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Abstract
In this paper we derive error estimates of the backward Euler–Maruyama method
applied tomulti-valued stochastic differential equations.An important example of such
an equation is a stochastic gradient flowwhose associated potential is not continuously
differentiable but assumed to be convex.We show that the backward Euler–Maruyama
method is well-defined and convergent of order at least 1/4 with respect to the root-
mean-square norm. Our error analysis relies on techniques for deterministic problems
developed in Nochetto et al. (Commun Pure Appl Math 53(5):525–589, 2000). We
verify that our setting applies to an overdamped Langevin equation with a discontinu-
ous gradient and to a spatially semi-discrete approximation of the stochastic p-Laplace
equation.
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1 Introduction

In this paper, we investigate the numerical approximation of multi-valued stochastic
differential equations (MSDE).An important example of such equations is provided by
stochastic gradient flows with a convex potential. More precisely, let T ∈ (0,∞) and
(Ω,F , (Ft )t∈[0,T ],P) be a filtered probability space satisfying the usual conditions.
By W : [0, T ] × Ω → Rm , m ∈ N, we denote a standard (Ft )t∈[0,T ]-adapted Wiener
process whose increments are independent of the filtration. As a motivating exam-
ple, let us consider the numerical treatment of nonlinear, overdamped Langevin-type
equations of the form

{
dX(t) = −∇Φ(X(t)) dt + g0 dW (t), t ∈ (0, T ],
X(0) = X0,

(1.1)

where X0 ∈ L p(Ω,F0,P;Rd), p ∈ [2,∞), g0 ∈ Rd,m , and Φ : Rd → R are given.
The spaceRd,m consists of the real matrices of type d×m. These equations havemany
important applications, for example, in Bayesian statistics and molecular dynamics.
We refer to [10,22,23,45,50], and the references therein.

We recall that if the gradient∇Φ is of superlinear growth, then the classical forward
Euler–Maruyama method is known to be divergent in the strong and weak sense, see
[18]. This problem can be circumvented by using modified versions of the explicit
Euler–Maruyama method based on techniques such as taming, truncating, stopping,
projecting, or adaptive strategies, cf. [4,6,17,19,29,49].

In this paper we take an alternative approach by considering the backward Euler–
Maruyama method. Our main motivation for considering this method lies in its good
stability properties, which allow its application to stiff problems arising, for instance,
from the spatial semi-discretization of stochastic partial differential equations. Implicit
methods have also been studied extensively in the context of stochastic differential
equations with superlinearly growing coefficients. For example, see [1,15,16,30,31].

The error analysis in the above mentioned papers on explicit and implicit meth-
ods typically requires a certain degree of smoothness of ∇Φ such as local Lipschitz
continuity. The purpose of this paper is to derive error estimates of the backward
Euler–Maruyama method for equations of the form (1.1), where the associated poten-
tial Φ : Rd → R is not necessarily continuously differentiable, but assumed to be
convex.

For the formulation of the numerical scheme, let N ∈ N be the number of temporal
steps, let k = T

N be the step size, and let

π = {0 = t0 < · · · < tn < · · · < tN = T } (1.2)

123



Error estimates of the backward Euler–Maruyama method for… 805

be an equidistant partition of the interval [0, T ], where tn = nk for n ∈ {0, . . . , N }.
The backward Euler–Maruyama method for the Langevin equation (1.1) is then given
by the recursion

{
Xn = Xn−1 − k∇Φ(Xn) + g0ΔWn, n ∈ {1, . . . , N },
X0 = X0,

(1.3)

where ΔWn = W (tn) − W (tn−1).
An example of a non-smooth potential is found by setting d = m = 1 and Φ(x) =

|x |p, x ∈ R, for p ∈ [1, 2). Evidently, the gradient of Φ is not locally Lipschitz
continuous at 0 ∈ R for p ∈ (1, 2). Moreover, if p = 1, then the gradient ∇Φ has a
jump discontinuity of the form

∇Φ(x) =

⎧⎪⎨
⎪⎩

−1, if x < 0,

c, if x = 0,

1, if x > 0.

(1.4)

Here, the value c ∈ R at x = 0 is not canonically determined. We have to solve a
nonlinear equation of the form x + k∇Φ(x) = y in each step of the backward Euler
method (1.3). However, if y ∈ (−k, k), then the sole candidate for a solution is x = 0,
since otherwise |x + k∇Φ(x)| ≥ k. But x = 0 is only a solution if kc = y. Therefore,
the mappingR � x �→ x+k∇Φ(x) ∈ R is not surjective for any single-valued choice
of c.

This problem can be bypassed by considering the multi-valued subdifferential
∂Φ : Rd → 2R

d
of a convex potential Φ : Rd → R, which is given by

∂Φ(x) = {
v ∈ Rd : Φ(x) + 〈v, y − x〉 ≤ Φ(y) for all y ∈ Rd}.

Recall that ∂Φ(x) = {∇Φ(x)} if the gradient exists at x ∈ Rd in the classical sense.
See [46, Section 23] for further details.

In the above example, one easily verifies that

∂Φ(x) =

⎧⎪⎨
⎪⎩

{−1}, if x < 0,

[ − 1, 1], if x = 0,

{1}, if x > 0.

This allows us to solve the nonlinear inclusion where we want to find x ∈ R with
x + k∂Φ(x) � y for any y ∈ R.

For this reason we study the more general problem of the numerical approximation
of multi-valued stochastic differential equations (MSDE) of the form

{
dX(t) + f (X(t)) dt � b(X(t)) dt + g(X(t)) dW (t), t ∈ (0, T ],
X(0) = X0.

(1.5)
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806 M. Eisenmann et al.

Here, we assume that the mappings b : Rd → Rd and g : Rd → Rd,m are globally
Lipschitz continuous. Moreover, the multi-valued drift coefficient function f : Rd →
2R

d
is assumed to be a maximal monotone operator, cf. Definition 2.1 below. We refer

to Sect. 4 for a complete list of all imposed assumptions on the MSDE (1.5). Let
us emphasize that the subdifferential of a proper, lower semi-continuous, and convex
potential is an important example of a possibly multi-valued and maximal monotone
mapping f , cf. [46, Corollary 31.5.2].

We use the backward Euler–Maruyamamethod for the approximation of theMSDE
(1.5) on the partition π , which is given by the recursion

{
Xn ∈ Xn−1 − k f (Xn) + kb(Xn) + g(Xn−1)ΔWn, n ∈ {1, . . . , N },
X0 = X0.

(1.6)

We discuss the well-posedness of this method (1.6) under our assumptions on f , b,
and g in Sect. 5. In particular, it will turn out that both problems, (1.5) and (1.6), admit
single-valued solutions (X(t))t∈[0,T ] and (Xn)Nn=0, respectively.

The main result of this paper, Theorem 6.4, then states that the backward Euler–
Maruyama method is convergent of order at least 1/4 with respect to the norm in
L2(Ω;Rd). For the error analysis we rely on techniques for deterministic problems
developed in [38]. An important ingredient is the additional condition on f that there
exists γ ∈ (0,∞) with

〈 fv − fz, z − w〉 ≤ γ 〈 fv − fw, v − w〉

for all v,w, z ∈ D( f ) ⊂ Rd and fv ∈ f (v), fw ∈ f (w), fz ∈ f (z). This assumption
is easily verified for a subdifferential of a convex potential, cf. Lemma 3.2. As already
noted in [38] for deterministic problems, this inequality allows us to avoid Gronwall-
type arguments in the error analysis for terms involving the multi-valued mapping
f .
Before we give a more detailed outline of the content of this paper let us mention

that multi-valued stochastic differential equations have been studied in the literature
before. The existence of a uniquely determined solution to the MSDE (1.5) has been
investigated, e.g., in [7,21,42]. We also refer to the more recent monograph [41]
and the references therein. In [14,52] related results have been derived for multi-
valued stochastic evolution equations in infinite dimensions. The numerical analysis
for MSDEs has also been considered in [3,26,43,54,56]. However, these papers differ
from the present paper in terms of the considered numerical methods, the imposed
conditions, or the obtained order of convergence.

Further, we also mention that several authors have developed explicit numerical
methods for SDEs with discontinuous drifts in recent years. For instance, we refer to
[9,24,25,33,35–37].While these results often apply tomore irregular drift coefficients,
which are beyond the framework of maximal monotone operators, the authors have
to employ more restrictive conditions such as the global boundedness or piecewise
Lipschitz continuity of the drift, which is not required in our framework. This allows
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for more general growth conditions. Moreover, none of these papers allows for a
multi-valued drift coefficient.

Themainmotivation for this paper is to present a novel approach to analyzeMSDEs.
As the numerical method as such is not new, we do not provide any numerical tests
in this paper. Numerical experiments for implicit methods can be found, e.g., in [1,3],
and [30].

This paper is organized as follows: in Sect. 2 we fix some notation and recall the
relevant terminology for multi-valued mappings. In Sect. 3 we demonstrate how to
apply the techniques from [38] to the simplified setting of the Langevin equation
(1.1). In addition, we also show that if the gradient ∇Φ is more regular, say Hölder
continuous with exponent α ∈ (0, 1], then the order of convergence increases to 1+α

4 .
Moreover, it turns out that the error constant does not grow exponentially with the
final time T . This is an important insight if the backward Euler method is used within
an unadjusted Langevin algorithm [45], which typically requires large time intervals.
See Theorem 3.7 and Remark 3.8 below.

In Sect. 4 we turn to the more general multi-valued stochastic differential equation
(1.5) where we introduce all the assumptions imposed on the appearing drift and
diffusion coefficients and collect some properties of the exact solution. In Sect. 5
we show that the backward Euler–Maruyama method (1.6) is well-posed under the
assumptions of Sect. 4. In Sect. 6 we prove the already mentioned convergence result
with respect to the root-mean-square norm. Finally, in Sect. 7 we verify that the setting
of Sect. 4 applies to a Langevin equationwith the discontinuous gradient (1.4). Further,
we also show how to apply our results to the spatial discretization of the stochastic p-
Laplace equationwhich indicates their usability for the numerical analysis of stochastic
partial differential equations. However, a complete analysis of the latter problem will
be deferred to a future work.

2 Preliminaries

In this section we collect some notation and introduce some background material.
First we recall some terminology for set valued mappings and (maximal) monotone
operators. For a more detailed introduction we refer, for instance, to [48, Abschn. 3.3]
or [40, Chapter 6].

ByRd , d ∈ N, we denote the Euclidean space with the standard norm | · | and inner
product 〈·, ·〉. Let M ⊂ Rd be a set. A set-valued mapping f : M → 2R

d
maps each

x ∈ M to an element of the power set 2R
d
, that is, f (x) ⊆ Rd . The domain D( f ) of

f is given by

D( f ) = {x ∈ M : f (x) �= ∅}.

Definition 2.1 Let M ⊂ Rd be a non-empty set. A set-valued map f : M → 2R
d
is

called monotone if
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〈 fu − fv, u − v〉 ≥ 0

for all u, v ∈ D( f ), fu ∈ f (u), and fv ∈ f (v). Moreover, a set-valued mapping
f : M → 2R

d
is called maximal monotone if f is monotone and for all x ∈ M and

y ∈ Rd satisfying

〈y − fv, x − v〉 ≥ 0 for all v ∈ D( f ), fv ∈ f (v),

it follows that x ∈ D( f ) and y ∈ f (x).

Next, we recall a Burkholder–Davis–Gundy-type inequality. For a proof we refer
to [28, Chapter 1, Theorem 7.1]. For its formulation we note that the Frobenius or
Hilbert–Schmidt norm of a matrix g ∈ Rd,m is also denoted by |g|.
Lemma 2.2 Let p ∈ [2,∞) and g ∈ L p(Ω; L p(0, T ;Rd,m)) be stochastically inte-
grable. Then, for every s, t ∈ [0, T ] with s < t , the inequality

E
[∣∣∣∣

∫ t

s
g(τ ) dW (τ )

∣∣∣∣
p]

≤
( p(p − 1)

2

) p
2
(t − s)

p−2
2 E

[∫ t

s
|g(τ )|p dτ

]

holds.

Let us also recall a stochastic variant of the Gronwall inequality. A proof that can
be modified to this setting can be found in [55]. Compare also with [51].

