone 1 and inner Zone 2.  
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5 Conclusions 

 

The overall aim of this thesis was to increase the understanding of the mechanisms behind 

biologically induced degradation of sprayed concrete and accelerated corrosion of steel fibers 

in subsea tunnels caused by biofilm development. The approach has been to use a combination 

of sequencing methods to shed light upon the composition, diversity, and metabolic potential 

of this unexplored biofilm ecosystem, together with chemical measurements and visualization 

techniques to assess the chemical composition of the water, biofilm, concrete, and associated 

minerals within and underneath the biofilm. 

 

The most important conclusions, with respect to the specific objectives, are as follows: 

− Taxonomic analysis of the 16S rRNA amplicon sequences from 2015-2020 revealed 

that the microbial biofilm communities from different Oslofjord subsea tunnel 

locations had similarities in composition to other marine sediments and biofilms with 

high abundance of known nitrogen oxidizing bacteria, iron oxidizing bacteria, and 

several taxa of marine heterotrophic bacteria. However, many numerical important 

microorganisms could not be assigned to any known genus or species, just like in many 

studies in nature using high throughput amplicon sequencing. With metagenomic 

shotgun sequencing of selected samples we resolved 401 metagenome assembled 

genomes (MAGs), but only 145 MAGs were classified at the genus level using GTDB 

taxonomy, further highlighting that many novel species were present in the tunnel 

biofilms. The composition of the MAGs supported the findings by amplicon 

sequencing and complemented these with new taxa and metabolic functions in the 

biofilm (see below).  

− The saline groundwater had a composition quite similar to the seawater with high 

concentrations of chloride, sodium, sulfate, and magnesium, while the concentrations 

of iron, manganese, and ammonium were generally low. In the biofilm, however, the 

concentrations of iron and manganese were high suggesting considerable formation of 

iron- and manganese oxides. Calcium, as well as magnesium, was also fairly abundant. 

The water in contact with the biofilm contained elevated concentrations of particularly 

calcium, suggesting leaching from the concrete. Within and underneath the biofilm, 

iron(III) and manganese(IV) biominerals such as ferrihydrite, buserite and marcasite 

was observed. There were clear signs of concrete degradation underneath the biofilm, 

as shown by calcium leaching and magnesium substitution of the calcium-silicate-

hydrate (C-S-H) and popcorn calcite deposition. 

− Within the biofilm, the concentrations of dissolved oxygen decreased with increasing 

biofilm depth suggesting varying environmental conditions throughout the biofilm. At 

lower waterflow, steeper dissolved oxygen gradients were observed, suggesting that 

the water flow was an important parameter controlling the environmental conditions 

within the biofilm.  

− Temporal dynamics of microbial communities was observed at all tunnel sites, even 

over a period of less than one year at the Pump station. The microbial community 

dynamics was slower at the Main tunnel and Test site, presumably due to lower water 

flow at these locations. The microbial communities at the three tunnel locations shared 

many abundant taxa but were distinctly different from each other in biofilm community 

structure despite the relatively close geographic distance. Null-model analyses 
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suggested that deterministic factors had considerable influence on microbial 

community assembly at the tunnel sites, possibly due to specific local environmental 

conditions. 

− Results of the mesocosms experiment indicated that stochastic factors shaped the 

microbial community composition during early stage of biofilm formation on concrete 

exposed to seawater, while deterministic forces were important over longer time 

intervals with time being a key factor for the turnover (compositional differences) in 

the biofilm communities.  

− The mesocosms experiment also suggested that both presence of steel fiber 

reinforcement and concrete surface roughness affected the biofilm community 

composition, with the former being more important. 

− Genes associated with the nitrogen, sulfur, iron, and manganese cycles were detected 

within the reconstructed MAGs from the subsea tunnel. The biofilm community 

harboured metabolic potential for aerobic ammonium oxidation by AOA 

(Nitrosomonas) and AOB (Nitrosopumilus), aerobic nitrite oxidation by NOB 

(Nitrospira and Nitrospina) as well as anoxic denitrification (many taxa) and anammox 

(Scalindua). Oxidation of sulfate was a rather common trait (many taxa), but the 

capacity for sulfate reduction was minor. The potential for iron oxidation was detected 

among several MAGs belonging to different taxa, with Mariprofundus within 

Zetaproteobacteria, being a type species. A few MAGs could also putatively reduce 

iron. Five Nitrospiria MAGs were related to Manganitrophus noduliformans, a 

recently discovered manganese oxidizer, suggesting that autotrophic manganese 

oxidation was occurring in the biofilm, likely contributing to formation of manganese 

oxides. 

− A number of the microbial metabolisms (see above) can contribute to acidification, 

which was evident as shown by the concrete degradation measured underneath the 

biofilm. Aerobic oxidation of ammonia and iron release protons, and sulfur oxidation 

cause formation of sulfuric acid. Also biogenic manganese oxidation can contribute to 

acidification via subsequent abiotic reduction of manganese(IV) oxide with 

concomitant oxidation of iron(II). The extent of these reactions likely varied over time 

and space. Within the biofilm, local environments most probably provided the 

necessary aerobic, microaerophilic, and anoxic conditions for the different reactions. 

However, a limited supply of organic matter limited anaerobic reduction of sulfate to 

hydrogen sulfide, which distinguish the tunnel biofilm from concrete degradation in 

other environments such as sewers. Furthermore, the iron-oxidizing bacteria likely 

contributed to the observed corrosion of the reinforcing steel fibres. 
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6 Perspectives and future works  

Fundamental research about microbial biofilms involved in degradation of concrete material in 

marine environment is imperative to prevent biodeterioration of sprayed reinforced concrete in 

subsea tunnels. Therefore, detailed studies about microbial communities and their mechanisms 

and interactions with different concrete materials are of great importance. Although the present 

work helped us to understand the complexity of concrete biodeterioration in the Oslofjord 

subsea tunnel and has established important facts regarding concrete biodegradation in marine 

environment, there is a need for further work.  

 

Many microorganisms detected in biofilms on concrete materials could not be assigned to any 

known genus or species. Furthermore, major roles and activity of high abundance 

microorganisms are still not clear. In order to fully understand biofilm communities and their 

role in concrete biodeterioration, powerful molecular techniques such as gene expression and 

transcriptome analysis could be applied. Methodological development when it comes to 

sequencing goes quickly and it become more affordable which would result in much more data 

in the near future. Therefore, future efforts need to apply metatranscriptomics, metaproteomics 

or metabolomics in order to link microbial community composition more tightly with function.  

Further linkage between identity and activity of microbial community members could also be 

provided combining methods such as fluorescence in-situ hybridisation (FISH) with SEM, 

called Gold-FISH.  

 

Analytical work including microsensor measurements of NO, NO2, H2S, and oxidation-

reduction potentials within the biofilm at a μm scale would provide better insight into microbial 

activity at the local sites. 

 

In order to understand biofilm formation on concrete material and their degrading activities, 

manipulative studies such as temporal study with mesocosms will be needed. The development 

of mesocosms with different concrete properties and different environmental conditions would 

provide more information about the microbial colonization, composition, localization and 

stratification of the biofilm in relation to the degrading activities over time.  

 

Additionally, detail studies about concrete degradation rates (such as concrete petrography and 

mineralogical characterisation of biominerals) would be essential to fully understand complex 

mechanisms involved in degradation of concrete materials. 
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