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Abstract

Active Inference (ActInf) is an emerging theory that explains perception and action in

biological agents, in terms of minimizing a free energy bound on Bayesian surprise.

Goal-directed behavior is elicited by introducing prior beliefs on the underlying gener-

ative model. In contrast to prior beliefs, which constrain all realizations of a random

variable, we propose an alternative approach through chance constraints, which allow



for a (typically small) probability of constraint violation, and demonstrate how such

constraints can be used as intrinsic drivers for goal-directed behavior in ActInf. We

illustrate how chance-constrained ActInf weights all imposed (prior) constraints on the

generative model, allowing e.g., for a trade-off between robust control and empirical

chance constraint violation. Secondly, we interpret the proposed solution within a mes-

sage passing framework. Interestingly, the message passing interpretation is not only

relevant to the context of ActInf, but also provides a general purpose approach that can

account for chance constraints on graphical models. The chance constraint message

updates can then be readily combined with other pre-derived message update rules,

without the need for custom derivations. The proposed chance-constrained message

passing framework thus accelerates the search for workable models in general, and can

be used to complement message-passing formulations on generative neural models.

1 Introduction

Similar to biological agents, learning to make decisions based on observations and feed-

back from the environment is also an essential task for autonomous artificial agents.

Traditionally, adaptive linear control and model predictive control have been success-

fully applied in this area (Borrelli et al., 2017). Over the past few years, reinforcement

learning has become the predominant approach (Recht, 2019). An emerging alternative

perspective to decision making under uncertainty is active inference (ActInf) (Friston,

2010). ActInf is a neuroscience-based theory that has been used extensively to explain

behavior of biological agents in dynamic environments (Friston, 2010).
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ActInf is based in the free energy principle (FEP), and postulates that perception

and action in biological agents minimize a free energy bound on Bayesian surprise.

The free energy is an information-theoretic measure that bounds the current and the

future expected statistical surprise, i.e., how unpredictable are the observations under a

given generative model (GM). The free energy is associated with the Kullback-Leibler

(KL) divergence (i.e., the distance) between the approximate and the true posterior. In

particular, according to the free energy principle, the agent acts in such a way as to

minimize a free-energy bound on the surprise, i.e., Bayesian surprise which, informally

speaking, provides a quantification of the difference between the agent’s predictions

about the system behavior and the observed system behavior. Minimization of free en-

ergy is closely related to variational Bayesian methods, reinforcement learning (Sallans

and Hinton, 2001; Tschantz et al., 2020; Sajid et al., 2021), and deep generative mod-

els (Ueltzhöffer, 2018; Fountas et al., 2020), another set of popular machine learning

approaches (Goodfellow et al., 2014). ActInf is closely related to message passing on

graphical models (de Vries and Friston, 2017; Friston et al., 2017), and several widely

used message passing algorithms, including (loopy) belief propagation, variational mes-

sage passing and expectation propagation can be derived as fixed-point equations of the

(Bethe) free energy (Heskes, 2003; Yedidia et al., 2005; Dauwels, 2007; Zhang et al.,

2017). This relation has been harnessed to develop elegant automated methods for Act-

Inf (Schwöbel et al., 2018; van de Laar and de Vries, 2019).

In addition to investigation of motivating connections with the behavior of the bio-

logical systems (Friston et al., 2006; Ramstead et al., 2018), ActInf has been success-

fully utilized in applications in the traditional stochastic control scenarios, such as linear
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quadratic Gaussian (LQG) control and similar standard problems such as maze prob-

lems (Hoffmann and Rostalski, 2017; Ueltzhöffer, 2018; Schwöbel et al., 2018; Baltieri

and Buckley, 2019; Millidge et al., 2020; Imohiosen et al., 2020), and exploration-

exploitation balancing in multi-armed bandit problems (Markovic et al., 2021).

Despite these promising developments, the ActInf framework lacks certain desir-

able features present in model predictive control. In particular, there is no off-the-shelf

standard ActInf formulation that allows inclusion of chance constraints in the problem

setting. Chance constraints provide an attractive approach for on-line decision making

for uncertain systems (Mesbah, 2016), i.e., systems where the dynamics are not fully

known or the system contains certain components that are best modeled in a stochastic

manner. In such settings, constraints on the system behavior, such as the agent remain-

ing in a given region of the environment with a given probability, cannot directly be

encoded in terms of prior beliefs. In contrast to approaches that constrain all realiza-

tions of the random variables, chance constraints allow for a (typically small) probabil-

ity of constraint violation, which can significantly improve performance since chance

constraints enable the decision maker trade performance with probability of constraint

violation (Blackmore et al., 2011).

This paper proposes a computationally tractable approach to chance-constrained

decision making, and applies it to an ActInf context. We include chance constraints in

the ActInf objective (i.e., the free energy) by using the Lagrangian formalism. We then

solve the Lagrangian optimization problem by variational calculus. Finally, we show

that the proposed solution not only leads to a modular and scalable message passing

framework for ActInf problems, but also provides a general purpose message passing
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framework that can account for chance constraints on graphical models in general. We

claim the following main contributions:

1. We show that the analytic solution to the chance-constrained free energy problem

yields posterior beliefs in the form of truncated mixtures. (Theorem 1)

2. We show how this solution can be interpreted in terms of message passing on a

factor-graph representation of the generative model. (Theorem 2)

3. Consequently, our results provide a message passing framework that is specifi-

cally designed to account for chance constraints.

