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Abstract—In a classical 1983 paper, Conway and Sloane pre-
sented fast encoding and decoding algorithms for a special case
of Voronoi constellations (VCs), for which the shaping lattice is a
scaled copy of the coding lattice. Feng generalized their encoding
and decoding methods to arbitrary VCs. Less general algorithms
were also proposed by Kurkoski and Ferdinand, respectively, for
VCs with some constraints on their coding and shaping lattices.
In this work, we design VCs with a cubic coding lattice based on
Kurkoski’s encoding and decoding algorithms. The designed VCs
achieve up to 1.03 dB shaping gains with a lower complexity than
Conway and Sloane’s scaled VCs. To minimize the bit error rate
(BER), pseudo-Gray labeling of constellation points is applied.
In uncoded systems, the designed VCs reduce the required SNR
by up to 1.1 dB at the same BER, compared with the same VCs
using Feng’s and Ferdinand’s algorithms. In coded systems, the
designed VCs are able to achieve lower BER than the scaled VCs
at the same SNR. In addition, a Gray penalty estimation method
for such VCs of very large size is introduced.

I. INTRODUCTION

Signal shaping refers to adjusting the distribution of the
transmitted signal alphabet to the capacity-achieving distri-
bution, in order to have a more power-efficient modulation
format for a given channel. It is well-known that the capacity-
achieving distribution for an average power constrained ad-
ditive white Gaussian noise (AWGN) channel is the Gaus-
sian distribution, and its gain over a uniform distribution
(the commonly used rectangular modulation formats such as
a quadrature amplitude modulation (QAM)) is 1.53 dB at
asymptotically high spectral efficiencies. Much effort was done
to design constellations with a near-Gaussian distribution and
feasible complexity to reduce this gap, which is typically
categorized into geometric shaping [1], [2] and probabilistic
shaping [3], [4], from two-dimensional cases [5]–[7], to higher
dimensional cases [8]. Among them, Voronoi constellations
(VCs), as a structured geometric shaping method, are attractive
as modulation alphabets or vector quantizers, due to their
properties in terms of minimum distance and average power.
Moreover, they do not require look-up tables for searching po-
sitions of constellation points, which geometric shaping based
on spherical constellations does [9], [10], and unlike proba-
bilistic shaping where a Gaussian-like distribution matcher is
needed [11], its complexity does not increase rapidly with the
constellation dimension.

Conway and Sloane defined VCs in 1983 by selecting
a finite set of points of a lattice (possibly translated) that

belong to a scaled-up version of its Voronoi region [12].
They presented simple and elegant algorithms for encoding
and decoding VCs, i.e., mapping integers to constellation
points and vice versa. Mirani et al. designed multidimensional
scaled VCs with up to 1028 constellation points utilizing these
algorithms for the AWGN channel and nonlinear fiber channel,
and showed significant bit error rate (BER) gains over QAM
in uncoded systems [13].

Forney generalized the concept in 1989 by considering
two possibly different lattices, a coding lattice and a shaping
lattice. The VCs are constructed by selecting the points of the
(translated) coding lattice that belong to a the Voronoi region
of the shaping lattice [14]. The only constraint is that the
shaping lattice is a sublattice of the coding lattice. A method
to enumerate the constellation points in an arbitrary VC was
presented by Feng et al. [15]. This enumeration admits very
fast encoding and decoding algorithms, which are reviewed by
Zamir in [16, Ch. 9], [17].

Kurkoski proposed encoding and decoding algorithms called
“rectangular encoding” in [18] for VCs whose shaping lattice
and coding lattice both have triangular generator matrices.
These algorithms are equally simple but less general than
Feng’s algorithms, and are applicable to a variety of coding
lattices and shaping lattices.

