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ABSTRACT 
 

When introducing new technologies in space products, both the uncertainties regarding 

technology feasibility and the way in which the technology affects the product development 

process hinder the early establishment of appropriate engineering specifications. Failing to 

establish product specifications during conceptual stages leads to problems discovered during 

later phases of the product development process, when design and process changes are the most 

expensive. 

This thesis proposes a digital holistic design platform and a method of constraints replacement 

for a cost- and time-efficient identification of specification uncertainties when designing space 

products with new technologies. The digital platform and methods have been developed and 

tested through industrial case studies featuring the introduction of new technologies for on-

orbit applications. Most of these studies were performed in the context of, but are not limited 

to, the introduction of additive manufacturing. 

The platform and proposed constraints replacement method are based on function modeling 

strategies (for modeling product architecture and requirements during conceptual design 

phases), coupled with activity modeling strategies (for modeling the impact of product 

architecture on product development schedules and costs). The platform and method enable the 

identification and assessment of unknown uncertainties, thereby reducing the likelihood of 

expensive redesign processes during later development phases. 

Moreover, they enable the inclusion of multidisciplinary design trade-offs during conceptual 

stages and encourage the establishment of a culture of uncertainty seeking and effective data 

documentation and transfer. 

 

 

Keywords: Technology introduction, model-based systems engineering, space components, 

engineering specifications, uncertainties identification. 
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1 
INTRODUCTION 
 

Products for space applications must be able to withstand extreme environments and meet 

tough requirements when in operation, as the ability to maintain and repair them is limited. For 

this reason, these types of products are traditionally costly and produced in small batches 

(Hobday,1998). They are often designed for minimum weight while being able to withstand 

the dynamic conditions of launching and environmental requirements regarding radiation and 

thermal gradients (Öhrwall Rönnbäck, and Isaksson (2018). 

These requirements have shaped the space industry to be risk averse with low production 

volumes and long development times, where the main actors are governmental and defense 

agencies such as NASA, the European Space Agency (ESA), and Roscosmos (Hiriart and 

Saleh, 2010). The launch vehicle Ariane 5, for instance, had its first series of test flights in 

1996 and was in development until 2014. Launches with Ariane 5 rockets were performed from 

1997 and are still performed nowadays with a frequency of seven launches per year (ESA, 

2019). Their development and launch cost per unit is estimated at 150 to 170 million euros 

(Selding, 2015). 

However, as the industry has evolved (Whitney, 2000), multiple international groups have 

started competing for commercial markets, fostering the creation of private companies and 

start-ups in the space sector. Some of the newly created companies are known as “NewSpace” 

companies and are primarily funded by private capital, with a clear objective of increasing 

production numbers and lowering costs, thus challenging the traditional methods of space 

exploration, which are considered too expensive, time consuming, and conservative (Prasad, 

2017; Martin 2014). The US-based NewSpace company SpaceX, for instance, began the 

process to launch into orbit a satellite constellation with approximately 12,000 low-cost 

satellites. Counterparts, such as the UK-based OneWeb, are planning to deploy similar systems 

(McDowell, 2020). 

In the next 10 years, around 10,000 NewSpace enterprises are expected to be started (Henry, 

2016). This change in mentality leads to cost and lead time reductions becoming important 

driving forces for space manufacturers. For example, the launch vehicle Ariane 6, which was 

planned to be operational in 2020, was developed under the expectation of a major cost 

reduction (40%–50%), compared to its predecessor Ariane 5, to compete against the low cost 

of SpaceX launchers (Shalal, 2019). 

This cost reduction was possible through innovative design changes and technical and 

technological innovation (Cour des Comptes, 2019). 

In this context, the introduction of new technologies is attractive for space manufacturing 

companies due to the increased market competition to target new product functionalities or 
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lower production costs and time, ensuring present and future company permanence in the 

market and fostering company capabilities.  

During the conceptual stages of a product development process (PDP), needs and requirements 

are identified, refined, and compiled into requirements specifications (Haskins et al, 2015). In 

the systems engineering (SE) framework, requirements (e.g., “The component shall connect 

with the pressure vessel in the fluid management system”) are translated into engineering 

specifications from which the product is then designed. Engineering specifications are 

measurable criteria that the product must fulfill to satisfy the established requirements (Haik et 

al., 2015) (e.g., “Interface internal diameter [mm]”). 

When introducing new technologies, engineering specifications are difficult to establish, as 

previous technical knowledge might have lost its relevance and applicability (Barenbach et al., 

2009). 

On the one hand, a lack of knowledge and, consequently, an incorrect engineering specification 

definition in early PDP stages can lead to wasteful redesign loops encountered during later PDP 

stages (Haik et al., 2015; Dordlofva, 2020). 

However, test campaigns for data gathering can be long and resource intensive (Brice, 2011; 

O´Brien, 2018; Dordlofva, 2020). For example, data-gathering activities for introducing new 

materials or manufacturing technologies often require millions of dollars and five to 15 years 

to be completed (Brice, 2011). 

Due to this lack of knowledge, development projects with new technologies might have either 

test phases that are too long and expensive or redesign loops that disrupt the PDP schedule, 

hence introducing delays and additional costs. New technologies could consequently be 

abandoned or not used to their full potential (Thompson et al., 2016). 

The ability to gather data to establish engineering specifications in a time- and cost-efficient 

manner during conceptual stages is generally imperative to foster the introduction of new 

technologies. 

 

1.1.  Research positioning, scope, and limitations 
 

The presented work was carried out at the Systems Engineering Design research group, which 

is part of the division of Product Development at the Department of Industrial and Materials 

Science at Chalmers University of Technology. The research group aims to understand and 

address the needs of product-developing organizations through the development and 

improvement of design- and technology-integration theories, methods, and tools. 

In this context, the research presented in this thesis is concerned with the development of 

model-based methods for the design of complex space products with new technologies. In this 

thesis, “space products/components” refer to mechanical or electric components for on-orbit 

space applications, such as the components of a propulsion system for satellite applications. 

Moreover, the characterization of “complex” refers mainly to the high number of customized 

components and the amount of knowledge and skills required for their development and 

production. 

This research is based in a context where the new technologies that intend to be introduced are 

already aligned with company objectives and have already been selected for implementation. 

The thesis is not concerned with the selection of the most appropriate technology/technologies 

for a certain application, but rather with the development of design support adapted to work 

with those technologies. 

In this line, when “new technologies” are mentioned in this thesis, they are mentioned to 

reference technologies whose implementation is novel in the context of a specific company. 
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Throughout this thesis, “data,” “information,” and “knowledge” are recurrent concepts. 

Although the literature defines them in numerous ways, the following definitions, elicited from 

the work by (Chen et al., 2008), are adopted in this work: 

 

- Data: sets of individual, out-of-context facts. 

- Information: sets of contextualized relevant data at a point or in a period of time. 

- Knowledge: acquaintance or understanding of information. 

 

1.2. The product development and product design context 
 

This thesis is positioned in the concept stage of product development (PD), as defined by SE 

literature (Haskins et al., 2015). The SE model, as proposed by Haskins et al. (2015), is 

presented in Figure 1.1. 

 

  
Figure 1.1. Thesis positioned in the product development process (PDP) proposed by the INCOSE’s 

Systems Engineering (SE) Handbook, adapted from Haskins et al. (2015). 

 

According to the SE Handbook by INCOSE (Haskins et al., 2015), in the concept stage, a 

stakeholders’ needs analysis, exploratory research, and technology studies are performed 

(Figure 1.1). Requirements are specified for subsequently developing and assessing product 

concepts through early performance, cost, and schedule projections. This stage includes a 

preliminary architecture definition as well as the planning of verification and validation (V&V) 

activities. 

Design is at the core of SE (Buede and Miller, 2016; Haskins et al., 2015). However, authors 

such as Shafaat and Kenley (2015) and Buede and Miller (2016) state that when SE models, 

such as the Vee model, are applied, the iterative and explorative nature of the design process 

is generally disregarded.  

Disregarding design iterations and design space exploration can have consequences with 

respect to the designers´ ability to recognize and deal with system complexity (Shafaat and 

Kenley, 2015). 

Engineering design (ED) is the discipline that focuses on design space exploration and iteration 

during PD (Suh, 1990; Chakrabarti and Blessing, 2014). 

In terms of ED-centric literature, this thesis is concerned with PD activities related to the design 

of product architectures and product design concepts. For example, Eppinger and Ulrich (2015) 

identify these early stages as the system-level design phase (Figure 1.2.) where the product 

architecture is generated, product subsystems and interfaces are defined, and preliminary 

components’ designs are established. 

Design strategies applied in conceptual phases of the PDP provide tools for dealing with early 

changes in requirements and design specifications. Moreover, as knowledge regarding design 

for new technologies is limited, its early modeling and enabled simulation capabilities can 

facilitate its efficient management and implementation (Eppinger and Ulrich, 2015). 
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For understanding, analyzing, and improving the PDP a vast number of PDP models are 

proposed in literature; a comprehensive review of these models can be found in the work by 

authors such as Smith and Morrow (1999), Haskins et al. (2015), and Wynn et al. (2018). 

However, the point is that, in this thesis, the focus is on early conceptual design phases, not on 

the phases where a clear, embodied concept is readily available. 

 
Figure 1.2. Thesis positioned according to the PDP proposed by Eppinger and Ulrich (2015). 

 

Despite the proficiency of the ED discipline in design exploration and ideation, the SE 

community often criticizes ED for its difficulty to be applied in an industrial setting and its 

disregard for verification, validation, and testing (VVT) phases (Buede and Miller, 2016). 

Other differences between SE and ED are presented in Table 1.1. 

 

Table 1.1. Differences between systems engineering (SE) and engineering design (ED) 

Systems Engineering Engineering Design Reference 

Rich in concepts and practices to 

handle system complexity 

Lack of conceptual richness and 

strategies to handle system 

complexity 

(Shafaat and 

Kenley, 2015) 

Product/system centered: 

disregard for extensive idea 

generation phases 

Human centered: ideation, design 

fixation avoidance 

Brown (2009), 

Greene et al.(2017) 

Well-known terminology in 

industry 

Mainly known and implemented in 

academia 

Cross (2001), 

Greene et al. (2017) 

Mostly based on industrial 

definitions and established 

practices 

Strong theoretical basis Cross (2001); 

Greene et al. (2017) 

Design space exploration is 

often disregarded 

Emphasis on design space 

exploration 

Pahl et al. (2007), 

Buede and Miller 

(2016) 

Design iterations are often 

disregarded when planning and 

budgeting 

Design iterations are expected and 

encouraged 

Pahl et al. (2007), 

Shafaat and Kenley 

(2015) 

Focuses on requirements 

validation 

Requirements’ validation is often 

disregarded 

Buede and Miller 

(2016) 

Focuses on modeling system 

specifications, design, and 

Focuses on modeling relations 

between objects (functions, design 

Haskins et al. 

(2015), Hatchuel 
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verification and validation 

phases, with the purpose of 

design analysis and optimization 

solutions, activities, etc.) to 

understand their interaction and 

explore the design space 

and Weil (2009), 

Gero (1990), Gero 

and Kannengiesser 

(2007) 

 

When the disciplines of SE and ED are combined, the resulting discipline is referred to as 

systems engineering design (SED), which focuses on the ED of products, while taking a 

systems (holistic) perspective (Isaksson et al., 2017). The studies conducted in this thesis 

pertain to the SED domain. 

 

1.3. Research questions 
 

New technologies are attractive for space companies to, for instance, target new product 

functionalities or lower production costs and time. However, the lack of knowledge regarding 

a new technology hinders the early establishment of engineering specifications to satisfy design 

requirements. 

PDP with new technologies must consequently incur exhaustive test phases to gather the 

required data or undergo expensive redesign loops due to problems arising in later phases of 

the PDP. Both consequences can render the PDP too expensive and lengthy. Moreover, efforts 

to introduce the new technology might be abandoned. 

In this context, this thesis proposes three research questions to be addressed: 

 

RQ1: What are the main knowledge gaps during conceptual stages that hinder the 

establishment of engineering specifications for the introduction of new technologies in the 

space industry? 

 

RQ2: What factors hinder data gathering for the establishment of specification requirements 

related to technology capabilities and their impact on the V&V schedule? 

 

RQ3: How can uncertain engineering specifications be identified and modeled in a cost- and 

time-efficient way during the concept stage? 

 

1.4. Thesis structure 
 

The contents of this thesis are structured as follows. Chapter 1 presents the main problem that 

motivated this research, along with the background, the context, and the research questions that 

this thesis aims to address. In Chapter 2, the frame of reference is introduced, and in Chapter 

3, the research methodology employed for conducting this research is presented. Thereafter, in 

Chapter 4, the five appended articles, which are the backbone of this thesis, are introduced 

together with their key results and findings. Those findings are then discussed and used to 

answer the research questions in Chapter 5. The thesis results are subsequently discussed in 

Chapter 6, and their validation is addressed in Chapter 7. Finally, concluding remarks are 

presented in Chapter 8. 
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2 
FRAME OF REFERENCE 
2.1. The evolution of the space industry 
 

According to authors such as Hobday (1998) or Haskins et al. (2015), space products can be 

classified as complex products, as they have a high cost and value and are engineering-

intensive, with emphasis on design, project management, and systems integration. Moreover, 

space products must withstand extreme launch and operation conditions and then operate in an 

autonomous and reliable way for periods that, in the case of satellite applications, can be 

extended to more than 15 years (Öhrwall Rönnbäck and Isaksson, 2018). 

These requirements have shaped the space industry to be conservative and risk averse with low 

production volumes and long development times, and the main actors have traditionally been 

governmental and defense agencies such as NASA, the ESA, and Roscosmos (Hiriart and 

Saleh, 2010). The traditional space industry pursues goals set by governments, based on 

political and social forces and funding sources (Chechile, 2021). 

During the early years of the space industry, technologies were developed in and for space 

applications and transmitted to other industries. However, nowadays, technologies are spinning 

into the space industry from other industries, helping to reduce the costs and increase the 

performance of many space applications, such as telecommunications, Earth observation, and 

space exploration (Lal, 2016). 

The introduction of new technologies that enable performance increases and cost decreases are 

key drivers for what is called the “democratization of space,” enabling the advent of companies 

primarily funded by private capital with a clear objective of increasing production numbers and 

lowering costs, thus challenging the traditional methods of space exploration, which are 

considered too expensive and time consuming (Martin 2014; Prasad, 2017; Chechile, 2021).  

These private companies are usually termed “NewSpace” companies; some examples are 

SpaceX, One Web, Vector, Virgin Galactic, and Planet Labs (Martin, 2014; Prasad, 2017; Lal, 

2016). 

NewSpace initiatives pursue non-governmental goals, responding mostly to market tendencies 

toward cost and development time reductions. These initiatives usually engage in risk-taking 

endeavors based on private funding, experimenting with disruptive innovations, rapid 

development cycles, and large production numbers (Chechile, 2021). 

The US-based NewSpace company SpaceX, for instance, started the process to launch into 

orbit a satellite constellation with approximately 12,000 low-cost satellites. Other companies, 

such as the UK-based OneWeb, are also planning to deploy similar systems (McDowell, 2020). 
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In the next 10 years, around 10,000 NewSpace companies are expected to be started (Henry, 

2016), and the space economy is expected to move toward civilianization and 

internationalization (Lal, 2016). The democratization of space is leading the space industry into 

an era of increased market competition and mass customization with a growing need for cost 

and time-to-market reduction strategies. 

This change in mentality means that cost and lead-time reductions are becoming important 

driving forces for space manufacturers (Cour des Comptes, 2019). 

The launch vehicle Ariane 6, for instance, which was planned to be operational in 2020, was 

developed with the expectation of a major cost reduction (40%–50%), compared to its 

predecessor Ariane 5, to compete against the low cost of SpaceX launchers (Shalal, 2019). 

To remain relevant in a competitive market, disruptive technologies are attractive for space 

companies to target new product functionalities or lower production costs, ensuring company 

permanence in the market and fostering new company capabilities (Loch and Kavadias, 2008; 

European commission, 2019). 

 

2.2. Technology introduction in space products 
 

The introduction of new technologies is attractive for space companies. However, technology 

development is expensive and takes a long time, especially the space hardware development 

cycle, which is considerably longer than in general tech (European commission, 2019). 

There is a need to reduce the costs and times of technology introduction processes in the space 

industry. However, two major hinderances exist: a lack of information about technology 

capabilities (Veritas, 2001; Brice, 2011; Dordlofva, 2020; Echsel et al. 2020) and a lack of 

information about the impact that a new technology has on a PDP, especially on V&V activities 

(Lord et al., 2018, European commission, 2019; Dordlofva, 2020), which can constitute 55% 

of a technology’s life cycle cost (LCC) (Engel and Barad, 2003; Tahera et al., 2019). A lack of 

knowledge and, consequently, poorly defined engineering specifications in early PDP stages 

can lead to wasteful redesign loops encountered during later PDP stages. 

In their study about additive-manufactured satellite sandwich structures, Echsel et al. (2020) 

manufactured sandwich structures that failed their V&V tests due to previously unknown AM 

material behaviors that caused water vapor to be trapped in the structure during the 

manufacturing process. The authors proposed further investigation and adjustments of the 

manufacturing process and a reestablishment of design specifications. 

Furthermore, in their analysis of the design of a rocket engine turbine, Dordlofva (2020) 

pointed out the need to include, during conceptual stages, requirements and engineering 

specifications related to component V&V activities. For instance, if one considers the available 

inspection methods and established engineering specifications for a design that can be 

successfully inspected, failing to perform V&V activities can result in expensive redesign 

loops. 

In this context, three design and development alternatives are predominantly found in the 

literature on technology introduction (Brice, 2011; O´Brien, 2018): 

 

(1) Design an innovative product, and increase confidence in its quality and 

performance through extensive data-generation campaigns with long and 

expensive test activities. 

(2) Create a conservative design with a limited amount of testing, but miss 

more radical performance improvement opportunities (Thompson et al., 

2016). 
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(3) Produce an innovative design, but perform little testing and data-

gathering activities. 

 

On the one hand, the problem with alternatives (2) and (3), which are not test intensive, is that 

technologies do not always perform as expected (Echsel et al. 2020): Not addressing 

uncertainties leads to redesign loops. 
On the other hand, test campaigns for data gathering—alternative (1)—can be long and 

resource intensive (Brice, 2011; O´Brien, 2018; Dordlofva, 2020). For example, data-gathering 

activities for introducing new materials or manufacturing technologies often require millions 

of dollars and five to 15 years to be completed (Brice, 2011). 

Due to this lack of knowledge, development projects with new technologies might have either 

test phases that are too long and expensive or redesign loops that disrupt the PDP schedule, 

thereby introducing delays and additional costs. New technologies could consequently be 

abandoned or not used to their full potential (Thompson et al., 2016). 

In this context, to foster the introduction of new technologies, it is imperative to gather data to 

define engineering specifications related to technology capabilities and VVT activities in an 

affordable (time- and cost-efficient) manner during conceptual stages. 

 

2.3. Verification and validation activities in the space industry 
 

V&V activities are activities performed to demonstrate that a system or a system element 

fulfills its specified requirements (verification) and its business objectives and stakeholders’ 

requirements in its operational environment (validation). Problems discovered during these 

stages are expensive to fix (Haskins et al., 2015). 

Among the V&V activities, four categories are highlighted (Haskins et al., 2015):  

- Acceptance: This activity is conducted prior to a transition process, so the acquirer can 

decide whether the system provided by a supplier entity is ready to change ownership 

to the acquirer. 

- Certification: This activity is conducted to ensure that the system has been developed 

and is able to perform its functions in accordance with an appropriate standard. 

- Readiness for use: This activity is conducted to ensure that the system is ready and has 

all the required capabilities to be used. 

- Qualification: In the space industry, “qualification” encompasses activities that, as the 

SE Handbook explains (Haskins et al., 2015), ensure that a product meets its design, 

quality, and reliability requirements as well as safety and legislative norms (ISO, 2020; 

Dordlofva, 2020). These objectives are attributed to the end stages of the VVT activities 

performed in the SE field (Shabi et al., 2017). Moreover, the ISO standard 

ISO/IEC/IEEE 12207-2:2020(E) draws a parallel between verification activities and 

qualification (ISO, 2020). 