Message passing is inherently modular, and (variational) message update rules can

be pre-derived and stored in a lookup table for later use (Korl, 2005; van de Laar, 2019).

The chance-constrained message updates can then be readily combined with these pre-

derived rules, without the need for laborious derivations. Our results illustrate that

the proposed framework can successfully find solutions so that the rate of constraint

violation specified in the original problem and the one that is actually observed dur-

ing the closed-loop operation are close. The results also illustrate how to balance the

constraints on the actions and the states through the usage of a tuning parameter, which

enables exploration of different trade-offs between immediate and delayed intervention.

2 Problem Statement

We start by defining a general factorized generative model f with respect to an (ar-

bitrary) collection of variables x. As a notational convention, individual variables are
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indexed by i, j ∈ V , and factors by a, b, c ∈ F , unless stated otherwise. The model then

factorizes as

f(x) =
∏
a∈F

fa(xa) , (1)

with non-negative real functions fa, and where xa ⊂ x collects the arguments of fa.

In a probabilistic generative model, the individual factors usually represent conditional

probability distributions. Probabilistic inference is then concerned with obtaining an

(approximate) posterior belief qj(xj) ∝
∫
f(x)dx\j over a variable of interest xj , where

x\j indicates the integration over all model variables except xj .

We now briefly recap how the computation of these beliefs can be performed effi-

ciently and automated over a factor graph (Loeliger et al., 2004), and how this process

can be interpreted as a Bethe free energy minimization problem (Yedidia et al., 2005).

With these concepts firmly in place, we move to chance constraints and the formal

problem statement in Sec. 2.4.

2.1 Factor Graphs for Marginal Belief Computation

A factor graph can be used to visually represent a factorized function. In this paper we

use the bi-partite factor graph representation. A bi-partite factor graph

G = (F ,V , E) ,

consists of variable-nodes V , factor-nodes F , and edges E that connect variable-nodes

with factor-nodes. A variable-node i ∈ V is connected to a factor-node a ∈ F by an

edge (i, a) ∈ E if (and only if) the variable xi is an argument of the factor-function fa.

An example section of a graph is drawn in Fig.1, where the circle and square represent
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a variable- and factor-node respectively. We write the neighborhood of a variable-node

fb xj
...

...→
µbj(xj)

µjb(xj)
←

Figure 1: Bi-partite subgraph of a model around a variable-node j (circle) and factor-

node b (square), with indicated messages. Ellipses represent a continuation of the

model.

i as F(i), which collects all factor-nodes in F that are direct neighbors of i. Similarly,

V(a) collects all variable-nodes in V that are direct neighbors of a.

Suppose we are interested in obtaining a posterior belief qj(xj). The belief propa-

gation algorithm (Pearl, 1982) then prescribes we send messages from the branches of

the graph towards the variable-node of interest, following the recursive application of

the belief propagation update rules:

µjb(xj) =
∏

a∈F(j)
a6=b

µaj(xj) (2a)

µbj(xj) =

∫
fb(xb)

∏
i∈V(b)
i 6=j

µib(xi) dxb\j , (2b)

where xb\j collects all xb with the exception of xj . Here, µjb(xj) represents the message

from a variable-node j ∈ V to a neighboring factor-node b ∈ F(j); and reversely for

µbj(xj). These messages are illustrated in Fig. 1. The posterior belief can then be

expressed as

qj(xj) =
1

Zj
µjb(xj)µbj(xj) , (3)
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with Zj =
∫
µjb(xj)µbj(xj) dxj a normalizing constant.

In practice, for numerical stability, messages are often re-normalized after compu-

tation. Furthermore, messages are usually scheduled for computation, and are often

referred to by their position in the schedule instead of their location in the graph. We

will use a similar notation in Sec. 4. See (Bishop, 2006) for a more detailed introduction

to (approximate) inference on bi-partite graphs.

2.2 Bethe Free Energy Interpretation

The Bethe free energy for a factorized model of the form of (1) is defined as

F [q] =
∑
a∈F

Ua[qa]−
∑
a∈F

H[qa] + (di − 1)
∑
i∈V

H[qi] , (4)

where di represents the degree of variable xi. Here Ua[qa] = −
∫
qa(xa) log fa(xa) dxa

denotes the average energy for factor fa, and H[qa] = −
∫
qa(xa) log qa(xa) dxa de-

notes the entropy. The Bethe free energy is optimized with imposed normalization and

marginalization constraints:

∫
qa(xa) dxa\j = qj(xj),∀a ∈ F ,∀j ∈ V(a) (5a)∫
qa(xa) dxa = 1,∀a ∈ F (5b)∫
qi(xi) dxi = 1,∀i ∈ V , (5c)

such that the qa and qi represent (approximate) posterior probability distributions (be-

liefs).
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2.3 Free Energy Minimization for Active Inference

Active Inference usually defines dynamic models that specialize variables into param-

eters, states, observation and control sequences for past and future times. Free energy

minimization for ActInf is then presented as a dual objective, where minimization of

free energy for a model of past variables accounts for state and parameter estimation

(perception), and free energy minimization of free energy for a model of future variables

accounts for policy planning (Baltieri and Buckley, 2018; van de Laar et al., 2019).

