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A safety monitoring concept for fully automated driving*

Stefan Kojchev1, Emil Klintberg2 and Jonas Fredriksson3

Abstract— Safe motion planning for automated vehicles re-
quires that a collision-free trajectory can be guaranteed. For
that purpose, we propose a monitoring concept that would en-
sure safe vehicle states. Determining these safe states, however,
is usually a computationally demanding task. To alleviate the
computational demand, we investigate the possibility to com-
pute the safe sets offline. To achieve this, we leverage backward
reachability theory and compute the N-step robust backward
reachable set offline. Based on the current disturbances, we
demonstrate the possibility to adapt this set online. The safety
guarantees are then provided by computing the robust one-step
forward prediction of the state vector and checking if these
states are members of the adapted safe set. The numerical
example demonstrates that the approach is capable of avoiding
hazardous vehicle states under an unsafe motion planning
algorithm.

I. INTRODUCTION

Fully automated vehicles are believed to have the potential
to drastically change the transportation industry [1]. The
main expected benefit from fully automated vehicles is an
increase in traffic safety, as most accidents are caused by
human factors [2]. However, fully automated vehicles still
face many challenges and production level maturity is not
expected in the near future. One of the challenges is how
to ensure safety of the vehicle in all possible scenarios with
respect to the surrounding environment. This, in particular,
is a difficult challenge as the vehicle would need to account
for different complex aspects such as the uncertain motion of
the surrounding traffic participants, collision-free trajectory,
drivable trajectory, uncertain states of the ego vehicle, etc.

Automated driving functions need to determine and follow
a planned trajectory with certain vehicle parameters. These
common motion planning approaches check if the computed
trajectory is collision-free in a finite time horizon [3], [4].
Approaches that can ensure that the vehicle can reach a
desired collision-free set have been intensely investigated
in recent literature. One approach is by defining inevitable
collision states [5]. Inevitable collision states are defined
as states for which collision with an obstacle eventually
occurs regardless of any future trajectory that is followed
by the system. Determining these states, however, is com-
putationally demanding and challenging to be implemented
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for online computation. One can, however, argue that in-
evitable collision states could occur just after the predicted
horizon. Furthermore, such approaches require known initial
conditions that are not exposed to uncertainties and the
convergence proofs of these algorithms are often difficult
to obtain.

Other popular methods that gain momentum in recent
years are data-driven algorithms (i.e., deep learning or ma-
chine learning) [6], [7]. Although these algorithms are quite
general in terms of their applicability (i.e., one algorithm can
work for multiple different scenarios), they typically require
a large amount of data to be validated and trained to perform
as good as their human counterpart or better [8], [9].

Another alternative approach is using reachability analysis
to check if the vehicle states are collision-free [10], [11],
[12]. A reachable set is the set of states that can be reached
by a system for a given set of initial states, inputs, and
disturbances. These approaches can also account for the
future motion of the traffic participants and uncertainties
from the environment. The computed reachable sets of the
ego vehicle are compared to the reachable sets of the traffic
participants and collisions are defined as any intersection
between those sets. A drawback of the reachability analysis
is that the techniques over-approximate the set of reachable
states, which makes the set over conservative. Considering
all feasible trajectories of the other traffic participants in
combination with the over-approximation can lead to the
rapid growth of unsafe regions. Furthermore, minimizing the
over-approximation of the reachable sets is a computationally
demanding task.

A way to reduce the conservatism is Control Barrier Func-
tions as presented in [13], [14], [15]. The method guarantees
forward invariance of a set, which in term would satisfy the
safety conditions of a system. The forward invariance of the
set is ensured by the barrier function satisfying Lyapunov-
like conditions. However, finding such barrier functions is
the main difficulty of the approach, with computing barrier
functions for general classes of control systems being an
open problem.

The work presented in this paper demonstrates a moni-
toring concept for autonomous systems that leverages back-
ward reachability analysis as a technique to ensure that the
vehicle can reach a desired safe state. In order to battle
the computation burden, we propose a way to do parts of
the set calculations offline. The offline part determines the
set of permissible states based on the backward reachability
analysis. In addition to this, we propose an approach that
is capable to modify the permissible set online to account
for the uncertainties of the environment, which differs from
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concepts presented in [19], [20]. The online part also focuses
on calculating a robust one-step forward prediction of the ve-
hicle states. The safety guarantees are provided by checking
if the robust one-step forward prediction set is a member
of the safe set. In case this condition is not satisfied, the
software initiates an evasive maneuver in order to avoid a
hazardous situation. We believe that a concept of this type
can be applied to any autonomous system, however, in this
paper we focus on its application to fully automated driving
systems. It should be noted that the contribution primarily
aims at evaluating the potential of using the backward
reachability analysis approach for ensuring safety of a heavy-
duty vehicle in a relatively simple driving scenario.