Lemma 2.3 Let Z , M, ξ : [0, T ]×Ω →R be (Ft )t∈[0,T ]-adapted and P-almost surely
continuous stochastic processes. Moreover, M is a local (Ft )t∈[0,T ]-martingale with
M(0) = 0. Suppose that Z and ξ are nonnegative. In addition, let ϕ : [0, T ] → R be
integrable and nonnegative. If, for all t ∈ [0, T ], we have

Z(t) ≤ ξ(t) +
∫ t

0
ϕ(s)Z(s) ds + M(t), P-almost surely,

then, for every t ∈ [0, T ], the inequality

E
[
Z(t)

] ≤ exp
( ∫ t

0
ϕ(s) ds

)
E
[
sup

s∈[0,t]
ξ(s)

]

holds.

Moreover, we often make use of generic constants. More precisely, byC we denote
a finite and positive quantity thatmay vary from occurrence to occurrence but is always
independent of numerical parameters such as the step size k = T

N and the number of
steps N ∈ N.
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3 Application to the Langevin equation with a convex potential

In order to illustrate our approach, we first consider a more regular stochastic differ-
ential equation with single-valued (Hölder) continuous drift term. More precisely, we
consider the overdamped Langevin equation [23, Section 2.2]

{
dX(t) = −∇Φ(X(t)) dt + g0 dW (t), t ∈ [0, T ],
X(0) = X0,

(3.1)

where X0 ∈ L2(Ω,F0,P;Rd), g0 ∈ Rd,m , and W : [0, T ] × Ω → Rm is a standard
Rm-valued Wiener process.

In this section we impose the following additional assumption on the potential
Φ : Rd → R. It allows us to illustrate our approach in a simplified analytical setting
which avoids the full technical details required for dealingwithmulti-valuedmappings.
The assumption will be dropped in later parts of the paper.

Assumption 3.1 Let Φ : Rd → R be a convex, nonnegative, and continuously differ-
entiable function.

In the following, we denote by f : Rd → Rd the gradient of Φ, that is f (x) =
∇Φ(x). It is well-known that the convexity of Φ implies the variational inequality

〈 f (v), w − v〉 ≤ Φ(w) − Φ(v), v,w ∈ Rd , (3.2)

see, for example, [46, § 23].
In the following lemma we collect some properties of f which are direct conse-

quences of Assumption 3.1. Both inequalities are well-known. The proof of (3.4) is
taken from [38].

Lemma 3.2 Under Assumption 3.1 and with f = ∇Φ, the inequalities

〈 f (v) − f (w), v − w〉 ≥ 0 (3.3)

and

〈 f (v) − f (z), z − w〉 ≤ 〈 f (v) − f (w), v − w〉 (3.4)

are fulfilled for all v,w, z ∈ Rd .

Proof The first inequality follows directly from (3.2) since

〈 f (v) − f (w), v − w〉 = −〈 f (v), w − v〉 − 〈 f (w), v − w〉
≥ −(

Φ(w) − Φ(v)
) − (

Φ(v) − Φ(w)
) = 0
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810 M. Eisenmann et al.

for all v,w ∈ Rd . For the proof of the second inequality we start by rewriting its
left-hand side. For arbitrary v,w, z ∈ Rd we rearrange the terms to obtain

〈 f (v) − f (z), z − w〉
= 〈 f (v), z〉 − 〈 f (v), w〉 + 〈 f (z), w − z〉 + 〈 f (v), v〉 − 〈 f (v), v〉
= 〈 f (v), z − v〉 + 〈 f (v), v − w〉 + 〈 f (z), w − z〉

+ 〈 f (w), v − w〉 − 〈 f (w), v − w〉
= 〈 f (v), z − v〉 + 〈 f (v) − f (w), v − w〉 + 〈 f (z), w − z〉 + 〈 f (w), v − w〉.

Setting σ(v,w) := Φ(w) − Φ(v) − 〈 f (v), w − v〉 for all v,w ∈ Rd , we see that

〈 f (v) − f (z), z − w〉 = 〈 f (v) − f (w), v − w〉 + Φ(z) − Φ(v) − σ(v, z)

+ Φ(w) − Φ(z) − σ(z, w) + Φ(v) − Φ(w) − σ(w, v)

= 〈 f (v) − f (w), v − w〉 − σ(v, z) − σ(z, w) − σ(w, v).

But (3.2) says that σ(v,w) ≥ 0 for all v,w ∈ Rd , which completes the proof. ��
It follows from Assumption 3.1 and Lemma 3.2 that the drift f = ∇Φ of the

stochastic differential equation (3.1) is continuous and monotone. Therefore, the
stochastic differential equation (3.1) has a solution in the strong (probabilistic) sense,
satisfying P-a.s. for all t ∈ [0,∞)

X(t) = X0 −
∫ t

0
f (X(s)) ds + g0W (t). (3.5)

See, [44, Thm. 3.1.1] for a proof andmore details on this concept of solution.Moreover,
the solution is unique up to P-indistinguishability and it is square-integrable with

sup
t∈[0,T ]

E
[|X(t)|2] ≤ C

(
1 + E

[|X0|2
])

.

Next, we turn to the numerical approximation of the solution of (3.1). Recall that for
a single-valued drift the backward Euler–Maruyama method is given by the recursion

{
Xn = Xn−1 − k f (Xn) + g0ΔWn, n ∈ {1, . . . , N },
X0 = X0,

(3.6)

where ΔWn = W (tn) − W (tn−1), tn = nk, and k = T
N .

The next lemmacontains some a priori estimates for the backwardEuler–Maruyama
method (3.6).

Lemma 3.3 Let g0 ∈ Rd,m be given and let Assumption 3.1 be satisfied. For an
arbitrary step size k = T

N , N ∈ N, let (Xn)n∈{0,...,N } be a family of (Ftn )n∈{0,...,N }-
adapted random variables satisfying (3.6). If the initial value X0 ∈ L2(Ω,F0,P;Rd),
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then

max
n∈{1,...,N }E[|Xn|2] ≤ E

[|X0|2
] + 2T

(
Φ(0) + |g0|2

)
(3.7)

and

N∑
n=1

E
[|Xn − Xn−1|2] + 4k

N∑
n=1

E
[
Φ(Xn)

] ≤ 2E
[|X0|2

] + 4T
(
Φ(0) + |g0|2

)
.

(3.8)

Proof First, we recall the identity

〈Xn − Xn−1, Xn〉 = 1

2

(|Xn|2 − |Xn−1|2 + |Xn − Xn−1|2).
Using also (3.6), we then get

|Xn|2 − |Xn−1|2 + |Xn − Xn−1|2 = 2〈Xn − Xn−1, Xn〉
= −2k〈 f (Xn), Xn〉 + 2〈g0ΔWn, Xn〉,

for every n ∈ {1, . . . , N }. Hence, an application of (3.2) yields

|Xn|2 − |Xn−1|2 + |Xn − Xn−1|2 ≤ 2k
(
Φ(0) − Φ(Xn)

) + 2〈g0ΔWn, Xn〉,

for every n ∈ {1, . . . , N }. From applications of the Cauchy–Schwarz inequality and
the weighted Young inequality we then obtain

|Xn|2 − |Xn−1|2 + |Xn − Xn−1|2 + 2kΦ(Xn)

≤ 2kΦ(0) + 2〈g0ΔWn, Xn − Xn−1〉 + 2〈g0ΔWn, Xn−1〉
≤ 2kΦ(0) + 2

∣∣g0ΔWn
∣∣2 + 1

2
|Xn − Xn−1|2 + 2〈g0ΔWn, Xn−1〉,

for every n ∈ {1, . . . , N }.
The third term on the right-hand side is absorbed in the third term on the left-hand

side. Summation then yields

|Xn|2 + 1

2

n∑
j=1

|X j − X j−1|2 + 2k
n∑
j=1

Φ(X j )

≤ |X0|2 + 2tnΦ(0) + 2
n∑
j=1

∣∣g0ΔW j
∣∣2 + 2

n∑
j=1

〈
g0ΔW j , X j−1〉.

An inductive argument over n ∈ {1, . . . , N } then implies that Xn is square-integrable
due to the assumption X0 ∈ L2(Ω,F0,P;Rd). Therefore, after taking expectation
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the last sum vanishes. Moreover, an application of the Itô isometry then gives

E
[|Xn|2] + 1

2

n∑
j=1

E
[|X j − X j−1|2] + 2k

n∑
j=1

E
[
Φ(X j )

]

≤ E
[|X0|2] + 2tnΦ(0) + 2

n∑
j=1

E
[∣∣g0ΔW j

∣∣2]
= E

[|X0|2
] + 2tn

(
Φ(0) + |g0|2

)
.

Since this is true for any n ∈ {1, . . . , N } the assertion follows. ��

As the next theorem shows, Assumption 3.1 is also sufficient to ensure the well-
posedness of the backward Euler–Maruyamamethod. The result follows directly from
the fact that f is continuous and monotone due to (3.3). For a proof we refer, for
instance, to [4, Sect. 4], [39, Chap. 6.4], and [53, Theorem C.2]. The assertion also
follows from the more general result in Theorem 5.3 below.

Theorem 3.4 Let X0 ∈ L2(Ω,F0,P;Rd) and g0 ∈ Rd,m be given and let Assump-
tion 3.1 be satisfied. Then, for every equidistant step size k = T

N , N ∈ N, there exists
a unique family of square-integrable and (Ftn )n∈{0,...,N }-adapted random variables
(Xn)n∈{0,...,N } satisfying (3.6).

We now turn to an error estimate with respect to the L2(Ω;Rd)-norm. Since we do
not impose any (local) Lipschitz condition on the drift f , classical approaches based
on discrete Gronwall-type inequalities are not applicable. Instead we rely on an error
representation formula, which was introduced for deterministic problems in [38].

For its formulation, we introduce some additional notation: For a given equidistant
partition π = {0 = t0 < t1 < · · · < tN = T } ⊂ [0, T ] with step size k = T

N ,
we denote by X : [0, T ] × Ω → Rd the piecewise linear interpolant of the sequence
(Xn)n∈{0,...,N } generated by the backward Euler method (3.6). It is defined byX (0) =
X0 and for all t ∈ (tn−1, tn], n ∈ {1, . . . , N }, by

X (t) = t − tn−1

k
Xn + tn − t

k
Xn−1. (3.9)

In addition, we introduce the processesX ,X : [0, T ]×Ω → Rd , which are piecewise
constant interpolants of (Xn)n∈{0,...,N } and defined by X (0) = X (0) = X0 and for all
t ∈ (tn−1, tn], n ∈ {1, . . . , N }, by

X (t) = Xn and X (t) = Xn−1. (3.10)
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Analogously, we define the piecewise linear interpolated processW : [0, T ]×Ω →
Rm byW(0) = 0 and

W(t) = t − tn−1

k
W (tn) + tn − t

k
W (tn−1) = W (tn−1) + t − tn−1

k
ΔWn, (3.11)

for all t ∈ (tn−1, tn], n ∈ {1, . . . , N }.
We are now prepared to state our first preparatory result. The underlying idea

was introduced in [38], where it is used to derive a posteriori error estimates for the
backward Euler method. In fact, in the absence of noise, only the first term on the
right-hand side of (3.12) is non-zero. In [38] this term is used as an a posteriori error
estimator, since it is explicitly computable by quantities generated by the numerical
method.

Lemma 3.5 Let X0 ∈ L2(Ω,F0,P;Rd) as well as g0 ∈ Rd,m be given and let
Assumption 3.1 be satisfied. Let k = T

N , N ∈ N, be an arbitrary equidistant step size
and let tn = nk, n ∈ {0, . . . , N }. Then, for every n ∈ {1, . . . , N } the estimate

E
[|X(tn) − Xn|2] ≤ k

n∑
i=1

E
[〈 f (Xi ) − f (Xi−1), Xi − Xi−1〉]

+ 2
∫ tn

0
E
[〈
f (X (t)) − f (X(t)), g0

(W(t) − W (t)
)〉]

dt

(3.12)

holds, where (X(t))t∈[0,T ] and (Xn)n∈{0,...,N } are the solutions of (3.1) and (3.6),
respectively.

Proof From (3.6) we directly deduce that for every n ∈ {1, . . . , N }

Xn = X0 − k
n∑

i=1

f (Xi ) + g0W (tn).

Then, one easily verifies for all t ∈ (tn−1, tn], n ∈ {1, . . . , N }, that

X (t) = X0 −
∫ t

0
f (X (s)) ds + g0W(t).

