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SL(5) Supersymmetry

Martin Cederwall

We consider supersymmetry in five dimensions, where the fermionic
parameters are a 2-form under SL(5). Supermultiplets are investigated using
the pure spinor superfield formalism, and are found to be closely related to
infinite-dimensional extensions of the supersymmetry algebra: the Borcherds
superalgebraℬ(E4), the tensor hierarchy algebra S(E4) and the exceptional
superalgebra E(5, 10). A theorem relatingℬ(E4) and E(5, 10) to all levels
is given.

1. Introduction and Overview

Supersymmetry provides an extension of bosonic space-time
symmetries with fermionic generators. These are generically
spinors under space-time rotations (and may also transform un-
der R-symmetry). In certain situations, supersymmetry genera-
tors in non-spinorial modules may be considered. The main ex-
ample is provided by “twisting”, where one considers a fermionic
generator which is a singlet under some subalgebra.
More generically, one may a priori consider an assignment

where supersymmetry generators come in amodule S of a space-
time “structure group” G, which we think of as corresponding to
the double cover of the Lorentz group together with R-symmetry.
A supersymmetry algebra will take the form1[Qa,Qb] = cab

mPm,
with some invariant tensor c, and the rest of the brackets vanish-
ing. The only condition is that the symmetric product ∨2S con-
tains the vector representation V .
Presently, we will consider one specific such assignment,

namely when the structure group isG = SL(5),V = 5 and S = 10.
The supersymmetry algebra then is2

[Qmn,Qpq] = 2𝜖mnpqr𝜕r , (1.1)
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2 A factor i may be included in the right hand side, depending on con-
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There are several observations that make
this choice special, and exploring them is
the purpose of the paper.
A general method for formulating su-

persymmetric field theories on super-
space is provided by “pure spinor su-
perfield theory”,[1–14] where the super-
space coordinates x ∈ V and 𝜃 ∈ S are
complemented by a “bosonic spinor” 𝜆 ∈
S, which is subject to the constraint
cab

m𝜆a𝜆b = 0. The content of supermul-
tiplets can be deduced already from the
partition function (Hilbert series) of 𝜆.

In the simple case ofD = 10 super-Yang–Mills theory, the con-
straint on 𝜆 turns it into a Cartan pure spinor. This (more gener-
ally, the fact that 𝜆 belongs to a minimal S-orbit underG) enables
a Koszul duality[15] between the associative algebra generated by
𝜆 and the positive levels of a Borcherds superalgebra. The struc-
ture of the Borcherds superalgebra, in the D = 10 super-Yang–
Mills caseℬ(E5), is thus closely connected to the supersymmetry
multiplet.[16–18]

In Section 3, we will establish such a relation for the SL(5)
supersymmetry algebra (1.1), the Borcherds superalgebraℬ(E4)
and a certain supermultiplet3. This is achieved by applying, in
Section 2.1, the principles of pure spinor superfield theory to the
case at hand. This supermultiplet found turns out, as a vector
space, to be the adjoint module of the (infinite-dimensional) ex-
ceptional superalgebra E(5, 10),[19–21] of which the global super-
symmetry algebra (1.1) is a subalgebra. This observation then
leads to a surprising relation between E(5, 10) and the Borcherds
superalgebra ℬ(E4) or the tensor hierarchy algebra[22] S(E4).
More precisely, the half of S(E4) at levels≥ 3 turns out to be freely
generated by the coadjoint module of E(5, 10). We also describe
E(5, 10) as a “restricted tensor hierarchy algebra” in terms of the
generalisation of Chevalley generators introduced in refs. [23, 24].
It may be noted that the supersymmetry algebra (1.1) is a

subalgebra of the D = 10, N = 1 supersymmetry algebra. Under
the subgroup SL(5) ⊂ Spin(10), the vector and spinor branch as
10 → 5⊕ 5, 16 → 1⊕ 10⊕ 5, and the module 10 parametrises
the infinitesimal (projective) deformations of a pure spinor 1.
The (on-shell) D = 10 super-Yang–Mills supermultiplet, effec-
tively encoded in a pure spinor of Spin(10), must be possible to
describe in terms of SL(5) supermultiplets.We shall comment on
this in Section 2.2.
Infinite-dimensional superalgebras, in particular Borcherds

superalgebras or tensor hierarchy algebras, play an important
rôle in the context of extended geometry.[25–28] The superalge-
bra underlying the extended geometry for D = 11 supergravity