In the present paper we assume that the current state is observed and that model

parameters are given. Therefore, this paper only concerns inference for policy plan-

ning. Extensions for perception are however straightforward. Chance constraints only

affect inference for planning, and therefore standard techniques for state estimation and

parameter learning can be employed (van de Laar and de Vries, 2019).

Furthermore, the current paper employs the Bethe Free Energy (BFE) formulation

(4) for policy planning (Schwöbel et al., 2018; van de Laar and de Vries, 2019) instead

of the more traditional Expected Free Energy (EFE) (Friston et al., 2015). The BFE is

known to lack the epistemic qualities of the EFE (Schwöbel et al., 2018), which can

be compensated for by introducing an additional mutual information term between the

states and the observations to the BFE objective (Parr and Friston, 2019). The bene-

fit of the uncompensated BFE however, is that traditional message passing algorithms,

including (loopy) belief propagation, variational message passing, expectation propa-

gation and generalized belief propagation algorithms can all be derived as fixed-point

equations of the variational free energy by the use of variational calculus, see (Yedidia

et al., 2000; Heskes, 2003; Yedidia et al., 2005; Dauwels, 2007; Zhang et al., 2017).
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2.4 Chance Constraints

A chance constraint imposes that the probability mass of a belief qj(xj), j ∈ V outside

of a ‘safe’ region Sj ⊂ Xj cannot exceed a pre-set threshold ε ∈ [0, 1]. Formally, a

chance constraint imposes the inequality

1− ε ≤
∫
Sj
qj(xj) dxj

=

∫
Xj

qj(xj) gj(xj) dxj , (6)

with

gj(xj) =


1 if xj ∈ Sj

0 otherwise .

Our problem statement then becomes two-fold, namely:

1. Find the stationary points of the Bethe free energy (4) under the normalization and

marginalization constraints of (5) and chance constraints of the form (6) (Theo-

rem 1);

2. Interpret the retrieval of stationary points of the chance-constrained Bethe free

energy as message passing on a factor graph (Theorem 2).

The simulations of Sec. 4 further specialize the model variables into state, obser-

vation and control sequences and demonstrate the added value of chance constraints

in an ActInf setting. Crucially, with an interpretation of chance constraints in terms

of message passing on a factor graph, chance constraints can be readily applied to any

factorized model. Formulating chance constraints as a click-on module for approximate

inference then greatly improves the application range of chance constraints.
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3 Chance-Constrained Message Passing

In this section we formulate the method of chance-constrained message passing. We

identify the stationary points of the chance-constrained Bethe free energy and interpret

the result in terms of message passing on a factor graph. We work towards a practical

message-passing update rule for chance-constrained variables, as summarized in Algo-

rithm 1. A brief introduction to variational calculus is available in Appendix A. Proofs

can be found in Appendix B.

3.1 Stationary Points

From the Bethe free energy (4) and the constraints of (5), (6), we can construct the

Lagrangian

L[q] = F [q] +
∑
i∈V

γi

[∫
qi(xi) dxi − 1

]
+
∑
a∈F

γa

[∫
qa(xa) dxa − 1

]

+
∑
a∈F

∑
i∈V(a)

∫
ζia(xi)

[
qi(xi)−

∫
qa(xa) dxa\i

]
dxi

+
∑
i∈V

ηi

[∫
qi(xi)gi(xi) dxi − (1− ε)

]
, (7)

where the Lagrange multipliers γ, ζ, η enforce the constraints of (5), (6).

Under strong duality, for the inequality constraint in (6) we have the complementary

slackness condition (Boyd and Vandenberghe, 2004, Ch. 5). This condition states that

for optimality we have ηi
[∫
qi(xi)gi(xi) dxi − (1− ε)

]
= 0. Therefore, either ηi > 0,

which implies that the chance constraint of (6) holds with equality (active) or ηi = 0,

which implies that the chance constraint may hold without equality (inactive). In other

words, the complementary slackness condition requires us to consider two scenarios: i)

11



(6) holds with equality for ηi > 0 and ii) (6) is satisfied under ηi = 0. Hence, if ηi > 0,

the chance constraint is activated and enforced with equality.

In Lemmas 1, 2 we express the stationary points of L[q] in terms of the beliefs. The

proofs are presented in Appendix B.1 and Appendix B.2.

Lemma 1. Stationary points of (7) as a functional of qb, b ∈ F , are of the form

q∗b (xb) =
1

Zb
fb(xb)

∏
i∈V(b)

µib(xi) , (8)

with

Zb =

∫
fb(xb)

∏
i∈V(b)

µib(xi) dxb

a normalizing constant.

Proof. See Appendix B.1.

Note that the µib have not yet been identified or interpreted as messages. We will

explicitly make this connection in Sec. 3.3.

Lemma 2. Stationary points of (7) as a functional of qj, j ∈ V , are of the form

q∗j (xj; ηj) =
1

Zj(ηj)
exp(−ηjgj(xj))

∏
a∈F(j)

µaj(xj) , (9)

with

Zj(ηj) =

∫
exp(−ηjgj(xj))

∏
a∈F(j)

µaj(xj) dxj

a normalizer that still depends on ηj .