 

For already-established manufacturing technologies, several qualification standards exist that 

guide qualification activities. Such is the case of NASA qualification standards for casting 

NASA-STD-6016 (materials), -5009 (non-destructive tests), -5012 (structures), and -5019 

(fracture control) (Biliyard, 2018). According to standards and common practices (NASA, 

1970), each qualification test has its own pass or fail criteria, which are determined before the 

test is performed. In the case of qualification tests to assess a component’s response to 

environmental loads, for instance, a test can be considered to have failed when the presence of 

fatigue cracks, excessive structural deformation, or instabilities are observed in the component 

after the test. 
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The criteria for the evaluation of qualification tests are often derived from extensive failure 

mode effect and criticality analysis (FMECA) studies (Borgovini et al., 1993), where the 

criticality of failure modes is identified and its impact is assessed through simulations and 

testing. 

In early design phases, product design requirements and specifications, along with their 

associated loads (including those related to failure modes and their criticality), are not 

completely established and are typically evolved and refined as the PDP advances. 

Based on experience, early testing activities, and previous projects’ data, designers must assess 

how design choices will impact the qualification processes (Borgovini et al., 1993; Dordlofva 

and Törlind, 2018). In this context, design development and qualification are performed 

iteratively during PD; however, design iterations due to failed qualification tests can result in 

expensive delays on a PD schedule. 

Authors such as Pecht (1993), Preussger et al. (2003), Yadav et al. (2006), and Rausand (2015) 

maintain that to reduce design iterations due to failed qualification tests, the elaboration of 

qualification requirements and related engineering specifications must be addressed in the early 

stages of a PDP. 

Some qualification approaches implemented in other industries have successfully followed 

these principles. This is the case in the qualification process presented by NATO AVT-092 

(2009) for military aircrafts, aiming at reducing the time and cost of their production and 

focusing on the early use of analysis and the integration of tools. In a similar vein, other authors, 

such as Andersen (2006), Grady (2006), and Engel (2010), have proposed guidelines for 

qualification procedures to be considered early within the PD process. 

However, literature that includes an explicit identification and elaboration of engineering 

specifications related to V&V requirements is still lacking. This lack of a systematic connection 

between V&V phases and conceptual stages renders it difficult for one to assess how different 

design parameters affect qualification ability. 

When introducing a new technology, the problem related to loosely defined V&V engineering 

specifications in conceptual phases is aggravated by the designers´ lack of experience with 

designing and qualifying a product with the new technology. This in turn increases the risk of 

encountering problems during V&V activities, which would lead to expensive redesign 

processes. 

 

2.4. Verification and validation activities for new technologies 
 

To decrease uncertainties about the implementation of a new technology, current qualification 

strategies for technology introduction are based on extensive tests required depending on the 

technology type, confidence in analyses, and previous documented experience with similar 

technologies (Veritas, 2001; Murthy et al., 2008; Furtado et al., 2016). Authors such as Engel 

and Barad (2003) and Tahera et al. (2019) state that the cost of test activities in a regular PD 

process can be up to 40% or 55% of the cost of the total LCC. These costs can be expected to 

be higher when introducing new technologies (Furtado et al., 2016). 

In their literature review of qualification methods for technology introduction, Rausand (2015) 

stated that apart from requiring lengthy data-gathering test phases, the most popular 

qualification methods are not well linked to the PD process. Moreover, those methods do not 

support process feedback to establish qualification requirements and improve the product 

design or its development process, which is deemed necessary for introducing new 

technologies, as experience implementing the technology is rather limited. According to the 

author, failing to comply with these criteria (among others) increases the likelihood of 

qualification failures and redesign loops. The author thus proposes a new qualification strategy 
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with well-defined and organized qualification activities, performed in parallel with a PD 

process and that promotes process feedback to improve a product design according to early 

qualification criteria and results. However, no explicit procedures or guidelines are proposed 

for developing qualification-related specifications or for assessing the influence a new design 

on the qualification phases. 

The lack of systematic design for qualification (DfQ) guidelines for conceptual stages hinders 

the introduction of new technologies in high-risk or critical components in the space industry 

(Dordlofva, 2020). Additive manufacturing (AM) technologies are a compelling example of 

this phenomenon. Although there is a growing interest among space manufacturers in 

introducing AM to reduce weight, cost, and time to market (Meisel et al., 2017; O´Brien, 2018), 

most examples of AM parts that have been successfully developed and implemented in the 

space industry are non-critical (Dordlofva, 2020). In a non-critical component, failure can be 

accepted without fatal consequences, and the margins can be narrowed down and accepted. 

The lack of critical space components manufactured using AM is mostly due to the 

qualification of AM still being a challenge (Meisel et al., 2017), as there is a lack of 

understanding of AM processes (Thomsen et al., 2017) and a lack of standardized approaches 

to ascertain the quality of AM parts (Shabi et al., 2017). The statistical spread in properties is 

not acceptable for critical products (Furtado et al., 2016). 

The lack of knowledge and the consequent uncertainty regarding AM material properties would 

require AM-critical components to have longer testing phases and larger design margins 

(Dordlofva, 2020). However, longer testing phases and more robust design margins might 

render the benefits of AM (associated with weight, cost, and lead-time reductions) obsolete. 

To address the uncertainties regarding new technologies and to be able to establish appropriate 

design specifications and safety factors when needed, authors such as NRC (2010), Brice 

(2011), Karlow Herzog (2018), and Mokhtarian et al. (2019) recommend the early 

implementation of model-based design methods. These methods can reduce the consequences 

of the uncertainties related to a new technology and implement the little data and experience 

available about them, to evaluate the influence of design and process parameters on component 

quality (Haskins et al., 2015). 

Moreover, model-based methods can provide information about tests that can be performed 

early in the development process to enrich current knowledge about the product under 

development, thereby potentially reducing the need for some later test activities (NRC, 2010; 

Pasquinelli et al., 2014; Furtado et al, 2016). 

In this way, model-based methods could enable a proper assessment of failed items during 

early phases and the implementation of parameter-specific corrective actions, exploiting test 

results for the improvement and validation of analysis models and enabling data gathering that 

would support future design projects (Pasquinelli et al., 2014). 

 

2.5. Model-based methods and uncertainty in conceptual 

stages 
 

2.5.1. Models in systems engineering 
Model-based design frameworks and methods can quantify, manage, and possibly reduce 

technology uncertainties—examples are the frameworks presented by Blair and Love (2003), 

Robinson (2011), and Schmollgruber (2018)—through models and estimations using available 

data. by implementing these strategies, estimations about the new technology can be used for 

analyzing design trade-offs in conceptual design phases (Pasquinelli et al., 2014; Furtado et al, 

2016). 
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Multidisciplinary model-based strategies and performance simulations are widely used for 

uncertainty assessment and reduction (Struck and Hensen, 2007; Ogaji et al., 2007; Goldberg 

et al., 2018) during conceptual stages. 

For instance, there have been several model-based tools for modeling PD uncertainties in the 

SE discipline in the context of aerospace applications. NASA’s IDEA (Robinson, 2011) is a 

collaborative environment for the parametric conceptual modeling of launch vehicles and is 

based on the object-based adaptive modeling language (AML) framework (TechnoSoft, 2021). 

This platform integrates aspects such as geometry, aerodynamics, reliability, costs, and 

structural analysis into a knowledge-based, generative and parametric, unified model for 

sharing data across disciplines. Its predecessor, the SBAAT (Bair and Love, 2003), is also 

based on the AML framework and is a design-modeling product for identifying technology 

needs and prioritizing technology solutions. Moreover, it includes a process-based affordability 

assessment in the technology development assessment phase of PD. Similar modeling 

frameworks were proposed by NASA, with their advanced engineering environment (AEE) 

(Rowel and Korte, 2003); Stephenson et al. (2007); the CREATE-AV team, with their DaVinci 

tool (Roth et al., 2010); and Smith et al. (2019). 

These efforts are based on tightly coupled geometric modeling, with aerodynamic or structural 

analysis and optimization. However, they lack the focus on a wider range of design parameters 

and operational scenarios, rendering then rigid in their design exploration (Raju, et al., 2012). 

 

2.5.2. Function modeling in engineering design 
ED is a discipline concerned with engineering-related problem solving through ED processes, 

methods, and tools. The ED process has a strong focus on design exploration and iteration 

largely based on function modeling (FM) techniques (Suh, 1990; Pahl et al., 2007). Through 

the inclusion of ED methods in SE frameworks, SED (Isaksson et al., 2017) strives for function 

analysis and iterative ED efforts in a holistic multidisciplinary framework. 
The main advantage of modeling methods is the systematic arrangement and visualization of 

system information to support designers in making decisions about product architectures and 

to manage uncertainties and complexity in multi-technology environments (Eisenbart et al., 

2012). These techniques have been adopted as a support design method for PDP, as they 

facilitate product analysis (Raja and Isaksson, 2015), foster collaborative design environments 

acting as boundary objects (Eisenbart et al., 2015), and facilitate design space exploration 

(Müller et al., 2020). 

Moreover, their flexibility and capability of evolving to adjust to new information and system 

requirements as well as their level of abstraction (Müller et al., 2020) make them prime 

candidates for the introduction of new technology and the analysis thereof during conceptual 

stages. 

Multiple FM representations have been developed over the years, such as the one proposed by 

Gero (1990) and Gero and Kannengiesser (2007), namely, the function-behavior-state (FBS) 

model for modeling a system with its functional descriptions; the one proposed by Hirtz et al. 

(2002) for a clear and concise functional basis for mechanical design; or the functions template 

strategy adopted by Heller and Feldhusen (2013) for creating unambiguous function structures. 

These representations aim to facilitate the connection between an abstract system concept 

(system architecture) and the physical design (Eisenbart et al., 2012). 

These types of modeling techniques link functional requirements (FRs) with product design 

features and can incorporate different types of interactions among design features (material, 

signal, energy, geometry) into the model, thereby providing modeling support to be used across 

disciplines, as it can represent multidisciplinary requirements utilizing a common language. 
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In this thesis, a function is defined as “intended behavior” (Vermaas, 2013), although there is 

no unique definition of the term in the literature. In a function model, the main product function 

is first identified, and the complete product system is then decomposed into subfunctions that 

are hierarchically arranged in a function tree (Erden et al., 2008). 

The enhanced functions-means (EF-M) is an example of an FM technique. It has been 

developed and used for over 20 years (Malmqvist, 1997) and is among the more industrially 

tested FM frameworks (Müller et al., 2020). 

In this technique, a hierarchical product structure (Johannesson and Claesson, 2005) is 

provided that associates FRs with design solutions (DS) to perform those functions, which can 

be subject to design constraints (C). DSs can be modeled on their interaction with one another 

via geometry, signals, energy, or material flow. The mentioned modeling elements are 

illustrated in Figure 1.a. The design rationale that is created through this structure iterates 

between FRs and DSs. This structure, illustrated in Figure 2.1.b, allows one to identify the 

impact of constraints and to determine how a change in a function or constraint affects the 

product structure. Moreover, to enable a segmentation of the product structure, configurable 

components (CC) are implemented in EF-M as well. CCs, introduced by Claesson (2006), are 

objects that encapsulate an entire branch (DSs and sub-elements) of an EF-M tree, as depicted 

in Figure 2.1b. 

 

 

 

 

 

 

 

 

a)                                                                  b) 
Figure 2.1. Enhanced functions-means (EF-M) modeling: a) modeling elements, based on (Johannesson 

and Claesson, 2005), and b) levels of EF-M tree based on (Claesson, 2006) and encapsulation through 

configurable components (CC). 

Function models aid in understanding product architectures and can enable the representation 

of constraints in early phases of the PD process. To deal with the continuous changes in 

requirements and design assumptions that arise naturally from the implementation of a 

technology that is still under development (NRC, 2010), the constraint modeling feature of EF-

M models is critical. 

Moreover, the ability to represent interactions between DSs enables a direct connection with 

design structure matrixes (DSM). A DSM (Steward, 1981) is a system engineering tool that 

provides a visual and analytic representation of a system, usually implemented for optimization 

procedures of design processes (Browning, 2015; Tompkins et al., 2020). A direct connection 

between a DSM and an FM facilitates the correct identification of interactions among DSs, 

enabling a correct understanding of the project schedule and cost (Qian et al., 2011). The 

implementation of DSMs is widespread in the field of engineering and in the design of complex 

systems for the space industry (Chang et al., 2007; Lee et al., 2010; Qiao and Ryan, 2015). 

 

2.5.3. Activity modeling in the product development process 
As discussed in previous sections, design development and test activities are performed 

iteratively during the whole PDP. Data obtained from test activities can be expensive both in 

terms of cost and time. Therefore, how and when these data are used is critical, as this can 

affect the cost and duration of PD activities. 

FR DS

C

FR DS

C

FR DS
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Efforts to model test activities, such as VVT activities, are hence widespread and contribute to 

the establishment of affordable test phases. In their review of the modeling of test activities, 

Tahera et al. (2019) indicate that most VVT modeling methods focus on the schedule of a given 

set of test activities to optimize PD times. Other studies are concerned with choosing the most 

appropriate test activities considering cost and risk. 

Since the cost of test activities can be as much as 55% of the total LCC (Engel and Barad, 

2003; Tahera et al., 2019), these activities should be tailored to different product architecture 

scenarios to reduce costs and schedule times (Wang et al., 2008). 

Numerous strategies can be employed to reduce PD costs through the optimization of the 

development phases, and numerous strategies exist to reduce the cost of the VVT phases 

(Tahera et al., 2019). However, literature does not provide mechanisms to enhance the 

conceptual design phases with insights (or requirements) from the test phases. There seems to 

be an underlying assumption that sufficient upfront information is available about the 

technologies considered and the product itself, as well as how the associated VVT can be 

conducted. However, when introducing new technologies, information about product design 

and the corresponding VVT activities might not be available (Wang et el., 2008). 

For introducing new technology in space applications, one must establish a connection between 

the conceptual phases and the later VVT phases such that insights from the VVT activities can 

be considered for improving a product’s architecture. Similarly, a connection between these 

two phases would facilitate the assessment of how new design alternatives affect the cost and 

duration of VVT, thus reducing uncertainties and fostering the development of space products 

with affordable VVT activities. 
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3 
RESEARCH APPROACH 
 

3.1. Research context 
 

The content presented in this thesis was developed in the context of several research projects: 

 

- Radical Innovation and Qualification for Additive Manufacturing (RIQAM) (08/2017–

12/2018), with financial support from Rymdstyrelsen, Swedish National Space Agency 

(Rymdstyrelsen, 2019). RIQAM, an industrial project, was a collaboration between 

Chalmers University of Technology, Luleå University of Technology and three major 

manufacturers of space components in Sweden: GKN Aerospace Engine Systems 

(GKN, 2019), RUAG Space AB, and OHB Sweden AB (OHB, 2019). The purposes of 

the project were to demonstrate the potential of AM for space applications and to 

identify changes in the PD process required to implement AM in space products. 

- Consortium for Hall Effect Orbital Propulsion System (CHEOPS) (11/2016–01/2021), 

founded by the European Union’s Horizon 2020 research and innovation program. 

CHEOPS was a project with the participation of more than 10 European aerospace 

companies (such as Thales Alenia Space France/Belgium, Airbus SAS, and Safran) and 

the University Carlos III of Madrid. This project involved the development of three 

different innovative hall effect thruster electric propulsion systems (EPSs), each with a 

different application field and orbit (CHEOPS, 2020). 

- Infrastructure for Digitalization Enabling Industrialization of Additive Manufacturing 

(IDAG) (06/2019–12/2019), with the financial support of Vinnova. The aim of the 

IDAG project was to identify gaps in complex value chains where digitization solutions 

for the industrialization of AM were needed (Kunskapsformedlingen, 2019). 

- Digital Platform for Additive Manufacturing (DigiQUAM) (01/2020–12/2020), 

founded by EIT Manufacturing. DigiQUAM was a manufacturing project involving 

four European partners, namely, Prima, Lortek, RISE, and Chalmers, with the objective 

of developing an AM software platform (RISE, 2020). DigiQUAM was based on the 

preliminary studies performed during the IDAG project. 

- Demonstration of Infrastructure for Digitalization enabling industrialization of 

Additive Manufacturing (DIDAM) (02/2020–02/2023), with financial support from 

Vinnova. DIDAM has the objective of demonstrating and developing the critical parts 

of a digital infrastructure required to industrialize AM. The partner organizations of this 

project were Volvo Group, Epiroc AB, Eurostep Group, Uddeholms AB, Brogren 

Industries AB, and RISE Research Institutes of Sweden. 
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- Design Exploration and Business Activity Simulator (DEBAS) (04/2021–09/2021), 

with financial support from Chalmers Innovation Office, under reference V616. The 

objective of the DEBAS project is the development of a standalone digital application 

(minimum viable product) composed of two modules. The first module focuses on 

design exploration as the embodiment of the model platform developed during these 

PhD studies. The second module contains a surplus value (SV) model for simulating 

business activity and business cases. 

 

Figure 3.1 presents the main articles on which this thesis is based in the context of the research 

projects. 

 

 
Figure 3.1. Main articles included in this thesis and their positioning according to the 

research projects. 

 

3.2. Research framework 
 

Research can be defined as a “Systematic and logical study of an issue or problem or 

phenomenon through a scientific method” (Krishnaswamy and Satyaprasad, 2010). Different 

research methodologies are chosen to address research gaps and research questions; an 

appropriate research methodology should enable data collection to answer the research 

questions. 

The different studies that make up this thesis can be organized in a research framework, which 

is based on the design research methodology (DRM) proposed by Blessing and Chakrabati 

(2009). The aims of this framework are to create an understanding of certain phenomena and 

to improve them. The DRM framework is composed of four iterative basic stages, represented 

in Figure 3.2: 1) research clarification, for identifying and clarifying the research problem; 2) 

Descriptive Study I, for increasing the understanding of the research problem through empirical 

studies; 3) a prescriptive study, where methods to address the research problem are developed 

and applied; and 4) Descriptive Study II, where the impact of the proposed method is evaluated. 
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Figure 3.2. Design research methodology (DRM) framework (Blessing and Chakrabarti, 2009). 

 

Each of the six appended articles in this thesis has contributed to different stages of the DRM 

framework. Their contribution is illustrated in Figure 3.3. 

The research conducted for the thesis began with an article entailing a systematic literature 

mapping around design for additive manufacturing (DfAM) methods and design practices in 

the space industry (Article A). The aim of this article was to research how a DfAM 

methodology can support the introduction of AM in space components considering the benefits 

and limitations of this technology. Thereafter, in the RIQAM project, empirical studies 

commenced through a series of workshops attended by practitioners from industry, Luleå 

University, and Chalmers University of Technology. In those workshops, it was possible to 

directly observe three different space products being redesigned for AM. Articles B and C are 

based on the empirical results obtained from those workshops. In Article B, the state of the art 

of V&V procedures in the space industry is analyzed. The conclusions of this study were used 

to highlight the need to introduce V&V requirements in conceptual stages when designing for 

a new technology. In Article C, the first part of a model-based method for technology feasibility 

requirements identification is proposed, and reflections about its application in the context of 

RIQAM are also presented therein. 

In Article D, a modeling method that models V&V activities in relation to early product 

architecture designs is proposed. The method is applied and discussed in the context of the 

CHEOPS project. Furthermore, the aim of Article F is to continue the method proposed in 

Article E linking specific design parameters to the risk of failure during V&V activities. In 

Article F, the methods proposed in Articles C, D, and E are unified, and their usefulness is 

assessed through a Solomon four-group study (Sawilowsky et al., 1994) performed in the 

context of the DIDAM project. 

Figure 3.3 illustrates the extent to which the appended articles contribute to the different stages 

of the DRM framework. The contribution of the different articles is represented by circles of 

different sizes (a larger circle = a larger contribution). 
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Figure 3.3. Positioning of the thesis articles according to the DRM framework. 