3 The notation E4 ≃ A4 is used since it is part of the E series, and the
super-extension is associated to the leftmost node in the Dynkin dia-
gram, see Figure 1.
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reduced to d dimensions is S(E12−d). In the series, we find S(E4),
which (most likely) coincides with ℬ(E4) at positive levels, gov-
erning the gauge structure. S(E5) (orℬ(E5)) lies behind extended
geometry for maximal supergravity in d = 7, but is also central to
D = 10 super-Yang–Mills theory. It would be interesting to under-
stand whether there is some deeper reason that the exact same
algebraic structures appear in two seemingly different contexts.
The Koszul duality described in Section 3 holds for any object

in a minimal orbit and the corresponding Borcherds superalge-
bra. Our impression is that this is not enough for the meaning-
ful description of a supersymmetry multiplet, which also seems
to rely on the superalgebra having some freely generated part.
This happens also in cases, such as D = 11 supergravity, where
the orbit is not minimal, and the dual superalgebra is not even
a Lie superalgebra.[18,29] One may for example ask if ℬ(E6) or
S(E6) (which differ slightly even at positive levels[30]) is relevant
for some kind of supersymmetry based on E6.
We expect relations similar to the one between E(5, 10)

and S(E4) to hold also for some other of the exceptional
superalgebras,[19–21] such as E(3, 6) or E(3, 8), that may have a re-
lation to S(E3), but this issue has yet to be investigated.

2. SL(5) Supersymmetry

The supersymmetry algebra (1.1) is realised by

Qmn = 𝜕

𝜕𝜃mn
+ 𝜖mnpqr𝜃pq𝜕r , (2.1)

with 𝜕m = 𝜕

𝜕xm
. Then, [Dmn,Qpq] = 0, where the covariant

fermionic derivative is

Dmn = 𝜕

𝜕𝜃mn
− 𝜖mnpqr𝜃pq𝜕r . (2.2)

Now,

[Dmn,Dpq] = −2𝜖mnpqr𝜕r , (2.3)

and the superspace torsion is Tmn,pq,r = 2𝜖mnpqr .
The BRST operator of pure spinor field theory is, as usual, con-

structed as

Q = 𝜆mnD
mn. (2.4)

Its nilpotency is guaranteed by the bilinear constraint

𝜆[mn𝜆pq] = 0. (2.5)

Denoting representations and representation modules by the
Dynkin label of the highest weight, and letting 𝜆 ∈ S = (0100) =
R(Λ2), the general symmetric product is

∨2S = ∨2(0100) = (0200)⊕ (0001).

The constraint implies that only the module with highest weight
2Λ2 survives, so 𝜆 belongs to the (unique) minimal S-orbit un-
der SL(5), which is a cône over the 6-dimensional Grassmannian
Gr(2, 5).

2.1. The Cohomology of a Scalar Superfield

We will be quite brief about the technicalities of the calculations
of “pure spinor field theory” leading to the supermultiplets in this
and the following subsection. They go along the general princi-
ples explained e.g. in ref. [14]. The calculation of the zero-mode
cohomologies is a matter of comparing components in different
superfields, a pure algebraic problem well suited for a computer.
Here, we choose to put stronger focus on the way in which a su-
permultiplet appears in the partition function of the constrained
object 𝜆, and in the following Section on the Koszul duality to
a superalgebra.
“Physical states” may be defined as cohomology of the BRST

operator Q of eq. (2.4). They are also directly encoded in the par-
tition function of 𝜆. This partition function encodes the modules
Sp of monomials of degree of homogeneity n in 𝜆 as the coeffi-
cient of tn in a formal power series with coefficients in the repre-
sentation ring as Z𝜆(t) = ⊕∞

p=0Spt
p. We choose the conventions

that Sp = R(pΛ3) are the modules of the components in the ex-
pansion4, which are conjugate to the ones of the basis elements
𝜆m1n1