Proof. See Appendix B.2.
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Note that, in contrast to (3), this result incorporates an additional exponential term

for ηj . We will identify this multiplier in Sec. 3.2. However, we already know that

when the chance constraint for j is inactive, hence ηj = 0 as a consequence of the

complementary slackness condition. In this case, (9) reduces to (3).

3.2 Active Chance Constraint

In this section, we identify the stationary points under active chance constraint. The

result is stated in Theorem 1.

Theorem 1. Under active chance constraint, stationary points of (7) as a functional of

qj, j ∈ V are of the form

q∗j (xj; ηj = η∗j ) =


1−ε
Φ

(0)
j

q
(0)
j (xj) if xj ∈ Sj

ε

1−Φ
(0)
j

q
(0)
j (xj) otherwise,

(10)

with

q
(0)
j (xj) = q∗j (xj; ηj = 0) , (11a)

Φ
(0)
j =

∫
Sj
q

(0)
j (xj) dxj , (11b)

η∗j = log(εΦ
(0)
j )− log(1− ε)− log(1− Φ

(0)
j ) . (11c)

Proof. See Appendix B.3.

This remarkable result tells us that the corrected belief q∗j (xj; ηj = η∗j ) is obtained

by scaling the probability mass of the uncorrected belief q(0)
j (xj) over the respective

safe and unsafe regions. This defines the corrected belief as a mixture of truncated

beliefs. The optimal scaling of (10) ensures that the overflow is equal to ε.
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The complementary slackness condition ensures that the chance constraint is only

enforced if the probability mass of the unconstrained belief overflows the ‘safe’ region

Sj by more than ε; i.e., the uncorrected belief is ‘unsafe’ when

ε < 1− Φ
(0)
j , (12)

where we refer to Φ
(0)
j as the ‘safe mass’.

If (12) is satisfied, then the posterior density q(0)
j (xj) is corrected according to (10),

which ‘pushes’ the probability mass (just) back inside the safe region.

3.3 Chance-Constrained Message Passing

In this section, we show that chance constraints (10) can be interpreted as auxiliary

factor-nodes (with a specific node-function), and can be enforced by belief propagation

in an augmented graph.

Theorem 2. Given a bipartite graph G = (F ,V , E) with a variable node j ∈ V , and

an associated Bethe free energy (4) with a chance constraint (6) on the belief qj(xj).

Then, stationary points of (7) can be obtained by belief propagation on an augmented

graph G ′ = (F ′,V , E ′), where

F ′ = F ∪ g (13a)

E ′ = E ∪ (j, g) , (13b)

and auxiliary node function

fg(xj) =


1−ε
Φ

(0)
j

if xj ∈ Sj

ε

1−Φ
(0)
j

otherwise.

(14)
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Proof. See Appendix B.4.

Theorem 2 shows that chance-constrained message passing can be seamlessly in-

corporated within the belief propagation framework. Chance constraints simply enter

the model definition as auxiliary factors, whose factor function depends upon the in-

coming message, see Fig. 2. Because uncorrected belief (11a) is being represented by

the (re-normalized) incoming message µjg(xj), this allows for a modular application of

chance constraints by augmenting the original graphical model with auxiliary nodes.

fb xj

fg

...
...→

µbj(xj)

µjb(xj)
←

µgj(xj)↓ ↑µjg(xj)

Figure 2: Bi-partite graph around a chance-constrained variable xj , with indicated aux-

iliary factor fg (dashed square) and messages. Ellipses represent the continued model

by an arbitrary (possibly zero) number of connected edges.

3.4 Gaussian Approximation

Since the message µgj(xj) introduces discontinuities, the computations for dependent

messages may grow prohibitively complex. For efficient computations, it can be helpful

to make a Gaussian approximation q̃j(xj) to the corrected belief q∗j (xj; ηj = η∗j ), e.g.,

by moment matching. The resulting (approximate) message then follows from

µgj(xj) = q̃
(n)
j (xj)/µjg(xj) .
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If the message µjg(xj) is also Gaussian, this computation is easily performed by sub-

tracting the canonical statistics. This procedure then resembles the expectation prop-

agation algorithm (Minka, 2001; Cox and de Vries, 2018). Interestingly, the expec-

tation propagation algorithm can also be derived in terms of Bethe free energy opti-

mization, where the marginalization constraints (5a) are replaced by moment-matching

constraints (Zhang et al., 2017). This makes the Gaussian approximation consistent

with the Lagrangian approach as presented in this paper.

The approximated belief q̃j(xj) however renders the chance constraint (6) inexact.

As a result, the approximated belief needs to be iteratively re-corrected:

q
(n)
j (xj) =


1−ε

Φ
(n−1)
j

q̃
(n−1)
j (xj) if xj ∈ Sj

ε

1−Φ
(n−1)
j

q̃
(n−1)
j (xj) otherwise,

(15)

where n denotes an iteration counter. This leads to the procedure summarized in Alg. 1,

and depicted in Fig. 3.