 

3.3. Data collection procedures 
 

The research activities have been performed in the context of the RIQAM, CHEOPS, IDAG, 

DigiQUAM, and DIDAM projects. Moreover, each article was developed in close 

collaboration with industry practitioners. The performed data collection activities are described 

in Sections 3.3.1–3.3.5: 

 

3.3.1. Literature review 
In every article, a short literature review about the state of the art of the research area of interest 

is presented. The academic publications utilized in the literature reviews were found using 

keywords on the SCOPUS database, along with backward and forward snowballing (Wohlin, 

2014) procedures from highly cited and/or new articles in the field. Due to the rapid 

development pace of some of the technologies of interest in this study, such as AM, non-

academic publications retrieved from technology websites and forums were also included. 

Larger literature review activities were performed for the research clarification study in Article 

A to identify and evaluate existing areas or gaps that require research (Wohlin, 2014). In this 

article, a systematic literature mapping (Kitchenham and Charters, 2007) was performed by 

cross-analyzing and “matching” two neighboring research areas (research on DfAM methods 

and research on the introduction of AM in space products). Of the different methodologies for 

performing a literature review, a literature mapping study was preferred, as this approach 

focuses on broad research questions to review a substantial number of publications, aiming for 

publication classification to achieve a high understanding of the research area (Barn et al., 

2017). The entries obtained through SCOPUS, snowballing, and non-academic publications 

were filtered by title, abstract, and then full-text content, based on appropriate inclusion criteria. 

 

3.3.2. Workshops 
Most of the data-gathering activities for Articles A, B, and C were performed through 

workshops for the RIQAM project, which involved the joint efforts of Swedish universities 

and aerospace companies. The distribution of data-gathering and validation activities through 

the workshops is presented in Figure 3.4. Five workshops and five follow-up meetings, 

attended by 10 experienced industrial practitioners from the participating companies, were 

carried out. The workshops were held approximately once every two months, with follow-up 

meetings set up between workshops for data and model validation purposes. The industrial 

participants were engineers (with 12 to 30 years of experience) working in PD at the 

participating companies. Observations and workshop results were documented through field 

notes and pictures, and they were subsequently transcribed and analyzed through content 
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analysis (Miles et al., 2013). Observations and results were then distributed to the participants 

of the workshop for discussion. Follow-up phone meetings were conducted with the 

participations for verification and exchange of statements. 

The first workshop (W1) focused on presenting 10 designs for AM strategies (e.g., part 

consolidation or topology optimization) to the participants using examples. These strategies 

are summarized in Lindwall and Törlind (2018). The presentation of these strategies served as 

random stimuli (Cross, 2000) for the generation of novel concepts. Each company presented 

one case study product to be redesigned for AM during the five workshops. In the concept 

generation phases of the workshops, to mirror the current design activities in the three involved 

companies, no designs for an AM methodology were implemented (which are not supported 

by formal DfAM processes). A series of semi-structured interviews (Robson, 2002) were 

conducted between the workshops to understand the participants’ own experiences designing 

for AM, and those insights were used to further develop workshop activities. In the second 

workshop (W2), FM techniques were implemented for continuing the design process. The 

workshop focused on the functional decomposition of the different case studies. Observations 

and studies from W1, W2, and their complementary meetings were utilized for the development 

of Articles A, B, and C. Observations from W2 were also implemented in the development of 

Article B. 

Function models were developed with the function decompositions from W2. These models 

were created collectively by the researchers and industrial partners during complementary 

meetings, and they were validated and refined during the third workshop (W3). In W3, results 

from Articles A and C were presented and discussed for validation purposes. The rest of W3 

was dedicated to discussions and reflections that served as the first data collection activities for 

Article B. 

In the fourth workshop (W4), a plan and schedule for the data collection activities for Article 

B were established. 

Finally, in Workshop 5 (W5), Article B was presented and discussed to validate its results. 

 

 
 

Figure 3.4. Data-gathering and validation activities performed during the Radical Innovation and 

Qualification for Additive Manufacturing (RIQAM) workshops for the different articles in this thesis. 
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3.3.3. Interviews 
To refine specific points and concerns raised during the RIQAM workshops, semi-structured 

interviews (Robson, 2002) were held with industrial practitioners for Article B. Most of the 

subjects interviewed were not participating in RIQAM, although they belonged to the 

participating companies. Semi-structured interviews were preferred, since the topics under 

study are complex and might have required follow-up questions and explanations to ensure 

their appropriate interpretation (Bell et al., 2018). 

The interviews were performed following a set of predefined questions; however, the 

interviewees were encouraged not only to answer the questions but also to elaborate on specific 

points that they considered pertinent (Williamson and Bow, 2002). 

When interviewees granted permission, the interviews were recorded and then transcribed; 

otherwise, data were collected through notes. To clarify the data and identify recurring themes, 

selective coding was implemented. Data reduction in the form of pattern matching and data 

displays was utilized to synthesize the findings (Miles and Huberman, 1994). The pattern 

matching involved the definition of categories based on topics identified before performing the 

interviews. The interview transcripts were then read, and quotes related to the identified 

categories were highlighted. The results from the coding were compiled in spreadsheets for 

comparison purposes. The quotes in the spread sheet were then condensed into a text document 

that was then sent back to the interviewees for validation purposes. 

 

3.3.4. On-site industrial studies 

The bulk of the data collection activities for Articles D and E was performed through a three-

month study at one of the companies participating in the CHEOPS project to study the design 

process of an EPS. 

In this study, two of the authors of Article D worked on-site, in close collaboration with the 

company’s design team, where full access to real company data and the possibility of 

performing interviews and participating in their technical meetings was provided. One of the 

two authors already worked at the company in a supporting role, and the other author had an 

observer role in gathering data during the three-month period. Both authors invested the 

equivalent of 60 full working days (8 h/day) in the data collection activities. 

The information gathered for this study was be divided into (1) information gathered from 

documented sources (documented information) and (2) information gathered through 

interactions with practitioners (tacit information). 

The data collection of documented information was performed through the analysis of 

company internal documentation, including mission-specific documents (where and how the 

product will be utilized) and product-specific documents (design and test requirements to 

comply with the specific mission), which were used to build a function model of the EPS. 

Documentation regarding PD and testing was gathered and documented in preliminary lists. 

Later, those lists and further information collected about activity schedules were stored in 

program evaluation and review technique (PERT) diagrams. 

Another portion of the data was obtained from the ESA’s product, test, and qualification 

standards for space components, and it was used to complement the function model and PERT 

diagram. 

In addition to the documented information, a series of meetings and semi-structured interviews 

were held with company practitioners. Most of the meetings were held for model (PERT and 

FM) validation purposes, while other meetings were held to gather formation about the 

duration, costs, and sequence of test activities. 
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The meetings and interviews lasted between one and two hours and were held with seven 

company practitioners with an average of 10 years of expertise in the areas of SE and the 

design, testing, and qualification of EPSs. 

 

3.3.5. Solomon four-group study design 
One of the simplest methods for evaluating the usefulness of a method or a tool is a two-group 

posttest experiment (Figure 3.5.a) (Trochim, 2021). In this experiment, one group applies the 

method or tool to perform a task, and the other group does not. The results are then compared 

based on preestablished metrics. However, this method does not provide a way to compare 

both groups’ baselines; therefore, the results from these studies could be due to intrinsic 

differences between the two groups. 

One approach to establish a baseline to compare both groups is to carry out a pretest-posttest 

experiment (Figure 3.5.b) (Trochim, 2021). In this experiment, both groups perform a pretest 

to establish their baseline results, which are then compared with the results obtained after 

applying the method or tool of interest. For example, when evaluating the usefulness of a design 

method for shortening design times in two different companies, a pretest would establish a 

comparison (baseline) of the current (without the tool) design times of each company. 

Nevertheless, a drawback of this configuration is the difficulty of establishing whether the 

obtained results are due to the method or the “practice” obtained during the pretest. 

The Solomon four-group design (Figure 3.5.c) (Sawilowsky et al., 1994; Trochim, 2021) is an 

experiment arrangement designed to assess the effects of a pretest. This arrangement requires 

four groups: Two of the groups use the method or tool, and two do not. Furthermore, two of 

the groups receive a pretest, and two do not. 

The Solomon four-group study design was implemented in Article F for evaluating the 

usefulness of the methods proposed in this thesis. 

 

 
Figure 3.5. Comparison of experimental design methods. a) Two-group posttest experiment, b) two-group 

pretest-posttest experiment, and c) Solomon four-group design experiment. 

 

The study was performed in the context of the DIDAM project, with the participation of 12 industrial 

practitioners. 
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4 
SUMMARY OF APPENDED 

ARTICLES 
 

4.1. Article A: Impact on design when introducing additive 

manufacturing in space applications 
 

4.1.1. Article summary 
In this article, the impact on the design process when introducing AM in space components is 

studied. Through a systematic literature mapping and an empirical study, the limitations and 

challenges of introducing AM in space components are matched with the existing design 

strategies for AM. The article points at “modeling” as a crucial design strategy in the context 

of DfAM. 

From the systematic literature mapping and the empirical study, it is inferred that there is a lack 

of knowledge, technology development, and experience regarding the application of AM in 

space components. 

During the empirical study, the largest manifested concerns related to quality and qualification: 

the nature and detection of manufacturing defects and their impact on performance, material 

behavior and capabilities, surface finishing, and geometric accuracy. Furthermore, there seems 

to be a misalignment between the industry needs and challenges on the one hand and the general 

focus of the design research community on the other. It is inferred that for AM to be introduced 

in space applications, space components should undergo a process of redesign. However, even 

if AM enables design freedom, practitioners exhibit a tendency to design products similar to 

those they know, due to the strong technology legacy from traditional manufacturing 

technologies. Moreover, total AM design freedom is not guaranteed, as this technology has 

several manufacturing limitations. 

It is concluded from the findings that when designing for a new manufacturing technology, 

modeling techniques are important to exploit design exploration opportunities and to gain 

confidence in decision making. Systematic modeling techniques, such as FM (one out of three 

DfAM methodologies implement FM), can be a powerful support for organizing and 

implementing the little information available about a product and a technology. By 

implementing these techniques, available knowledge about AM can be used for extracting 

conclusions and analyzing the proposed concepts, thus enabling concept comparison. 

 



24 

 

4.1.2. Conclusions 
To introduce AM in space applications, space components should undergo a process of 

redesign. However, even if AM enables unprecedented design freedom, total design freedom 

is not guaranteed, as this technology has several manufacturing limitations. Moreover, there is 

a lack of knowledge, technology development, and experience regarding the application of AM 

in space products. These results align well with several articles on the topic, such as work done 

by Salonitis (2016), Lindwall et al. (2017), and Dordlofva (2018). The aforementioned lack of 

knowledge combined with strong technology legacies leads to designs that are similar to their 

traditionally manufactured predecessors and that hence do not take advantage of AM design 

freedom. 

When designing for a new technology, model-based design techniques can contribute to design 

exploration and confidence in decision making. However, as other authors have remarked 

(Lindwall et al., 2017; Dordlofva, 2018; O´Brien, 2018), to be relevant in the space industry, 

design techniques must have a holistic approach to PD and the product lifecycle to consider, 

early in the design phases, the needs of later PD process activities such as qualification. 

 

4.1.3 Contribution to the thesis  
The research conducted in this article served to identify the research gap for this thesis and to 

gain a better understanding of the space industry’s design techniques for new technology 

implementation. The article points out that when designing for a new manufacturing 

technology, model-based design techniques are important to exploit design exploration 

opportunities and to gain confidence in decision making. As information is scarce in early 

phases of the design process, abstract product representations (such as function models) can 

facilitate the design process. 

 

4.2. Article B: Drivers and guidelines in design for qualification 

using additive manufacturing in space applications 
 

4.2.1. Article summary 
In this article, factors are presented that impact or drive the qualification activities of products 

for space applications. These factors are named “qualification drivers” and are intended to 

serve as a baseline for developing design guidelines in the future to support the qualification 

of AM components. The results presented in this paper are based on 12 semi-structured 

interviews with two companies that manufacture space products in the European space 

industry. From this article, it is concluded that the market shift that the space industry is 

experiencing affects PD processes. Introducing AM in their portfolio, companies aim for 

design flexibility, cost and time-to-market reductions, and an increase in production volume 

while maintaining a high product quality. However, knowledge about AM capabilities is 

scarce, and the product outcome is sometimes unpredictable, which renders the qualification 

activities challenging and expensive. 

Qualification is an integral, but expensive part of PD in the space industry. To mitigate time-

consuming and expensive qualification activities for AM, qualification logics should be 

included and considered as design guidelines and requirements during early design processes. 

Unless the qualification activities or strategies are defined and qualification requirements are 

established when design decisions are made, the cost of qualification might become too high.  

A DfAM methodology for the effective introduction of AM in the space industry must include 

DfQ guidelines to assist designers to deal with critical product features. The qualification 
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drivers proposed in this article support the future development of qualification guidelines and 

qualification requirements. However, even if the qualification drivers are general enough to be 

applied to multiple products and business cases, there will not be one qualification logic that 

fits every AM component, as qualification is product and process dependent. 

 

4.2.2. Conclusions 
As previously reported, the market shift that the space industry is experiencing motivates the 

introduction of new technologies such as AM. By introducing AM, companies aim for design 

flexibility, cost and time-to-market reductions, and an increase in production volume while 

maintaining a high product quality. However, the knowledge about AM capabilities is scarce, 

and the product outcome is sometimes unpredictable. As qualification is an integral part of PD 

in the space industry, qualification activities must be considered early in the design process. 

Otherwise, due to the lack of knowledge and experience regarding AM, the cost of AM 

qualification might become too high. These results are aligned with previous literature 

pertaining to the field of qualification for AM in space components ( Dordlofva and Törlind, 

2018; O´Brien, 2018). 

 

4.2.3. Contribution to the thesis 
The research carried out for this article evidenced that a) in early design phases the knowledge 

about AM capabilities is scarce and b) the product outcome is sometimes unpredictable, which 

renders qualification activities challenging and expensive. The early modeling of qualification 

requirements can help to mitigate the cost of these activities. 

 

4.3. Article C: Constraint replacement-based design for additive 

manufacturing of satellite components: Ensuring design 

manufacturability through tailored test artifacts 
 

4.3.1. Article summary 
In this article, as a basis for product redesign using AM, a methodology based on EF-M FM 

methods and constraint modeling is proposed. In this methodology, to redesign a product that 

is currently manufactured via traditional manufacturing methods, its original functions, DSs, 

and manufacturing constraints are identified and arranged in an EF-M tree. In this method, 

constraints are divided into two groups: manufacturing constraints (which are technology 

capability constraints) and functional constraints (related to performance). The process of 

constraint distinction facilitates the process of identifying DSs in the design that are only 

manufacturing (new technology) dependent and that can therefore be redesigned for AM. 

With the constraints classified, the original manufacturing constraints are removed and 

replaced with manufacturing constraints for AM. Hence, the design space is freed and then 

constrained again according to AM limitations. From this process, a new AM function model 

is developed and utilized for designing a new part geometry for AM. 

As constraints are related to the AM process of choice, different AM processes present different 

constraints. Constraint modeling and replacement enables the identification of constraints that 

are not entirely well defined (information designers know is missing; i.e., known unknowns 

[KUs]); for example, there is a threshold surface inclination angle below which support 

structures are needed, but that angle might be unknown. To improve constraints definition, 



26 

 

product-tailored test artifacts are proposed. Manufacturing test artifacts provides the required 

information and evidence of new AM constraints that were previously unknown (i.e., unknown 

unknowns [UUs]). For instance, to avoid the generation of unmelted particles between closely 

located outlets, the outlets must be placed 30° apart. 

This methodology was applied in a case study featuring a satellite subcomponent. 

 

4.3.2. Conclusions 
The methodology proposed in this article aims at redesigning components for AM, not only 

taking advantage of AM design freedom but also considering AM limitations, as suggested by 

authors such as Boyard (2015) or Pradel et al. (2018). 

FM methodologies allow for an organized display of product information that enables a deep 

understanding of product architecture. The nature of EF-M modeling techniques permits the 

identification and separation of design constraints that depend on product performance from 

constraints that depend on the technology applied. This separation provides the designer with 

an effortless identification of product features and geometries that are manufacturing dependent 

and can hence be redesigned for AM. Constraints classification enables constraint replacement, 

which facilitates the identification of constraints where more information is required (i.e., KUs) 

and constraints that were previously unknown (i.e., UUs). 

Moreover, the process of identifying traditional manufacturing constraints and then replacing 

them with AM constraints can support the acknowledgment and enable the removal of the 

carried-over knowledge and experience that designers have about traditional manufacturing 

technologies. As suggested by the work of (Kumke et al., 2016; Seepersad et al., 2017), 

acknowledging carried-over practices can be the first step toward mitigating practitioners’ 

tendency to design products similar to those they know. 

 

4.3.3. Contribution to the thesis  
The research conducted in this article served the purpose of developing and testing the first part 

of a model-based method for identifying and modeling KUs and UUs through the process of 

constraints replacement. The methodology is based on function and constraint modeling, since 

their abstract product representation is suitable for conceptual stages where product 

information is scarce. Moreover, their level of abstraction facilitates model evolution and 

adaptation as knowledge about new technologies and their requirements continues to be 

developed. 

 

4.4. Article D: Design for test and qualification through 

activity-based modeling in product architecture design 
 

4.4.1. Article summary 
VVT phases take up a significant portion of the time to market for high-performance, critical 

products in the space industry, especially when introducing new technologies. However, as 

VVT activities are normally treated as standard procedures, they tend to be independent of 

product architectural design decisions. When implementing new technologies, however, VVT 

procedures may differ from those implemented in regular design scenarios, and the early 

estimation of qualification costs and duration is problematic. 

In this article, a computer-assisted modeling method that models VVT activities in relation to 

early product architecture designs is proposed and demonstrated in a case study for EPSs for 
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satellite applications. Product architecture alternatives, modeled in an FM, and test schedules 

and costs, modeled in a PERT diagram, are connected through the identification and 

quantification of VVT drivers and driver rates, with the purpose of designing products with 

affordable VVT phases. 

The method was utilized to model VVT phases for a 5-kW hall thruster with a conventional 

power processing unit (PPU) configuration. Later, implementing that model, VVT procedures 

were integrated into the conceptual design and evaluation process of a 20-kW thruster design. 

Two design alternatives for the 20-kW thruster were evaluated—one with a conventional PPU 

arrangement and one with a new direct drive (DD) technology. Different VVT schedules were 

also evaluated. 

 

4.4.2. Conclusions 
The link between the FM with the product architecture and the PERT diagram with the VVT 

schedule enables the integration of VVT procedures into the conceptual design and evaluation 

of product architectures. The link is achieved through the identification and quantification of 

VVT drivers and driver rates, which are factors that drive the design, costs, and duration of 

VVT activities. 

It is proposed that by defining VVT drivers, the defining characteristics of VVT procedures 

can be quantitatively modeled and integrated into a design study where alternative technologies 

and concepts are investigated. Therefore, the method can be applicable for various design 

situations where the choice of technology is strongly dependent on the qualification procedure.  

Identifying and quantifying drivers and driver rates enables the identification of test-intensive 

components, modules, and subsystems, allowing one to establish design specifications to 

restrict the type and number of components in a design for developing products with affordable 

VVT phases. The opportunity to establish requirements and specifications for the VVT 

activities to design affordable VVT phases is also highlighted, along with the recommendation 

of risk assessment strategies related to partially performing or completely removing specific 

VVT activities. Moreover, representing the PERT diagram as a DSM enables the 

implementation of clustering algorithms to optimize the schedule. 

 

4.4.3. Contribution to the thesis 
This article complemented a function model representation with a PERT schedule diagram and 

activity model, setting up the baselines for a holistic modeling strategy aiming at front loading 

the conceptual stage with data from the whole PDP. High-performance architectures are 

sometimes outweighed by expensive or time-consuming downstream phases. A holistic 

modeling framework enables the identification of design requirements and specifications 

related to later PDP phases, such as manufacturing, verification, or validation phases.  