… 𝜆mpnp
. Thus,

Z𝜆(t) =
∞⨁
p=0

(00p0)tp. (2.6)

Factoring out the partition function of an unconstrained object in
S, which we denote (1 − t)−(0010) ≡ ⊕∞

p=0 ∨
p (0010)tp (and which is

compensated by 𝜃),

Z𝜆(t) = (1 − t)−(0010) ⊗
(
(0000)⊖ (1000)t2 ⊕ (0001)t3 ⊖ (0000)t5

)
.

(2.7)

The interpretation of the numerator is as the zero-mode coho-
mology, i.e., the cohomology of 𝜆mn

𝜕

𝜕𝜃mn
on a scalar field Ψ(𝜃, 𝜆).

Assigning ghost number 1 to Ψ (and of course 0 to 𝜃 and 1 to 𝜆),
the interpretation of the zero-mode cohomology is:

• A ghost c;
• A 1-form 𝛼, appearing in Ψ as 𝜖mnpqr𝜆mn𝜃pq𝛼r ;
• A vector 𝜉, appearing as 𝜖mnpqr𝜆mn𝜃pq𝜃rs𝜉

s;
• An “antifield” 𝛾 , appearing as 𝜖mnrst𝜖pquvw𝜆mn𝜆pq𝜃rs𝜃tu𝜃vw𝛾 .

Further extracting a factor (1 − t2)(1000) ≡ ⊕5
i=0 ∧

i (1000)t2i

(which is compensated by the x-dependence),

Z𝜆(t) = (1 − t)−(0010) ⊗ (1 − t2)(1000)

⊗

(
(0000)⊕

∞⨁
i=0

(i001)t3+2i ⊖
∞⨁
i=0

(i100)t4+2i
)
. (2.8)

The terms in the rightmost factor are interpreted as the ghost
zero-mode together with the derivative expansions of 𝜉 and 𝜒 =
d𝛼.

4 The duality formulated in ref. [15] and in Section 3 employs a relation
to the coalgebra. We account for this by this definition of the partition
function; an alternative would be to employ negative instead of posi-
tive levels.
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Table 1. The zero-mode cohomology in Ψ. The superfields at different
ghost numbers are shifted so that fields in the same row has the same
dimension. Black dots denote the absence of cohomology.

𝜆0 𝜆1 𝜆2 𝜆3

(0000)

∙ ∙

∙ (1000) ∙

∙ (0001) ∙ ∙

∙ ∙ ∙ ∙

∙ ∙ (0000) ∙

∙ ∙ ∙ ∙

Table 2. The zero-mode cohomology in a vector field Φm.

𝜆0 𝜆1 𝜆2

(0001)

(0100) ∙

∙ ∙ ∙

∙ (0010) ∙

∙ (1000) ∙

∙ ∙ ∙

In the full cohomology, closedness implies the “equation of
motion” 𝜕m𝜉

m = 0, and quotienting out exact functions gives
the gauge invariance 𝛼 ∼ 𝛼 + d𝛽. This cohomology is reflected
by the partition function (2.8). This off-shell supermultiplet has
4 bosonic and 4 fermionic local degrees of freedom. As we
will see later, it corresponds to the exceptional Lie superalgebra
E(5, 10). The same cohomology arises from twisting of D = 11
supergravity.[31]

2.2. Cohomology of Other Superfields

This Section lies outside the main line of the paper, and may be
skipped in a linear reading.
One may attempt to assign some non-trivial module to a field.