Ferdinand et al. proposed a two-step “systematic Voronoi
shaping” method in [19], based on the concept of “systematic
shaping” proposed by Sommer et al. in [20]. A coding
lattice defined by a lower-triangular parity-check matrix and
a shaping lattice satisfying certain constraints related to the
coding lattice were combined to achieve high coding and
shaping gains, and the symbol error rate (SER) performance
was evaluated. For the shaping step, the algorithms to map the
integers to points in VCs with a cubic coding lattice and vice
versa were explicitly described in [21].

As far as we know, no study apart from the one by Mirani
et al. [13] has been reported about designing VCs with good
BER performance and low complexity. Hence, in this paper,
we focus on the VCs with a cubic coding lattice and try
to minimize the BER both in uncoded and coded systems.
Although such VCs have no coding gain, the high shaping
gain is maintained, and their decoding is much simpler than for
VCs with rescaled coding and shaping lattices [12], [13]. They
also allow more flexibility in spectral efficiencies for mapping



integers to bits. The considered VCs in this paper are very
large, with up to 9 × 1046 points, but they are nevertheless
useful in communications with moderate complexity, since
none of the involved algorithms need to store or search all
constellation points. We apply pseudo-Gray labeling on top
of Kurkoski’s encoding and decoding. Our designed VCs
show better BER performance than Feng’s and Ferdinand’s
algorithms for the same VCs in uncoded systems. Also, in
combination with a low-density parity-check (LDPC) code,
the designed VCs can have better BER performance than the
scaled VCs, due to the efficient pseudo-Gray labeling for the
cubic coding lattice.

Notation: Bold lowercase symbols denote row vectors and
bold uppercase symbols denote matrices. The elements of a
vector u are denoted by ui, the rows of a matrix P are denoted
by pi, and the elements of a matrix P are denoted by Pij .
Uppercase Greek or calligraphic letters denote sets.

II. PRELIMINARIES

Given a set of n linearly independent basis vectors, a lattice
is the set of all linear combinations of these vectors with
integer coefficients. If the basis vectors are arranged row-wise
into a matrix G, then the lattice is

Λ , {uG : u ∈ Zn}. (1)

Without loss of generality, we assume that the generator matrix
has dimension n×n. From the definition, any lattice includes
the all-zero vector 0.

The generator matrix of a given lattice is not unique. Two
generator matrices G and G′ generate the same lattice if
and only if G′ = UG, where U is an integer matrix with
determinant ±1 [22, p. 10].

The fundamental Voronoi region of a lattice Λ is the set of
vectors in Euclidean space having the all-zero vector as its
closest lattice point, i.e.,

Ω(Λ) , {x ∈ Rn : ‖x‖2 ≤ ‖x− λ‖2, ∀λ ∈ Λ}. (2)

Given an n-dimensional coding lattice Λ, an n-dimensional
shaping lattice Λs which is a sublattice of Λ, and an offset
vector a ∈ Rn, a Voronoi constellation (VC) in its general
form defined by Forney [14] is

Γ , (Λ− a) ∩ Ω(Λs). (3)

We assume that no points in Λ − a fall on the boundary of
Ω(Λs).1 The number of points in the VC is

M , |Γ| = |detGs|
|detG|

, (4)

where Gs is a generator matrix of Λs. This relation can be
verified by recognizing |detG| and |detGs| as the volumes
of Ω(Λ) and Ω(Λs), respectively [22, p. 4].

Fig. 1 illustrates a two-dimensional VC of lattice partition
Z2/2D2, where D2 is the two-dimensional checkerboard

1An arbitrarily small perturbation of the offset a in a random direction
prevents points from falling on the boundary with probability one.

Fig. 1: Example: a two-dimensional VC of the lattice partition
Z2/2D2, where Ω(Λ) is the Voronoi region of the coding lattice
Z2 and Ω(Λs) is the Voronoi region of the shaping lattice 2D2.

lattice. In this simple example, we can choose the generator
matrices of Λ and Λs to be

G =

[
1 0
0 1

]
,Gs =

[
4 0
2 2

]
, (5)

and there are M = 8 constellation points, with a = (− 1
2 , 0).