With this algorithm, we have derived a practical chance-constrained message update

from the first principles. The message update can be readily applied to any continuous

variable that requires a chance constraint. Note however, that when multiple chance

constraints are imposed on the model, the message passing algorithm itself becomes an

iterative procedure because of circular message dependencies. For example, a message

incoming to an auxiliary node g might (indirectly) depend on a message that exits an-

other auxiliary node h. In turn, this exiting message depends on the incoming message

to h (1), which depends on the message exiting g, etcetera. In order to break this circular

message dependency, uninformative messages can be used to initialize the algorithm.
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Algorithm 1 Chance-constrained message passing with Gaussian approximation

Given a Gaussian inbound message µjg(xj)

Compute the uncorrected belief q(0)
j (xj) through (11a)

Compute the safe mass Φ
(0)
j through (11b)

Initialize the approximated belief q̃(0)
j (xj) = q

(0)
j (xj)

Initialize the iteration counter n = 0

while ε+ δ < 1− Φ
(n)
j do

% Chance constraint is violated with some tolerance δ

Increase the counter n← n+ 1

Compute the corrected belief q(n)
j (xj) through (15)

Approximate q̃(n)
j (xj) ≈ q

(n)
j (xj) by Gaussian moment matching

Compute Φ
(n)
j =

∫
Sj q̃

(n)
j (xj) dxj , the safe mass of the approximated belief

end while

return The message µgj(xj) = q̃
(n)
j (xj)/µjg(xj)
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Sj

q̃
(n−1)
j (xj) Φ

(n−1)
j

xj

Sj

ε

q
(n)
j (xj)

q̃
(n)
j (xj)

xj

Figure 3: Example of beliefs as computed by Algorithm 1. The top figure evaluates the

probability mass within the “safe” zone. The bottom figure applies the correction (solid

curve) and approximates the corrected belief by Gaussian moment matching (dashed

curve).

4 Simulations

In this section we simulate a drone that aims to elevate itself above a given height

threshold with a preset probability, under the influence of a stochastic vertical wind.

We define the drone elevation level over time by x = {x0, . . . , xt, . . . , xL}, xt ∈ R, and

actions (ascension velocity) a = {a0, . . . , at, . . . , aL}, at ∈ R. A time-dependent mw,t

defines the expected wind velocity that acts upon the agent. The discrete-time stochastic
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system is defined as:

wt ∼ N (mw,t, vw)

xt+1 = xt + at + wt ,

where vw defines the wind velocity variance.

We define an agent that directly observes its elevation level and has knowledge of the

statistical system properties mw,t and vw. The agent models future states of the system

with a fixed time horizon T . As a shorthand notation, we write the future (including

current) states xt = {xt, . . . , xt+T} and control variables ut = {ut, . . . , ut+T−1}. For

notational convenience, we drop the t subscript from these collections. The agent model

at time t is defined as:

ft(x, u) =
t+T−1∏
k=t

px,k(xk+1|uk, xk)pu(uk) , (16)

with a respective state transition model and control prior

px,k(xk+1|uk, xk) = N (xk+1|xk + uk +mw,k, vw) (17a)

pu(uk) = N
(
uk|0, λ−1

)
. (17b)

We factorize and constrain the variational posterior distribution such that (van de

Laar and de Vries, 2019)

qt(x\t, u) = qt(x\t)
t+T−1∏
k=t

δ(uk − ak) , (18)

where x\t indicates the collection of latent states (the state sequence x without the

observed current state xt). The goal of the agent controller then becomes to find the

policy πt = {at, . . . , at+T−1} that minimizes the Bethe free energy

F [qt;xt, πt] =

∫
· · ·
∫
qt(x\t, u) log

qt(x\t, u)

ft(x, u)
dx\t du , (19)
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under the normalization and marginalization constraints of (5) and chance constraints

1− ε ≤
∫
S
qx,k(xk) dxk, ∀k ∈ {t+ 1, . . . , t+ T} ,

where the safe region S = (1,∞) and violation probability ε are identical for all future

state variables.

4.1 Graphical Model and Schedule

As detailed in Sec. 3, Bethe free energy minimization under chance constraints can be

performed by message passing on an augmented model. The graphical representation

of the augmented model is depicted in Fig. 4.

xt px,k

ukmw,k vw

pu

λ

xk+1

fx,k+1

. . .

k=t:t+T−1

Figure 4: Augmented graphical representation of the agent model (16). Circles and

squares indicate variable- and factor-nodes respectively. Auxiliary factor-nodes (14)

are dashed, and dark circles indicate observed variables or fixed parameters. Ellipses

indicate a continuation of the framed section until the lookahead time horizon.
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. . . + +

xk+1

. . .

fx,k+1mw,k

N
vw

uk N λ

1
→

2 ↓

3 ↓

4
→

5
→

6↑

7
→

A
←

B ↓
C
←

D
←

E ↑

F↑

G
←

H
←

px,k

Figure 5: Augmented agent model (16), with px,k expanded according to (17) (dashed

rectangle), and indicated forward (numbers) and backward (letters) message passing

schedules for optimization of (19). Circle and square nodes indicate variable- and

factor-nodes respectively. Dark nodes indicate observed variables or fixed parame-

ters, and auxiliary factor-nodes (14) are dashed. Ellipses indicate a continuation of

the model. Dark messages are computed by the variational update rule, see (Winn and

Bishop, 2005; Dauwels, 2007).