Hence, due to (3.5), the error process E := X − X can be written as

E(t) =
∫ t

0

(
f (X (s)) − f (X(s))

)
ds + g0

(
W (t) − W(t)

) =: E1(t) + E2(t)

(3.13)

for all t ∈ [0, T ]. Here, we have E2(tn) = 0, since W is an interpolant of W . Hence,
for all n ∈ {0, . . . , N },

|E(tn)|2 = |E1(tn)|2. (3.14)
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814 M. Eisenmann et al.

To estimate the norm of E1(tn), we first note that E1 has absolutely continuous sample
paths with E1(0) = 0. Hence,

1

2

d

dt
|E1(t)|2 = 〈Ė1(t), E1(t)〉

holds for almost all t ∈ [0, T ]. Therefore, by integration with respect to t , we get

1

2
|E1(tn)|2 =

∫ tn

0
〈Ė1(t), E1(t)〉 dt

=
∫ tn

0
〈Ė1(t), E(t)〉 dt −

∫ tn

0
〈Ė1(t), E2(t)〉 dt . (3.15)

Next, we write

X (t) = t − tn−1

k
X (t) + tn − t

k
X (t), t ∈ (tn−1, tn],

and use (3.3) and (3.4) to obtain, for almost every t ∈ (tn−1, tn], that

〈Ė1(t), E(t)〉 = 〈 f (X (t)) − f (X(t)), X(t) − X (t)〉
= t − tn−1

k
〈 f (X (t)) − f (X(t)), X(t) − X (t)〉

+ tn − t

k
〈 f (X (t)) − f (X(t)), X(t) − X (t)〉

≤ tn − t

k
〈 f (X (t)) − f (X (t)),X (t) − X (t)〉

= tn − t

k
〈 f (Xn) − f (Xn−1), Xn − Xn−1〉.

Furthermore, the expectation of the second integral on the right-hand side of (3.15)
equals

E
[ ∫ tn

0
〈Ė1(t), E2(t)〉 dt

]
=

∫ tn

0
E
[〈 f (X (t)) − f (X(t)), g0(W (t) − W(t))〉] dt .

Therefore,

E
[|E1(tn)|2

] = 2
∫ tn

0
E[〈Ė1(t), E(t)〉] dt − 2

∫ tn

0
E[〈Ė1(t), E2(t)〉] dt

≤ 2
n∑

i=1

∫ ti

ti−1

ti − t

k
dt E

[〈 f (Xi ) − f (Xi−1), Xi − Xi−1〉]

+ 2
∫ tn

0
E
[〈 f (X (t)) − f (X(t)), g0(W(t) − W (t))〉] dt .

Since
∫ ti
ti−1

(ti − t) dt = 1
2k

2 the assertion follows. ��
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Error estimates of the backward Euler–Maruyama method for… 815

The next lemma concerns the difference between the Wiener process W and its
piecewise linear interpolant W .

Lemma 3.6 For every g0 ∈ Rd,m and every step size k = T
N , N ∈ N, the equality

( ∫ T

0
E[|g0(W (t) − W(t))|2] dt

) 1
2 = 1√

6
T

1
2 |g0|k 1

2 (3.16)

holds.

Proof From the definition (3.11) of W it follows that

∫ T

0
E[|g0(W (t) − W(t))|2] dt

=
N∑

n=1

∫ tn

tn−1

E
[∣∣∣g0(W (t) − W (tn−1) − t − tn−1

k
ΔWn

)∣∣∣2] dt
=

N∑
n=1

∫ tn

tn−1

E
[∣∣∣ tn − t

k
g0(W (t) − W (tn−1))

− t − tn−1

k
g0(W (tn) − W (t))

∣∣∣2] dt
=

N∑
n=1

∫ tn

tn−1

E
[∣∣∣ tn − t

k
g0(W (t) − W (tn−1))

∣∣∣2

+
∣∣∣ t − tn−1

k
g0(W (tn) − W (t))

∣∣∣2] dt
= 1

k2

N∑
n=1

( ∫ tn

tn−1

|g0|2(tn − t)2(t − tn−1) dt

+
∫ tn

tn−1

|g0|2(t − tn−1)
2(tn − t) dt

)
,

where we used that the two increments of the Wiener process are independent for
every t ∈ (tn−1, tn], n ∈ {1, . . . , N }, and we also applied Itô’s isometry. By symmetry
of the two terms it then follows that

∫ T

0
E[|g0(W (t) − W(t))|2] dt = 1

6
T |g0|2k,

and the proof is complete. ��
The error estimates in Lemmas 3.5 and 3.6 allow us to determine the order of

convergence of the backward Euler–Maruyama method without relying on discrete
Gronwall-type inequalities. The following theorem imposes the additional assumption
that the drift f is Hölder continuous. We include the parameter value α = 0, which
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816 M. Eisenmann et al.

simply means that f is continuous and globally bounded. The case of less regular f
is treated in Sect. 6.

Observe that we recover the standard rate 1
2 if α = 1, that is, if the drift f is assumed

to be globally Lipschitz continuous. Compare also with the standard literature, for
example, [20, Chap. 12] or [32, Sect. 1.3].

For processes X : [0, T ]×Ω → Rd and exponents α ∈ [0, 1], we define the family
of Hölder semi-norms by

|X |Cα([0,T ];L2(Ω;Rd )) = sup
t,s∈[0,T ]
t �=s

‖X(t) − X(s)‖L2(Ω;Rd )

|t − s|α

and the corresponding Hölder spaces

Cα([0, T ]; L2(Ω;Rd))={
X ∈ C([0, T ]; L2(Ω;Rd)) : |X |Cα([0,T ];L2(Ω;Rd )) <∞}

.

Theorem 3.7 Let X0 ∈ L2(Ω,F0,P;Rd) as well as g0 ∈ Rd,m be given, let Assump-
tion 3.1 be fulfilled and let f = ∇Φ be Hölder continuous with exponent α ∈ [0, 1],
i.e., there exists L f ∈ (0,∞) such that

| f (x) − f (y)| ≤ L f |x − y|α, for all x, y ∈ Rd .

Then there exists C ∈ (0,∞) such that for every step size k = T
N , N ∈ N, the estimate

max
n∈{0,...,N } ‖X(tn) − Xn‖L2(Ω;Rd ) ≤ Ck

1+α
4

holds, where (X(t))t∈[0,T ] and (Xn)n∈{0,...,N } are the solutions to (3.1) and (3.6),
respectively.

Proof Since f is assumed to be α-Hölder continuous it follows that

| f (x)| ≤ max(L f , | f (0)|)(1 + |x |α), for all x ∈ Rd .

In particular, f grows at most linearly. Therefore, as stated in [28, Chap. 2, Thm 4.3],

the solution (X(t))t∈[0,T ] of (3.1) fulfills X ∈ C
1
2 ([0, T ]; L2(Ω;Rd)).

We will use Lemma 3.5 to prove the error bound. To this end, we first show that

k
N∑
i=1

E
[〈 f (Xi ) − f (Xi−1), Xi − Xi−1〉]

≤ L f T
1−α
2

(
2E

[|X0|2
] + 4T

(
Φ(0) + |g0|2

)) 1+α
2
k

1+α
2 .

(3.17)

123



Error estimates of the backward Euler–Maruyama method for… 817

Indeed, we make use of the Hölder continuity of f directly and obtain

k
N∑
i=1

E
[〈 f (Xi ) − f (Xi−1), Xi − Xi−1〉]

≤
N∑
i=1

kE
[| f (Xi ) − f (Xi−1)||Xi − Xi−1|]

≤ L f

N∑
i=1

k
1
q k

1
pE

[|Xi − Xi−1|1+α
]

≤ L f

( N∑
i=1

k
) 1

q
(
k

N∑
i=1

E
[|Xi − Xi−1|2]) 1

p
,

where we also used Hölder’s inequality with p = 2
1+α

∈ [1, 2] and 1
p + 1

q = 1 as well

as Jensen’s inequality. Due to the a priori estimate (3.8) the sum
∑N

i=1 E
[|Xi−Xi−1|2]

is bounded independently of the step size k. Hence, we arrive at (3.17).
Therefore, it remains to estimate the second error term in Lemma 3.5:

∫ tn

0
E
[〈
f (X (t)) − f (X(t)), g0(W(t) − W (t))

〉]
dt

=
n∑
j=1

∫ t j

t j−1

E
[〈
f (X j ) − f (X(t)), g0(W(t) − W (t))

〉]
dt, (3.18)

where we inserted the definition of X from (3.10). Moreover, from (3.11) we get

g0(W(t) − W (t)) = t − t j−1

k
g0ΔW j − g0(W (t) − W (t j−1))

for t ∈ (t j−1, t j ]. Hence, the random variable in the second slot of the inner product on
the right-hand side of (3.18) is centered and is independent of any Ft j−1 -measurable
random variable. Thus, we may write

n∑
j=1

∫ t j

t j−1

E
[〈
f (X j ) − f (X(t)), g0(W(t) − W (t))

〉]
dt

=
n∑
j=1

∫ t j

t j−1

E
[〈
f (X j ) − f (X j−1), g0(W(t) − W (t))

〉]
dt

+
n∑
j=1

∫ t j

t j−1

E
[〈
f (X(t j−1)) − f (X(t)), g0(W(t) − W (t))

〉]
dt =: T1 + T2.
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To estimate T1 we first recall the definitions of X and X from (3.10). Then we apply
the Cauchy–Schwarz inequality and obtain

T1 =
∫ tn

0
E
[〈 f (X (t)) − f (X (t)), g0(W(t) − W (t))〉] dt

≤
( ∫ tn

0
E
[| f (X (t)) − f (X (t))|2] dt) 1

2
( ∫ tn

0
E
[|g0(W(t) − W (t))|2] dt) 1

2
.

From the Hölder continuity of f we then deduce that

∫ tn

0
E
[| f (X (t)) − f (X (t))|2] dt ≤ L2

f k
N∑
i=1

E
[|Xi − Xi−1|2α]

≤ L2
f T

1
q

(
k

N∑
i=1

E
[|Xi − Xi−1|2])α

,

where the last inequality is in fact an equality if α = 1, 1
q = 0 or if α = 0, 1

q = 1.

Otherwise the inequality follows from Hölder’s inequality with p = 1
α

∈ (1,∞) and
1
p + 1

q = 1, followed by an application of Jensen’s inequality. Furthermore, Lemma 3.6
states that

( ∫ T

0
E
[|g0(W(t) − W (t))|2] dt) 1

2 = 1√
6
T

1
2 |g0|k 1

2 . (3.19)

Therefore, together with (3.8) we arrive at the estimate

T1 ≤ 1√
6
L f T

2−α
2 |g0|

(
2E

[|X0|2
] + 4T

(
Φ(0) + |g0|2

)) α
2
k

1+α
2

for all n ∈ {1, . . . , N }.
The estimate of T2 follows similarly by additionally making use of the Hölder

continuity of the exact solution. To be more precise, we have that

n∑
i=1

∫ ti

ti−1

E
[| f (X(ti−1)) − f (X(t))|2] dt

≤ L2
f

N∑
i=1

∫ ti

ti−1

E
[|X(ti−1) − X(t)|2α]

dt

≤ L2
f

N∑
i=1

∫ ti

ti−1

(
E
[|X(ti−1) − X(t)|2])α dt

≤ L2
f T ‖X‖2α

C
1
2 ([0,T ];L2(Ω;Rd ))

kα.
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Together with the Cauchy–Schwarz inequality and (3.19), we therefore obtain

T2 ≤ 1√
6
L f T |g0|‖X‖α

C
1
2 ([0,T ];L2(Ω;Rd ))

k
1+α
2 .

Inserting the estimates for T1, T2, and (3.17) into Lemma 3.5 completes the proof. ��

Remark 3.8 The precise form of the constant C appearing in Theorem 3.7 is, after
taking squares,

C2 = L f T
1−α
2 C

1+α
2

0 + 1√
6
L f T

2−α
2 |g0|

(
C

α
2
0 + T

α
2 ‖X‖α

C
1
2 ([0,T ];L2(Ω;Rd ))

)

with C0 = 2E[|X0|2] + 4T (Φ(0) + |g0|2).
Observe that, sinceweavoid theuseofGronwall-type inequalities, the error constant

does not grow exponentially with time T . This indicates that the backward Euler–
Maruyama method is particularly suited for long-time simulations as is often required
in Markov-chain Monte Carlo methods, for example, in the unadjusted Langevin
algorithm [45].