Then, some so-called shift symmetry[7] must also be introduced,
otherwise the cohomology would just become the tensor product
of the module of the field with the cohomology found in a scalar
field. In the language of ref. [32] this amounts to considering not
functions on the minimal orbit, but sections of some geometric
sheaf (such as products of the (co-)tangent sheaf) over the mini-
mal orbit.
Taking a field Φm(x, 𝜃, 𝜆) in the vector module, and impos-

ing equivalence under the shift symmetryΦm ∼ Φm + 𝜆np𝜚mnp for
completely antisymmetric 𝜚mnp(x, 𝜃, 𝜆) leads to the zero-mode co-
homology of Table 2.
In the full cohomology, the vector vm(x) will obey 𝜕m𝜕nv

n = 0
and the 2-form 𝜔 is closed. In this sense, the same local degrees
of freedom are reproduced as the ones in a scalar field (there is
only a single extra linear singlet mode in the derivative expansion
of v). On the other hand, if Ψ is taken to be fermionic and of
ghost number 1, and Φm bosonic of ghost number 0, they can
be combined into a description of the D = 10 super-Yang–Mills
multiplet with SL(5) (or SU(5)) covariance.[33] Then the 1-form 𝛼

Table 3. The zero-mode cohomology in a 1-form field Ξm.

𝜆0 𝜆1 𝜆2

(1000)

(0001) ∙

∙ (2000) ∙

∙ (0000)⊕ (1001) ∙

∙ (0010) ∙

∙ ∙ ∙

1

0 2 3 4

Figure 1. The Dynkin diagram ofℬ(E4), S(E4) and E(5, 10).

and the vector v are the components of the D = 10 connection,
and the vector 𝜉 and the 2-form 𝜔 are part of the spinor.
Yet another possibility is a 1-form field Ξm(x, 𝜃, 𝜆), with

shift symmetry Ξm ∼ Ξm + 𝜆mn𝜚n. The zero-mode cohomology is
given in Table 3.
The supermultiplet at 𝜆1 is interesting. There is a symmetric

tensor hmn with a gauge transformation 𝛿uhmn = 𝜕(mun), which
looks like the linearised transformation of a gravity field. The
fermions 𝜓m

n have a gauge symmetry 𝛿𝜖𝜓m
n = 𝜕m𝜖

n, and there
is a bosonic 3-form (field strength). There are 20 bosonic and 20
fermionic local degrees of freedom. The multiplet will certainly
be a part of a decomposition of D = 10, N = 1 supergravity, but
may also have some significance of its own.
There may be more interesting supermultiplets that we have

not found.

3. Minimal Orbit Partition Function and Koszul
Duality

It is known that there in general is a Koszul duality between
the associative algebra generated by an object 𝜆 ∈ S in a min-
imal orbit under G and the positive part ℬ+ of a Borcherds
superalgebra.[15] The Lie superalgebraℬ is defined by a Dynkin
diagram obtained by extending the Dynkin diagram of 𝔤 = Lie(G)
by a “fermionic” null root connected according to the Dynkin la-
bel of S. The diagram is depicted in Figure 1.
The concrete relation is

Z𝜆(t)⊗ Zℬ+
(t) = 1, (3.1)

where Zℬ+
is the partition function of (the universal enveloping

algebra of)ℬ+, defined as

Zℬ+
(t) =

∞⨂
p=1

(1 − tp)−(−1)
pRp , (3.2)

Rp being the module of the level p generators in ℬ. The duality
(3.1) can be understood as a factorised version of the summation
form Z𝜆(t) =

⨁∞
p=0 R(pΛ) t

p, with Λ the highest weight of S,
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and thus as a denominator formula for ℬ. A concrete way of
understanding the duality is in terms of the BRST operator for
the bilinear constraint on 𝜆. The modules Rp are the modules
of the corresponding infinite tower of ghosts.[15,34–36] This BRST
operator can be identified as the coalgebra differential of the
co-superalgebra ℬ⋆

+ . The identification relies on the absence of
Lie superalgebra cohomology other than polynomials of level 1,
which holds for Borcherds superalgebras.
In the present case, we thus have

Zℬ+
(t) = (1 − t)(0010) ⊗ (1 − t2)−(1000)

⊗

(
1⊕

∞⨁
i=0

(i001)t3+2i ⊖
∞⨁
i=0

(i100)t4+2i
)−1

(3.3)