The offset vector a is optimized to minimize the average
symbol energy of the constellation, and can be obtained using
an iterative algorithm given by [12]. The algorithm may
converge to a suboptimal vector for large-size constellations,
but as the constellation size increases, the performance differ-
ence between VC generated using optimal a and a random
a ∈ Ω(Λ) decreases, and can be neglected for large VCs
[13, Fig. 3]. In this paper, for a small or moderate-size VC
(M ≤ 217 ≈ 1.3×105), a was optimized using the method in
[12]; and for a very large VC where we can only approximate
the average symbol energy by Monte Carlo simulations, we
selected a random a uniformly in Ω(Λ).

III. ENCODING AND DECODING

We adopt Kurkoski’s algorithms for encoding and decoding,
and also review Feng’s algorithms in this section.

Feng’s algorithms: Given Λ and its sublattice Λs with their
generator matrices G and Gs, respectively, since all basis
vectors of Λs belong to Λ, there exists by definition (1) an
integer matrix U such that Gs = UG, for any choice of Λ
and Λs. Then U has a Smith normal form [23, Ch. 15]

J , diag(J11, . . . , Jnn) = SUT , (6)

where S and T are integer matrices with determinant ±1 and
Jii ∈ Z+ for all i = 1, . . . , n. Then alternative generator
matrices of Λ and Λs can be constructed as G′ = T−1G and
G′s = SGs, with the relation [15, Th. 6]

G′s = JG′. (7)



Algorithm 1 Feng’s encoding [15]
Input: u. Output: c.
Preprocessing: Given generator matrices G and Gs, find two
integer matrices S and T with determinant ±1 such that
J = SGsG

−1T is the Smith normal form of GsG
−1. Then

let G′ = T−1G.
1: Let x← uG′ − a
2: Let z ← arg minλ∈Λs

‖x− λ‖2
3: Let c← x− z

Algorithm 2 Feng’s decoding [15]
Input: y ∈ Rn, which is a noisy version of c. Output: u.
Preprocessing: as in Algorithm 1.

1: Let x← arg minλ∈Λ ‖y + a− λ‖2
2: Let u← xG′−1

3: Let ui ← ui mod Jii, ∀i = 1, . . . , n

Every point c ∈ Γ can be uniquely enumerated by vectors
u and v such that

c = uG′ + vG′s − a, (8)

where ui ∈ {0, . . . , Jii − 1} for i = 1, . . . , n and v ∈ Zn.
There are M = detJ =

∏
i Jii possible values of u, and

each of them occurs exactly once among all points c ∈ Γ.
Hence, u is used to label c, regardless of v.

In encoding, u and a in (8) are known, and the unique value
of z = −vG′s that fulfills c ∈ Γ is found. In decoding, given
c and a,

u = (c+ a)G′−1 − vJ , (9)

which can be solved by setting ui to the ith element of
(c+ a)G′−1 modulo Jii. If the decoder input vector is noisy,
then it is first rounded to the nearest point in the translated
lattice Λ− a. The encoding and decoding are summarized in
Algorithm 1 and 2.

The arg min operations are carried out by an algorithm
to find the closest point in a given lattice, which is a well-
studied problem. Specific algorithms are available for many
common lattices [22, Ch. 20], [24], [25], and other lattices
can be handled by general algorithms [26].

Kurkoski’s algorithms: Given Λ and its sublattice Λs,
Kurkoski’s algorithms are applicable only when Λ and Λs both
have triangular generator matrices G and Gs, respectively.
Conventionally, lower-triangular G and Gs are used. Then
the diagonal elements of the lower-triangular integer matrix
L = GsG

−1 can be used to enumerate the M =
∏

i Lii

constellation points as

c = uG+ vGs − a, (10)

where ui ∈ {0, . . . , Lii − 1} for i = 1, . . . , n and v ∈ Zn.
The encoding is similar to Algorithm 1, but there is no need

to calculate G′. In decoding, given c and a, (10) is solved for
u. This can be done sequentially, beginning from un, thanks
to the triangular structure of L. Specifically, the algorithms

Algorithm 3 Kurkoski’s encoding [18]
Input: u. Output: c.