4 Properties of the exact solution in themulti-valued case

In this section, we turn our attention to the multi-valued stochastic differential equa-
tion (MSDE) in (1.5). We give a complete account of the assumptions imposed on
the coefficient functions. In addition, we collect some results on the existence and
uniqueness of a strong solution to the MSDE. We also include useful results on higher
moment bounds of the exact solution.

Assumption 4.1 The set valued mapping f : Rd → 2R
d
is maximal monotone with

int D( f ) �= ∅. Moreover, there exist constants β, λ ∈ [0,∞), μ ∈ (0,∞), and
p ∈ [1,∞) such that

〈 fv, v〉 ≥ μ|v|p − λ and | fv| ≤ β(1 + |v|p−1)

for every v ∈ D( f ) and fv ∈ f (v).

Assumption 4.2 The function b : Rd → Rd is Lipschitz continuous; i.e., there exists
a constant Lb ∈ [0,∞) such that

|b(v) − b(w)| ≤ Lb|v − w|

for all v,w ∈ Rd .
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Assumption 4.3 The function g : Rd → Rd,m is Lipschitz continuous; i.e., there exists
a constant Lg ∈ [0,∞) such that

|g(v) − g(w)| ≤ Lg|v − w|

for all v,w ∈ Rd .

Assumption 4.4 The initial value X0 is an F0-measurable and D( f )-valued random
variable. Furthermore,

E[|X0|max(2p−2,2)] < ∞,

where the value of p is the same as in Assumption 4.1.

Observe that Assumptions 4.2 and 4.3 directly imply that b and g grow at most
linearly. More precisely, after possibly increasing the values of Lb and Lg , we obtain
the bounds

|b(v)| ≤ Lb(1 + |v|), |g(v)| ≤ Lg(1 + |v|), (4.1)

for all v ∈ Rd .

Remark 4.5 Without loss of generality we will assume that 0 ∈ D( f ). Otherwise,
since the graph of f is not empty, we take v0 ∈ D( f ) and fv0 ∈ f (v0) and replace
f , b, and g by suitably shifted mappings, for instance, f̃ (v) := f (v + v0). Then
0 ∈ D( f̃ ) holds. Compare further with [48, Abschn. 3.3.3].

Next, we introduce the notion of a solution of (1.5), which we use for the remainder
of this paper.

Definition 4.6 A tuple (X , η) is called a solution of the multi-valued stochastic dif-
ferential equation (1.5), if the following conditions hold.

(i) The mapping X : [0, T ] × Ω → Rd is an (Ft )t∈[0,T ]-adapted, P-almost surely
continuous stochastic process such that X(t) ∈ D( f ) for all t ∈ (0, T ] with
probability one.

(ii) The mapping η : [0, T ] × Ω → Rd is an (Ft )t∈[0,T ]-adapted stochastic process
such that

∫ T

0
|η(t)| dt < ∞, P-almost surely.

(iii) The equality

X(t) +
∫ t

0
η(s) ds = X0 +

∫ t

0
b(X(s)) ds +

∫ t

0
g(X(s)) dW (s) (4.2)

holds for all t ∈ [0, T ] and P-almost surely.
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(iv) For P-almost all ω ∈ Ω and t ∈ [0, T ], it follows that η(t, ω) ∈ f (X(t, ω)); in
other words, for every y ∈ D( f ) and fy ∈ f (y) the inequality

〈η(t) − fy, X(t) − y〉 ≥ 0

is satisfied for almost every t ∈ [0, T ] and P-almost surely, cf. Definition 2.1.

This notion of a solution has been considered in, for example, [7,21,42,52], where
also the existence of a unique solution is shown. Note that in [7] the condition on η

is slightly milder than in [21,42,52]. Our concept of solution corresponds to the latter
sources. For the multi-valued equation it becomes necessary to consider a tuple (X , η)

as a solution. The function X plays the usual role of the solution of the equation. As
f (X) is now a set in Rd , we select one unique element η in this set such that the
inclusion (1.5) becomes an equality when exchanging f (X) by η.

Due to their importance for the error analysis we next prove certain moment esti-
mates.

Theorem 4.7 Let Assumptions 4.1 and 4.4 be satisfied with p ∈ [1,∞). Then there
exists a unique solution (X , η) of (1.5) in the sense ofDefinition 4.6. There is a constant
C ∈ (0,∞) such that

sup
t∈[0,T ]

E
[|X(t)|2] + E

[ ∫ T

0
|X(s)|p ds

]
≤ C .

Furthermore, if p ∈ (1,∞) and 1
p + 1

q = 1, then

E
[ ∫ T

0
|η(s)|q ds

]
≤ C .

Proof Existence and uniqueness is shown, for instance, in [21]. For

X(t) = X0 +
∫ t

0
(b(X(s)) − η(s)) ds +

∫ t

0
g(X(s)) dW (s)

the equality

|X(t)|2 = |X0|2 +
∫ t

0

(
2〈b(X(s)), X(s)〉 − 2〈η(s), X(s)〉 + |g(X(s))|2) ds

+
∫ t

0
2〈X(s), g(X(s)) dW (s)〉,

holds by an application of Itô’s formula (see [12, Chap. 4.7, Theorem 7.1]). From the
coercivity assumption on f we obtain that

〈 fX(s), X(s)〉 ≥ μ|X(s)|p − λ
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for every fX(s) ∈ f (X(s)) and almost every s ∈ [0, T ]. The fact that η(s) ∈ f (X(s))
for almost every s ∈ [0, T ] then implies that

∫ t

0
〈η(s), X(s)〉 ds ≥ μ

∫ t

0
|X(s)|p ds − λt .

Since b and g satisfie the linear growth bound (4.1), we have

∫ t

0
〈b(X(s)), X(s)〉 ds ≤ 2Lb

∫ t

0

(
1 + |X(s)|2) ds

as well as

∫ t

0
|g(X(s))|2 ds ≤ 2L2

g

∫ t

0

(
1 + |X(s)|2) ds.

Thus, we get

|X(t)|2 + 2μ
∫ t

0
|X(s)|p ds ≤ |X0|2 + (

4Lb + 2L2
g

) ∫ t

0

(
1 + |X(s)|2) ds

+ 2λt +
∫ t

0
2〈X(s), g(X(s)) dW (s)〉.

We introduce

Z(t) := |X(t)|2 + 2μ
∫ t

0
|X(s)|p ds, M(t) :=

∫ t

0
2〈X(s), g(X(s)) dW (s)〉,

ξ(t) := |X0|2 + 2(λ + 2Lb + L2
g)t, ϕ(t) := 4Lb + 2L2

g.

Then Z , M , and ξ are (Ft )t∈[0,T ]-adapted and P-almost surely continuous stochastic
processes. Furthermore, M is a local (Ft )t∈[0,T ]-martingale satisfying M(0) = 0.
Thus, an application of Lemma 2.3 yields, for every t ∈ [0, T ], that

E
[
Z(t)

] ≤ exp
( ∫ t

0
ϕ(s) ds

)
E
[
sup

s∈[0,t]
ξ(s)

]
= exp

(
(4Lb + 2L2

g)t
)(
E
[|X0|2

] + 2(λ + 2Lb + L2
g)t

)
.

Inserting the definition of Z then proves the first estimate.
Furthermore, if Assumption 4.1 holds with p ∈ (1,∞), then we have, for every

fx ∈ f (x), x ∈ Rd , that

| fx | ≤ β(1 + |x |p−1),
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with q = p
p−1 . Therefore, it follows that

( ∫ T

0
E
[|η(s)|q] ds) 1

q ≤ T
1
q β + β

( ∫ T

0
E
[|X(s)|p] ds) 1

q ≤ C

since η(s) ∈ f (X(s)) for almost every s ∈ [0, T ]. ��
Remark 4.8 Let us mention that, for instance, in [41, Chapter 4] and the references
therein, a weaker notion of a solution to (1.5) is found. More precisely, if (X , η) is a
solution in the sense of Definition 4.6, then (X , H) is a solution in the sense of [41,
Chapter 4] with the definition

H(t) :=
∫ t

0
η(s) ds, t ∈ [0, T ].

In particular, the process H is a continuous, progressively measurable process with
bounded total variation and H(0) = 0 almost surely. The stronger condition of absolute
continuity of the process H , which is required in Definition 4.6, is essential in the
proof of Theorem 6.4 below. This explains why we work with the stronger notion of
a solution in Definition 4.6.

5 Well-posedness of the backward Euler method in themulti-valued
case

In this section, we show that the backward Euler–Maruyama method (1.6) for the
MSDE (1.5) is well-posed under the same assumptions as in the previous section.

Lemma 5.1 Let Assumptions 4.1 and 4.2 be satisfied. Furthermore, let w ∈ Rd and
k ∈ (0, T ]begivenwith Lbk ∈ [0, 1). Then there exist uniquely determined x0 ∈ D( f )
and ηx0 ∈ f (x0), which satisfy the nonlinear equation

x0 + kηx0 − kb(x0) = w. (5.1)

Proof We first show that there exists a unique x0 ∈ D( f ) such that

x0 + k f (x0) − kb(x0) = (id + k f − kb)(x0) � w. (5.2)

To this end, notice that for all x, y ∈ Rd , the inequalities

〈(id − kb)x − (id − kb)y, x − y〉 ≥ |x − y|2 − kLb|x − y|2 ≥ 0

hold due to the step size bound. In addition, it follows from (4.1) that

〈(id − kb)x, x〉
|x | = |x |2 − k〈b(x), x〉

|x | ≥ (1 − kLb)|x | − kLb
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for all x ∈ Rd . Hence, themapping (id+k f −kb) is the sum of themaximal monotone
operator k f and the mapping (id− kb), which is single-valued, Lipschitz continuous,
monotone, and coercive.

Thus, we can apply [2, Theorem 2.1] and obtain the existence of x0 ∈ D( f ) such
that (5.2) holds. Furthermore, there necessarily exists a corresponding unique element
ηx0 ∈ f (x0) with

ηx0 = 1

k
(w − x0) + b(x0).

It remains to prove the uniqueness of x0, which directly implies the uniqueness of
ηx0 . Assume that there exist x1 ∈ D( f ) and ηx1 ∈ f (x1) as well as x2 ∈ D( f ) and
ηx2 ∈ f (x2) such that

x1 + kηx1 − kb(x1) = w, x2 + kηx2 − kb(x2) = w.

By considering the difference of these equations tested with x1 − x2, we obtain

0 = 〈x1 − x2, x1 − x2〉 + k〈ηx1 − ηx2 , x1 − x2〉 − k〈b(x1) − b(x2), x1 − x2〉
≥ |x1 − x2|2 − kLb|x1 − x2|2 ≥ 0.

Since 1 − kLb > 0 we must have x1 = x2 and the proof is complete. ��
For later use, we note that the solution operator of (5.1) is Lipschitz continuous.

Lemma 5.2 Let Assumptions 4.1 and 4.2 be satisfied. For k ∈ (0, T ]with Lbk ∈ [0, 1)
let Sk : Rd → D( f ) be the solution operator that mapsw ∈ Rd to the unique solution
x0 ∈ D( f ) of (5.1). Then Sk is globally Lipschitz continuous with

|Sk(w1) − Sk(w2)| ≤ 1

1 − kLb
|w1 − w2| for all w1, w2 ∈ Rd .

Proof Letw1, w2 ∈ Rd and k ∈ (0, T ]with Lbk ∈ [0, 1) be given. Let xi = Sk(wi ) ∈
D( f ) and ηxi ∈ f (xi ), i ∈ {1, 2}, denote the unique solutions of the equations

x1 + kηx1 − kb(x1) = w1, x2 + kηx2 − kb(x2) = w2.

By considering the difference of these equations, tested with x1 − x2, we obtain

|x1 − x2|2 + k〈ηx1 − ηx2 , x1 − x2〉 − k〈b(x1) − b(x2), x1 − x2〉
= 〈w1 − w2, x1 − x2〉.

By using the Cauchy–Schwarz inequality for the right-hand side as well as the mono-
tonicity and the Lipschitz continuity for the left-hand side, we get

(1 − kLb)|x1 − x2|2 ≤ |w1 − w2||x1 − x2|.
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Reinserting xi = Sk(wi ) then shows that

|Sk(w1) − Sk(w2)| = |x1 − x2| ≤ 1

1 − kLb
|w1 − w2|

as claimed. ��
Theorem 5.3 Let Assumptions 4.1 to 4.4 be satisfied. Then for every step size k =
T
N , N ∈ N, with Lbk ∈ [0, 1) there exist uniquely determined families of square-
integrable, Rd -valued and (Ftn )n∈{1,...,N }-adapted random variables (Xn)n∈{1,...,N }
and (ηn)n∈{1,...,N } such that Xn ∈ D( f ), ηn ∈ f (Xn) for every n ∈ {1, . . . , N } and

Xn + kηn = Xn−1 + kb(Xn) + g(Xn−1)ΔWn (5.3)

for every n ∈ {1, . . . , N }, P-almost surely with X0 = X0 and η0 ∈ f (X0).