= (1 − t)(0010) ⊗ (1 − t2)−(1000) ⊗ (1 − t3)(0001) ⊗ (1 − t4)−(0100)

⊗ (1 − t5)(1001) ⊗ (1 − t6)−(0002)−(1100) ⊗…

The factor (1⊕
⨁∞

i=0(i001)t
3+2i ⊖

⨁∞
i=0(i100)t

4+2i)−1 is now
read as the partition function for the superalgebra freely gener-
ated5 by the supermultiplet with partition

P(t) = ⊖

∞⨁
i=0

(i001)t3+2i ⊕
∞⨁
i=0

(i100)t4+2i. (3.4)

Note that this partition function is consistently graded in the
sense that when the products ⊗iP(t) are evaluated, all terms at
odd level are negative and at even level positive, so no cancella-
tions may arise. One can then safely identify the algebra at lev-
els ≥ 3 as freely generated by the multiplet. The picture is in
complete analogy with how the Borcherds superalgebra ℬ(E5)
is freely generated by the D = 10 Yang–Mills on-shell supermul-
tiplet from level 3.[16–18]

We believe that the Koszul duality in general can be extended
to fields in non-trivial modules with shift symmetry. Then, just
as the Koszul duality described above can be seen as providing a
denominator formula for the Borcherds superalgebra, it may be
conjectured that a corresponding relation involving a non-scalar
field will provide a character formula for a representation of the
superalgebra.[18]

4. Superalgebras Based on SL(5) Supersymmetry

There is a number of infinite-dimensional superalgebras that
all contain generators in (0010) at level 1 and (1000) at level 2.
They can all be described by the same Dynkin diagram, Figure 1.
They have standard Chevalley generators ea, a = 0,… , 4 and fi,
hi, i = 1,… , 4, but differ in terms of the level −1 generators.
The Borcherds superalgebra ℬ(E4) is contragredient, having a
Chevalley generators f0 and h0 with the usual relations. The gen-
erator e0, with the Serre relations [e0, e0] = 0 following from the
Cartan matrix, is the lowest weight state in the 2-form module at
level 1, and the Serre relation implies that level 2 only contains
a vector.

5 The partition function for an algebra freely generated by generators in
P(t) is (1 − P(t))−1. Even if the freely generated algebra itself is compli-
cated to describe level by level, its universal enveloping algebra has the
simple partition function

⨁∞
i=0⊗

iP(t) = (1 − P(t))−1.

4.1. S(E4)

While the superalgebra ℬ(E4) is contragredient, so the module
at level −p is conjugate to the one at level p, this does not apply
to the tensor hierarchy algebras[22] S(E4). In S(E4), h0 is removed,
and the generator f0 of the Borcherds superalgebra is replaced
by f0j, i = 1, 3, 4 (the nodes not connected to node 0). New brack-
ets are [hi, f0j] = −A0if0j, [e0, f0j] = hj.

[23,24,37] The presence of f01 im-
plies the presence of (2000) at level −1, while f03, f04 give (0011).
The reducibility of level −1 comes from the disconnectedness of
the Dynkin diagram of A4 with node 2 removed.
Although it has not been proven, we strongly believe that the

positive levels ofℬ(E4) and S(E4) coincide, S+(E4) ≃ ℬ+(E4), and
that consequently the Koszul duality involving the supersymme-
try multiplet, as described in Section 3, applies equally well to
S(E4). It seems likely that a proof of this may be based on an ar-
gument that the freely generated property of the part of ℬ(E4)
at levels ≥ 3 does not allow for any ideal annihilated by the neg-
ative level generators in S(E4). This will be postponed to future
examination[18]

Instead of standard contragredience, S(E4) allows for an invari-
ant bilinear form pairing level p with level 5 − p, so that R5−p =
Rp.