1: Let x← uG− a
2: Let z ← arg minλ∈Λs

‖x− λ‖2
3: Let c← x− z

Algorithm 4 Kurkoski’s decoding [18]
Input: y ∈ Rn, which is a noisy version of c. Output: u.
Preprocessing: Given lower-triangular G and Gs, let L =
GsG

−1.
1: Let x← arg minλ∈Λ ‖y + a− λ‖2
2: Let u← xG−1

3: for i = n, n− 1, . . . , 1 do
4: vi ← bui/Liic
5: u← u− vili
6: end for

operate as in Algorithm 3 and 4. If L = rI for an identity
matrix I and a positive integer r, then the algorithms specialize
into the classical encoding and decoding algorithms [12].

Specifically for the application of Kurkoski’s algorithms to
VCs with Λ = Zn, different triangular generator matrices G
result in different encoding. It is important that G is set to
In for pseudo-Gray labeling, where In is an n-dimensional
identity matrix, which is discussed in section V.

Ferdinand et al. proposed equally simple but less general
encoding and decoding algorithms than Feng’s and Kurkoski’s
specifically for VCs with a cubic coding lattice, which is
applicable for most commonly used shaping lattices, e.g.,
the 4-dimensional checkerboard lattice D4, 8-dimensional
lattice E8, 16-dimensional Barnes–Wall lattice Λ16, and the
24-dimensional Leech lattice Λ24 [22, Ch. 4]. Ferdinand’s
algorithms can have the same mapping rule as Feng’s, when
the generator matrices of shaping lattices are written in nice
lower-triangular matrices as in [22, Ch. 4]. For the explicit
algorithms, see [21].

IV. VORONOI CONSTELLATIONS WITH CUBIC CODING
LATTICE

In this section, we study a specific kind of VC, whose
coding lattice Λ = Zn. One reason why this kind of VC
is interesting is that the search for the closest lattice point
in decoding (the arg min operation in Algorithm 2 and 4),
which usually dominates the complexity for the encoding and
decoding, especially for high-dimensional lattices, is just to
round the received noisy vector to an integer vector. With this
trivial search algorithm, the decoding is a set of very low-
complexity linear operations.

Apart from its simplicity in decoding, this VC maintains
the asymptotic shaping gain. To see this, two figures of
merit that are useful for comparing different modulation
formats are considered as in [8], [27]: the spectral effi-
ciency SE = 2 log2(M)/n bits/symbol/dimension-pair and
the power efficiency PE = d2

min log2(M)/(4Es), where dmin
is the minimum Euclidean distance of the constellation, and
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Fig. 2: The PE/PEPAM as a function of SE for VCs with cubic
coding lattice. The black dashed lines are the asymptotic shaping
gains γs(Λs) for these shaping lattices stated in [14, Table I].

Es = (1/M)
∑
c∈Γ ‖c‖2 is the average symbol energy. Then

the power efficiency of the one-dimensional pulse amplitude
modulation (PAM) is PEPAM = 3SE/(2(2SE − 1)). The
ratio PE/PEPAM in dB is the gain that a constellation
can obtain over cubic constellations. At high spectral effi-
ciencies, the PE/PEPAM ratio of VCs of the lattice parti-
tion Zn/Λs should converge to the asymptotic shaping gain
γs(Λs) = 1/(12G(Ω(Λs))) defined in [8], where G(Ω(Λs)) is
the normalized second moment of the Voronoi region Ω(Λs)
[28, Eq. (9)]. Forney listed G(Ω(Λs)) and γs(Λs) of Voronoi
regions of some classical multidimensional shaping lattices in
[14, Table I]. In Fig. 2, we present PE/PEPAM as a function
of SE for VCs with a cubic coding lattice and D4, E8, Λ16,
and Λ24 as shaping lattices.