This study introduces the importance of risk assessment in the context of design decision 

making and the possibility of redesigning later PDP phases concurrently with the product 

architecture design. 

 

4.5. Article E: Fuzzy model-based design for testing and 

qualification of additive manufacturing  
 

4.5.1. Article summary 
The introduction of AM in the space industry is hindered by the difficulty to design an AM 

product that fulfills the stringent V&V standards of the industry. The advantages of AM are 
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usually based on nominal values of material properties. However, as the variation in material 

properties once manufactured is less predictable than for more established manufacturing 

methods, such as forging and casting, this causes a problem for designers. Accounting for such 

uncertainty during design might require large design margins. In addition, the lack of 

experience in AM technologies renders experts’ assessments of AM components and the 

establishment of safety margins difficult. Unexpected V&V difficulties resulting in expensive 

and lengthy redesign processes might consequently arise. 

To reduce the risk of unsuccessful V&V phases, engineers might perform copious time-

consuming and expensive specimen testing in early phases, or they might establish 

overconservative design margins, overriding the weight reduction benefits of AM technologies. 

In this article, a model-based design for a V&V method is proposed for the conceptual design 

of AM space components. The objective of the method is to support the design of products 

with a high likelihood of successful V&V phases, thereby reducing the likelihood of redesign 

loops. The method utilizes fuzzy logics to systematically account for experts’ assessments of 

the variation in AM properties and to provide an early quantification of a product’s likelihood 

of successful V&V. If needed, a more detailed assessment of qualification likelihood can be 

performed through targeted test campaigns, but the preliminary experts’ assessments help to 

reduce the need for test campaigns. The method is demonstrated with the DfAM of gridded ion 

thrusters for satellite applications. 

 

4.5.2. Conclusions 
The novelty of the method lies in the modeling and quantification of the likelihood of 

successful V&V phases and their integration into design studies and concept evaluation. 

In regular design scenarios, when introducing new technologies in the space industry, hundreds 

of samples are tested to achieve strong statistical knowledge bases before the design and V&V 

phases. However, this process can be time and resource consuming. 

In this study, experts’ assessments and qualification maps are combined to identify when and 

if predesign testing is necessary, thus reducing the time and cost spent on test activities while 

still ensuring the development of a qualifiable product. 

Qualification maps, which indicate which design parameter combinations yield qualifiable 

products, were proposed and proven to support design activities for single components and for 

product assemblies. Moreover, qualification maps allow designers to look over their own 

aggregated judgments and discuss the accuracy of their initial assessments. The method can be 

applied in various design situations where the implementation of novel technologies, such as 

AM, can hinder innovation due to the lengthy tests that are required to ensure the design of a 

qualifiable product. 

This study goes beyond what other studies have reported, enabling V&V phases to be included 

in sensitivity studies, trade-off studies, and other digital experiments where a range of concepts 

must be simultaneously evaluated. 

 

4.5.3. Contribution to the thesis 
The study carried out in this article enables V&V phases to be included in sensitivity studies, 

trade-off studies, and other digital experiments, through the introduction of qualification 

likelihood and risk. Qualification likelihood and risk are presented in qualification maps, where 

the need for and importance of performing tests over specific design parameters are evaluated. 

The initial risk assessment is performed by experts’ judgment; however, qualification maps 

allow designers to look over their own aggregated judgments, discuss the accuracy of their first 

assessments, and decide whether further testing is needed. 
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4.6. Article F: Reducing design uncertainty through model-

based collaborative design methods when introducing new 

technologies: A Solomon four-group design study 
 

4.6.1. Article summary 
When introducing new technologies in product design, uncertainties regarding technology 

feasibility and the way technology introduction impacts the whole PDP hinder the 

establishment of appropriate design specifications during conceptual stages. Ill-defined design 

specifications can lead to expensive and time-consuming redesign loops. 

Uncertainties about the new technology can be known (i.e., UKs: information designers know 

is missing) or unknown (i.e., UUs: information designers do not know is missing). 

On the one hand, strategies for dealing with known uncertainties are well established and 

include, for example, test campaigns for data gathering. Unknown uncertainties, on the other 

side, are difficult to identify, as practitioners do not know what is missing. 

Failing to identify unknown uncertainties can lead to unpleasant and expensive surprises that 

arise late in the PDP, rendering the introduction of a new technology an expensive and time-

consuming endeavor. 

Previous articles in this thesis have proposed an integrated design platform and design methods 

to support the identification and modeling of uncertainties during conceptual phases. The 

design platform is composed of a function model of the product architecture linked to a PERT 

diagram of the product’s and system’s validation activities. Each validation activity is 

connected with the respective DS in the FM. Moreover, both the FM and the PERT display a 

color-coded assessment of the risk of not performing each validation activity. In this article, 

the usefulness of such a platform and associated methods are evaluated using a Solomon four-

group design study featuring the design of satellite components for AM. 

 

4.6.2. Conclusions 
The platform and constraints replacement method are evaluated with a Solomon four-group 

design study involving 12 experienced industrial practitioners and featuring the design of 

satellite components for AM. 

The results of the study suggest that the proposed platform and constraints replacement method 

are useful for identifying design and schedule uncertainties and for proposing measures to 

address them. Moreover, the design platform enabled discussions about activity risk and its use 

to propose measures to deal with uncertainties without compromising product quality while 

maintaining an affordable validation schedule. 

However, a drawback of the constraints replacement technique is that uncertainties are 

discovered as long as their traditional technology counterpart is well modeled. Nevertheless, 

the need to make “uncertainties seeking” a common practice is highlighted in this study—an 

organization that is actively looking for uncertainties is more likely to identify them in a timely 

and resource-efficient manner. 

During the experiments, it was also observed that unknown uncertainties are not always 

“unknowable.” Sometimes, they are aspects that have escaped the minds of practitioners or that 

no one has bothered to investigate. 

Due to the small sample size and the artificial design setting in which the studies were 

performed, the obtained results and conclusions cannot be generalized. Nevertheless, the 

findings were still useful, as they were presented to the participants and enabled a fruitful 

discussion about design support platforms and a culture of uncertainty seeking. 
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4.6.3. Contribution to the thesis 
The experiments performed in this article assess the usefulness of the proposed digital design 

platform and the constraints replacement process in an industrial context. This assessment is 

crucial for strengthening the thesis validation claims in Chapter 7. Moreover, in this article, the 

limitations and shortcomings of the proposed platform and methods are identified and 

highlighted, thereby enabling the establishment of improvement guidelines to apply in future 

work. 
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5 
RESULTS 
 

5.1. Main knowledge gaps that hinder the introduction of new 

technologies in the space industry 

 

The market shift that the space industry is experiencing impacts PD processes (Article A, 

Article B). By introducing new technologies, companies aim for design flexibility and cost and 

time-to-market reductions while maintaining a high product quality (Article A, Article B). 

However, when introducing new technologies, previous technical knowledge might lose its 

relevance and applicability (Article B, Article C, Article F). 

Every research project in which the work for this thesis was carried out, aimed at increasing 

the knowledge about new technologies for their later application by the participating 

companies. Project RIQAM, for instance, focused on increasing companies’ knowledge about 

manufacturability and qualification with AM technologies (Article B, Article C), for example 

the establishment of AM design constraints such as “Minimum material defects density” and 

“Minimum overhang angle to avoid support structures,” which would support the 

establishment of AM engineering specifications, thus reducing redesign loops. Moreover, after 

identifying AM constraints and specifications, traditional qualification activities can be tailored 

for AM, or AM-specific qualification activities can be established, such as the implementation 

of computerized tomography (CT) scanning techniques for defect measurements. 

The lack of knowledge about new technologies hinders the establishment of engineering 

specifications, and development projects with new technologies can consequently become 

longer and more expensive than those with traditional technologies. Ill-defined specifications 

often lead to expensive redesign loops (Article C) or prolonged test phases to ensure product 

quality (Article B). In Article C, the lack of knowledge led to the design of an AM flow 

connector that, when manufactured and removed from the building plate, had an uneven 

bottom. After a redesign loop, a new engineering specification related to bottom flatness was 

chosen.  

In Article B, practitioners stated that the lack of knowledge about AM capabilities leads to 

prolonged VVT phases. 

In project CHEOPS, the introduction of new technologies for high-power hall thrusters was 

considered (Article D, Article E). In this context, Article D focused on the impact that changes 

in the architecture design have on VVT activities and their schedule for the introduction of new 

DD technologies in EPSs. However, the idea of implementing DD technologies on high-power 

thruster units was abandoned, as technology uncertainties resulted in VVT phases that were 

not affordable (Article D). 
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In Article E, the likelihood of passing a qualification test was used as a metric for establishing 

engineering specifications related to different design parameters. Establishing specifications 

that ensure product quality would reduce redesign loops due to failed qualification tests. 

The IDAG, DIDAM, and DigiQUAM projects addressed the knowledge gaps related to AM 

technologies’ capabilities and the design of high-quality, repeatable AM products (Article F). 

In Article F, practitioners stated that the lack of knowledge about AM capabilities leads to 

prolonged VVT phases due to ill-defined specifications. For example, on a heat exchanger, 

material defects could lead to leakage problems. As the density of defects might be difficult to 

predict or control, extra tests such as CT scans must be performed to detect those defects, thus 

prolonging the VVT phases. 

Defining engineering specifications is always challenging, especially for inexperienced 

designers, as it requires extensive, multidisciplinary knowledge about the product and the PD 

process. However, as knowledge and experience about new technologies are limited, 

establishing requirements is challenging even for experienced designers (Article B, Article D, 

Article E, Article F). 

The introduction of a new technology affects PDP activities. In this context, as VVT phases 

for space products account for more than 40% of the PD costs, the impact that new technologies 

have on these activities was highlighted in the RIQAM and CHEOPS projects (Article A, 

Article B, Article D, Article E). 

 

5.1.1. Summary 
Section 5.1 aims at answering the following research question: 

 

RQ1: What are the main knowledge gaps during conceptual stages that hinder the 

establishment of engineering specifications for the introduction of new technologies in the 

space industry? 

 

Throughout the projects on which this thesis is based, the identified knowledge gaps for 

technology introduction in space products can be grouped into two categories: 

 

1. Engineering specifications related to technology capabilities: what is feasible to attain 

when introducing a new technology (Article A, Article B, Article C, Article F). The 

difficulty in establishing engineering specifications relates to the establishment of 

design margins and the consequent design of high-quality optimal products. 

2. The way the new technology (and new engineering specifications) will affect the VVT 

phases. The VVT phases are already one of the main contributors to the total cost and 

duration of the PDP for space products. Uncertainties related to engineering 

specifications for new technologies are expected to increase the cost and duration of the 

VVT phases, which can render the introduction of a new technology unaffordable 

(Article D). 

 

From an engineering design (ED) theoretical point of view (illustrated in Figure 5.1), a 

company can be proficient in developing certain types of DSs, implementing specific 

technologies to satisfy the FR of their product portfolio. Each DS has associated constraints 

and engineering specifications. When a new product or a variation of a former product is 

designed, new engineering specifications are established that respect the design space bounded 

by the Cs. These constraints and the eligible engineering specifications are well known and 

have solid, well-established VVT phases (see Concepts A and B in Figure 5.1). 
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When a new technology is introduced, the new DSs are expected to have a different set of 

constraints and hence different engineering specifications. Some of these constraints and 

specifications might be similar to those of the previous technology, but others might be 

unknown (see Concept C in Figure 5.1). 

 

 

 
Figure 5.1. When a new technology is introduced, the new design solutions (DSs) are 

expected to have a different set of constraints and hence different engineering 

specifications. 

 

 

5.2. Factors that hinder data gathering for the establishment of 

engineering specifications 
 

To deal with the lack of knowledge, or uncertainty, about a technology’s technical capabilities, 

three coping alternatives were identified in the previously mentioned studies (Article C, Article 

E, Article F): 
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1. Radical implementation of the new technology (which correlates with increased 

performance) coupled with intensive data-gathering or test campaigns: Develop a novel 

design, and fill the knowledge gaps by testing a large variety of specimens early in the 

PD process (establishing well-defined engineering specifications to ensure product 

quality) or by extending the VVT phases. Either way, this approach substantially 

impacts the cost and duration of a PD process. This strategy may be acceptable for 

technology demonstrations and/or cost-insensitive applications. 

2. Conservative implementation of the new technology coupled with reduced test 

campaigns: Deliberately avoid testing many specimens (and the associated costs), and 

develop a conservative design. In this case, the manufacturer develops a product with 

the expected quality but misses the opportunity to fill knowledge gaps and achieve a 

more radical—and perhaps better—design. Tests are still performed (but in lower 

numbers), and some late redesign efforts and extended VVT activities are still expected 

due to uncertainties or problems discovered late in the PDP. This is known as a “fail-

safe” strategy. 

3. Radical implementation of the new technology coupled with marginal testing: Deliver 

a novel and radical product without performing much testing; this type of product can 

only be considered for applications where failures can be acceptable. This alternative 

often results in either expensive redesign efforts due to failed manufacturing or VVT 

phases or components with high failure rates. Such a strategy is rarely acceptable in 

space applications to date but is generally denoted as a “safe-fail” strategy. 

 

In two of the above-mentioned alternatives, there seems to be a trade-off between performance 

increase (from technology implementation) and qualification ability at affordable costs. In the 

first alternative, performance is at the highest; however, a qualifiable product undergoes a) 

extremely expensive data gathering to establish well-defined engineering specifications that 

ensure the design of a high-quality product or b) extended VVT phases. Costs related to data-

gathering activities are reduced in the second alternative, but at the expense of performance, 

which is reduced. 

The price of not gathering data is also high, as suggested in the third alternative, due to the high 

failure rates. 

One of the main factors that hinders data-gathering activities for the establishment of 

engineering specifications is, evidently, the cost and long duration of the data collection 

activities, performed during early test campaigns or during later VVT activities. 

The aforementioned three alternatives imply that the technology uncertainties are known (i.e., 

KUs). However, not every uncertainty is known; many of them are unknown (i.e., UUs). 

For example, in Article C, at the beginning of the design process, it was known that AM 

machines have a minimum manufacturable wall thickness that should be included in the 

engineering specifications list. However, that thickness was unknown (i.e., KU). On the other 

side, the fact that the AM process would affect the connector bottom flatness was unknown 

(i.e., UU) at the beginning of the design process. 

As previously mentioned, when the KUs are identified, data can be obtained through test 

campaigns or experts’ assessments (Article C, Article D, Article E) to transform them into 

known knowns (KKs).  

The UUs, however, are difficult to identify, since they are pieces of information that 

practitioners do not know they do not have (Article B, Article F). 

These uncertainties lead to the tendency among designers to design products with similar 

features (similar engineering specifications) to their predecessors, as the unknown data gaps 

about the new technologies are filled with knowledge carried over from previous design 
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projects (Article A, Article C). As previous data are not always applicable to new design 

contexts, ill-defined engineering specifications are established. 

Article C features a redesign for the AM of a flow connector that is traditionally machined 

from a metal block. The redesigned connector had an AM-enabled curved designed to reduce 

pressure losses, and it was attached to a satellite interface in the same way as the old (machined) 

design: through two separated “ears.” However, the AM process generated support structures 

on the bottom of the attachment “ears,” and as the support removal procedure was manual, it 

was difficult to ensure that, after post-processing, the flow connector would have a flat, leveled 

bottom. In this case, the assumption that a design feature that fitted the old design would fit the 

new AM design costed a design iteration. The effect that the AM process would have on the 

flatness characteristics of the connector bottom was an uncertainty that was unknown when the 

design process started. 

Development projects usually have a portion of the budget (contingency budget) allocated to 

deal with unexpected costs, such as unpredicted redesign loops. However, as pointed out in 

Article E and Article F, not addressing the UUs during conceptual stages can lead to the 

establishment of inadequate contingency budgets and the failure of development projects. As 

highlighted in Article F, many approaches exist to find UUs (transforming them into KUs) in 

the project management literature, but they are rather “high level,” as they do not pertain 

specifically to finding engineering specification-related UUs. 

Both UUs and KUs can be sources of ill-defined engineering specifications (Article C, Article 

E, Article F). In the case of KUs, awareness of the uncertainty does not guarantee its early 

resolution, as KUs can sometimes be left uncertain. Moreover, not every KU is worth being 

transformed into a KK, as the required data-gathering activities can be resource intensive 

(Article C, Article F), and the uncertainty might not present a high failure risk. It is 

consequently inferred that not every ill-defined engineering specification poses a risk to the 

VVT budget and schedule. However, to be able to identify this type of specification and make 

these types of decisions during the conceptual stages, it is necessary to model VVT phases and 

the risk associated with ill-defined engineering specifications (Article E, Article F). 

 

5.2.1. Summary 
Section 5.2 aims at answering the following research question: 

 

RQ2: What factors hinder data gathering for the establishment of specification requirements 

related to technology capabilities and their impact on the V&V schedule? 

 

The following aspects hinder data gathering for establishing engineering specifications: the 

high costs and long durations of the data-gathering procedures, whether through data-gathering 

campaigns (to transform UKs into KKs) or through redesign loops (due to KUs that were 

consciously left undefined or due to UUs). 

Cost-effective methods are hence needed to facilitate a) the identification of UUs 

(transformation into KUs) related to engineering specifications for technology capabilities and 

b) the subsequent resolution of KUs (transformation into KKs). 
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5.3. A cost- and time-efficient method for identification and 

resolution of uncertain engineering specifications 

 
There is a need for cost- and time-efficient strategies for (1) identifying uncertainties about 

engineering specifications (i.e., transforming UUs into KUs) and (2) resolving uncertainties 

(i.e., transforming KUs into KKs). 

Previous literature reviews (Article A) have suggested that FM techniques enable the modeling 

of product FRs, the embodiment of alternatives or DSs, and constraints that limit the design 

space and highlight how the system should fulfill its requirements, thus indicating which 

engineering specifications “are allowed.” In addition, as presented in Article C and Article F, 

the function model representation allows for the inclusion of different constraints, such as 

manufacturing and test constraints, which represent the threshold values for engineering 

specifications. 

In Article A, FM is recognized as one of the most popular and convenient modeling strategies 

to facilitate idea generation and innovation with new technologies. 

However, as with every model representation, the accuracy of its representation depends on the 

quality of the information on which the model is based. In the case of a new technology 

introduction, not every engineering specification is well defined; in fact, many of them have 

KUs or UUs. 

To shed light on specification uncertainties, this thesis proposes the implementation of 

constraint replacement techniques and the implementation of holistic modeling environments. 

 

5.3.1. Constraint replacement technique 
The constraints replacement technique is introduced in Article C and revisited and validated in 

Article F. 

As proposed in this thesis, to introduce a new technology to a product based on a traditional 

technology, the product’s original functions, DSs, and constraints are identified and arranged 

in a function model. The constraints are divided into different groups according to 

predetermined categories, such as constraints related to technology capabilities, product 

performance, and test activities, among others. This process of constraint distinction facilitates 

the identification of DSs in the design that are only dependent on new technology and that can 

therefore be redesigned. 

When the constraints are classified, those that are technology dependent are removed and 

replaced with their counterparts for the new technology. For example, in Article C, the 

constraints related to manufacturability for machining technologies are removed and replaced 

by manufacturing constraints related to AM technologies. Article F includes the constraint 

replacement technique applied to test-based constraints as well. When redesigning the flow 

connector or the heat exchanger, participants implemented the constraint replacement 

technique to assess whether test-related constraints that were relevant for machining techniques 

were still relevant for AM. 

Some of those constraints are well defined (i.e., they are KKs), and others are known to be 

uncertain (i.e., they are UKs). For example, for AM technologies, there is a threshold surface 

inclination angle below which support structures are needed. Different AM technologies and 

machines have different manufacturing capabilities and hence different angle limitations. 