[38]

4.2. E(5, 10)

The superalgebra E(5, 10)[19–21] is one of the “exceptional” sim-
ple superalgebras which are linearly compact (which for our pur-
poses holds if the elements arise as a power series of the co-
ordinates of some finite-dimensional space) and of finite depth
(meaning that there is a maximal level6), and has attracted some
interest in the mathematics literature.[39–41] It is defined as a
super-extension of volume-preserving diffeomorphisms in 5 di-
mensions by fermionic generators, the parameters of which are
closed 2-forms. Letting 𝜉, 𝜂 be divergence-free vector fields and
𝜒 , 𝜓 closed fermionic 2-forms, the brackets are

[P𝜉 , P𝜂 ] = PL𝜉 𝜂
,

[P𝜉 , Q𝜒 ] = QL𝜉𝜒
, (4.1)

[Q𝜒 , Q𝜓 ] = P⋆(𝜒∧𝜓).

The Jacobi identity with threeQ ’s relies on the identity L⋆(𝛾∧𝛾)𝛾 =
0 for a bosonic closed 2-form 𝛾 , which when written out in com-
ponents leads to antisymmetrisation in 6 indices.
From a derivative expansion of the parameters, we get the

level decomposition. At level 2 − 2i, there are generators Pa1…ai
b,

symmetric in (a1… ai) with Pa1…ai−1b
b = 0, i.e., in (100i). At level

1 − 2i, there is Qa1…ai,bc, symmetric in (a1 … ai) and antisymmet-
ric in [bc], with Qa1…ai−1[a,bc] = 0, i.e., in (001i).
We observe that the supermultiplet of Section 2.1, related to

ℬ(E4) (or S(E4)) in Section 3, is in fact the adjoint module of
E(5, 10). The theorem, stating a relation between E(5, 10) and
ℬ(E4), then immediately follows:

6 In most of the mathematical literature, level is defined with a minus
sign compared to our conventions, so this would read asminimal level.
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Theorem. The part ofℬ(E4) at levels≥ 3 is freely generated by the
coadjoint module of E(5, 10), with the lowest states assigned to level 3.

If it holds that S+(E4) ≃ ℬ+(E4) (see the discussion in Sec-
tion 4.1), the theorem applies to the part of S(E4) at levels ≥ 3.
This is precisely half of S(E4), and the theorem then gives com-
plete information concerning the SL(5) modules in S(E4) at all
levels, since the invariant quadratic form relates the remaining
half as R2−i = R3+i.
One may also understand E(5, 10) in terms of Chevalley-like

generators associated to the Dynkin diagram of Figure 1 and
the corresponding Cartan matrix. The disconnectedness of the
Dynkin diagram of A1 ⊕ A2 obtained by deleting node 2 presents
the option not to include all three f0j from the definition of S(E4)

7.
We call such a superalgebra a restricted tensor hierarchy algebra.
By including f0j′ , j

′ = 3, 4, but not f01, one obtains only (0011) at
level −1. Then, levels ≥ 3, as constructed in S(E4), become an
ideal, which follows from the observation that level 3 is anni-
hilated by level −1, since (0011)⊗ (0001) ⊅ (1000). The result is
E(5, 10).
The difference between the coadjoint module and and the su-

peralgebra it generates freely appears first at level 6, where the
symmetric product of level 3, i.e., (0002), enters. Its dual module
in S(E4) is (2000) at level −1, which accounts for the difference
between S(E4) and E(5, 10) at level −1.
Yet another superalgebra can be defined as a restricted ten-

sor hierarchy algebra by making the complementary choice to
the one leading to E(5, 10): keeping f01 and omitting f03, f04. Then,
only (0002) enters at level −1. Now, level −1 annihilates level 2,
since (2000)⊗ (1000) ⊅ (0010), so levels≥ 2 form an ideal. In ad-
dition, level −2 is empty (the generators in (0002) have vanishing
brackets among themselves in S(E4)). The resulting superalgebra
is the “strange” (finite-dimensional) superalgebra P(4).[42] This
observation is due to Jakob Palmkvist.[30]
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7 The rôle of the generators f0j in a tensor hierarchy algebra S(𝔤) is as the
Cartan part of the adjoint of 𝔤−, the Lie algebra obtained by deleting the
node(s) connected to the fermionic one. The list is typically redundant.
Here, by including either f03 or f04, the other one can be obtained by
the action of e3,4 and f3,4.
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