Proof We prove the existence of (Xn)n∈{0,...,N } and (ηn)n∈{0,...,N } by induction over
n ∈ {0, . . . , N }. From the assumptions on X0 and f it is clear that X0 = X0 and
η0 ∈ f (X0) are Ft0 -adapted and square-integrable. In particular, it follows from
Assumptions 4.1 and 4.4 that

E
[|η0|2] ≤ β2E

[
(1 + |X0|p−1)2

] ≤ 2β2(1 + E[|X0|2p−2]).
Next, we assume that (X j ) j∈{0,...,n−1} and (η j ) j∈{0,...,n−1} are adapted to

(Ft j ) j∈{0,...,n−1}, square-integrable and satisfy (5.3) for all j ∈ {1, . . . , n − 1}. By
Lemma 5.1 there exist uniquely determined Xn(ω) ∈ D( f ) and ηn(ω) ∈ f (Xn(ω))

for every ω ∈ Ω such that

Xn(ω) + kηn(ω) = Xn−1(ω) + kb(Xn(ω)) + g(Xn−1(ω))ΔWn(ω).

By Lemma 5.2, the solution operator Sk : Rd → D( f ) that maps Xn−1(ω) +
g(Xn−1(ω))ΔWn(ω) to Xn(ω) ∈ D( f ) is Lipschitz continuous. As Sk is Lipschitz
continuous and, hence, of linear growth it follows that Xn is an Ftn -measurable and
square-integrable random variable. To be more precise, we have the bound

∥∥Xn
∥∥
L2(Ω;Rd )

= ∥∥Sk(Xn−1 + g(Xn−1)ΔWn)‖L2(Ω;Rd )

≤ |Sk(0)| + ∥∥Xn−1 + g(Xn−1)ΔWn
∥∥
L2(Ω;Rd )

.

This implies, in particular, that

ηn = −1

k

(
Xn − Xn−1) + b(Xn) + g(Xn−1)

ΔWn

k
a.s. in Ω

is also a Ftn -measurable and square-integrable random variable as Xn , Xn−1, and
g(Xn−1)ΔWn have these properties. This finishes the proof of the induction and
hence that of the theorem. ��
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Next we state an a priori estimate for the sequence of random variables satisfying
recursion (1.6).

Lemma 5.4 Let Assumptions 4.1 to 4.4 be satisfied. For a step size k = T
N , N ∈ N, with

5Lbk ∈ [0, 1), let (Xn)n∈{0,...,N } and (ηn)n∈{0,...,N } be two families of (Ftn )n∈{0,...,N }-
adapted random variables as stated in Theorem 5.3. Then there exists KX ∈ (0,∞)

independent of the step size k = T
N such that

max
n∈{1,...,N }E

[|Xn|2] + 1

2

N∑
j=1

E
[|X j − X j−1|2] + 2μk

N∑
j=1

E
[|X j |p] ≤ KX .

(5.4)

If, in addition, p ∈ (1,∞), then there exists Kη ∈ (0,∞) independent of the step size
k = T

N such that

k
N∑
j=1

E
[|η j |q] ≤ Kη, (5.5)

where q ∈ (1,∞) is given by 1
p + 1

q = 1.

Remark 5.5 If p = 1 inAssumption 4.1, then f and, hence, (ηn)n∈{1,...,N } are bounded.
In particular, (5.5) holds for any q ∈ (1,∞) and for any step size k = T

N with
Lbk ∈ [0, 1).
Proof of Lemma 5.4 First, we recall the identity

〈Xn − Xn−1, Xn〉 = 1

2

(|Xn|2 − |Xn−1|2 + |Xn − Xn−1|2).
As ηn ∈ f (Xn), using Assumptions 4.1 and 4.2, it follows that

1

2

(|Xn|2 − |Xn−1|2 + |Xn − Xn−1|2) + kμ|Xn|p

≤ 〈Xn − Xn−1, Xn〉 + k〈ηn, Xn〉 + kλ

= k〈b(Xn), Xn〉 + 〈g(Xn−1)ΔWn, Xn〉 + kλ

≤ kLb(1 + |Xn|)|Xn| + 〈g(Xn−1)ΔWn, Xn〉 + kλ,

where we also applied (4.1). Hence,

1

2

(|Xn|2 − |Xn−1|2 + |Xn − Xn−1|2) + kμ|Xn|p

≤ k(λ + Lb) + 5

4
kLb|Xn|2 + 〈g(Xn−1)ΔWn, Xn − Xn−1〉

+ 〈g(Xn−1)ΔWn, Xn−1〉
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≤ k(λ + Lb) + 5

4
kLb|Xn|2 + ∣∣g(Xn−1)ΔWn

∣∣2 + 1

4
|Xn − Xn−1|2

+ 〈g(Xn−1)ΔWn, Xn−1〉,

for every n ∈ {1, . . . , N }, where we also applied the Cauchy–Schwarz and weighted
Young inequalities. After a kick-back argument, we sum from 1 to n ∈ {1, . . . , N } to
obtain

|Xn|2 + 1

2

n∑
j=1

|X j − X j−1|2 + 2kμ
n∑
j=1

|X j |p

≤ |X0|2 + 2(λ + Lb)T + 5

2
kLb

n∑
j=1

|X j |2 + 2
n∑
j=1

∣∣g(X j−1)ΔW j
∣∣2

+ 2
n∑
j=1

〈
g(X j−1)ΔW j , X j−1〉.

After taking expectations, the last term on the right-hand side vanishes. Then, appli-
cations of Itô’s isometry and (4.1) give

E
[|Xn|2] + 1

2

n∑
j=1

E
[|X j − X j−1|2] + 2kμ

n∑
j=1

E
[|X j |p]

≤ E
[|X0|2] + 2(λ + Lb)T + 5

2
kLb

n∑
j=1

E
[|X j |2] + 2

n∑
j=1

E
[∣∣g(X j−1)ΔW j

∣∣2]

≤ E
[|X0|2] + 2(λ + Lb)T + 5

2
kLb

n∑
j=1

E
[|X j |2] + 2k

n∑
j=1

E
[|g(X j−1)|2]

≤ (1 + 4kL2
g)E

[|X0|2] + 2(λ + Lb + 2L2
g)T + k

(5
2
Lb + 4L2

g

) n−1∑
j=1

E
[|X j |2]

+ 5

2
kLbE

[|Xn|2].
Since the step size bound 5Lbk ∈ [0, 1) ensures that

1 − 5

2
kLb >

1

2
,

the discrete Gronwall inequality (see, for example, [8]) is applicable and completes
the proof of (5.4). Finally, it follows from the polynomial growth bound on f that
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(
k

N∑
j=1

E
[|η j |q]) 1

q ≤
(
k

N∑
j=1

E
[
βq(1 + |η j |p−1)q

]) 1
q

≤ βT
1
q + β

(
k

N∑
j=1

E
[|X j |p]) 1

q
,

and an application of (5.4) then yields (5.5). ��

6 Error estimates in themulti-valued case

In this section we derive an error estimate for the backward Euler method given by
(1.6) for the MSDE (1.5).

To prove the convergence of the scheme (1.6) let us fix some notation. Throughout
this section we assume that the equidistant step size k = T

N is small enough so that the
a priori estimates in Lemma 5.4 hold. Furthermore, as in (3.9) and (3.10), we denote
the piecewise linear interpolants of the discrete values by X (0) = X0,H(0) = η0 for
η0 ∈ f (X0) and

X (t) := t − tn−1

k
Xn + tn − t

k
Xn−1, H(t) := t − tn−1

k
ηn + tn − t

k
ηn−1

for all t ∈ (tn−1, tn] and n ∈ {1, . . . , N }. Similarly, we define the piecewise constant
interpolants by X (0) = X (0) = X0,H(0) = H(0) = η0, and

X (t) = Xn and X (t) = Xn−1, as well as

H(t) = ηn and H(t) = ηn−1,

for all t ∈ (tn−1, tn] and n ∈ {1, . . . , N }. Moreover, we introduce the stochastic
processes G : [0, T ] × Ω → Rd and G : [0, T ] × Ω → Rd defined by

G(t) =
∫ t

0
g(X(s)) dW (s), for all t ∈ [0, T ], (6.1)

as well as by G(0) = 0 and, for all n ∈ {1, . . . , N } and t ∈ (tn−1, tn],

G(t) = t − tn−1

k
g(Xn−1)ΔWn +

n−1∑
i=1

g(Xi−1)ΔWi

= t − tn−1

k
g(Xn−1)ΔWn +

∫ tn−1

0
g(X (s)) dW (s).

(6.2)
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In view of (1.6) and the definition of G for t ∈ (tn−1, tn], n ∈ {1, . . . , N }, we obtain
the representation

X (t) = Xn−1 + t − tn−1

k

(
Xn − Xn−1)

=
(
X0 + k

n−1∑
i=1

(
b(Xi ) − ηi

) +
n−1∑
i=1

g(Xi−1)ΔWi
)

+ t − tn−1

k

(
kb(Xn) − kηn + g(Xn−1)ΔWn

)
= X0 +

∫ t

0

(
b(X (s)) − H(s)

)
ds + G(t).

(6.3)

We begin the derivation of our error estimate by considering the difference between
the stochastic integral G and its approximation G.

Lemma 6.1 Let Assumptions 4.1 to 4.4 be satisfied. Then there exists KG ∈ (0,∞)

such that, for every equidistant step size k = T
N , N ∈ N with 5Lbk ∈ [0, 1) and every

t ∈ [0, T ], we have

∥∥G(t) − G(t)
∥∥2
L2(Ω;Rd )

≤ KGk + 2L2
g

∫ t

0
E
[|X(s) − X (s)|2] ds. (6.4)

In addition, for every ρ ∈ [2,∞), there exists Kρ ∈ (0,∞) such that, for every
n ∈ {1, . . . , N } and t ∈ (tn−1, tn], the following estimates hold:

( ∫ t

tn−1

E
[|G(t) − G(s)|ρ]

ds
) 1

ρ ≤ Kρk
1
2

( ∫ t

tn−1

(
1 + E

[|X(s)|ρ])
ds

) 1
ρ

(6.5)

and

sup
s∈[tn−1,t]

‖G(t) − G(s)‖ρ

Lρ(Ω;Rd )
≤ Kρk

ρ
2
(
1 + ‖Xn−1‖ρ

Lρ(Ω;Rd )

)
. (6.6)

Proof Recall the definitions ofG and G from (6.1) and (6.2). First, we add and subtract
a term and then apply the triangle inequality. Then, for every n ∈ {1, . . . , N } and
t ∈ (tn−1, tn] we arrive at
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∥∥G(t) − G(t)
∥∥
L2(Ω;Rd )

≤
∥∥∥ ∫ t

0

(
g(X(s)) − g(X (s))

)
dW (s)

∥∥∥
L2(Ω;Rd )

+
∥∥∥ ∫ t

tn−1

g(X (s)) dW (s) − t − tn−1

k
g(Xn−1)ΔWn

∥∥∥
L2(Ω;Rd )

=
( ∫ t

0
E
[|g(X(s)) − g(X (s))|2] ds) 1

2

+
∥∥∥g(Xn−1)

( tn − t

k

(
W (t) − W (tn−1)

)
− t − tn−1

k

(
W (tn) − W (t)

))∥∥∥
L2(Ω;Rd )

by an application of Itô’s isometry. Furthermore, due to the Lipschitz continuity of g
we obtain

( ∫ t

0
E
[|g(X(s)) − g(X (s))|2] ds) 1

2

≤ Lg

( ∫ t

0
E
[|X(s) − X (s)|2] ds) 1

2 + Lg

( ∫ t

0
E
[|X (s) − X (s)|2] ds) 1

2

≤ Lg

( ∫ t

0
E
[|X(s) − X (s)|2] ds) 1

2 + Lg

(1
3
k

n∑
i=1

E
[|Xi − Xi−1|2]) 1

2
,

where the last step follows from the identity

X (s) − X (s) = s − ti−1

k
Xi + ti − s

k
Xi−1 − Xi−1 = s − ti−1

k

(
Xi − Xi−1)

which holds for every s ∈ (ti−1, ti ], i ∈ {1, . . . , N }. Finally, it follows from the same
arguments as in the proof of Lemma 3.6 and by (4.1) for every t ∈ (tn−1, tn] that

∥∥∥g(Xn−1)
( tn − t

k

(
W (t) − W (tn−1)

) − t − tn−1

k

(
W (tn) − W (t)

))∥∥∥2
L2(Ω;Rd )

= 1

k2
(
(tn − t)2(t − tn−1) + (t − tn−1)

2(tn − t)
)∥∥g(Xn−1)

∥∥2
L2(Ω;Rd )

= 1

k
(tn − t)(t − tn−1)

∥∥g(Xn−1)
∥∥2
L2(Ω;Rd )

≤ 1

4
L2
gk

(
1 + ‖Xn−1‖L2(Ω;Rd )

)2
.