The schedule comprises a forward-backward scheme, as illustrated in Fig. 5. Four

message updates in Fig. 5 are of particular interest. Firstly, since (18) constrains the

belief over controls to a point-mass, it follows that

µ
(i)

2 (uk) = δ(uk − a(i−1)
k ) ,

where i counts the number of schedule (forward-backward) iterations. The schedule

is initialized with a(0)
k = 0 for all k ≥ t. Secondly, µ(i)

B (xk+1) takes on the role of

µjg(xj) in Alg. 1. Because the noise in the model is Gaussian, this message will be an
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(unnormalized) Gaussian as well. Therefore, by application of Alg. 1, the third message

of interest, µ(i)

6 (xk+1) is computed. For the initial forward pass, µ(0)

B (xk+1) = 1 is

considered uninformative. Fourthly, µ(i)

F (uk) carries information upward to the control

variables. Because the variational posterior is chosen to factorize between the state and

control sequence (18), the µ(i)

F (uk) message is computed by a variational update rule as

detailed in (Winn and Bishop, 2005) and (Dauwels, 2007).

The action for the next iteration then follows from

q
(i)
u,k(uk) ∝ µ

(i)

F (uk)µ
(i)

G (uk)

a
(i)
k = mode q

(i)
u,k(uk) .

Iterating the schedule then corresponds with an expectation maximization scheme. The

expectation step of this scheme computes the µ(i)

F (uk) message from the actions a(i−1)
k .

The maximization step then chooses the updated actions a(i)
k as the current MAP-

estimate of uk. The schedule is iterated until the policy converges.

Message passing simulations1 are performed with the ForneyLab probabilistic pro-

gramming toolbox (Cox et al., 2019), version 0.11.3.

4.2 Control Law

Note that the Bethe free energy of (19) is still a function of the observed current eleva-

tion xt. We can then evaluate the optimal action at as a function of the current elevation

xt (the control law), for a given wind profile, chance constraint and model parameters.

In order to gain an intuition for controller behavior, we fix mw,t = 0 for all t. We

1Source code for the simulations is available for download at http://biaslab.github.io/

materials/cc_simulations.zip
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plot the control law in Fig. 6, for varying values of the lookahead horizon T , chance

constraint threshold ε, wind variance vw and control prior precision λ.

Figure 6: Slices of the control law for mw,t = 0,S = (1,∞), varied around reference

setting T = 1, ε = 0.01, vw = 0.2, λ = 10−12 (black curves). Dashed vertical lines

indicate the minimal safe elevation.

The top-left diagram shows that with growing lookahead horizon T , the agent starts

intervening at higher elevation. With this anticipatory effect the agent prepares for

events in the more distant future. The top-right diagram also shows that the agent inter-

venes at higher elevation with decreasing ε. When violation of the constraint grows less

desirable, the agent must intervene earlier in order to assure that sufficient probability

mass is present in the safe region. Also note that no further action is proposed beyond

an intervention threshold. Once the agent is sufficiently elevated, no corrections are
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proposed until the agent wanders (or is forced) below the intervention threshold. The

bottom-left figure shows a similar effect for growing wind velocity variance vw. When

the system grows more stochastic, chance constraint abidance is ensured by interven-

ing at higher elevations. Finally, the bottom-right figure illustrates what happens when

the chance constraint is combined with a Gaussian prior constraint on control. Increas-

ing the control prior precision λ penalizes immediate correction. For low precisions

(low penalty on control magnitude), the slope of the control law below the intervention

threshold is equal to 1, and compensation is immediate. Control grows more robust

with growing precision, at the cost of prolonged chance constraint violation.

4.3 Comparison Against a Goal-Driven Agent

In order to illustrate the difference in behavior between a chance- and a goal-driven

ActInf agent, we compare the results of Fig. 6 with an ActInf agent where the chance

constraint is replaced by a goal prior. We use the graphical model definition of Fig. 4

and define the auxiliary node function as a fixed prior fx,k+1(xk+1) = N (xk+1|mx, ϑx)

for all t ≤ k ≤ t + T − 1. We choose mx = 2, and the variance ϑx = 0.18478 such

that the overflow of the safe region 1 −
∫
S fx,k+1(xk+1) dxk+1 ≈ 0.01 resembles the

situation for ε = 0.01. The message passing schedule then follows the definition of

Fig. 5, where µ(i)

6 (xk+1) is no longer computed by Alg. 1 and propagates the fixed goal

prior instead. Fig. 7 shows the resulting control law for mw,t = 0, T = 1, vw = 0.2 and

varying λ.

The results of Fig. 7 show that the control for the goal-driven agent grows more

robust with increasing λ – similar to the control law for the chance-driven agent (Fig. 6,
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bottom right). For the smallest λ, the control law for the prior-driven agent resem-

bles the corresponding control law for the chance-driven agent (dotted curve) only for

elevations x < 2. For elevations x > 2, the goal-driven agent proposes downward

corrections, while the chance-driven agent proposes no corrections. This comparison

illustrates how a chance-driven agent avoids unnecessary interventions.

Figure 7: Slices of the control law for a goal-driven agent with mw,t = 0, T = 1,mx =

2, ϑx = 0.18478, vw = 0.2 with varying λ. The dashed vertical line indicates the

minimal safe elevation. The black dotted curve represents the reference result (λ =

10−12) for the chance-driven agent (Fig. 6, black curves).