The remainder of the paper is organized as follows:
Section II provides the necessary preliminaries on basic
definitions. In Section III we present the monitoring concept,
while Section IV gives an explanation of how the permissible
set is adapted online. In Section V, we present a numerical
example followed by final remarks in Section VI.

II. PRELIMINARIES

In this section, we introduce definitions on sets and reacha-
bility analysis. For further information regarding reachability
analysis and set invariance theory see [16].

A. Polytopes and redundant inequalities

Let P be a polyhedron defined as the intersection of a
finite set of closed halfspaces in Rn:

P = {x ∈ Rn| Qx ≤ r} , (1)

where Qx ≤ r is the shorthand form for a system of
inequalities. A polytope is a bounded polyhedron.

If an inequality can be removed from the description of
a polyhedron without changing the solution set, then the
inequality is redundant. Similarly, if an inequality is not
redundant, it is necessary. If all inequalities describing a
polyhedron are necessary, we have a minimal-representation
of the polyhedron. An approach that describes how to find
the minimal-representation of the polyhedron is presented in
[17] and is used in this paper.

B. Polytopic linear systems

Let us consider a discrete-time linear system of the fol-
lowing form:

x(k + 1) = A(k)x(k) + E(k)w(k), (2)

where x ∈ Rnx and w ∈ Rnw denote the state variables
and an exogenous disturbance respectively. The exogenous
disturbance is assumed to be bounded,

w(k) ∈ W, (3)

for some closed and bounded set W . It is assumed that the
system matrices are contained in the convex hull of a set of
matrix pairs, i.e.:

(A(k), E(k)) ∈ ∆ = Co((A1, E1), ..., (Ak, Ek)), ∀k.
(4)

This is a well-studied class of systems that in literature is
often referred to as polytopic linear systems.

In the following we define the one-step and the N-step
backward reachable sets and the one-step forward reachable
set as:

Definition 1: For a given target set X , the one-step
backward reachable set (or preimage set) Pre(X ,W,∆) of
the system dynamics (2) is defined as:

Pre (X ,W,∆) =

{x ∈ Rnx | Ax+ Ew ∈ X , ∀w ∈ W, ∀ (A,E) ∈ ∆}
(5)

In other words, the one-step backward reachable set is the
set of states that gets robustly mapped to X by (2).

Note that if X =
{
x ∈ Rnx | H̄(j,:)x ≤ h̄j

}
for some

H̄ ∈ Rmx×nx and h̄ ∈ Rmx , where we have introduced
the notations H̄(j,:) for the j-th row of H̄ and h̄j for the
j-th element of h̄, the one-step robust controllable set can
be evaluated as:

Pre(X ,W,∆) ={
x ∈ Rnx | H̄(j,:)Aix ≤ (h̃i)j , i = 1, ..., k

}
,

(6)

where element j of (h̃i)j is given by:

(h̃i)j = min
w∈W

(
h̄j − H̄(j,:)Eiw

)
, j = 1, ...,mx. (7)

Thus, ifW is polyhedral, the one-step robust controllable set
can be calculated by solving mx · k Linear Programs (LPs).

Definition 2: For a given target set X , the N-step backward
reachable set PreN (X ,W,∆) of the system (2) is defined
recursively as:

Ω0 = X (8a)
Ωi+1 = Pre (Ωi,W,∆) ∩ X , i = 0, . . . , N − 1 (8b)

PreN (X ,W,∆) = ΩN (8c)

Hence, the N-step backward reachable set is the set of states
that gets robustly mapped onto X by (2) in N time steps.

Definition 3: For a system with inputs and disturbances,
the one-step forward reachable set is defined as:

Reach(X ,W) = (A ◦ X )⊕ (B ◦ U)⊕W, (9)

where ⊕ denotes the Minkowski sum and ◦ denotes the
entrywise product.

III. MONITORING CONCEPT

The nominal function of an Autonomous Driving System
(ADS) is often complex and composed of algorithms that
are hard to analyze. It can therefore be desirable to provide
safety guarantees in a simpler component that monitors the
nominal ADS function. A system architecture is illustrated
in Figure 1.