Modeling this constraint points out the need to define this threshold angle for the specific AM 

technology and machine of interest. 
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Moreover, the constraint replacement technique provides a systematic procedure for 

identifying and gathering engineering specifications’ unknown uncertainties by means of a 

guided and detailed technology comparison. 

In Article F, implementing the constraint replacement procedure, practitioners were able to 

identify more UUs than through traditional documentation-heavy methods. In addition, during 

the experiments, some UUs were identified only with the constraint replacement procedure. 

The replacement process is particularly useful when practitioners’ experience is low, although 

it was also recognized as useful for experienced practitioners, as it establishes a starting point 

for discussions and idea generation (Article F), which can reveal additional UUs. 

An additional benefit of constraint replacement is that the process of identifying and modeling 

constraints for traditional (legacy) technologies and then replacing them with new ones can 

support the acknowledgment and enable the removal of carried-over knowledge about 

traditional technologies. Acknowledging carried-over practices can be the first step toward 

mitigating practitioners’ tendency to design products similar to those they know (Article C). 

A possible drawback of this technique is that UU constraints about the new technology are 

discovered as long as their traditional technology counterpart is well modeled. The benefits 

obtained from the function model are related to the model’s depth, breadth, and fidelity 

(Haskins et al., 2015). This was observed in Article F, where practitioners using the 

replacement method for UU identification missed some of the well-known uncertainties 

encountered when designing for AM, such as “Min. feature size to enable removal of powder” 

and “Part geometry to enable removal of support structures (AM),” as they did not have a direct 

machining counterpart. 

In Article F, it was also observed that many uncovered UUs were aspects of the design process 

that had escaped the minds of the practitioners at the time of the experiment. 

 

 5.3.2. Constraint replacement in holistic modeling environments 
The process of modeling technology-related (technology capabilities, test, manufacturing, etc.) 

constraints aids in the gathering and documenting of KUs. The process of constraints 

replacement helps to identify technology-related UUs, which then support the establishment of 

appropriate engineering specifications. 

However, as mentioned in section 5.3.1, the benefits obtained from the modeling strategy are 

related to how wide, deep, and true the model is. 

Article C proposed constraints classification and the inclusion of both performance- and 

manufacturing-related constraints in the function model. This multidisciplinary approach 

(considering manufacturing constraints already during conceptual stages) enables the inclusion 

of manufacturing trade-offs for design decisions during conceptual stages and the 

establishment of manufacturing-related engineering specifications. This inclusion allows 

designers to plan or perform specific, product-tailored test campaigns during development 

stages to shed light on manufacturing uncertainties in a cost- and time-efficient manner (Figure 

5.2). 

For example, in Article C, the AM minimum surface inclination angle manufacturable without 

support structures was identified as a KU and transformed into a KK through targeted testing. 

Manufacturers are often aware of this angle constraint but do not know its exact value. A 

product-tailored test campaign focuses on manufacturing test artifacts with geometries 

representative of those in the product and would explore the manufacturability of relevant 

surface angles. 
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Figure 5.2. Function model with multidisciplinary constraints and the need for further 

testing. 

 

In this way, test efforts might be increased during the development stage, whereas expensive 

redesign loops due to failed manufacturing processes are reduced. 

Product-tailored test artifacts can also reveal UUs. For instance, after manufacturing test 

artifacts in Article C, it was discovered that to avoid the generation of unmelted particles 

between the closely located outlets of the flow connector, the outlets must be placed more than 

30° apart. However, unveiling UUs “by chance” is not cost- or time-efficient. 

In Article D, the function model representation was complemented with activity and schedule 

models. This article features the redesign of EPSs to introduce a new DD technology. An FM 

was built for the conventional EPS architecture; this model was then linked to a PERT diagram 

containing the schedule of the qualification activities for the EPS. 

To enable the assessment of the impact that a future technology would have on the EPS 

architecture and the test and qualification (T&Q) schedule, the duration and cost of the 

qualification activities were modeled. Modeling these activities facilitated the identification of 

the parts of the product architecture (components, subsystems, systems, etc.) that drive 

qualification costs and times, and it enabled the assessment of the test schedule and cost of 

future EPS architectures with new technologies. These results are in line with Article B, where 

practitioners expressed the need to include T&Q activities during conceptual stages to design 

products with affordable qualification phases. 

In Article D, the high costs of the T&Q phases for the DD architecture were partly associated 

with the way in which the DD technology disrupted the T&Q phases. 

The DD configuration changed the EPS’ architecture not only at a component level but also at 

a subsystem level. DD architectures require a modification of the PPU subsystem interfaces 

with the power generation system (PGS) that leads to changes to the PGS components as well. 

These changes lead to additional and expensive test activities that disrupt the whole T&Q 

schedule, making it too long and expensive. 

Linking the FM with the T&Q PERT diagram enables the establishment of specifications 

related to the number, type, and combination of components allowed in an architecture in order 
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to have affordable T&Q phases and an affordable product in return. In Figure 5.3, a schematic 

of the FM-PERT connection is presented. 

 

 
Figure 5.3. Function model from Figure 5.2 connected to a program evaluation and 

review technique (PERT) diagram. 

 

This approach might increase the duration of the conceptual stage, but it supports the design of 

products with affordable T&Q phases, which generally make up to 40% to 60% of the total PD 

costs. Moreover, it enables the concurrent design of a product architecture and its respective 

T&Q phases. In Article F, for instance, the implementation of the FM integrated with the 

verification activities PERT diagram enabled the simultaneous assessment of product design 

alternatives and an assessment and redesign of their verification phases. 

Article E follows the same principle of raising quality of decision making in early PDP phases 

through experts’ assessments of qualification likelihood and targeted testing but reducing 

expensive redesign loops due to failed qualification activities. 

The concept of a qualification map is introduced in Article E. In these maps, a combination of 

product design parameters, such as surface inclination angle (α) and wall thickness (τ), is 

mapped against qualification ability. Qualification-related engineering specifications could be 

defined as “Allowed α and τ combination: (τ ≥ 4mm AND (80 ≤ α ≤90 OR 0 ≤ α ≤10)),” 

denoted by the green areas in Figure 5.4. Products in these areas are likely to pass the 

qualification test. The orange areas in the map represent parameter combinations where the 

available data are not sufficient to decide whether the parameter combination should be green 

or red. The delimitation of the green, orange, and red areas is roughly determined through 

experts’ assessments and refined by targeted test campaigns. Assessments about qualification 

likelihood can be combined with a comprehensive analysis of the consequences of product 

failure to estimate the risk of component failure. 
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Figure 5.4. Function modeling (FM) with a constraint showing a qualification map. 

 

However test campaigns to define those boundaries are not always necessary. If a design 

alternative is superior to others in aspects such as performance but is located on a boundary in 

the qualification map (orange area), then this is an indication that the design alternative might 

not pass a qualification test. In this case, the designer must analyze which strategy is more 

convenient: either perform targeted tests to increase the resolution of those boundary areas, 

which might be too expensive and time consuming, or pursue a different design. 

The assessment of qualification failure and the use of qualification maps highlight that not 

every KU is worth the resources and time necessary for their transformation into a KK. 

It can be rightfully argued that in the case of Article C and Article E, the level of detail at which 

constraints were modeled to design test artifacts aimed at producing data that will be used in 

later design phases, but that amount of detail is of little to no use in early conceptual design 

phases. However, the capabilities to model constraints are still interesting during early design 

phases where the models can be used for high-level estimations of the need for future test 

activities and their approximate cost and duration. 

Qualification likelihood, combined with a study about product failure consequences, can enable 

the estimation of the risk (risk = likelihood*consequence) of not performing a certain 

qualification activity to reduce costs or expedite the qualification processes. 

As observed in Article D, linking the architecture model to the qualification schedule enables 

one to assess the impact that architectural changes have on the test schedule and to make design 

choices that would reduce overall lead times and costs. 

Article F takes the assessment proposed in Article D one step further through the inclusion of 

qualification risk analysis (red, green, and orange squares in Figure 5.2) in both the product 

architecture model and the qualification schedule model. 

This assessment enables the visualization and identification of the parts of the product 

architecture that can be redesigned without altering the test schedule (the respective test 

activities are not part of the test schedule’s critical path) and those whose redesign would 

impact the test schedule. In this context, if a test activity is delaying the test schedule and the 

risk of not performing this activity is low enough, then the design platform enables decisions 

about the removal or redesign of the activity. For example, the test activity could be removed, 

thus accepting the failure risk; the test could be removed, while the design could be made more 

robust; or the test could be removed, while the manufacturing process could be monitored more 

closely. 
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The main benefit of connecting the FM with PERT diagrams to create a holistic modeling 

environment is the consideration of late PDP phases during conceptual stages. This 

consideration enables the inclusion of those phases in design requirement trade-off analysis 

procedures. 

Another benefit of holistic modeling environments is that they act as a model-based database 

for product information (Article F). This database can be reused to develop future products or 

product families. In DigiQUAM, for the development of the steering knuckle, it was necessary 

to obtain precise data about the relation between surface inclination angle and surface 

roughness. Several test artifacts were developed and manufactured to gather this information. 

Two of the three participating manufacturing companies declared that these types of data had 

been obtained for previous projects. However, the data were not documented, and the 

manufacturing tests had to be performed again. 

This type of modeling environment is also adaptable and flexible and can evolve over time as 

the available information about new technologies increases (Article C, Article F). 

Its flexibility is related to the type of information it can contain, as it can be expanded to include 

other PDP phases, such as post-processing schedules for AM technologies or assembly 

schedules. Including different PDP phases, the model can act as a boundary object between 

practitioners with different competences (Article C, Article D, Article F). 

In conclusion, identification and modeling techniques for specification uncertainties are 

enhanced by their implementation in holistic modeling environments. Moreover, later PDP 

stages can be included in trade-off analysis during conceptual phases, through the identification 

and modeling of their respective engineering specifications (uncertain or not), thereby reducing 

the likelihood of unexpected redesign loops. 

 

5.2.3. Summary 
Section 5.3 aims at answering the following research question: 

 

RQ3: How can uncertain engineering specifications be identified and modeled in a cost- and 

time-efficient way during the concept stage? 

 

For a cost- and time-efficient identification and modeling of uncertain engineering 

specifications, this thesis proposes the implementation of a constraint replacement technique 

in a holistic modeling environment: 

 

- Constraint replacement provides a systematic and guided procedure for identifying and 

gathering engineering specifications’ unknown uncertainties. 

- The proposed holistic modeling environment for the implementation of the constraints 

replacement technique is based on connecting product architecture FM models with 

PDP PERT activity models. This connection enables the inclusion of late PDP phases 

in engineering specification trade-off analysis, thus facilitating the identification of 

related uncertainties and the consequent design of more affordable products. 
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6 
DISCUSSION  
 

Technical and technological innovation through the implementation of new technologies is 

necessary for a reduction in cost and development times in the space industry (Cour des 

Comptes, 2019). However, as experienced during the research projects on which this thesis is 

based, gathering engineering specifications for designing with a new technology is hindered 

by the uncertainties regarding the technology’s capabilities, what the technology can and 

cannot be used for, and the effect that the technology has on the overall PDP, especially the 

VVT phases, which tend to increase the cost of the PDP. These findings also align with 

literature by Roth et al. (2010), who state that historical data are often insufficient for the 

evaluation of new technologies. It was observed in these studies that the performance of past 

designs does not address the many sources of design uncertainty for new technologies, which 

in turn hinders the development of robust and accurate early cost and PDP schedule 

estimations. Similarly, Pettit (2003) states that design guidelines should promote the early 

recognition, characterization, and prioritization of sources of design uncertainty. 

Along these lines, this thesis proposes the implementation of a holistic modeling environment 

or design platform to serve as a design support, based on FM techniques to model FRs, DSs 

and design constraints during conceptual stages. In the design platform, the FM is connected 

to a PERT diagram of the PDP downstream activities. The need for holistic modeling 

environments to ensure the development of high-performance, affordable space products is also 

highlighted by authors such as Staack et al. (2018) and Papageorgiou et al. (2020). 

The main contribution of this modeling environment is the technique of design constraint 

modeling, classification, and replacement. Constraint modeling enables the acknowledgment 

and visualization of design constraints, aiding the designer in limiting the design space and 

designing products with feasible engineering specifications. In the literature, the importance of 

model visualization (Keim et al., 2008) and constraint modeling (Schmollgruber, 2018; Guan 

and Ghose, 2005) is well known and acknowledged; however, the process of systematic 

constraints replacement as proposed in this thesis is novel. 

The proposed constraint modeling and replacement strategy supports the identification of UU 

design specifications, the documentation and evaluation of KUs, and their transformation into 

KKs. This transformation can be achieved using a combination of experts’ assessments and 

test activities, which are strategies that the space industry is currently familiar with (Jensen et 

al., 2017; O´Brien, 2018; Dordlofva, 2020). However, the proposed holistic modeling 

environment takes the transformation of KUs into KKs one step further: By linking the FM 

with the PERT diagram, practitioners can evaluate not only what the most affordable way is to 

transform KUs into KKs but also whether this transformation is worthwhile. 
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Moreover, modeling the system architecture provides a concise way to capture the existing 

architecture and design requirements, which can facilitate system maintenance and 

improvement (NRC, 2010; Brice, 2011; Haskins et al., 2015; Karlow Herzog, 2018; 

Mokhtarian et al., 2019). 

In this thesis, the types of uncertainties that were identified as the most problematic are those 

that are unknown (i.e., UUs), since practitioners do not know where to look to find them 

(Sutcliffe and Sawyer, 2013; Ramasesh and Browning, 2014; Jensen et al., 2017). The main 

consequence of UUs is the tendency among designers to design products with similar features 

to their predecessors, since the unknown data gap about the new technologies is filled with 

knowledge carried over from previous design projects, as stated by authors such as Kumke et 

al. (2016) and Seepersad et al. (2017). This “assumption” that the new design behaves in the 

same way as the old design presents a risk for budget and schedule overruns, as it is a source 

of unexpected surprises later in the PDP when design changes are more expensive and time 

consuming. Authors such as Chapman and Ward (2003) and Hubbard (2020) state that 

neglecting the identification of UUs leads to the establishment of non-adequate budget and 

schedule contingencies. 

Modeling constraints in the FM enables the process of constraints replacement, where 

information pertaining to legacy technologies is analyzed to assess its relevance in the context 

of the new technology. This process has proven to be successful for identifying UUs and 

preventing the unintended knowledge carried over from previous products. 

However, some UUs cannot be elicited from the constraints replacement process. As Roth et 

al. (2010) found, data about previous technologies are sometimes insufficient for the evaluation 

and estimation of new technologies. For this reason, the engineering specifications from 

traditional technologies might not provide a complete starting point to obtain new technology 

specifications through the constraints replacement process. 

This fact is also related to the details that are deliberately included in and omitted from the FM. 

UUs about technology-related engineering specifications are discovered if their traditional 

technology counterpart is sufficiently modeled in terms of the model’s depth, breadth, and 

fidelity (Haskins et al., 2015). 

Moreover, many UUs that are uncovered through the constraints replacement technique (or any 

other technique) are not truly UUs, but rather aspects of the design, manufacturing, or testing 

process that escape the minds of practitioners during design stages. However, a relevant 

conclusion from the replacement technique is that the main objective in an organization must 

be the establishment of a culture of active “uncertainties seeking” to increase the probability of 

finding UUs during conceptual stages. 

In this context, the implementation of a holistic multidisciplinary modeling approach is deemed 

necessary for ensuring model breadth and fidelity to support the identification of KUs and UUs 

(through constraint replacement) and their transformation into KKs. 

In addition, another benefit of a holistic modeling environment is the inclusion of specifications 

pertaining to late PDP phases in the conceptual phases of engineering. This early inclusion 

enables the consideration of those later phases in design trade-off analysis. These observations 

resonate well with the work presented by authors such as Staack et al. (2018) and Papageorgiou 

et al. (2020), who propose the introduction of late PDP phases during conceptual stages to 

foster the design of better-performing systems and a more affordable PDP. 

When considering the VVT activities during trade-off analysis in the conceptual stages, for 

example, it is possible to evaluate the additional testing costs and times required to improve a 

product model, compared to the benefits of the additional data they provide. This evaluation is 

highly dependent on the designers´ previous experience with a technology. As the technology 

is developed and knowledge about it increases, the models can change and improve. This 

feature aligns well with the work by NRC (2010) that states that a model-based design should 
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not be a collection of static processes and models. Adaptable models enable adaptable testing 

strategies depending on technology novelty, product complexity, and PDP cost and schedule 

targets. 

The suggestion that expensive and extensive test campaigns are not always necessary, 

combined with the targeted test campaigns that have been proposed in this thesis, highlights 

the possibility of a PDP where a new technology can be implemented radically, coupled with 

a strategy of marginal but targeted test campaigns (a fourth alternative to the three mentioned 

in Section 5.2), thereby reaping the benefits of a new technology without major detriments to 

the cost or development schedule. 

Moreover, the inclusion of risk analysis directly in the FM and PERT diagrams, as proposed in 

this thesis, opens the possibility of discussing the partial completion or even elimination of 

low-risk VVT to cater to the needs of more modern and low-cost space PDPs. 

This type of analysis, which considers partially performing or simply eliminating validation 

activities to reduce times and costs, enables design strategies such as those adopted by some 

NewSpace companies. One example is the development of mega constellations of satellites. In 

the past, satellites were developed as single units, and their manufacturing process involved 

long development and qualification phases to achieve high robustness and reliability to ensure 

around 15 years of useful operational life (Öhrwall Rönnbäck and Isaksson, 2018). With the 

mega satellite constellations proposed by NewSpace companies such as OneWeb (McDowell, 

2020), reliability and robustness are not ensured at the level of an individual satellite (shortened 

development and qualification phases), but at a constellation level (Öhrwall Rönnbäck and 

Isaksson, 2018). 

Product architecture and schedule models, uncertainty modeling, and risk assessment are all 

needed to develop an uncertainty-aware design and certification process. 

However, as industrial participants stated in Article F, this is a multi-faceted issue, and the 

eventual design and test schedule of choice must reflect several competing factors that are 

outside of the scope of this thesis and proposed design platform. Some of these factors are the 

mindset of certification officials and decision makers, legal considerations and the overall 

perception of risk, and design and testing process costs. 

Similar factors of influence can be found in the work by Pettit (2003) and in popular SE holistic 

design platforms such as those proposed by Blair and Love (2003), Robinson (2011), and El 

Souri et al., (2019). These platforms sustain the convenience of multidisciplinary model-based 

design frameworks for designing successful space products, yet do not include techniques (such 

as constraints replacements) to actively identify UUs. Moreover, being based on SE, these 

platforms present a common drawback identified in the SE discipline, as the explorative and 

iterative nature of the design process is generally disregarded. For this reason, these approaches 

tend to lack a formal theoretical strategy to address uncertainties and design exploration and to 

decrease the number of redesign loops to prevent time and cost overruns. Reducing redesign 

efforts to prevent such overruns is the objective of ED approaches (Suh, 1998), and SED is the 

discipline that aims at embedding the analysis of iterative ED efforts from ED into holistic 

multidisciplinary SE frameworks (Isaksson et al., 2017). 

The constraints replacement technique and the connection between the FM and the PERT 

diagrams with the purpose of identifying UUs are grounded in SED principles and have the 

potential to bridge the gap between SE and ED disciplines. Based on ED principles, the 

proposed platform and methods strive for a systematic design uncertainty identification and a 

design exploration to reduce redesign loops, moreover, they can be used as a knowledge-

transfer tool among practitioners.  At the same time, they include the holistic, multidisciplinary 

and scalable nature of SE frameworks and their focus on the technical feasibility, requirements, 

and VVT phases. 



46 

 

 

  



47 

 

7 
RESEARCH VALIDATION 
 

Validation refers to the scientific rigor of research (Le Dain et al., 2013; Isaksson et al., 2020). 

Validation activities are related to and sometimes mistaken for verification activities. 