In addition, the separate shaping lattice and coding lattice
allow for improved granularity in spectral efficiencies than
the scaled VC, which gives us more flexibility in choosing
different data rates as needed.

V. LABELING OF CONSTELLATION POINTS

The Gray penalty Gp of a constellation was defined as the
average number of different bits per pair of adjacent symbols
[30], [31]. It has been extensively used in the literature [32]–
[34], since it predicts the asymptotic ratio of the BER Pb and
SER Ps for the AWGN channel:

Pb =
Gp

log2(M)
Ps. (11)

Clearly Gp ≥ 1 and we want Gp to be close to 1. Gray
penalty is a good measure for selecting labeling schemes
for VCs. However, its calculation requires enumeration of all
constellation points, which is infeasible for very large VCs.

We propose a new method to accurately estimate Gp for
constellations too large to enumerate. With the cubic coding
lattice, each symbol c ∈ Γ (except those on the bound-
ary of the constellation) has 2n neighbors, forming a set
nbr(c) , {h : ‖h− c‖2 = 1, h ∈ Zn}, which can be easily
enumerated by adding all permutations and sign changes of

Algorithm 5 Gray penalty estimation
Input: Generate Ns random integer vectors ur, r =
1, 2, . . . , Ns, of which where each element ur,i is uniformly
distributed in {0, 1, . . . , Jii−1} for all i = 1, 2, . . . n (replace
Jii with Lii if Algorithm 4 is used). Output: Estimated Gray
penalty Gp.

1: counter1 = 0
2: counter2 = 0
3: for r = 1, 2, . . . , Ns do
4: c← enc(ur)
5: H ← nbr(c)
6: for h ∈ H do
7: x← arg minλ∈Λs

‖h− λ‖2
8: if x 6= 0 then remove h from H
9: end for

10: counter1 ← counter1 + |H|
11: m← map(ur)
12: K ← {dec(c) : c ∈ H}
13: B ← {map(u) : u ∈ K}
14: counter2 ← counter2 +

∑
b∈B dH(m, b)

15: end for
16: Gp = counter1/counter2

the n-tuple (±1, 0, . . . , 0) to c. Thus Gp can be estimated by
Monte Carlo simulations for very large M as follows. We
define enc(·) as the encoding function performing Algorithm
1 or 3, dec(·) as the decoding function performing Algorithm
2 or 4, and map(·) as the mapping function converting each
element ui of an integer input vector u = (u1, u2, . . . , un)
to a binary vector of length log2(Jii) (or log2(Lii)) for all
i = 1, 2, . . . , n using a one-dimensional natural binary code
(NBC) or binary reflected Gray code (BRGC), and concate-
nating them together to a binary vector of length log2(M)
in total. The explicit estimating process of Gp is described in
Algorithm 5, where dH denotes the Hamming distance between
two binary vectors.

In Table I, we list the estimated Gp values for very large
multidimensional VCs, when Feng’s and Kurkoski’s encoding
and decoding algorithms and both NBC and BRGC are used.
For the constellations with M ≤ 217, we validated that using
Ns = 104 symbols, Algorithm 5 estimates the Gray penalties
accurately with an error less than 0.5% compared with the
exact Gp values calculated by enumerating all constellation
points. The reason why Kurkoski’s algorithms always yield
a smaller Gp is that the generator matrix G of the coding
lattice Zn is In, whereas when Feng’s algorithms are used,
in order to fullfil (7) when D4, E8,Λ16, and Λ24 are used as
shaping lattices, G′ has to be a non-identity matrix, which will
change the natural or Gray ordering of u after multiplication.
Specifically in this paper, we write Gs = G′s as lower-
triangular matrices [22, Ch. 4], then G′ must also be lower-
triangular. For the example VC in Fig. 1, in Feng’s encoding,

G′ =

[
1 0
1 1

]
. (12)



TABLE I: Estimated Gray penalties of VCs of lattice partitions
Zn/Λs at high spectral efficiencies.