The safety monitor examines if there exists a maneuver
at the next decision point that would bring the system to a
safe state. If such a maneuver exist, the input proposed by
the nominal ADS is approved. If a maneuver does not exist,
a maneuver that is verified as safe at the preceding decision
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point is executed. Safety is then assured by the principle of
induction.

In practice, it is desirable to have a simple test to evaluate
if there exists a safe maneuver or not. To achieve this, we
introduce some restrictions on the safe state and on the safe
maneuvers.

Fig. 1. Monitoring concept

A. System description, safe states and safe maneuvers

To obtain a computationally tractable monitoring problem,
we place the following assumptions on the system descrip-
tion and on the safe maneuvers:

Assumption 1: A discrete-time linear model describing
the system dynamics is available, i.e.

x(k + 1) = A(k)x(k) +B(k)u(k) + E(k)w(k), (10)

where x denotes the state variables, u is the control input
and w are the exogenous disturbances belonging to a closed
and bounded set W .

Remark 1: Note that although it is conceptually simple
to construct a model according to Assumption 1, it is a
non-trivial task to validate that such a model is true, see
e.g., [18]. However, uncertainties related to model errors
or linearization errors can be included in the exogenous
disturbance set W .

Assumption 2: The safe maneuver is implicitly given by
the following control law,

u(k) = L1z(k)− L2x(k), (11)

for some reference sequence (z(k))k∈Z and matrices L1 and
L2.

Assumption 3: For any k, the system is at a safe state if
x(k) ∈ C for some closed set C.

Moreover, we assume that a set of safe states for the
system is a subset of the state space. The set of safe states
must also not be intersected by any other participating traffic
agent, i.e., I ∩C = ∅, where I denotes the predicted motion
of a participating agent.

Furthermore, the system states x are assumed to be mea-
surable or can be obtained using an observer. The estimation
of the system states at the current time step is denoted by

x̂. For brevity, observer design is omitted in the paper. The
uncertainties related to x̂ can be included in the exogenous
disturbance setW . An approach to model these uncertainties
is to quantify them using real-world data from the same
driving scenario w.r.t the predicted outcome from the model.
The rare events that might not be captured in the data, could
be modeled by using statistical approaches that focus on rare
events properties.

In reality it is not always possible to guarantee that the
whole set of safe states C is accessible. Therefore, we want
a test of the form

x(k) ∈ S, (12)

for some closed set S ⊆ C. In the following, we refer to S
as the set of permissible states.

The preimage set is calculated using the closed loop
system obtained by substituting (11) in (10), the resulting
closed loop matrices becomes Ā(k) = (A(k) − B(k)L2)
and B̄(k) = B(k)L1. The set of permissible states is then

S =

N⋂
k=1

Prek(C,W,∆). (13)

The resulting monitoring concept can be formulated as the
following algorithm:

Algorithm 1 Calculate usafe

Input: Ā, B̄, x̂, I, C, S, nominal control input unom
Output: Safety guaranteed vehicle input usafe

1: Calculate the robust forward reachable set with unom (9)
2: Check set membership:

if Reach(x̂,W) ⊆ S and I ∩ C = ∅ then
usafe = unom

else
Initiate evasive maneuver: usafe = uevasive

end if

Although focused on ADS, we believe that the proposed
monitoring concept can work with any autonomous system
(i.e., any system that behaves with high degree of autonomy).
In the remainder of the paper the monitoring concept is
referred to as the safety supervisor.

B. Predicting traffic and separation of data

The surrounding traffic, on the other hand, can be con-
sidered either by making forward predictions or by defining
reasonable behaviour and traffic rules in terms of the distance
between vehicles that needs to be kept, similar to [8]. To
define the reasonable behaviour and the traffic rules we
believe it is necessary to collect real-world data. Then we
would need to prove that the safety guarantees are valid when
the behaviour of the traffic is on the boundary of reasonable.
If that is not the case, then we should modify the traffic rules
to accommodate the behaviour. This in turn eliminates the
necessity to recollect traffic data.
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IV. ONLINE ADAPTATION OF THE PERMISSIBLE SET

In practice, it is possible that the disturbance set W is
significantly different than the set used to calculate the set
of permissible states. Therefore, it can be desirable to update
this set online.