According to Haskins et al. (2015) and ISO (2020), verification activities are carried out to 

confirm that the established requirements for a system’s intended use have been fulfilled (i.e., 

verification activities ensure that the system is built right). In contrast, validation activities are 

performed to confirm that the system, its elements, and its products will achieve their intended 

use in the intended operational environment (i.e., validation activities ensure that the right 

system is built). Validation in research intends to answer the question, “Did you do the right 

research?” (Le Dain et al., 2013). 

In research studies, hypotheses and results must be validated (Robson, 2002). However, as 

authors such as Popper (2002) state, hypotheses cannot be tested, only falsified. If repeated 

attempts at falsifying a hypothesis fail, then the probability of its verisimilitude increases. This 

was the strategy followed during the validation procedures for this thesis. 

There are different approaches to validation in research; Isaksson et al. (2020) have presented 

a summary of some of them. Several approaches (Guba and Lincoln, 1989; Buur, 1990; Eckert 

et al., 2003; Le Dain et al., 2013) point to validating the research problem and its understanding 

separately from the approach to address it. This was the approach followed in this thesis. 

 

7.1. Research gap validity 
 

7.1.1. Validating the academic problem 
Research should investigate and address valid problems (Le Dain et al., 2013). The academic 

problem addressed in this thesis (research gap) is the lack of a digital product design platform 

and respective design methods that are able to support the systematic identification and 

modeling of design unknowns during conceptual stages, when introducing a new technology. 

Failing to address uncertainties during conceptual stages leads to problems encountered during 

later PDP activities, where design and process changes are the most expensive and time 

consuming. The relevance of this research gap is also highlighted by other authors, such as 

Ramasesh and Browning (2014) and Browning and Ramasesh (2015), who state the need for a 

conceptual framework for identifying uncertainties during PDP; Hwang et al. (2019) and Stock 

et al. (2021), who suggest the need for a model framework where knowledge can be easily 

transferred and documented to facilitate early uncertainty identification; and Macedo et al. 
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(2019) and Bianchi et al. (2021), who advocate for a model to appropriately represent 

information (or the lack thereof) to foster creative solutions. 

 

7.1.2. Validating the industrial problem 
The industrial problem identified in this thesis is the lack of strategies for identifying known 

and unknown uncertainties during conceptual stages of the space PD. 

During the conceptual stages of a PD process, needs and requirements are identified, refined, 

and compiled into requirements specifications, from which the product is then designed. 

However, the requirement-gathering activities for new technologies are hindered by a lack of 

knowledge regarding technology feasibility and the way in which technology introduction 

affects the whole PDP, especially the VVT phases. This gap is mentioned by authors such as 

Veritas (2001), Brice (2011), Dordlofva (2020), and Echsel et al. (2020), who are concerned 

with how the uncertainties related to technology feasibility affect product design. Other 

authors, such as Lord et al. (2018), the European Commission (2019), and Dordlofva (2020), 

have expressed their concerns related to the way in which uncertainties affect not only the 

product design but also the respective VVT activities. 

Moreover, this industrial problem was also observed during the research projects (carried out 

with industrial practitioners) on which this thesis is based. The main articles in this thesis 

(Articles A to F) are all based on studies performed with industrial practitioners, where this 

industrial problem was a recurring topic. Articles A and B mention the uncertainties regarding 

DfAM in the space industry and the impact on qualification activities, as identified during the 

RIQAM project. Article C focuses on the design and manufacturing uncertainties encountered 

during RIQAM when designing for AM and the way in which these uncertainties can be 

addressed through targeted test activities, thereby reducing failure rates during later 

qualification. Articles D and E focus on addressing the qualification uncertainties faced during 

the CHEOPS project when introducing new technologies to the design of EPSs. Article F 

evaluates the usefulness of a digital platform for the identification of manufacturing and test 

uncertainties in the context of the DIDAM project. 

 

7.2. Design method validity 
 

The process of validating a design method involves demonstrating the usefulness of the design 

with respect to its intended purpose (Pedersen et al., 2000). Usefulness is evaluated through 

effectiveness; the method efficiently provides the correct DSs. In this context, a correct DS has 

an acceptable performance and is developed with less cost and time (Pedersen et al., 2000; 

Seepersad et al., 2006). To demonstrate the usefulness of the design method proposed in this 

thesis, the validation square was applied, as illustrated in Figure 7.1 (Pedersen et al., 2000; 

Seepersad et al., 2006). 
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7.1. Validation square methodology followed for validating the results presented in this 

thesis (Pedersen et al., 2000). 

 

7.2.1 Theoretical and structural validity 

Accepting the construct validity 
Accepting the construct validity is related to demonstrating the validity of all the different 

pieces used to conform the proposed model or method.  

The design platform proposed in this thesis is based on the implementation of four building 

blocks, which are well known and well established in literature and industry: 

- Function models: FM techniques are well-established model-based tools in the ED and 

SE community (Eisenbart et al., 2012; Haskins et al., 2015). Multiple FM 

representations have been developed over the years (Weilkiens, 2007; Umeda et al., 

1990; Heller and Feldhusen, 2013). In this thesis, the preferred FM technique is the EF-

M technique, which has been developed in the ED community, has been used for over 

20 years and is among the more industrially tested FM frameworks (Malmqvist, 1997; 

Müller et al., 2020). 

- DSM: The first use of DSMs can be tracked to the 60s (Steward, 1962). In the 80s, their 

popularity increased when researchers at MIT and NASA began to apply them and 

extend their application and methods (Rogers, 1989; Black et al., 1990). Today, more 

than 3,000 articles reference the use and benefits of DSMs (Browning, 2015). 

- Activity duration and cost models: The activity duration and cost models implemented 

in this thesis are based on the identification and quantification of duration and cost 

drivers, which can be tracked to the 80s (Shank, 1989). Since then, activity duration 

and cost models based on drivers have been common practice in PDPs (Ben-Arieh and 

Qian, 2003; Shabi et al., 2017; Tahera et al., 2019). 

- PERT diagrams and critical path calculations: The PERT technique is a statistical tool 

popular in the project management literature, and it can be traced back to Malcolm et 

al. (1959). Its use, complemented with critical path calculations, can also be tracked to 
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the 50s. PERT diagrams and critical path calculations are still regarded as the 

cornerstones of project management (Ulusoy, 2021). 

 

Accepting method consistency 
Accepting method consistency is related to building confidence in the way the constructs work 

together. For this purpose, authors recommend the use of flow charts (Pedersen et al., 2000), 

such as the one presented in Figure 7.2 for evaluation of the consistency of the method proposed 

in this thesis. The information flow presented in Figure 7.2 suggests that the information 

generated from each construct is adequate and necessary for interaction with the other 

constructs. 

 
Figure 7.2 Constructs’ information flow to ensure method consistency 

 

Accepting both construct validity and method consistency can also be interpreted as “being 

logical.” According to Olewnik and Lewis (2005), being logical is the first requirement for a 

decision support tool (the proposed digital design platform) to be valid. Moreover, the step of 

accepting method consistency through an information flow suggests that the method and design 

platform use meaningful and reliable information, which is the second requirement for the 

validation of decision support tools (Olewnik and Lewis, 2005). Meaningful information 

indicates that insights into the interdependencies of constructs are provided and make sense. 

As the design platform is meant to be used by industrial practitioners during conceptual phases 

of the PDP, it can be established that the information that will enter the platform is reliable 

(i.e., it comes from appropriate sources). 

 

7.2.2. Empirical structural validity: Accepting the example problems 

In this instance, confidence must be built on the appropriateness of the example problems 

chosen to verify the proposed method. Authors (Pedersen et al., 2000) suggest (1) proving that 

the example problems are similar to the problems for which the method constructs are accepted 

and (2) proving that the example problems are representative of the problems the method is 

supposed to address. 

The evaluation of the method’s usefulness was performed in Article F, using two case studies 

presented in Figure 7.3. These case studies featured the analysis of a flow connector and a heat 

exchanger for satellite applications redesigned for AM. In both cases, participants were 

instructed to identify manufacturing and test-related concerns as a way of identifying 

uncertainty in early conceptual stages. Both case studies are similar to the problems for which 
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the method constructs (FM, DSM, PERT diagram, and activity duration and cost models) are 

accepted. Functions models, and more specifically, EF-M techniques, have been widely used 

before in literature for the representation and assessment of space products (Muller et al., 2020). 

The same can be affirmed for PERT diagrams (Nagarajah, 2000; Skobelev et al., 2018), activity 

duration and cost models (Haedicke and Feil, 1991; Ben-Arieh and Qian, 2003), and DSMs 

(Rogers, 1989; Black et al., 1990). 

The method was developed to support the design of space components through the early 

identification of product design and process uncertainties. As both the flow connector and the 

heat exchanger are products usually found in space systems, it can be stated that the example 

problems are representative of the problems the method is supposed to address. 

 

 
Figure 7.3. Case studies from Article F (extracted from Article F). 

 

7.2.3 Empirical performance validity: Accepting the usefulness of the 

method for some example problems 

To accept the usefulness of the method, authors (Pedersen et al., 2000) suggest applying the 

method to solve representative example problems. Then, usefulness must be proved to be 

linked to the method application. 

Metrics for usefulness are related to the degree to which a purpose has been achieved. From 

the industrial perspective, the method’s purpose is the development of a method and design 

platform for supporting the identification of known and unknown uncertainties during the 

conceptual stages of the space PD, which in the long term would contribute to cost and 

development time reductions while ensuring high product quality. From an academic 

perspective, the purpose is related to the development of design methods and lessons learned, 

thus enabling the method to support the systematic identification and modeling of design 

unknowns during conceptual stages when introducing a new technology. 

To accept the usefulness of the method for example problems and to accept that usefulness is 

linked to the method application, in Article F, the Solomon four-group experiment design 

(Sawilowsky et al., 1994; Mai et al., 2020; Trochim, 2021) was preferred. 
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The study involved 12 experienced industrial practitioners and featured the assessment of the 

DfAM of two satellite components. The results of the study suggest that the proposed platform 

and associated design methods are useful for identifying uncertainties and for proposing 

measures to address them. Moreover, the results indicate the need to make “uncertainties 

seeking” a common practice. 

Regarding empirical performance validity, Olewnik and Lewis (2005) state that the third 

requirement (the first two were addressed in Section 7.2.1) for validating decision support 

tools, such as the proposed digital design platform, is assessing whether the tool biases the 

designer. This requirement relates to forcing preferences on the designer; in other words, the 

decision-making tool influences the outcome Saari (2000). In this regard, the abstract nature of 

the models used in the design platform prevents designer bias, as designers can build the model 

to fit their preferences. Moreover, the method constructs are flexible enough to enable the 

model’s evolution over time, which is necessary as companies constantly change their 

technology portfolios to remain competitive. 

 

7.2.4 Theoretical performance validity: Accepting the usefulness of 

the method beyond example problems 
To accept the usefulness of the method beyond the example problems, authors (Pedersen et al., 

2000) suggest building confidence in the method’s generalizability. They state that if the 

method is proved to be useful for some limited instances, then it can be stated that the method 

is empirically performance valid (as established in Section 7.2.3). Thereafter, if the method is 

deemed useful beyond the example problems, then it can be considered to be theoretically 

performance valid. 

To accept the usefulness of the method, the Solomon four-group experiment design was 

preferred. However, due to the small sample size (12 participants) and the artificial design 

setting in which the study was conducted (moderated, 20-minute design sessions with two 

participants), these results cannot be generalized. For this reason, the proposed method cannot 

be considered theoretically performance valid. Nevertheless, the results were still encouraging 

and motivated the development of a standalone digital application where the proposed design 

platform (based on the proposed methods) can be industrialized and implemented during 

conceptual phases in real design case scenarios. 

Moreover, authors such as Ellis and Dix (2006) state that a large proportion of the design 

research methods and tools proposed in the literature are conducted in artificial settings and 

with small sample sizes, thus rendering them non-theoretically performance valid. However, 

their results are still useful for industry and academia.
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8 
CONCLUSION 
 

When introducing new technologies in space products, the uncertainty regarding technology 

capabilities and the way in which the technology affects the PDP, especially in relation to V&V 

activities, hinders the early establishment of appropriate engineering specifications in 

conceptual stages. Some of the uncertainties found at this stage are known (i.e., they are KUs), 

and some are unknown (i.e., they are UUs). 

KUs can be transformed into KKs through test campaigns or experts’ assessments. However, 

UUs are problematic, since practitioners are not aware of them, and this lack of awareness can 

lead to unexpected problems arising during later PDP phases, where design and process 

changes are the most expensive. 

In this thesis, a model-based method is proposed for the cost- and time-efficient identification 

and modeling of UUs and KUs when designing space products with new technologies. 

The method is based on FM strategies for modeling product architecture and engineering 

specifications during conceptual design phases. These strategies enable the assessment and 

modeling of KUs and the identification of UUs through a process of systematic constraints 

replacement, where information pertaining to previous technologies is systematically analyzed 

to assess its relevance in the context of the new technology. 

The function model is connected to the PERT diagrams of later PDP activities and aims at 

evaluating the impact that design changes have on the overall PDP schedule. The holistic 

modeling environment (or digital platform) that results from the connection between FM and 

PERT diagrams supports the development of cost- and time-efficient strategies to gather 

information to reduce uncertainties and establish engineering specifications for the new 

technology. Apart from the holistic modeling environment, results highlight the need to 

establish a culture of “uncertainty seeking” during early PDP phases to facilitate technology 

introduction. 

As with conventional ED methods, the proposed modeling environment and methods aim for 

a systematic uncertainty identification and design exploration to reduce redesign loops. At the 

same time, they are compatible with the holistic and multidisciplinary nature of SE frameworks 

and their focus on the technical feasibility and requirements as well as VVT phases. 

In conclusion, the proposed platform and methods are grounded in the principles of the SED 

discipline and have the potential to bridge the gap between the SE discipline, mostly 

implemented in industry, and the academic ED disciplines. 

The proposed methods were validated by assessing their usefulness in their intended 

operational context. The validation process was performed through the assessment of 

theoretical and empirical structural validity and the assessment of theoretical and empirical 
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performance validity. However, due to the small sample size and the artificial design setting in 

which performance validity was evaluated, the results cannot be generalized, and the method 

is deemed useful only for some limited instances. The method is hence empirically 

performance valid, but not theoretically performance valid. However, a large proportion of the 

design research methods are not theoretically valid, and their results are still useful for industry 

and academia. 

 

8.1. Future work  
 

Through an application research-based validation grant awarded by the Innovation office at 

Chalmers University of Technology, the methods and digital platform proposed in this thesis 

were developed as a stand-alone digital design platform in the DEBAS project, which took 

place during the last months of these PhD studies. The objective of the DEBAS project was to 

develop a minimum viable product that could be tested by practitioners in real industrial 

settings, to evaluate future commercial applications of this thesis. This digital product intends 

to evaluate the method’s usefulness in unmoderated real design scenarios through the access to 

larger sample sizes enables by a stand-alone application. The DEBAS platform is still under 

development, and industrial testing is pending. 

Other future improvements include the addition of different PDP activities to the PERT 

diagram included in the platform; the inclusion of different types of constraints in the FM; and 

the connection of the proposed design platform with other PDP assessment tools, such as value 

creation strategy models or geometry representations currently under development by the SED 

group at Chalmers University of Technology. 
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IMPACT ON DESIGN WHEN INTRODUCING 
ADDITIVE MANUFACTURING IN SPACE 
APPLICATIONS 

O. Borgue, M. Panarotto and O. Isaksson 

Abstract 
This paper studied how the introduction of additive manufacturing (AM) in space applications impacts 
the design phases. Together with three manufacturers of space applications, the potential benefit as well 
as constraints are studied to identify design gaps. A literature survey is conducted to match the needs 
and following an analysis the impact on design practice is formulated. Results show the need to combine 
a wider design exploration capability, in combination with comparative modelling strategies. 

Keywords: additive manufacturing, design methodology, design analysis, engineering design 

1. Introduction 
Products designed for space applications such as launchers and satellite systems represent a challenging 
category of products from an engineering design perspective. Unlike other industries (Pawlicki, 2015), 
these products are produced in small batches and have to cope with the extreme conditions and 
requirements of launching and, at the same time, satellite applications have to be able to have a useful 
life of more than 15 years after successful orbit insertion. (Castet and Saleh, 2009). The recent 
advancements made in additive manufacturing (AM) technologies, are attractive for space applications. 
AM allows for weight and material volume minimization, which are indeed ideal drivers in costly 
products to be produced in low production volumes (Mellor et al., 2014). At the same time, AM 
increases the opportunity to apply novel strategies in the design activity. For instance, topology 
optimization combined with additive manufacturing (Brackett et al., 2011) offers the opportunity to 
manufacture products with minimal weight, by solving material distribution problems.  
From a design perspective, however, AM represent a radically new way of manufacturing and brings 
a great deal of uncertainty. Engineering design strategies offer tactics for engineers to systematically 
guide the development of products (Cross, 2000). Such methods address the generation and 
application of technical knowledge to control and improve the product along its lifecycle. For 
example, design for manufacturing and assembly (DfMA) methods (Boothroyd et al., 2010) target the 
support of design products in such a way that they are easy to manufacture and assemble. However, 
regarding AM, the guidelines and strategies suggested by conventional ‘design for X’ (DfX) methods 
(Boothroyd et al., 2010) do not constitute a fully relevant design support. New guidelines and 
strategies on how to “design for additive manufacturing” (DfAM) are needed. Literature (e.g., 
Thompson et al., 2016) has provided a number of insights into DfAM but have often been derived 
from lessons learned from a number of industrial contexts - such as biomedical or automotive (Guo 
and Leu, 2013) - which do not present the same critical conditions such as the ones encountered by 
space applications.  
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This paper investigates the impact on design when introducing additive manufacturing in space 
applications. Through a literature and an empirical study, the restraints and challenges of space 
applications are matched together with the existing design strategies for additive manufacturing. The 
results of these studies are then discussed, pointing at the centrality of “modelling” as a crucial design 
strategy in the context of DfAM. This research was organized around the following research 
questions: 

 RQ1: How can DfAM methods be a support to effectively introduce additive manufacturing in 
space applications? 

 RQ2: How can DfAM methods be extended to match the constraints imposed by the introduction 
of additive manufacturing in space applications?  

2. Research methodology  
The study can be described as a Research Clarification (RC) in the Design Research Methodology 
(DRM) framework (Blessing and Chakrabarti, 2009). The research results come from the 
combination of a systematic literature mapping study (Kitchenham and Charters, 2007) and an 
empirical study in a Swedish-funded research project. The literature mapping was conducted by 
cross-analysing and ‘matching’ two neighbouring research areas – namely, research on design for 
additive manufacturing methods (DfAM domain), and research on the introduction of additive 
manufacturing in space products. The empirical study was realized in two workshops that joint the 
efforts of Swedish universities and aerospace industries with the objective of demonstrating the 
feasibility of introducing and qualifying additive manufacturing technologies in space applications.  