Zn/Λs Z4/D4 Z8/E8 Z16/Λ16 Z24/Λ24

SE [bit/sym/pol] 12.5 12 11.5 13

Feng’s NBC 3.46 5.36 8.88 13.13

Kurkoski’s NBC 1.98 2.01 2.04 2.07

Feng’s BRGC 1.75 2.81 4.86 7.40

Kurkoski’s BRGC 1.02 1.08 1.16 1.17

Similarly, in Ferdinand’s encoding, which is equivalent
to Feng’s encoding for the considered VCs in Table I, u
also needs to multiply with a non-identity matrix, see the
example in [21, Eq. (14)]. Ferdinand’s decoding is equivalent
to Kurkoski’s decoding, and yields the same Gp as Feng’s
algorithms. As the constellation dimension increases, their Gp
grows rapidly with the number of dimensions. However, with
Kurkoski’s algorithms, Gp stays steady at different dimensions
both for NBC and BRGC.

According to Table I, Kurkoski’s algorithms are expected
to reduce the BER by a factor up to 6.3 compared with
Feng’s and Ferdinand’s algorithms. Again, we implemented
Ferdinand’s algorithms, and find the same BER performance
as Feng’s. In Fig. 3, we illustrate the required Eb/N0 gain (in
dB) of Kurkoski’s algorithms over Feng’s as a function of SE,
at a BER of 10−4, where Eb = Es/ log2(M) is the energy per
bit and N0 is the noise variance of the Gaussian noise per two
dimensions. As n and SE increase, higher gains are obtained
both using NBC and BRGC. The curves with BRGC have a
larger slope than NBC, and reach up to 1.1 dB for Z24/Λ24

at 13 bits per symbols per dimension-pair. Higher gains are
expected if we further increase n and SE.

We also investigate the BER performance of the designed
VCs based on Kurkoski’s algorithms, with BRGC applied
to integer vectors in coded systems for 4-dimensional case.
LDPC codes from the digital video broadcasting (DVB-S2)
standard [35] with a codeword length of 64800, 50 decoding
iterations, and the max-log approximation of the log-likelihood
ratio [36, Eq. (6)] is applied to 1) the designed VCs, (2) the
same VCs based on Feng’s encoding and decoding, and (3)
the scaled VCs. Different code rates Rc are used to compare
these VCs under almost the same information rate, defined as
R = SE ·Rc bits/symbol/dimension-pair. The labeling of the
scaled VCs follows the “quasi-Gray labeling” in [13].

Fig. 4 shows 0.8–1 dB Eb/N0 gains of Kurkoski’s algo-
rithms over Feng’s at a BER of 10−4 after LDPC decoding.
The designed VCs also outperform the scaled VCs, which
means that the loss of coding gain due to cubic coding lattice is
more than compensated by the LDPC code, implying no need
for including more complex coding lattices. The better BER
performance might come from the pseudo-Gray labeling for
the cubic coding lattice, as our VCs have lower Gray penalties
than the scaled VCs. Also, the higher spectral efficiencies
allow us to use a higher overhead error-correction code.
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VI. CONCLUSION

We designed low-complexity VCs with a cubic coding
lattice based on Kurkoski’s encoding and decoding algorithms.
With the pseudo-Gray labeling, the designed VCs can reduce
the BER up to 6.3 times at the same SNR or reduce the
required SNR by up to 1.1 dB at the same BER, compared
with the two benchmark algorithms in the literature in uncoded
systems. The Gray penalty estimation algorithm for large VCs
with cubic coding lattice can be used to choose good labeling
schemes. In combination with a LDPC code, the designed
VCs can have better BER performance with lower decoding
complexity compared with the scaled VCs, due to the efficient
pseudo-Gray labeling for the cubic coding lattice. In the future,
the mutual information of such VCs is a worthy topic to study.
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