Together with the a priori bounds from Lemma 5.4 this shows (6.4).
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It remains to prove the estimates (6.5) and (6.6). For (6.5) we first apply the
Burkholder–Davis–Gundy-type inequality from Lemma 2.2 with constant Cρ and
obtain for every n ∈ {1, . . . , N } and t ∈ (tn−1, tn] that∫ t

tn−1

E
[|G(t) − G(s)|ρ]

ds ≤ Cρ
ρ

∫ t

tn−1

(t − s)
ρ−2
2

∫ t

s
E
[|g(X(τ ))|ρ]

dτ ds

≤ 2ρ

ρ
Cρ

ρ L
ρ
gk

ρ
2

∫ t

tn−1

(
1 + E

[|X(τ )|ρ])
dτ,

where we also made use of the linear growth bound (4.1) in the last step. This proves
(6.5). The bound in (6.6) can be shown by analogous arguments. ��

The next lemma generalizes an important estimate from the proof of Theorem 3.7
to the multi-valued setting. In particular, we refer to Lemma 3.5 and (3.17).

Lemma 6.2 Let Assumptions 4.1 to 4.4 be satisfied. For every step size k = T
N , N ∈ N,

with 5Lbk ∈ [0, 1), the families of random variables (Xn)n∈{0,...,N } and (ηn)n∈{0,...,N }
are as stated in Theorem 5.3. Then there exists Kδη ∈ (0,∞) independent of the step
size k such that

0 ≤k
N∑
i=1

E
[〈ηi − ηi−1, Xi − Xi−1〉] ≤ Kδηk

1
2 .

Proof The nonnegativity follows immediately from the monotonicity of f . To prove
the second inequality, we insert the scheme (5.3) and obtain

k
N∑
i=1

E
[〈ηi − ηi−1, Xi − Xi−1〉]

= k
N∑
i=1

E
[〈ηi − ηi−1, k(b(Xi ) − ηi ) + g(Xi−1)ΔWi 〉]

= −k2
N∑
i=1

E
[〈ηi − ηi−1, ηi 〉] (6.7)

+ k
N∑
i=1

E
[〈ηi − ηi−1, kb(Xi ) + g(Xi−1)ΔWi 〉]. (6.8)

For (6.7) we obtain

−k2
N∑
i=1

E
[〈ηi − ηi−1, ηi 〉] = −k2

2

N∑
i=1

E
[|ηi |2 − |ηi−1|2 + |ηi − ηi−1|2]

≤ −k2

2

(
E
[|ηN |2] − E

[|η0|2]) ≤ k2

2
E
[|η0|2]
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because of the telescopic structure. Furthermore, it follows from Assumptions 4.1
and 4.4 that

(
E
[|η0|2]) 1

2 ≤ β
(
1 + (

E
[|X0|2p−2]) 1

2
)

< ∞.

For the term in (6.8) we apply Hölder’s inequality with ρ = max(2, p) and 1
ρ

+ 1
ρ′ = 1

to obtain

k
N∑
i=1

E[〈ηi − ηi−1, kb(Xi ) + g(Xi−1)ΔWi 〉]

≤ k
N∑
i=1

(
E[|ηi − ηi−1|ρ′ ]) 1

ρ′ (E[|kb(Xi ) + g(Xi−1)ΔWi |ρ]) 1
ρ

≤
(
k

N∑
i=1

E[|ηi − ηi−1|ρ′ ]
) 1

ρ′ (
k

N∑
i=1

E[|kb(Xi ) + g(Xi−1)ΔWi |ρ]
) 1

ρ
.

Then, from applications of the triangle inequality and Lemma 5.4, we get

(
k

N∑
i=1

E[|ηi − ηi−1|ρ′ ]
) 1

ρ′

≤
(
k

N∑
i=1

E[|ηi |ρ′ ]
) 1

ρ′ +
(
k

N∑
i=1

E[|ηi−1|ρ′ ]
) 1

ρ′

≤ K
1
ρ′
η + (

Kη + E[|η0|ρ′ ]) 1
ρ′ ≤ 2K

1
ρ′
η + (

E[|η0|ρ′ ]) 1
ρ′ .

We apply the polynomial growth bound satisfied by f and see that, for p ∈ [2,∞),

(
E[|η0|ρ′ ]) 1

ρ′ = (
E[|η0|q ]) 1

q ≤ β(1 + ‖X0‖p−1
L p(Ω;Rd )

)

is fulfilled, while for p ∈ [1, 2) we have

(
E[|η0|ρ′ ]) 1

ρ′ = (
E[|η0|2]) 1

2

≤ β
(
1 + (

E[|X0|2p−2]) 1
2
) = β

(
1 + ‖X0‖p−1

L2p−2(Ω;Rd )

)
.
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In both cases the appearing terms are finite because of Assumption 4.4. Moreover, a
further application of the triangle inequality yields

(
k

N∑
i=1

E[|kb(Xi ) + g(Xi−1)ΔWi |ρ]
) 1

ρ

≤
(
k

N∑
i=1

E[|kb(Xi )|ρ]
) 1

ρ

+
(
k

N∑
i=1

E[|g(Xi−1)ΔWi |ρ]
) 1

ρ

.

Due to the linear growth bound (4.1) on b and the a priori bound (5.4), it then follows
that

(
k

N∑
i=1

E[|kb(Xi )|ρ]
) 1

ρ

≤ Lbk

(
k

N∑
i=1

E
[(
1 + |Xi |)ρ]) 1

ρ

≤ Lbk

(
T

1
ρ + (

max
( 1

2μ
, T

)
KX

) 1
ρ

)
.

By application of Lemma 2.2 with constant Cρ , we obtain

E[|g(Xi−1)ΔWi |ρ] = E
[∣∣∣ ∫ ti

ti−1

g(Xi−1) dW (s)
∣∣∣ρ]

≤ Cρ
ρ k

ρ
2 E

[|g(Xi−1)|ρ]
.

Together with the linear growth bound (4.1) on g this shows that

(
k

N∑
i=1

E[|g(Xi−1)ΔWi |ρ]
) 1

ρ

≤ Cρk
1
2

(
k

N∑
i=1

E
[|g(Xi−1)|ρ]) 1

ρ

≤ CρLgk
1
2

(
T

1
ρ + (

max
( 1

2μ
, T

)
KX

) 1
ρ

)
.

Putting the estimates together proves the desired bound. ��
We are now prepared to state and prove the main result of this section. While the

main ingredients of the proof still consist of techniques introduced in [38, Sect. 4]
for deterministic problems the proof is somewhat more technical than the proof of
Theorem 3.7. In particular, due to the presence of Lipschitz perturbations in the general
problem (1.5) it is no longer possible to avoid an application of a Gronwall lemma.
Moreover, as in [38, Sect. 4], we impose the following additional assumption on the
multi-valued mapping f .

Assumption 6.3 There exists γ ∈ (0,∞) such that, for every v,w, z ∈ D( f ), fv ∈
f (v), fw ∈ f (w), and fz ∈ f (z),

〈 fv − fz, z − w〉 ≤ γ 〈 fv − fw, v − w〉.
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In Lemma 3.2, we already proved that, if f is the subdifferential of a convex
potential, then Assumption 6.3 is satisfied with γ = 1. For a further example, we refer
to Sect. 7.

Theorem 6.4 Let Assumptions 4.1–4.4 and Assumption 6.3 be satisfied. Let the step
size k = T

N , N ∈ N, be such that 8Lbk ∈ [0, 1). Then there exists a constant
C ∈ (0,∞) independent of k such that

max
t∈[0,T ] ‖X(t) − X (t)‖L2(Ω;Rd ) ≤ Ck

1
4 .

Remark 6.5 The strong rate of convergence of 1/4 might not be optimal in the case of
a piecewise Lipschitz drift coefficient. Under this additional assumption it is proved
in [35] that the forward Euler–Maruyama scheme has a strong convergence rate of
1/2. In [34] a further scheme is introduced with the strong convergence order of 3/4.
As proved in [33], the rate of 3/4 is a sharp lower error bound. In contrast to that our
setting allows for a superlinearly growing and multi-valued drift coefficient at the cost
of a lower convergence rate.

Proof Theorem 6.4 Let us first introduce some additional notation. We will denote the
error between the exact solution X to (1.5) and the numerical approximationX defined
in (6.3) by E(t) := X(t) − X (t), t ∈ [0, T ]. Furthermore, it will be convenient to
split the error into two parts

E(t) = E1(t) + E2(t), t ∈ [0, T ],

where

E1(t) :=
∫ t

0

(H(s) − η(s)
)
ds +

∫ t

0

(
b(X(s)) − b(X (s))

)
ds, (6.9)

E2(t) := G(t) − G(t) (6.10)

P-almost surely for every t ∈ (0, T ]. We expand the square of the norm of E as

|E(t)|2 = |E1(t)|2 + 2〈E1(t), E2(t)〉 + |E2(t)|2, t ∈ [0, T ]. (6.11)

In order to estimate the terms on the right-hand side of (6.11) we first observe in
(6.9) that E1 has absolutely continuous sample paths with E1(0) = 0. Hence we have
1
2

d
dt |E1(t)|2 = 〈Ė1(t), E1(t)〉 for almost every t ∈ [0, T ]. Therefore, after integrating

from 0 to t ∈ (0, T ], we get

1

2
|E1(t)|2 =

∫ t

0
〈Ė1(s), E1(s)〉 ds

=
∫ t

0
〈Ė1(s), E(s)〉 ds −

∫ t

0
〈Ė1(s), E2(s)〉 ds. (6.12)
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Furthermore, we also have that

〈E1(t), E2(t)〉 =
〈 ∫ t

0
Ė1(s) ds, E2(t)

〉
=

∫ t

0
〈Ė1(s), E2(t)〉 ds. (6.13)

Thus, after combining (6.12) and (6.13) we obtain

1

2
|E1(t)|2 + 〈E1(t), E2(t)〉

=
∫ t

0
〈Ė1(s), E(s)〉 ds +

∫ t

0
〈Ė1(s), E2(t) − E2(s)〉 ds.

(6.14)

For the first integral on the right-hand side of (6.14) we insert the derivative of E1 and
the definition of the error process E . This yields, for almost every s ∈ (0, T ],

〈Ė1(s), E(s)〉 = 〈H(s) − η(s), X(s) − X (s)〉 + 〈b(X(s)) − b(X (s)), X(s) − X (s)〉.

After recalling the definition of X we use Assumptions 4.1 and 6.3. Then, for almost
every s ∈ (tn−1, tn] and all n ∈ {1, . . . , N }, we get

〈H(s) − η(s), X(s) − X (s)〉
= tn − s

k
〈ηn − η(s), X(s) − Xn−1〉 + s − tn−1

k
〈ηn − η(s), X(s) − Xn〉

≤ γ
tn − s

k
〈ηn − ηn−1, Xn − Xn−1〉 − s − tn−1

k
〈η(s) − ηn, X(s) − Xn〉

≤ γ
tn − s

k
〈ηn − ηn−1, Xn − Xn−1〉,

where the second term in the last step is non-positive due to the monotonicity of f
(cf. Definition 2.1).Moreover, due to the Lipschitz continuity of b, it follows for almost
every s ∈ (0, T ] that

〈b(X(s)) − b(X (s)), X(s) − X (s)〉
= 〈b(X(s)) − b(X (s)), X(s) − X (s)〉 + 〈b(X (s)) − b(X (s)), X(s) − X (s)〉
≤ Lb|E(s)|2 + Lb|X (s) − X (s)||E(s)| ≤ 3

2
Lb|E(s)|2 + Lb

2
|X (s) − X (s)|2,

where we also made use of Young’s inequality. In addition, for every n ∈ {1, . . . , N }
and s ∈ (tn−1, tn], we have that

X (s) − X (s) = s − tn−1

k
Xn + tn − s

k
Xn−1 − Xn = − tn − s

k

(
Xn − Xn−1).
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Therefore,

〈b(X(s)) − b(X (s)), X(s) − X (s)〉 ≤ 3

2
Lb|E(s)|2 + Lb(tn − s)2

2k2
|Xn − Xn−1|2.