2.1. Systematic literature mapping  
A literature review on a topic identifies and evaluate existing areas or gaps demanding research 
(Wohlin, 2014; Alabama University, 2018). From the most popular methodologies for performing a 
literature review, systematic literature review and systematic literature mapping study, in this article 
a systematic literature mapping study was preferred. This methodology was preferred because it 
focuses on broad research questions reviewing substantial number of publications and aims for 
publication classification to achieve a high understanding of the research area (Barn et al., 2017). 
The literature mapping was performed on two sets of academic publications found in SCOPUS 
database, as it is the largest citation and abstract database of peer reviewed literature (Elsevier, 2018). 
The first SCOPUS search focused on research on DfAM methods and the second, instead, focused 
on research on AM applications in the space industry. As presented in Figure 1, the scope was limited 
to the subject area of engineering and to journal articles, conference papers and book chapters. 
Regarding the search conducted on the DfAM domain, the procedure was limited to title, abstracts 
and keywords and the results obtained were filtered by title, abstract and then by full-text content. 
Previous research (Bertoni et al., 2017) shows the importance of explicitly defining inclusion and 
exclusion criteria for filtering publications during literature reviews. The inclusion criteria, in this 
case, were to preserve entries related with the design methodologies applied to physical products 
(hence are related to the actual hardware, or mechanical, design) and that are intended to be fabricated 
using AM techniques.  
Regarding the search conducted on the industrial application (space) domain, the search was limited 
to keywords, being then filtered by title, abstract and full text. The inclusion criteria were preserving 
entries related with the space industry and its implementation of AM, with a focus on the design of 
physical products with engineering content (hence related to the actual hardware design of a space 
product) and the used methodologies and encountered challenges during this process. For both 
searches, redundant items were removed and the remaining list was complemented with other entries 
implementing a procedure of backward snowballing (Wohlin, 2014) with the purpose of reaching 
publications outside the range of SCOPUS and increase the validity of the literature mapping. Finally, 
due to the rapid development of AM technologies, the final list was enhanced with not-peer reviewed 
new publications from the industrial/technology domain. The resultant list of articles is composed of 
58 items.  
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Figure 1. Systematic literature mapping procedure 

2.2. Empirical study 
Participants in the two workshops were industrial experts from three space equipment manufacturers, 
who are active in roles that relate to the generation and selection of new design concepts. The main 
aspects of interest during the workshop were related to two main dimensions:  

 How AM enables the generation of new radical design concepts  
 How AM engineering design phases have to be conducted, with a special emphasis on the 

qualification and certification stage  

Problems in the current situations as well as wishes for the future were discussed. The workshop 
benefited from the collective analysis and idea generation on three case components presented by each 
of the company partners. The empirical data has been collected by observations using field notes and 
reflections, which were then distributed to the participants of the workshop discussion. Follow-up phone 
meetings were conducted with the participations for verification and exchange statements.  

3. Research findings  
This section presents the different results obtained from the two literature mapping studies performed, 
as well the findings from the empirical study conducted.  

3.1. Literature mapping 
On the first part of this chapter, the results from the mapping in the DfAM domain are presented. This 
part exhibits benefits, and constraints mentioned in the DfAM literature and tools and objectives found 
among DfAM methodologies. In the second part of this chapter, the results from AM applications in the 
space domain are presented and needs and challenges for AM in the context of space products are 
collected and explained. To wrap up, a cross analysis chart of both literature analyses is presented.  

3.1.1. DfAM domain: Benefits and constraints from designing with additive manufacturing  

From the DfAM domain search, a number of benefits and constraints emerged. The most recurrent 
benefit of AM is an unprecedented design freedom, 26 related articles were found, such as (Wits et al., 
2013; Rosen, 2014; Laverne et al., 2015; Rias et al., 2017). This freedom enabled by 3D printing 
technologies includes shape, function, material and hierarchical complexity making possible product 
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customization (Rosen, 2013; Salonitis, 2016; EOS, 2018) without the need of tooling or increased 
manufacturing time and cost (Yang et al., 2016; Kannan, 2017). AM allows also the possibility of 
structural design (18 articles) (Thompson et al., 2016) enabling constructions with anisotropic materials, 
material gradient (Dimitrov et al., 2006; Gordon et al., 2016; Goehrke, 2017; Stratasys, 2018) and 
multiscale structures. Weight reduction is also an advantage, using strategies like topology optimization 
(Yang et al., 2016), or part consolidation (22 articles) in the form of integrated, internal or embedded 
designs and interlocking features (Gibson et al., 2010; Gutierrez et al., 2011; Calì et al., 2012; Davis et 
al., 2016; Advantech, 2017) facilitating assembly (Hague et al., 2003; Mahto and Sniderman, 2017).  
Constraints found related to AM include a constrained material availability (9 articles) (Thompson et 
al., 2016; Shao, 2017), performance and standardization of machines and processes (10 articles) 
(Laverne et al., 2015; Tilton et al., 2017; Stratasys, 2018) and CAD software adapted and developed for 
AM (13 articles) (Rosen, 2007; Salonitis, 2016; HSSMI, 2017; Käfer and Seit, 2017; Renishaw, 2018). 
Post processing is also a concern (19 articles) regarding the removal of support material, manufacturing 
tolerance limitations, releasing of thermal tension or improvement of surface finishing (Thomas, 2009; 
Klahn et al., 2015; Custompart, 2018; Hassanin et al., 2018). Another concern is feature size limitations 
(15 articles) like maximal angle between the part surface and the machine plate, that if surpassed creates 
the need of using support structure. Also, resolution of features, like graven fonts or maximum size of 
enclosed hollow volumes that, if exceeded will create the need of using internal support structure 
impossible to remove afterwards (Gordon et al., 2016; Kumke et al., 2016; Blösch-Paidosh and Shea, 
2017; Kannan, 2017; Seepersad et al., 2017; MSCSoftware, 2018). Moreover, defects and their detection 
(10 articles) are problematic, as they can reduce fatigue life or facilitate crack propagation. There is a 
lack of knowledge of the physical phenomena that take place during the AM process and a difficulty to 
predict the quality of a piece (Ponche, 2013; MSCSoftware, 2018). Parts manufactured with AM have 
a complex thermal history that involves repeated fusion, directional heat extraction, and rapid 
solidification (Frazier, 2014; Loughborough, 2018).  

3.1.2. DfAM strategies  

22 entries were found related to methodologies for DfAM, the objectives of those methodologies are: 
design guidelines for fostering innovation/ideation (41%), for achieving part optimization (efficiently 
allocation of material) (30%) and for achieving part consolidation through reduction of the amount of 
parts to assemble (29%). Moreover, on the analyzed entries, the main strategies used for achieving those 
objectives are function modelling (54%), geometrical modelling (43%) and mathematical/physical 
modelling (3%).  
The guidelines to foster innovation are design methodologies focused mostly on taking advantage of 
AM´s design freedom. For this purpose, is frequently used function modelling to decompose the product 
function in hierarchical sub functions implementing tools like the modular three-dimensional function 
graph presented by Boyard (2015). Other strategies combine function modelling with idea generation 
tools, like the use of databases or analogies (Emmelmann et al., 2011; Brandt et al., 2013; Rias et al., 
2016). Geometrical modelling is also implemented through topology optimization (Maheshwaraa et al., 
2011; Vayre et al., 2012; Panesar et al., 2014) and mathematical/physical modelling, especially for 
modelling material behavior through mathematical equations (Chen et al., 2016). Methodologies 
focusing on part optimization aim to achieve an optimized version of a design, allocating better the 
material to minimize the material amount used, reducing weight, building time and manufacturing cost 
(Yang et al., 2016; Hu et al., 2017). For this purpose, function (Boyard et al., 2013) and geometrical 
modelling (Ponche et al., 2012; Ponche, 2013; Ponche et al., 2014) are implemented. Part consolidation 
have the objective of reducing the amount of assembly parts of a design through function integration, 
this approach can reduce the overall assembly time and cost (Calì et al., 2012; Maidin et al., 2012; Yang 
et al., 2015; Essa et al., 2017) using function integration through function modelling (Yang et al., 2015). 
From the literature mapping of the DfAM domain, can be concluded that the main efforts are directed 
to the exploration of benefits and constraints of AM and their translation into methodologies for aiding 
the designer to achieve mostly innovative designs, part consolidation and part optimization. The focus 
seems to be directed to take advantage of AM design freedom, with little regard about the introduction 
of this technology into the industrial application sector. 
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3.1.3. Industrial application domain: Current focus of research on AM applications in space  

Needs and challenges regarding the application of AM in the context of space products are presented in 
the left part of Figure 2. The main focus is set on the need of developing comparative modelling 
strategies to aid the process of qualification (Wang et al., 2008) and help ensuring quality (32%).  
Qualification is needed for the establishment of a sufficient technology readiness level (Mankins, 1995), 
diminishing the level of uncertainty related with a new technology and is a need is present in all the 
extension of the production chain (Yeong et al., 2013; Gockel et al., 2014; Kim et al., 2014; Martukanitz 
et al., 2014; Uriondo et al., 2015; Farinia, 2018). Second, comes (17%) the need to develop 
methodologies for design (Goehrke, 2017), like the ones mentioned on the previous section, and thirdly, 
14% corresponds to the need of clear set of rules for printing process set-ups. Printing set-ups refers to 
considerations to be made for starting the printing process, from choosing machine and materials to 
selecting printing direction. These set-ups affect properties like: thermal, electric conductivity, tensile 
and yield strength, surface roughness, part accuracy and the use of support (Zhang and Bernard, 2013; 
Clinton, 2016; Blösch-Paidosh and Shea, 2017). 

 
Figure 2. Left, needs and challenges to apply AM in space products; Right, 

comparison of needs and challenges from the industrial domain with challenges addressed 
in the DfAM domain 

Machine processes and standards (10%) are also in need, as they help improving quality and 
qualification, as well as increasing market opportunities (Munguía et al., 2008; Johnston et al., 2014; 
TNO, 2014; Swerea, 2017; Kramer, 2018). Standards currently applied in traditional manufacturing are 
not suitable for AM technologies (Monzón et al., 2015). The need to develop or adapt CAD software to 
AM is also mentioned (10%) as traditional CAD tools for conventional manufacturing are obsolete. 
Furthermore, current CAD systems developed or adapted for AM are still in development (McClintock, 
2017) and there are few CAD packages for helping the engineers to fully adopt AM (Dordlofva et al., 
2016; McEleney, 2017; Hendley, 2018) and those packages have still limitations (Ghidini, 2013; Gibson 
et al., 2015; Yang and Zhao, 2015; McClintock, 2018). The need of methodologies for aiding design 
exploration and generating innovative ideas is also mentioned (6%), as well as the need to improve the 
technology to, for, example, diminish dimensional constraints (5%) and, the need to reduce post 
treatment (6%) recognized as a contributor for increasing lead time and cost (Schmelzle et al., 2015; 
Dordlofva et al., 2016; Grunewald, 2016; ESA, 2017; Hu et al., 2017; McClain, 2017; Schelmetic, 
2017). A poor surface finish, for example, must be treated with complementary processes due to the 
negative effect it has on fatigue resistance, heat transfer or contact among internal surfaces (Kumbhar 
and Mulay, 2016; Lindwall et al., 2017; Martin-Iglesias et al., 2017).  
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For concluding this section, the right side of Figure 2 present the needs from the industrial application 
domain compared with the needs addressed in the DfAM domain. The areas of interest of the industrial 
and DfAM domain are misaligned, as the industrial domain seems primordially interested on developing 
comparative modelling strategies and the DfAM domain, in developing methodologies for design 
exploration and methodologies for design.  

3.2. Empirical study  
The first phase was focused on design exploration, were the industrial partners presented products 
currently manufactured with traditional processes, with the intention to be redesign for AM. In that 
context, companies and academic partners shared their expertise with a brainstorming session and 
collaborated to create a variety of redesign concepts for the targeted products. It was observed in this 
phase a tendency to generate concepts similar to the preexisting ones and a difficulty to integrate the 
benefits and constraints of AM. The major manufacturing and qualification concerns expressed by the 
industrial partners are related with the nature and detection of defects, as well as their impact on 
performance, material behavior and capabilities, surface finishing and geometric accuracy. On the 
second phase, function modeling was implemented, the case-products were decomposed into 
hierarchical functions to help the design process and assist the process of qualification, qualifying 
features and geometry regarding their associated function and manufacturing restrictions.  
Whilst the top-level functions from the original and the redesign models are expected to be the same, 
the constraints emerging from classical, often subtractive, manufacturing technologies can be relieved. 
Using this approach, the original functions and manufacturing constraints were identified, and the 
constraints emerging from traditional manufacturing were relieved. However, when conceptualizing the 
use of AM, benefits in geometrical freedom are realized, but there are also new constraints added. 
Introducing function modelling and constraints replacement in the workshops, enabled the discovery 
and removal of obsolete functions, the better realization of the existing ones and the possibility to include 
new. Figure 3 shows an example about the redesign of an annulus profile. In the example, an annulus 
shape manufactured with traditional methodologies is redesign for AM. In Figure 3 (left) the annulus is 
printed without redesign and the diameter is larger than a maximum diameter threshold for avoiding the 
need for support structures (AM constrain). Hence, the annulus requires the use of support structures. 
Considering this constrain since the early design allows for a new design that reduces the use of support 
(Figure 3, right).  

  
Figure 3. Annulus profile example elaborated using Materialise® Magics constraints 

replacement when designing with AM leading to geometry transformation to avoid 
undesired support structures 

4. Discussion: The need for a novel modelling strategy to introduce AM in space 
applications  

The results from the literature and the empirical study suggest that for AM to be introduced in space 
applications, the parts should go through a process of redesign, to take full advantage of this technology 
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(Salonitis, 2016). However, the designing task in additive manufacturing is difficult as it involves a 
process of unlearning the design guidelines for traditional manufacture. For facilitating the design 
process, many DfAM methodologies are currently being developed and most of them (42% of the entries 
in the literature study) are focused on aiding the exploration of innovative design and more than half 
(54%) of the entries in the literature study focus on the adoption of function modelling to decompose 
the product function in hierarchical sub functions (Boyard, 2015), where new designs that fulfil the same 
(or new) functions can be generated through idea generation tools, like the use of databases or analogy 
methods - such as biomimicry (Emmelmann et al., 2011; Brandt et al., 2013; Rias et al., 2016).  
Through the use of such DfAM methods radical new designs and geometries can be generated (for 
example, the annulus profile in Figure 3), but this introduces an element of novelty that challenges 
decision-making processes during the design activity. The industrial practitioners taking part in the 
empirical study elaborate on the fact that - when making decisions - novel design alternatives are always 
compared to a base reference design, where a solid experience and confidence exists. Novel designs 
need to be proven to be “better” in comparison with existing solutions. These decisions have to be made 
early (already on a concept level), where design changes can be made spending little time and effort. 
The downside of making decisions early is that the full set of information may not be available at these 
stages Practitioners hence stress the need in the early design phases to generate information and 
knowledge about the “goodness” of such new designs for AM, in comparison to existing solutions. This 
need is mapped also in the results of the literature study, where research on AM introduction in space 
application stress the interest for comparative modelling strategies (32% of the entries) and sets little 
attention on design exploration (6%) (Figure 2, right).  
This discussion suggests the importance of modelling in order to exploit both design exploration 
opportunity and confidence in decision making. From the results of the literature analysis two main 
trends for modelling strategies emerge. Function modelling allows to represent current as well as novel 
designs simultaneously. Yet, to allow full comparison in the context of AM for space applications, 
manufacturing constraints should also be represented in a function model. In this way, constraints can 
be removed and introduced, allowing the generation of new insights in the design process already from 
the early phases. These types of representation could also become input to other comparative modelling 
strategies, such as the identification of critical ‘features’ to be tested in a physical artefact (intended to 
act as a ‘qualificator’) where critical design properties – regarding for example quality, surface finishing, 
or fatigue life – can be compared to existing solutions already since early design.  

5. Conclusions 
This paper studied how the introduction of additive manufacturing (AM) in space applications impacts 
the design phases, combining a literature and an empirical study in collaboration with three 
manufacturers. 

 The literature review indicates that - at present - focus is dominated by 1) the need to understand 
current constraints and behaviour of AM, and 2) ways to benefit from the increased degrees of 
freedom using AM.  

 Few studies are found on a systematic and generic modelling approach for DfAM. This need is 
instead stressed by industrial practitioners in the empirical study. Such a modelling approach can 
support the generation of insights and learnings that match the characteristics of AM with the 
design objectives/functions driving the novel designs.  

Preliminary findings indicate that a modelling approach able to represent functionality and constraints 
linked to different product concepts is crucial for real world design cases. For further work, it is 
suggested to explore the modelling of functions and constraints when re-designing for AM.  
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1 INTRODUCTION 

The space industry is seeing an increase in demand for access to space to enable space-based services and 

human space flight, with new actors opting for market shares. This implies a need for a business-oriented 

evolution of technology and product development, decreasing cost and time to market. Space products 

traditionally involve a costly product development process for manufacturing low volumes (from one-off 

production to tens of parts per year) of high-performance products to be used in harsh environments. 

However, the space industry is currently in the middle of a transition due to the advent of the so called 

NewSpace companies such as SpaceX or Virgin Galactic (Salt, 2013). SpaceX, for instance, is planning to 

launch a constellation of more than 4000 low costs satellites to provide internet connection via space, and 

expect to have an operating network covering the US by 2020 (BBC News, 2018). This is one example of 

how cost and lead time reduction are becoming true drivers for space companies (Öhrwall Rönnbäck and 

Isaksson, 2018). In this context, additive manufacturing (AM) is a technology that has the potential to 

reduce lead-times and manufacturing costs (O’Brien, 2018). The use and development of AM is growing 

rapidly within the aerospace industry, but not without challenges since the whole product development 

process is impacted by the introduction of AM. One challenge of implementing AM in space applications 

is to demonstrate that products and processes meet specified quality and reliability requirements (Dordlofva 

and Törlind, 2017). The process dedicated to assuring that quality and reliability requirements are met is 

called qualification (Gerling et al., 2002). Previous studies (Dordlofva and Törlind, 2017) suggest that 

qualification aspects should be addressed already in the early phases of product development to ascertain 

that a product designed for AM can be qualified. However, the knowledge about the AM process chain is 

still low compared to traditional manufacturing processes (O’Brien, 2018). For this reason, it is difficult to 

predict the process outcome and consequently what to plan for in the qualification activities. The objective 

of this article is to provide a knowledge base for the creation of qualification guidelines to be utilised when 

designing products for a new manufacturing technology such as AM. Future research will utilise this 

knowledge to develop such guidelines, which would have the purpose of supporting the design of a product 

that can be qualified (Design for Qualification) and support the design of the qualification activities (the 

qualification logic). To guide this work, one research question was defined: How can qualification be 

considered in the early phases of product development of AM parts for space applications? 

In the theoretical framework of this paper, product qualification is first presented in general terms to 

provide a context in which the challenge of design and qualification of AM products is discussed. The 

method used for data collection and analysis is then presented, where the interview study at two companies 

in the European space industry is described. The results and analysis of the interviews are thereafter 

presented following the same structure as in the theoretical framework by first providing the findings 

regarding product development and qualification in general, concluding on motivators for qualification 

activities in the space industry (qualification drivers). Thereafter the use of AM in space applications and 

the implications of the identified qualification drivers on designing and qualifying AM components are 

discussed. In this paper, AM is referring to metal Powder Bed Fusion (PBF) technologies, i.e. Electron 

Beam Melting (EBM) and Laser Beam Melting (LBM). 

2 PRODUCT QUALIFICATION 

Qualification can be defined as the activities performed to demonstrate that a product or a process meets or 

exceeds specified quality and reliability requirements (Gerling et al., 2002). In manufacturing process 

qualification, all the procedures that validate that a process meets specified performance and quality 

requirements are included. Process qualification assures that a process is controlled and produces repeatable 

qualified products (Tantra and van Heeren, 2013). Product qualification assesses the performance, quality 

and reliability of products under operational conditions and examines if the product meets the design 

requirements (Musgrave et al., 2009). Developing and qualifying a product and the processes for its 

manufacturing requires to comprehend how performance and reliability are related to product functionality 

and application (Gerling et al., 2002). Wang et al. (2008), state that three different types of qualification 

activities are performed during a product development process. First, virtual product qualification is 

implemented as means to evaluate the functionality and reliability of a product design without physical 

tests. Later, during physical product qualification, quality and reliability are evaluated based on tests on a 

qualification hardware. After virtual and physical product qualification, production begins and during the 

manufacturing, the product’s quality is inspected and tested again. The authors consider this process as the 
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third and final phase of the qualification activities, commonly referred to as quality assurance testing. The 

authors also propose that product design activities and qualification activities can include several feedback 

iterations. If the product design is found not to meet the qualification requirements, it is modified and 

qualified again before continuing with the next product development phase. For space components, 

qualification activities are performed on flight-like units at levels and in environments above the design 

requirements to ensure robustness and design margins (Musgrave et al., 2009). Flight-like units and 

qualification activities are however generally expensive for space systems (Öhrwall Rönnbäck and 

Isaksson, 2018) and for that reason, the iteration between product design activities and qualification 

activities proposed by Wang et al., is not necessarily applicable (Dordlofva and Törlind, 2017). These high 

costs of the qualification activities in the space industry are contradictory with the growing need of 

reducing cost. However, some authors such as Gerling et al. (2002) or Yadav et al. (2006) suggest that 

costs and lead time can be reduced if qualification activities are included earlier in the design process. Pecht 

(1993), Preussger et al. (2003) and Yadav et al. (2006) have proposed methodologies and guidelines for the 

electronics industry focusing on reliability assessment, test activities and test planning early in the 

development process. However, guidelines for approaching product design considering how the product 

should be qualified are missing. In product design, there are various design practices or supports that aim to 

maximise different aspects of a product. These are included in the Design for X (or Design for Excellence) 

methodology, where X represents product aspects such as functionality, manufacturability, safety, quality, 

or serviceability (Bralla, 1996). Designing a product to assure that it can be qualified should also be 

considered for products where qualification is an important part of the development (Pecht, 1993). Despite 

this, explicit Design for Qualification supports are lacking. DfX techniques provide three types of support: 

qualitative guidelines, metrics, and feasibility checks (Holt and Barnes, 2010). Metrics provide ways to 

measure a design’s performance linked to the X aspects of the product that are sought for (e.g. cost or 

reliability), while feasibility checks aim at evaluating the X aspects linked to different life phases of the 

product (e.g. manufacture and assembly or end-o-life). Qualitative guidelines on the other hand are more 

generic, open for interpretation, and flexible, supporting the designers to e.g. understand what features and 

properties that should be included or avoided (ibid.). In this paper, Design for Qualification guidelines refer 

to this latter category. 