A. Underlying observation

For simplicity let us consider a disturbance set of the form:

W = {w| − γ ≤ w ≤ γ} (14)

for some vector γ > 0. When evaluating the k-step robust
backward reachable set, we use the notations µi,j ≥ 0 and
πi,j ≥ 0 for the Lagrange dual variables corresponding to the
inequalities w−γ ≤ 0 and −w−γ ≤ 0 respectively. Due to
complementary slackness, the Lagrange dual variables µi,j
and πi,j cannot be (elementwise) non-zero simultaneously.

Let us now introduce the notation λi,j = max(µi,j , πi,j),
where max(a, b) is a vector containing the elementwise
maximum of its arguments, and note that:

∂(h̃i)j
∂γ

= λTi,j . (15)

It is then straightforward to express the preimage set as:

Prek(X ,W,∆) = {x ∈ Rnx |Hkx ≤ hk + Jk∆γ} , (16)

where ∆γ denotes a possible deviation from the value of γ
that is used in the evaluation of the preimage set, Hk =
Hk−1A1

...
Hk−1Aκ

H̄

, hk =


h̃k−1,1

...
h̃k−1,κ

h̄

 and Jk =


∂h̃k,1
∂γ
...

∂h̃k,κ
∂γ

0

. The

element ∂h̃k,j
∂γ of Jk is equal to:

∂h̃k,j
∂γ

=

k∑
i=1

∂h̃i,j
∂γ

, j = 1, ..., κ. (17)

In a similar fashion the sensitivities can then be propagated
through (8) in order to express the permissible set as:

S = {x ∈ Rnx | Qx ≤ r +
∂r

∂γ
∆γ}. (18)

It is interesting to note that the choice of γ does not affect
the orientation of the linear inequalities in (18) but only their
distance from the origin.

It should be observed that redundant inequalities can be-
come necessary if γ is updated. The minimal-representations
should therefore be calculated with care, and some inequali-
ties that are nominally redundant may have to be kept in the
description of the set.

B. Adaptation strategy

For a permissible set of the form (18), it is principally
simple to adjust the size of the set when the driving condi-
tions motivate a different choice of γ. However, when the
size of the set is decreased, it should be made sure that the
current one-step prediction of the system dynamics is still
contained in the permissible set, as depicted in Figure 2. In
the following, we provide a description of how the maximum
∆γ can be calculated online if ∆γ takes the form ∆γ = c·ej ,
where c is a scalar and ej is a Cartesian unit vector.

Fig. 2. Illustration of the online adaptation of the permissible set

We assume that the one-step prediction of the system
dynamics is represented by the convex hull of a set of points,
i.e.,

x(k + 1) ∈ Co(x1, . . . , xp). (19)

The residual of the inequalities that define the permissible
set for each point in (19), can be calculated as:

εj = Qxj − r, j = 1, . . . , p. (20)

For element i of εj , we can then calculate the scalar c that
would result in (εj)i = 0. The maximum allowed c is then
obtained as the minimum of the results, i.e.,

cmax = min
j=1,...,p, i=1,...,mS

(εj)i
∂ri
∂c

, (21)

where mS denotes the number of inequalities in the de-
scription of the permissible set. Note that (εj)i and ∂ri

∂c are
scalars, and the complexity of the operation (21) is equivalent
to performing mS · p divisions and finding the minimum of
the results. In the case when ∆γ > c, the safety supervisor
algorithm would need to intervene and initiate the evasive
maneuver. The adaptation, results in an update of Algorithm
1 by introducing it as a first step.

V. NUMERICAL EXAMPLE

To assess the validity of the proposed concept that pro-
vides safety guarantees, a highway driving scenario with no
surrounding traffic is considered.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on November 29,2023 at 14:04:49 UTC from IEEE Xplore.  Restrictions apply. 



A. Vehicle model

For the numerical example, consider the kinematic vehicle
model in the spatial frame as illustrated in Figure 3.

Fig. 3. Kinematic vehicle model

We define a moving coordinate system (q, d) w.r.t. a
defined lane, where q is the distance traveled along the path
and d is the distance from the path. Using the Frenet-Serret
frame to express the relation between the tangent (T (qi(s)))
and the normal (N(qi(s))) vectors, the evolution of the states
can be expressed as:[

q′i(s)
d′i(s)

]
=

[
TT (qi(s))

1
1−κ(qi(s))di(s)

NT (qi(s))

]
x′i(s), (22)

where x′i(s) is the velocity in Cartesian space and κ(qi(s))
is the path curvature at distance traveled qi(s).