Altogether, for every t ∈ (tn−1, tn] and n ∈ {1, . . . , N }, we have shown that

∫ t

tn−1

〈Ė1(s), E(s)〉 ds ≤ γ

2
k〈ηn − ηn−1, Xn − Xn−1〉

+ 3

2
Lb

∫ t

tn−1

|E(s)|2 ds + Lb

6
k|Xn − Xn−1|2,

where we also inserted that
∫ t
tn−1

(tn − s) ds ≤ ∫ tn
tn−1

(tn − s) ds = 1
2k

2 as well as∫ t
tn−1

(tn − s)2 ds ≤ 1
3k

3. It follows that, for every n ∈ {1, . . . , N } and t ∈ (tn−1, tn],
∫ t

0
〈Ė1(s), E(s)〉 ds =

n−1∑
i=1

∫ ti

ti−1

〈Ė1(s), E(s)〉 ds +
∫ t

tn−1

〈Ė1(s), E(s)〉 ds

≤ γ

2
k

n∑
i=1

〈ηi − ηi−1, Xi − Xi−1〉 + Lb

6
k

n∑
i=1

|Xi − Xi−1|2

+ 3

2
Lb

∫ t

0
|E(s)|2 ds.

Hence, together with Lemmas 5.4 and 6.2 this shows that

∫ t

0
E
[〈Ė1(s), E(s)〉] ds ≤ γ

2
Kδηk

1
2 + Lb

3
KXk + 3

2
Lb

∫ t

0
E
[|E(s)|2] ds. (6.15)

Next, we give an estimate for the second integral on the right-hand side of (6.14). For
every n ∈ {1, . . . , N } and t ∈ (tn−1, tn] we decompose the integral as follows

∫ t

0
〈Ė1(s), E2(t) − E2(s)〉 ds =

n−1∑
i=1

∫ ti

ti−1

〈Ė1(s), E2(t) − E2(s)〉 ds

+
∫ t

tn−1

〈Ė1(s), E2(t) − E2(s)〉 ds. (6.16)

For every i ∈ {1, . . . , n − 1} we then add and subtract E2(ti ) in the second slot of the
inner product in the first term on the right-hand side of (6.16). This gives

∫ ti

ti−1

〈Ė1(s), E2(t) − E2(s)〉 ds =
∫ ti

ti−1

〈Ė1(s), E2(t) − E2(ti )〉 ds

+
∫ ti

ti−1

〈Ė1(s), E2(ti ) − E2(s)〉 ds.
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After inserting the definition of E2 from (6.10) the first integral is then equal to

∫ ti

ti−1

〈Ė1(s), E2(t) − E2(ti )〉 ds =
〈 ∫ ti

ti−1

Ė1(s) ds, E2(t) − E2(ti )
〉

= 〈E1(ti ) − E1(ti−1), E2(t) − E2(ti )〉
= 〈E1(ti ) − E1(ti−1),G(t) − G(t) − (G(ti ) − G(ti ))〉
=

〈
E1(ti ) − E1(ti−1),

∫ t

ti
g(X(s)) dW (s)

〉

−
〈
E1(ti ) − E1(ti−1),

∫ tn−1

ti
g(X (s)) dW (s) + t − tn−1

k
g(Xn−1)ΔWn

〉

for all i, n ∈ {1, . . . , N }, i < n, and t ∈ (tn−1, tn]. Since E1(ti ) − E1(ti−1) =
E(ti ) − E(ti−1) − (E2(ti ) − E2(ti−1)) is square-integrable and Fti -measurable it
therefore follows that

E
[ ∫ ti

ti−1

〈Ė1(s), E2(t) − E2(ti )〉 ds
]

= 0

for all n ∈ {1, . . . , N }, t ∈ (tn−1, tn], and ti < t . Hence, after taking expectations in
(6.16), we arrive at

E
[ ∫ t

0
〈Ė1(s), E2(t) − E2(s)〉 ds

]

=
n−1∑
i=1

E
[ ∫ ti

ti−1

〈Ė1(s), E2(ti ) − E2(s)〉 ds
]

+ E
[ ∫ t

tn−1

〈Ė1(s), E2(t) − E2(s)〉 ds
]

≤
n∑

i=1

E
[ ∫ ti

ti−1

|Ė1(s)||E2(ti ) − E2(s)| ds
]
.

Inserting the definitions (6.9) and (6.10) of E1 and E2 and applyingHölder’s inequality
with ρ = max(2, p) and 1

ρ
+ 1

ρ′ = 1, we get

E
[ ∫ t

0
〈Ė1(s), E2(t) − E2(s)〉 ds

]

≤
n∑

i=1

∫ ti

ti−1

E
[(|ηi − η(s)| + |b(X(s)) − b(Xi )|)

× (|G(ti ) − G(s)| + |G(ti ) − G(s)|)] ds
≤

n∑
i=1

( ∫ ti

ti−1

E
[|ηi − η(s)|ρ′]

ds
) 1

ρ′ ( ∫ ti

ti−1

E
[|G(ti ) − G(s)|ρ]

ds
) 1

ρ
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+
n∑

i=1

( ∫ ti

ti−1

E
[|ηi − η(s)|ρ′]

ds
) 1

ρ′ ( ∫ ti

ti−1

E
[|G(ti ) − G(s)|ρ]

ds
) 1

ρ

+
n∑

i=1

( ∫ ti

ti−1

E
[|b(X(s)) − b(Xi )|ρ′]

ds
) 1

ρ′ ( ∫ ti

ti−1

E
[|G(ti ) − G(s)|ρ]

ds
) 1

ρ

+
n∑

i=1

( ∫ ti

ti−1

E
[|b(X(s)) − b(Xi )|ρ′]

ds
) 1

ρ′ ( ∫ ti

ti−1

E
[|G(ti ) − G(s)|ρ]

ds
) 1

ρ

=: Γ1 + Γ2 + Γ3 + Γ4.

In the following, we will estimate Γ1, Γ2, Γ3, and Γ4 separately. For Γ1 we obtain
after an application of Hölder’s inequality for sums that

Γ1 ≤
( n∑

i=1

∫ ti

ti−1

E
[|ηi − η(s)|ρ′]

ds
) 1

ρ′ ( n∑
i=1

∫ ti

ti−1

E
[|G(ti ) − G(s)|ρ]

ds
) 1

ρ

≤
((

k
n∑

i=1

E
[|ηi |ρ′]) 1

ρ′ +
( ∫ tn

0
E
[|η(s)|ρ′]

ds
) 1

ρ′ )

×
( n∑

i=1

∫ ti

ti−1

E
[|G(ti ) − G(s)|ρ]

ds
) 1

ρ
.

If p ∈ [2,∞) then ρ = p and ρ′ = q. In this case all integrals appearing are finite
due to the bounds in Theorem 4.7 and Lemma 5.4. Moreover, if p ∈ (1, 2) then
ρ = ρ′ = 2 < q. Then it follows from further applications of Hölder’s inequality and
Jensen’s inequality that

k
n∑

i=1

E
[|ηi |2] ≤ T

q−2
2

(
k

n∑
i=1

E
[|ηi |q]) 2

q

as well as

∫ tn

0
E
[|η(s)|2] ds ≤ T

q−2
2

( ∫ tn

0
E
[|η(s)|q] ds) 2

q
.

Hence, we arrive at the same conclusion. If p = 1 then the processes (η(t))t∈[0,T ] and
(ηn)n∈{1,...,N } are globally bounded due to the bound on f in Assumption 4.1. Using
Lemma 6.1 we see that

(
n∑

i=1

∫ ti

ti−1

E
[|G(ti ) − G(s)|ρ]

ds

) 1
ρ

≤ Kρk
1
2

(∫ tn

0

(
1 + E

[|X(s)|ρ])
ds

) 1
ρ

.
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Altogether, this yields

Γ1 ≤ CΓ1k
1
2

for a suitable constant CΓ ∈ (0,∞), which is independent of k. To estimate Γ2, we
argue analogously as in the case for Γ1 to obtain that

Γ2 ≤
⎛
⎝

(
k

n∑
i=1

E
[|ηi |ρ′]) 1

ρ′
+

( ∫ t

0
E
[|η(s)|ρ′]

ds
) 1

ρ′
⎞
⎠

×
(

n∑
i=1

∫ ti

ti−1

E
[|G(ti ) − G(s)|ρ]

ds

) 1
ρ

.

The first factor is bounded aswe saw in the case forΓ1. Furthermore, using Lemma 6.1,
we have that

(
n∑

i=1

∫ ti

ti−1

E
[|G(ti ) − G(s)|ρ]

ds

) 1
ρ

≤ Kρk
1
2

(
k

n∑
i=1

(
1 + E

[|Xi−1|ρ])
ds

) 1
ρ

.

Due to the a priori bound (5.4), it follows that there exists a constant CΓ2 ∈ (0,∞),
which does not depend on k such that

Γ2 ≤ CΓ2k
1
2 .

The estimates Γ3 and Γ4 follow analogously with the only new term that appears is of
the form

( n∑
i=1

∫ ti

ti−1

E
[|b(X(s)) − b(Xi )|ρ′]

ds
) 1

ρ′

≤ Lb

( n∑
i=1

∫ ti

ti−1

E
[|X(s) − Xi |ρ′]

ds
) 1

ρ′

≤ Lb

( ∫ tn

0
E
[|X(s)|ρ′]

ds
) 1

ρ′ + Lb

(
k

n∑
i=1

E
[|Xi |ρ′]

ds
) 1

ρ′
,

which is bounded due to Theorem 4.7 and the a priori bound (5.4). Therefore, there
exist constants CΓ3 ,CΓ4 ∈ (0,∞) such that

Γ3 ≤ CΓ3k
1
2 and Γ4 ≤ CΓ4k

1
2 .
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Hence, we obtain

E
[ ∫ t

0
〈Ė1(s), E2(t) − E2(s)〉 ds

]
≤ (CΓ1 + CΓ2 + CΓ3 + CΓ4)k

1
2 =: CΓ k

1
2 .

(6.17)

After taking expectations in (6.11) and inserting (6.14), (6.15), (6.17) as well as (6.4)
from Lemma 6.1, we obtain for every t ∈ (0, T ] that

E
[|E(t)|2]
≤ γ Kδηk

1
2 + 2Lb

3
KXk + 2CΓ k

1
2 + KGk + (

3Lb + 2L2
g

) ∫ t

0
|E(s)|2 ds.

The assertion then follows from an application of Gronwall’s lemma, see for example,
[11, Appendix B]. ��

Remark 6.6 Up to this point, we only proved convergence for X but not for η. However,
from the existence of Xn we also obtain that

kηn = −(Xn − Xn−1) + kb(Xn) + g(Xn−1)ΔWn a.s. in Ω.

Analogously, we can write for the exact solution η that

∫ t

0
η(s) ds = −X(t) + X0 +

∫ t

0
b(X(s)) ds +

∫ t

0
g(X(s)) dW (s).

Therefore, from the convergence of X to X and the Lipschitz continuity of b and g
we also obtain the estimate

∥∥∥ ∫ tn

0
η(s) ds − k

n∑
j=1

η j
∥∥∥
L2(Ω;Rd )

≤ Ck
1
4

for every n ∈ {1, . . . , N }.

7 Examples

7.1 Discontinuous drift coefficient

In this example we show that Assumption 4.1 includes overdamped Langevin-type
equations with a possibly discontinuous drift f . We consider the convex, nonnegative,
yet not continuously differentiable function Φ(x) := |x |, x ∈ R, which has a multi-
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valued subdifferential f : R → 2R defined by

f (x) :=

⎧⎪⎨
⎪⎩

{1}, if x > 0,

[ − 1, 1], if x = 0,

{−1}, if x < 0.