4.4 Simulation Results

In this section we study an active inference agent in interaction with a simulated envi-

ronment. The action-perception loop is based on (van de Laar and de Vries, 2019) and

consists of four steps at every time t:

1. Observe the current agent elevation;
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2. Infer a policy from the current elevation and the future expected wind velocities

by chance-constrained message passing;

3. Act by selecting the first (current) action from the inferred policy;

4. Execute the selected action in the system and advance the time index by one.

Figure 8: Results for ten thousand simulations with varying wind strength over time,

and T = 1, vw = 0.2, λ = 10−12, for a chance-driven agent (ε = 0.01, left), and a

goal-driven agent (mx = 2, ϑx = 0.18478, right).

The results for ten thousand independent runs are plotted in Fig. 8 for a chance-

driven agent (left) and a goal-driven agent (right). The first row of diagrams plots the

expected wind velocity over time, which is identical for each run. The sampled wind

velocity trajectories wt do vary per run, under influence of the wind velocity variance

vw. For 5 ≤ t < 10 a downward draft attempts to push the drone below the minimal safe
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elevation (dashed). The second row plots the drone elevation trajectory for a randomly

selected subset of runs. Corresponding actions are plotted in the third row. The fourth

row evaluates the relative number of runs that violate the safe-zone over time.

It can be seen that both agents undertake corrective actions in order to compensate

for the downward wind. However, while the chance-driven agent (left) only proposes

upward corrections below the intervention threshold, the goal-driven agent (right) pro-

poses additional downward corrections above the threshold. Furthermore, it can be seen

that the maximal empirical violation for the chance-constrained agent mostly remains

below the chance constraint target violation probability of ε = 0.01 (dashed), while the

goal-driven agent systematically overshoots the target violation probability, i.e. violates

the chance constraint. Compared to the chance-driven agent, the maximal empirical vi-

olations for the goal-driven agent are also larger. This effect can be explained in terms

of the constrained beliefs. Namely, the chance-driven agent constrains the posterior

beliefs, while the goal-driven agent imposes prior constraints on the model. Prior con-

straints may still be violated by the corresponding posterior beliefs, leading to more

pronounced empirical violations.

5 Conclusions

In this paper, we formulated chance-constrained optimization of the Bethe free energy

in terms of message passing on a factor graph. We showed that, in the factor graph

representation of the generative model, chance constraints can be imposed by auxiliary

factors that force (a specified portion of) the probability mass of the chance-constrained
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beliefs inside a designated safe-zone. Message passing on the augmented graph, with

the auxiliary factor-nodes included in the graph, then automatically balances the im-

posed chance constraints with additional (prior) constraints on the generative model.

Chance constraints can thus be interpreted as modular click-on extensions to the gener-

ative model, similar to conventional factor-nodes (Loeliger et al., 2004), and can thus be

used to complement message-passing formulations on generative neural models (Fris-

ton et al., 2017; van de Laar et al., 2018).

However, because the analytical result for the chance-constrained update includes

an inherent discontinuity, direct application of this rule may still lead to message up-

dates that grow prohibitively complex. To remedy this, we proposed an algorithm that

approximates the resulting message with a Gaussian form. This algorithm offers a

tractable formulation of chance-constrained message passing. The proposed message

passing interpretation of chance constraints then vastly enhances the modularity and

flexibility of chance-constrained inference, and can accelerate the search for workable

models (Blei, 2014).

We demonstrated chance-constrained message passing in the context of active infer-

ence. We compared the simulated behavior of a chance-driven agent with a goal-driven

agent, where the chance constraints are replaced by traditional prior beliefs on future

outcomes. The results illustrate how the goal-driven agent continually proposes correc-

tions, whereas the chance-driven agent seizes interventions above a threshold. Chance-

constrained ActInf may thus avoid unnecessary interventions and reduce the cost of

control.

The results for the chance-driven agent showed that, in the absence of additional
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prior constraints, the empirical chance constraint violation ratio mostly remains below

the pre-set target violation probability. An added prior constraint on controls robustifies

control at the cost of prolonged chance constraint violation. Chance-constrained active

inference thus weights all imposed constraints on the generative model, allowing e.g.,

for a trade-off between robust control and empirical chance constraint violation.
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Appendix

A Calculus of Variations

The calculus of variations offers a principled method for optimizing functionals (a func-

tion of a function that returns a scalar). We follow (Engel and Dreizler, 2013) and con-

sider the impact of a variation in a function q(x), x ∈ X , on a functional L[q]. We

define an infinitesimal variation of q by

δq
∆
= βφ ,

where β → 0, and φ(x) is a continuous and differentiable “test” function.

The functional derivative δL/δq relates a variation in q to a change in L, by (Parr,
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1980):

dL[q + βφ]

dβ

∣∣∣∣
β=0

=

∫
δL

δq
(x)φ(x) dx . (20)

The procedure then becomes to apply the operations on the l.h.s. to L, and bring it into

the form of the r.h.s., which allows us to identify the functional derivative δL/δq. The

stationary points q∗ are then obtained by setting δL/δq !
= 0 and solving for q.