1) Kinematic vehicle model: The equations of motion of
the kinematic vehicle model depicted in Figure 3, together
with (22) and using the small angles approximation can be
expressed as:

ψ′1(s) =
|x′0(s)|
L1

sin (ψ0(s)− ψ1(s)) (23a)

q′0(s) = |x′0(s)|cos (ψ0(s)− θ(q0(s)))
1

1− κ0(s)d0(s)
(23b)

d′0(s) = |x′0(s)|sin (ψ0(s)− θ(q0(s))) . (23c)

Substituting ψR0 (s) = ψ0(s) − θ (q0(s)) and ψR1 (s) =
ψ1(s)− θ (q0(s)), and assuming that θ

′
(q0(s)) = κ0(s) the

nonlinear model equations resolve to:

q′0(s) = |x′0(s)|cos (ψ0(s)− θ(q0(s)))
1

1− κ0(s)d0(s)
(24a)

d′0(s) = |x′0(s)|sin
(
ψR0 (s)

)
(24b)

ψ′1
R(s) =

|x′0(s)|
L1

sin
(
ψR0 (s)− ψR1 (s)

)
−

κ0(s) |x′0(s)| cos(ψR0 (s))

1− κ0(s)d0(s)
. (24c)

As the component that provides the safety guarantees re-
quires a linear model, a first order linearization around
Ψ̄R

0 = 0; Ψ̄R
1 = 0; D̄0 = 0; κ̄0 = 0; is considered. Assuming

that we can have a time-varying state-space matrices w.r.t.
the vehicle’s speed (|x′0(s)| = v), the following linear state-
space model is obtained:[

D′0(s)
Ψ′1

R(s)

]
=

[
0 0
0 − v

L1

] [
D0(s)
ΨR

1 (s)

]
+

[
v
v
L1

]
ΨR

0 (s) +[
0
−v

]
κ0(s),

(25)

or in matrix form:

x′(s) = A(v)x(s) +B(v)u(s) + F (v)κ0(s). (26)

The attentive reader might have noticed that the linearized
matrix A(v) has an eigenvalue equal to 0. However, the
system is controllable and therefore the evolution of the
states can be controlled without instability issues.

2) Extended plant model: Given that we want to track
a reference path heading, we modify the tractor heading
state to the following error computation: eΨR1

(s) = ΨR
1 (s)−

Ψref
1 (s). The extended plant model consists of the kinematic

vehicle model and the road model. To define the road w.r.t.
the path traveled distance we introduce the following states:

z(s) =

[
κ(s)

Ψref
1 (s)

]
, (27)

where κ(s) is the road curvature and Ψref
1 (s) is the reference

heading.
We can modify the extended plant model control law to

include the road terms as follows:

u(s) = −KLQRx(s) +KRz(s), (28)

where KLQR is the gain computed by minimizing the Riccati

equation and KR =

[
0

KLQR(2)

]
.

Assuming that the dynamics of the road model state vector
(z(s)) are determined by external disturbances (z′(s) =
Ew(s)), where w(s) is the disturbance vector related to the
road model, the closed-loop of the extended plant model can
be formulated as:

x̄′(s) = Ā(v)x̄(s) + B̄(v)w̄(s), (29)

where: Ā(v) =

[
A(v)−B(v)KLQR F (v) +B(v)KR

0 0

]
,

B̄ = E and x̄(s) =

[
x(s)
z(s)

]
, w̄(s) =

[
wx
wz

]
.

For use in the computation of the permissible states, we
discretize the system (29) using a zero-order hold discretiza-
tion technique.

B. Simulation scenario

The simulation scenario is represented as a highway
driving scenario. The vehicle is moving with a constant
speed of 70 km/h whilst perfectly tracking the path (i.e.,
D0(s) = 0 and ΨR

0 (s) = 0). The road is comprised of two
straight patches and a segment in-between that has constant
curvature. This is a representative definition of a Swedish
road. The road has a length of 1100 meters, lane width of
3.75 meters and curvature radius of 400 meters, as depicted
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in Figure 4. The evasive maneuver is defined as a constant
braking event with a deceleration of 3.3 m/s2 until the
vehicle is fully stopped. The vehicle has a length of 13.6
meters, which is a representative length of a truck with a
semi-trailer, and the simulation sampling step is 0.1 meters.