This mapping fulfills Assumption 4.1 for p = 1. To be more precise, f is a monotone
function and there exists no proper monotone extension of its graph. In fact, the
subdifferential of any proper, lower semi-continuous, and convex function is amaximal
monotone mapping by a well-known theorem of Rockafellar, cf. [46, Cor. 31.5.2] or
[48, Satz 3.23].

Furthermore, we notice that fx x = sgn(x)x = |x | as well as | fx | ≤ 1 for every
x ∈ R and fx ∈ f (x). This shows that f fulfills all the conditions of Assumption 4.1.
It remains to verify Assumption 6.3. Since f is the subdifferential ofΦ the variational
inequality (3.2) is still satisfied in the sense that

fx (y − x) ≤ Φ(y) − Φ(x)

for all x, y ∈ R and fx ∈ f (x). Following the same steps as in the proof of Lemma 3.2
but replacing f (v), f (w), and f (z) by arbitrary elements fv ∈ f (v), fw ∈ f (w),
and fz ∈ f (z), respectively, shows that Assumption 6.3 is fulfilled. Therefore, the
backward Euler–Maruyama method (1.6) is well-defined and yields an approximation
of the exact solution X of{

dX(t) + f (X(t)) dt � b(X(t)) dt + g(X(t)) dW (t), t ∈ (0, T ],
X(0) = X0,

where b : R → R and g : R → R1,m are Lipschitz continuous and X0 ∈ L2(Ω).
To be more precise, the piecewise linear interpolant X of the values (Xn)n∈{0,...,N }
defined in (6.3) fulfills

max
t∈[0,T ] ‖X(t) − X (t)‖L2(Ω) ≤ Ck

1
4

for C ∈ (0,∞) that does not depend on the step size k = T
N . However, let us mention

that the strong order of convergence of 1/4 is not necessarily optimal in this particular
example. We refer the reader to [9] for a corresponding result on the forward Euler–
Maruyama method.

7.2 Stochastic p-Laplace equation

As a second example, we consider the discretization of the stochastic p-Laplace equa-
tion. A similar setting is studied in [5]. For a more detailed introduction to this class
of problems, we refer the reader to this work and the references therein.
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For p ∈ [2,∞) and T ∈ (0,∞) the stochastic p-Laplace equation is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
du(t, ξ) − ∇ · (|∇u(t, ξ)|p−2∇u(t, ξ)

)
dt

= Ψ (u(t, ξ)) dW (t), for all (t, ξ) ∈ (0, T ) × D,

u(t, ξ) = 0, for all (t, ξ) ∈ (0, T ) × ∂D,

u(0, ξ) = u0(ξ), for all ξ ∈ D,

(7.1)

where D ⊂ Rn , n ∈ N, is a bounded Lipschitz domain. By W : [0, T ] × Ω → Rm ,
m ∈ N, we denote a standard (Ft )t≥0-adapted Wiener process. We also assume that
the initial value u0 : D × Ω → R fulfills

E
[‖u0‖2L2(D)

] = E
[ ∫

D
|u0|2 dξ

]
< ∞. (7.2)

Furthermore, let Ψ : R → L2(Rm;R) be a Lipschitz continuous mapping, where
L2(Rm;R)denotes the spaceofHilbert–Schmidt operators fromRm toR.Note that the
Nemytskii operator Ψ̃ : L2(D) → L2(Rm; L2(D)), given by [Ψ̃ (u)](x) = Ψ (u(x))
for u ∈ L2(D), is also Lipschitz continuous and will be of importance in the weak
formulation below.

Let W 1,p
0 (D) be the Sobolev space of weakly differentiable and p-fold integrable

functions on D with vanishing trace on the boundary ∂D, see [47, Section 1.2.3] or
[40, Section 4.5] for a precise definition. The dual space of W 1,p

0 (D) is denoted by
W−1,p(D) in the following. Then, the stochastic p-Laplace equation (7.1) has a unique
variational solution (u(t))t∈[0,T ] which is progressively measurable and an element of
L2(Ω;C([0, T ]; L2(D))) ∩ L p(Ω; L p(0, T ;W 1,p

0 (D))). For further details we refer
to [27, Example 4.1.9, Theorem 4.2.4].

For a spatial discretization of (7.1), we use a family of finite element spaces (Vh)h>0

such thatVh ⊂ W 1,p
0 (D) for every h > 0.Hereby,we interpret h as a spatial refinement

parameter. In the following, we consider a fixed parameter value h > 0. By d ∈ N we
then denote the dimension of the space Vh .

The spatially semi-discrete problem consists of finding a progressively mea-
surable L2(Ω;C([0, T ]; L2(D))) ∩ L p(Ω; L p(0, T ; Vh))-valued stochastic process
(uh(t))t∈[0,T ] such that

∫
D
uh(t)vh dξ +

∫
D

∫ t

0
|∇uh(s)|p−2∇uh(s) · ∇vh ds dξ

=
∫
D
Phu0vh dξ +

∫
D

∫ t

0
PhΨ̃ (uh(s)) dW (s)vh dξ

(7.3)

for every vh ∈ Vh and t ∈ [0, T ]. Here, Ph : L2(D) → Vh denotes the L2(D)-
orthogonal projection onto Vh .
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In order to apply our results from the previous sections,we rewrite (7.3) as a problem
in Rd . To this end, we consider a one-to-one relation between Vh and Rd given by

vx =
d∑

i=1

xiϕi ∈ Vh for x = [x1, . . . , xd ]� ∈ Rd (7.4)

for a basis {ϕ1, . . . , ϕd} of Vh . Through (7.4) we induce additional norms onRd which
are given by

‖x‖1 := ‖vx‖W 1,p
0 (D)

, ‖x‖0 := ‖vx‖L2(D), ‖x‖−1 := ‖vx‖W−1,p(D),

for every x ∈ Rd . Observe that the norm ‖ · ‖0 is also induced by the inner product

〈x, y〉0 := 〈vx , vy〉L2(D) = 〈Mhx, y〉, with Mh = (〈ϕi , ϕ j 〉L2(D))i, j∈{1,...,d},

where the mass matrix Mh is symmetric and positive definite. Since all norms on Rd

are equivalent, for each i ∈ {−1, 0, 1} there exist ci ,Ci ∈ (0,∞) such that

ci‖x‖i ≤ |x | ≤ Ci‖x‖i

for all x ∈ Rd .
The p-Laplace operator in the spatially semi-discrete problem (7.3) can be written

as Ah : Vh → Vh which is implicitly defined by

〈Ah(vh), wh〉L2(D) =
∫
D

|∇vh |p−2∇vh · ∇wh dξ

for all vh, wh ∈ Vh . By the same arguments as in [27, Example 4.1.9] one can easily
verify that Ah fulfills

〈Ah(vh) − Ah(wh), vh − wh〉L2(D) ≥ 0,

〈Ah(vh), vh〉L2(D) = ‖vh‖p

W 1,p
0 (D)

, ‖Ah(vh)‖W−1,p(D) ≤ ‖vh‖p−1

W 1,p
0 (D)

for all vh, wh ∈ Vh . Then, for x, y ∈ Rd and associated vx , vy ∈ Vh , we introduce
mappings f̃ : Rd → Rd and g̃ : Rd → Rd,m implicitly by

d∑
i=1

[ f̃ (x)]iϕi = Ah(vx ),

d∑
i=1

[g̃(x)z]iϕi = PhΨ̃ (vx )z,
d∑

i=1

[X0]iϕi = Phu0

for z ∈ Rm and use these functions to define f (x) := Mh f̃ (x) as well as g(x) :=
M

1
2
h g̃(x) for every x ∈ Rd . As we assumed that vx �→ Ψ̃ (vx ) is Lipschitz continuous,
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there exists Lg ∈ (0,∞) such that

|g(x) − g(y)|2 =
m∑
j=1

|M
1
2
h g̃(x)e j − M

1
2
h g̃(y)e j |2

=
m∑
j=1

‖PhΨ̃ (vx )e j − PhΨ̃ (vy)e j‖2L2(D)

= ‖PhΨ̃ (vx ) − PhΨ̃ (vy)‖2L2(Rm ;L2(D))

≤ L2
g‖vx − vy‖2L2(D)

≤ L2
g

c20
|x − y|2

for x, y ∈ Rd and vx , vy ∈ Vh fulfilling (7.4) as well as an orthonormal basis
{e j } j∈{1,...,m} of Rm . Thus, g fulfills Assumption 4.3. Due the integrability condition
to (7.2) for u0, it follows that X0 fulfills Assumption 4.4.

Moreover, we see that f is monotone, coercive, and bounded as we can write

〈 f (x) − f (y), x − y〉 = 〈 f̃ (x) − f̃ (y), x − y〉0

=
d∑

i=1

d∑
j=1

([ f̃ (x)]i − [ f̃ (y)]i
)(
x j − y j

)〈ϕi , ϕ j 〉L2(D)

= 〈Ah(vx ) − Ah(vy), vx − vy〉L2(D) ≥ 0

as well as

〈 f (x), x〉 =
d∑

i=1

d∑
j=1

[ f̃ (x)]i x j 〈ϕi , ϕ j 〉L2(D)

= 〈Ah(vx ), vx 〉L2(D) = ‖x‖p
1 ≥ C−p

1 |x |p

and

| f (x)| ≤ ‖Mh‖L(Rm )|M−1
h f (x)| ≤ C−1‖Mh‖L(Rm )‖ f̃ (x)‖−1

= C−1‖Mh‖L(Rm )‖Ah(vx )‖W−1,p(D) ≤ C−1‖Mh‖L(Rm )‖vx‖p−1
W 1,p(D)

= C−1‖Mh‖L(Rm )‖x‖p−1
1 = C−1

cp−1
1

‖Mh‖L(Rm )|x |p−1

for all x, y ∈ Rd and vx , vy ∈ Vh fulfilling (7.4). Here, ‖ · ‖L(Rm ) denotes the matrix
norm in Rm which is induced by | · |. Therefore, Assumption 4.1 is satisfied. To prove
that f fulfills Assumption 6.3 we note that the mapping Φ : Vh → [0,∞) given by

Φ(vh) = 1

p

∫
D

|∇vh |p dξ, vh ∈ Vh,
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is a potential of Ah , compare [47, Example 4.23]. Since Φ is convex it follows that

Φ(vh) ≥ Φ(wh) + 〈Ah(wh), vh − wh〉L2(D), for all vh, wh ∈ Vh,

where we use [13, Kapitel III, Lemma 4.10]. In the same way as in Lemma 3.2 we
obtain that

〈Ah(vx ) − Ah(vy), vy − vz〉L2(D) ≤ 〈Ah(vx ) − Ah(vz), vx − vz〉L2(D)

for all vz, vx , vy ∈ Vh . Applying the definition of f , we then get

〈 f (x) − f (y), y − z〉 = 〈Ah(vx ) − Ah(vy), vy − vz〉L2(D)

≤ 〈Ah(vx ) − Ah(vz), vx − vz〉L2(D) = 〈 f (x) − f (z), x − z〉

for x, y, z ∈ Rd and vx , vy, vz ∈ Vh fulfilling (7.4). This shows that f also fulfills
Assumption 6.3.

Consequently, the results of the previous sections are applicable. More precisely,
the backward Euler scheme (1.6) has a unique solution (Xn)n∈{0,...,N } (cf. Theo-
rem 5.3). Theorem 6.4 then states that the piecewise linear interpolantX of the values
(Xn)n∈{1,...,N } defined in (6.3) fulfills

max
t∈[0,T ] ‖X(t) − X (t)‖L2(Ω;Rd ) ≤ Ck

1
4

for C ∈ (0,∞) that does not depend on the step size k where X is the solution to the
single-valued stochastic differential equation

{
dX(t) + f (X(t)) dt = g(X(t)) dW (t), t ∈ (0, T ],
X(0) = X0.

Observe that our proof does not yet rule out that the constant C above depends on
the dimension d of the finite element space Vh . Hence, this is not a complete analysis
of a full discretization of the stochastic partial differential equation (7.1) and a more
detailed analysis is subject to future work. We refer to [5] for a related result in this
direction.

Let us emphasize that, unlike the results in [5], we do not have to impose any
temporal regularity assumption on the exact solution of (7.1) or on the solution of
the semi-discrete problem (7.3). Since such regularity conditions are often not easily
verified for quasi-linear stochastic partial differential equations we are confident that
our approach could lead to interesting new insights in the numerical analysis of such
infinite dimensional problems.
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