B Proofs

B.1 Proof of Lemma 1

Application of (20) to (7) as a functional of qb, yields

dL[qb + βφb]

dβ

∣∣∣∣
β=0

=

∫
φb(xb)

[
log

qb(xb)

fb(xb)
+ 1 + γb −

∑
i∈V(b)

ζib(xi)

]
dxb .

Identifying the functional derivative δL[qb]/δqb and setting it to zero, we obtain

q∗b (xb) = fb(xb) exp

[ ∑
i∈V(b)

ζib(xi)− γb − 1

]
. (21)

We now define µ(xj) = exp ζ(xj) and apply the normalization constraint, which recov-

ers (8).

B.2 Proof of Lemma 2

Application of (20) to (7) as a functional of qj , yields

dL[qj + βφj]

dβ

∣∣∣∣
β=0

=

∫
φj(xj)

[
− (dj − 1) + γj

− (dj − 1) log qj(xj) +
∑
a∈F(j)

ζja(xj) + ηjgj(xj)

]
dxj .
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Identifying the functional derivative δL[qj]/δqj and setting it to zero, yields

q∗j (xj) = exp

[
1

dj − 1

(
1− dj + γj +

∑
a∈F(j)

ζja(xj) + ηjgj(xj)

)]
, (22)

which is the first expression for q∗j .

We can obtain a second expression for q∗j by applying the marginalization constraint

to the result of Lemma 1. Substituting (8) in (5a),

q∗j (xj) =

∫
q∗b (xb) dxb\j

=
1

Zb
µjb(xj)

µbj(xj)︷ ︸︸ ︷∫
fb(xb)

∏
i∈V(b)
i 6=j

µib(xi) dxb\j , (23)

where we identified a new quantity µbj(xj) (note the reverse indexing).

Interestingly, the marginalization result of (23) not only holds for the specific factor

b, but for all factors that neighbor j. Therefore, by symmetry, we can iterate the relation

of (23) for all c ∈ F(j):

∏
c∈F(j)

q∗j (xj) =
∏

c∈F(j)

1

Zc
µjc(xj)µcj(xj) .

We choose to exclude b itself from the iteration on both sides, and obtain

∏
c∈F(j)
c 6=b

q∗j (xj) =
∏

c∈F(j)
c 6=b

1

Zc
µjc(xj)µcj(xj) . (24)

We substitute (22) in the l.h.s. of (24), and note that the product on the l.h.s. now

has dj − 1 terms, and that neither of these terms depend on c. This allows us to remove

the dj − 1 terms from the exponent of (22), which yields

exp(1− dj + γj + ηjgj(xj))
∏

a∈F(j)

µja(xj) =
∏

c∈F(j)
c 6=b

1

Zc
µjc(xj)µcj(xj) .

31



Canceling duplicate terms and simplifying, we obtain an expression for µjb as iden-

tified in (23):

µjb(xj) ∝ exp(−ηjgj(xj))
∏

a∈F(j)
a6=b

µaj(xj) . (25)

Finally, substituting (25) back in (23) and re-normalizing, we recover (9).

B.3 Proof of Theorem 1

We start from (9), and use the definitions of (11) to obtain∫
Sj
q∗j (xj; ηj) dxj =

Φ
(0)
j exp(−ηj)

Φ
(0)
j exp(−ηj)− Φ

(0)
j + 1

,

which leads to

exp(−η∗j ) =
(1− ε)(1− Φ

(0)
j )

εΦ
(0)
j

.

We have now identified the ηj multiplier. Substituting this result back in (9) recovers

(10), which expresses the corrected belief in terms of the uncorrected belief.

B.4 Proof of Theorem 2

From (9), we express the uncorrected belief in terms of the messages

q
(0)
j (xj) =

1

Z
(0)
j

∏
a∈F(j)

µaj(xj) , (26)

with Z(0)
j = Zj(ηj = 0).

We now construct the augmented graph G ′ = (F ′,V , E ′) according to (13), and

define a message

µgj(xj) = fg(xj) , (27)
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with fg(xj) as defined by (14).

Substituting (26) and (27) in (10) then yields the corrected belief in terms of the

messages

q∗j (xj; ηj = η∗j ) =
1

Z
(0)
j

µgj(xj)µjg(xj) , (28)

with

µjg(xj) =
∏

a∈F ′(j)
a6=g

µaj(xj) . (29)

The results of (27), (28) and (29) can be interpreted as belief propagation (2), (3) on

the augmented graph G ′.
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van de Laar, T. W., Özçelikkale, A., and Wymeersch, H. (2019). Application of the free

energy principle to estimation and control. arXiv preprint arXiv:1910.09823.

37



Winn, J. and Bishop, C. M. (2005). Variational message passing. Journal of Machine

Learning Research, 6(Apr):661–694.

Yedidia, J. S., Freeman, W., and Weiss, Y. (2005). Constructing free-energy approxi-

mations and generalized belief propagation algorithms. IEEE Transactions on Infor-

mation Theory, 51(7):2282–2312.

Yedidia, J. S., Freeman, W. T., Weiss, Y., et al. (2000). Generalized belief propagation.

In NIPS, volume 13, pages 689–695.

Zhang, D., Wang, W., Fettweis, G., and Gao, X. (2017). Unifying message passing al-

gorithms under the framework of constrained Bethe free energy minimization. arXiv

preprint arXiv:1703.10932.

38