Fig. 4. Road centerline

The target set is determined from the requirement to stay
within the lane bounds and to be able to account for roads
with a radius as low as 20 meters. The disturbance sets for
calculating the permissible set and the one-step reachable
set are bounded. The linearization error for this particular
scenario is calculated by model comparison and is included
in the disturbance sets.

The system is controlled through the steering wheel angle.
For the scenario, the nominal control input is zero in the
straight parts of the road and has the necessary steering wheel
angle for the curved section. To illustrate the intervention
from the ”safety supervisor”, the nominal control input is
defined in the Cartesian frame, while the vehicle model is in
the spatial frame. This miss-representation would eventually
cause the vehicle states to be outside of the permissible set
and for the evasive maneuver to be initiated.

C. Discussion of results

Figure 5 and Figure 6 depict the simulation results. In
Figure 5 each of the plots is represented w.r.t. the traveled
distance. In the figure, we present the activation of the
”safety supervisor”, where a value of 1 denotes an activation.
Furthermore, in the figure, we present plots of the vehicle
speed, steering wheel angle, and road curvature. Figure 6
illustrates the safe set (gray rectangle) and the one-step
forward reachable set (bright green rectangle) at different
time instances. These time instances are also shown in Figure
4, where s3 occurs one simulation step after s2. To improve
the visibility of the one step forward reachable set, a zoomed-
in view of the set is also provided in the figure.

As mentioned, the steering wheel angle, which is the input
to the simulation, is defined in the Cartesian frame. As the
curvature of the road increases, the steering wheel angle
obtains the necessary value to negotiate the corner. Due to
the miss-match in coordinate frames, this input will steer

Fig. 5. Intervention of the safety supervisor

the vehicle outside the lane instead of following the desired
centerline. As it can be seen, after some distance the vehicle
states are deemed to not be safe and the ”safety supervisor”
intervenes which initiates the evasive maneuver. The decision
that the vehicle states are not safe is made from the fact
that the one-step reachable set is not a member of the safe
set, as it can also be observed in Figure 6 at s3. Since the
evasive maneuver is defined as a constant brake event in a
straight line, the steering wheel angle is brought zero in the
first instance when the evasive maneuver is initiated. The
evasive maneuver lasts until the vehicle is fully stopped,
i.e., the vehicle speed is zero. What is an appropriate safe
maneuver is part of future work, where for a heavy-duty
vehicle it might be logical to always initiate a blind stop
whenever the vehicle states are deemed not safe. We also
believe that stopping in the road shoulder is an adequate
alternative. Another alternative would be to have multiple
safe sets corresponding to different safety maneuvers.

It can be concluded that the ”safety supervisor” approach,
that is based on calculating the safe set from the N-step
backward reachability analysis, successfully detects when the
nominal control input would lead to unsafe vehicle states
and initiates an evasive maneuver to keep the vehicle in the
desired operating bounds.

The numerical example is replicated in the IPG Truck-
Maker environment using a high fidelity vehicle model. For
sake of brevity the results are omitted in the paper. The IPG
TruckMaker environment is useful for further extensions of
the approach where surrounding traffic is considered.

The computation time necessary to perform the online
calculation is the time necessary to compute the one-step
forward reachable set in addition to 4mnp flops, where m,n
is the dimension of the Q matrix and p is the number of
vertices of the one-step forward reachable set. The time
necessary to compute the forward reachable set is jkl flops in
the worst case, where j is the number of vertices of the state
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Fig. 6. Permissible (safe) and reachable sets at different points on the road

set, k the number of vertices of the input set and l the number
of vertices of the disturbance set. In our setup, k = 1 since
we use the exact input from the nominal controller, while
the state and disturbance sets j and l are box bounded. This
compares well with the current state of the art approaches
[19], [21] and is promising for a real-time implementation
which is part of future work.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a concept that provides safety guar-
antees on an automated driving policy, by utilizing the back-
ward reachability theory. Furthermore, we have proposed
a method to adapt the permissible set online, based on
the current disturbances and uncertainties. The concept is
evaluated through a simple numerical example of highway
driving with no participating traffic. Our ongoing research is
dedicated to modeling the linearization errors coming from
the nonlinear model and investigating their influence. Fur-
thermore, future extensions would be to create and evaluate
more representative scenarios, along with defining how to
measure and model the disturbances and uncertainties that
affect the system, and investigating what is the appropriate
evasive maneuver. Another potential topic for future work is
creating a vehicle model that has higher fidelity.
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