2.1 Design and qualification in additive manufacturing 

The use of AM in aerospace applications is increasing and major OEM:s continuously push the limit of the 

technologies. General Electric has for example developed and tested the Advanced Turboprop engine with 

12 parts manufactured by AM (GE, 2017). However, information about the criticality level of parts that 

have been introduced in different applications is scarce (Gorelik, 2017), and within the space industry, 

secondary structures and other non-critical parts have been in focus (Brandão et al., 2017). This is due to 

that the qualification of AM processes and parts manufactured using AM remains a challenge (Frazier, 

2014), and there is a lack of understanding of AM processes and standardised approaches to ascertain the 

quality of AM parts (Seifi et al., 2017). The need for AM standards has been acknowledged by the AM 

community and there are for example already nine published ISO standards and 25 under development 

(ISO/TC-261, 2019). However, the need for standardised procedures in industry is urgent, and for example 

NASA has expressed that they “cannot wait for national standard development organizations to issue AM 

standards”, and have developed their own for space flight hardware (Clinton, 2018, p. 33). One of the 

complexities with AM that make standardisation challenging is that parts exhibit material characteristics 

such as anisotropic and location dependent properties, defects, and rough surfaces (Seifi et al., 2017). It has 

also been shown that part geometry can impact these material characteristics (ibid.), putting additional 

responsibility on design engineers to understand the capabilities of AM processes. Design for AM (DfAM) 

has received much attention with the increased interest for AM in industry and academia. The need to 

support engineers early in product development to allow them to explore the design potentials enabled by 

AM is often highlighted, and such DfAM methods have been proposed by e.g. Kumke et al. (2018) and 

Laverne et al. (2017). However, there is less focus on methods to explicitly support engineers in designing 

products that can be qualified. Holistic and relevant DfAM frameworks have been proposed by e.g. Kumke 

et al. (2016) and Zhu et al. (2017), where the importance of consideration for the whole manufacturing 

process capabilities (including pre and post AM) are stressed. Explicit measures for dealing with the issue 

of process and product qualification early in the product development process are however lacking. 

O’Brien (2018) argues that at the current stage of AM maturity, sound DfAM for space applications should 
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for example include considerations for part complexity, inspection and testing due to the intrinsic 

characteristics of AM parts. 

3 METHODOLOGY 

The data collection for this paper are semi-structured interviews carried out at two large companies that 

design and manufacture space components (Company A and Company B). Semi-structured interviews 

were preferred since the topic in study is complex and the concept of qualification can be interpreted in 

various ways, requiring lengthy explanations and follow up questions (Bryman and Bell, 2015). The 

companies were selected for the study since they both have a long history in the space industry delivering 

sub-system components to established international customers. The companies specialise in different 

components as presented in Table 1, which can reveal distinctive aspects of the qualification activities. 

Table 1. Participating companies in the study. 

Company Description Employees 

A 

The company is developing complex and high-performance components for 

aerospace. The studied part focuses on product development and 

manufacturing of sub-system components for civil aircraft engines and 

launcher applications. 

 

17 000 

B 

The company is operating within different segments of the aerospace 

industry. The studied part is providing products for in-orbit applications and 

the responsibility includes the whole chain from R&D to sales for several 

product areas. 

 

1 400 

A total of 12 engineers were interviewed (eight at Company A, four at company B) with a range from 12 to 

30 years of experience in the aerospace industry. The sampling of interviewees was done to have a mixture 

of different company roles; design engineers, method and material specialists, chief engineers, and 

department and division managers. It should be noted that Company A design and manufacture 

components for both civil aircraft and launcher applications, and that some of the interviewed engineers 

currently work with aircraft applications. All of the interviewees had experience from several phases of 

product development, and both companies are working towards the implementation of AM. Some of the 

interviewees had little experience of AM, and some had worked with AM for several years. All interviews 

were performed in Swedish and all quotes in this paper are consequently translated by the authors. The 

interviews were conducted by two of the authors, one of which have several years of experience in design 

of space systems and is situated as an industrial Ph.D. student at a company within the space industry. The 

other interviewing author is new to the space industry and was therefore able to take the role as an external 

auditor (Creswell, 2014). 

The interviews lasted 40-60 minutes, and an interview guide was used with questions divided into two 

focus areas; Qualification in product development and Use of AM in space applications. In addition, 

questions about the interviewees background were included. After five initial interviews, the interview 

guide was revisited with a few questions reformulated to narrow down the focus on the most relevant 

aspects for the research question (Bryman and Bell, 2015). All but one of the interviews were recorded and 

transcribed (one of the interviewees wished not to be recorded, instead both authors took notes during the 

interview and then summarised it together). To clarify the empirical data and identify recurring and 

dominant themes, selective coding was used. Data reduction in the form of pattern matching and data 

displays was utilised to synthesise the findings (Miles and Huberman, 1994). The pattern matching 

involved the selection of eight categories based on topics identified before performing the interviews, with 

each category belonging to one of the two focus areas, and one category labelled ‘Other’. The authors that 

performed the interviews individually read through each transcript and highlighted quotes related to these 

categories. The result from the coding was compiled in a spreadsheet that allowed comparison between the 

interviews. The quotes in the spread sheet were then condensed into a text document where similar quotes 

were grouped together. This text was then jointly read by the two interviewing authors. During this process, 

two of the eight initial categories were slightly reformulated to better fit the interviewees answers, and to 

include aspects from ‘Other’. One new category was created within the focus area Use of AM in space 

applications. 
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4 RESULTS 

The outcome from the analysis are presented as follows. First, findings from the focus area Qualification in 

product development are presented, followed by a synthesis on how these findings can be used to account 

for qualification in the early phases of product development. Second, the findings from the focus area Use 

of AM in space applications are given, followed by a discussion on what the implications of these are on 

designing AM parts while considering qualification activities. 

4.1 How is qualification considered in product development? 

When asked if and how qualification is considered in the product development process, most of the 

interviewees answered that qualification plays an early role in product development since otherwise 

development and production would become very expensive as the amount of testing would increase 

significantly. Qualification plans are initiated early and are then developed along with the product. The 

assumptions that are made during product development with regard to manufacturing process outcome (e.g. 

material properties), what level of process control is possible in production, the available knowledge about 

the product or the manufacturing process (e.g. internal company legacy and external third-party standards), 

and the criticality of the product function were mentioned as aspects that impact a qualification logic. 

However, it was also noted that qualification is often not considered early enough. As one interviewee at 

Company A expressed it; “Today, qualification comes in when you start to converge towards a concept. 

Optimally, it should already come in when you have a set of product solutions”. Similarly, one interviewee 

from Company B expressed that “it is seldom that we allow the work with qualification to impact the 

design work […] rather, it is the design/product development that impacts what we need to qualify”. 

Interviewees at Company B also mentioned that they try to re-use previous designs as much as possible 

since the amount of qualification that is needed for proven designs usually decrease. For this reason, it is 

also possible that the company increase the requirements on qualification for a certain product to make it 

more versatile and adaptable for future products. It was also stressed by one of the more senior engineers at 

Company A that there is not one way to do qualification; “for a new process […] there is very little of 

ready recipes for how to qualify, without having a clear picture of what knowledge that has to be built. It is 

all very intimately connected. Often the word qualification is misused as a recipe that can be used”. 

Another comment from a few interviewees at Company A was that system requirements are important 

considerations in product development. Understanding what customers and regulating bodies are expecting 

is essential. This also has the effect that qualification is something of “grey zone” in that the dialogue with 

the customer is important, where approaches to qualification can be suggested, and different customers can 

have different views of what is acceptable for showing compliance to specifications and regulations. 

These results suggest that qualification is product and process dependent, since the assumptions made 

during product development and the requirements from the system the product will function in, influence 

the qualification logic. However, the qualification logic does not usually impact the design activities. 

Moreover, the qualification activities are not always tailored for one product but can include margins for 

similar products that might be developed in the future. A difference could be seen here between the 

companies since Company A usually have purposely designed products for a specific system with less 

possibility to reuse the same product in a new system. Qualification activities also depend on the 

customer’s and third-party standards and regulations that must be followed. In this context, qualification is 

a challenging phase as there is no explicit “recipe” for how to qualify. 

4.1.1 Strategical and financial aspects of qualification 

Both companies rely on program funding together with their customers to be able to develop new products 

and technologies, hence relationships with customers are important for future business. This has been 

discussed in previous research as one characteristic of product development in the space industry (Lindwall 

et al., 2017). Since qualification is part of the product development, the cost of qualification is also 

financed by the customer. It became clear during the interviews that the market shift in the space industry 

has an impact on how product development is carried out at the two companies. As indicated by previous 

research (Öhrwall Rönnbäck and Isaksson, 2018), flexibility in design, cost-reduction, reduced time to 

market, and an increase in produced units (in production) were all aspects that were mentioned. As one 

interviewee said: “It´s market competitiveness of course, it’s all about being cheap and fast”. From a 

qualification perspective some implications of this change were given: 
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 More responsibility for the design and qualification is pushed on to the design organisation, i.e. sub-

system component suppliers such as Company A and B (mentioned by Company A and B). 

 To reduce cost, the pressure has increased to use less number of manufactured components that go 

through the process of qualification, and consequently also to consider what needs to be qualified 

through testing (Company A). 

 The demand for an increase in produced units in production means that cheaper components must be 

used to be competitive. However, these are less reliable and more difficult to qualify according to 

traditional qualification requirements (Company B). 

The interviews indicate that cost and time-to-market reduction are primordial to assure market 

competitiveness, where company profit is a factor to consider. The pressure for increasing production 

volumes may need to decrease the requirements on product reliability if cost, time-to-market and profit 

goals shall be feasible as companies try to reduce their qualification efforts. A well-established knowledge 

base for the creation of qualification guidelines would support engineers to design adequate qualification 

activities for either low or large production volumes. Moreover, the early implementation of qualification 

guidelines in the design process could reduce the cost of qualification activities as products are designed for 

qualification. 

4.2 Qualification drivers for product development in space applications 

Synthesising the results presented above, a number of motivators for qualification activities in space 

industry were deduced. These motivators are labelled qualification drivers since they drive the 

requirements set on the product qualification, and the decisions behind the establishment of a qualification 

logic. Figure 1 presents a diagram where the identified qualification drivers are shown along with how they 

are linked to the product development, the product qualification, and the creation of Design for 

Qualification guidelines. 

 

Figure 1. Identified qualification drivers for product development in space applications (c=driver 
for customer satisfaction, d=driver for design organisation satisfaction). 

From the perspective of the companies there are two stakeholders in the development and qualification of a 

product. The customer that finances and/or purchases the product, and the companies themselves that 

design and manufacture the product, i.e. the design organisation. The qualification drivers are related with 

the satisfaction of either customer (‘c’ in Figure 1), or design organisation (‘d’ in Figure 1). To achieve 

customer satisfaction, qualification activities must aim to: 

 Reduce overall product price and time to delivery: “(..) it’s all about being cheap and fast”. 

 Show compliance with product functional and technical specifications: the product must perform the 

functions required by the customer. 

 Show compliance with general standards and regulations: Standards are usually third-party and 

regulations can be either from a governing body (e.g. ECSS from ESA) or specifications from a 

customer. 

 Show compliance with requirements on reliability: Different customers are willing to accept different 

amounts of risks. It was specifically mentioned that NewSpace companies are willing to accept a 

higher risk than traditional space companies. 
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To achieve design organisation satisfaction, qualification activities must aim to: 

 Show compliance to requirements on reliability: While some customers were mentioned to accept a 

higher risk, this was also said to impose an increased responsibility on the design organisation to be 

liable for failures, implying decisions on risk acceptance. 

 Show compliance with internal specifications: Design organisations with internal specifications can 

impose more stringent requirements than e.g. general standards. 

 Render company profit: Product development has to render profitable business cases. 

 Increase adaptability of product designs for future business opportunities: design organisations can 

increase the requirements on qualification for a certain product to make it versatile and adaptable for 

future products. 

The qualification activities and the accomplishment of the above-mentioned objectives for customer and 

design organisation satisfaction are highly dependent of the capabilities of the design organisation to 

develop and manufacture products. For that reason, company capabilities (and capabilities of any suppliers 

used) have to be considered in product design and qualification logic development as well. These 

capabilities include aspects such as the activities that can be performed as part of the qualification processes 

(e.g. inspection) or the manufacturing technologies that are available to the company. These capabilities are 

related with company experience and knowledge (Dordlofva and Törlind, 2017). 

4.3 Challenges and expectations on qualification of additive manufacturing 

Comparing the stated reasons why the companies are exploring AM, a difference could be seen in that 

Company A put more emphasis on the importance of cost reduction. Within Company B, the possibility to 

come up with new and unique design solutions was explicitly said to be more alluring than reducing cost. 

However, interviewees from both companies mentioned that there is no pressure from customers to 

introduce AM. Instead, they expressed that convincing customers to use AM products, and to finance such 

product development, is a challenge. Two other challenges for AM qualification mentioned by almost all of 

the interviewees were variation in AM process outcome (i.e. material properties) and lack of knowledge 

about AM processes. With regard to process outcome, there was a belief among the mechanical and 

material engineers working with AM that nominal mechanical properties related to strength will not be as 

much of an issue compared to life related mechanical properties (fatigue and damage tolerance) and the 

variation that can be seen in material characteristics affecting these properties (e.g. surface roughness and 

defects). From this perspective, one interviewee from Company A expressed a concern for the increased 

design freedom that comes with AM: “You can for example make surfaces in a way that you utilise the 

material to its maximum with increased average stress in the material […] since you optimise your [part] 

structure. And the two together become a dangerous combination [referring to material defects]”. The 

need to challenge conventional interfaces of components to fully utilise the potential with AM, i.e. to think 

AM on a system-level, was brought up by a few interviewees. To challenge conventional interfaces could 

however be difficult since it would imply that e.g. a customer and a component supplier might intrude on 

traditional responsibilities. It could however also expand the product portfolio and give a better 

understanding of the system requirements. 

Insights into the expectations on AM qualification were also given during the interviews. Building process 

understanding is the key to be able to show a solid background knowledge for convincing customers that 

the chosen qualification logic is safe and secure. Therefore, in the near term, it is expected that using 

established knowledge from traditional manufacturing processes will be necessary, using a conservative 

approach to AM materials based on testing and analytical verification with safety factors. For life sensitive 

parts, designing for crack propagation will probably be necessary as opposed to crack initiation (fatigue). 

For example, this could lead to thicker walls to account for the worst case with regard to e.g. defects. It is 

foreseen that customers will be very cautious and not willing to bend current qualification requirements for 

metal materials. As with traditional manufacturing processes, AM processes are expected to be frozen on a 

set of parameters identified during development and testing. When some of the senior engineers at 

Company A were asked whether it could be acceptable to have a more expensive qualification of AM parts, 

they believed that this could be the case for early products in order to learn about the processes and start the 

discussions on qualification. However, in the long term, using AM has to be a competitive business case, 

hence decreasing the amount of testing used for each product. There will probably not be one qualification 

logic that can be used for any AM part, but it will be dependent on product and process. However, there 

could be process specific requirements on e.g. the number of test specimens that have to be printed with the 

part. 
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The interviews indicate that while the companies strive to introduce AM to decrease cost and find new 

competitive design solutions, their customers are conservative and prefer to use ‘what is known’ while 

reducing price. Design for Qualification guidelines should assist companies to give attention to critical 

areas or features of a product to find design solutions that balance the utilisation of layered manufacturing 

with the available knowledge of AM process capabilities. For example, topology optimisation is often 

highlighted as one of the main benefits of AM, but as indicated in the interviews, stress optimisation could 

for example impose an increased risk of failure for life-limited parts due to rough surfaces and defects. 

Hence, the assumptions that need to be made during design with regard to material properties, design 

margins, impact of print direction, testing and inspection etc., should be acknowledged in such guidelines. 

The importance for a company to introduce AM in a specific product should be assessed to set the 

acceptance of risk and of cost for qualification and production, especially in the near term when building 

knowledge about AM processes is crucial. 

4.4 Strategies to develop AM qualification guidelines for space applications 

The qualification drivers presented in Figure 1 gives an overview of the relevant aspects to be considered in 

qualification of products for space applications. Relating these with challenges and expectations on AM 

qualification, strategies for creating Design for Qualification guidelines are proposed in Table 2. 

Table 2. Strategies for the development of Design for Qualification guidelines for AM parts. 

These proposed strategies should aid design organisations in the space industry to develop qualification 

guidelines to approach product development for AM in a manner that can render products that can be 

qualified. By developing and implementing Design for Qualification guidelines, planning of qualification 

activities should be given attention during early product design activities. The strategies stress the need to 

clarify the current level of AM knowledge within the design organisation (and in general standards), 

include customer dialogue in the design process to agree on acceptable price and risks, assess the specific 

product application and the implication of using AM (also on a system-level), define what testing and 

Qualification drivers 

related to customer 

satisfaction 

Qualification drivers 

related to design 

organisation satisfaction 

Strategies for Design for Qualification 

guidelines with regard to the design of 

qualification logic (L) and product (P) 

Reduce price and time-

to-delivery 

Render profit Define accepted cost of qualification (L) 

Reduce the number of hardware to test (L) 

Consider reusing previous designs (L, P) 

Assess suitability of using AM (P) 

 (may depend on system-design) 

Show compliance with 

product functional and 

technical specifications 

 Assess product criticality (L, P): 

 System-level requirements 

 Product requirements 

 AM process maturity and knowledge 

Define applicable AM standards (L, P) 

Define applicable AM specifications (L, P) 

Define applicable regulations (L) 

Assess impact of production volume (L) 

Show compliance with 

standards, regulations, 

and customer 

specifications 

Show compliance with 

internal specifications 

Show compliance to reliability requirements 
Assess accepted level of risk from customer 

and design organisation (L, P) 

 Increase future business 

opportunities and 

adaptability 

Evaluate possibilities and need for adaptability 

to: 

 Adapt design margins (P) 

 Adapt qualification requirements (L) 

 Comply with 

manufacturing capabilities: 

 AM process 

 Post-processing 

 Inspection methods 

 Test methods 

Define approved AM processes (P) 

Assess capabilities to design for: (L, P) 

 AM (best practices) 

 Post-processing 

 Inspection 

Assess the use of test artefacts (L, P) 

Assess proven qualification logics (L) 
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inspections method that can be used, and what implications there are on future business opportunities. This 

way, the strategies should facilitate the development of a qualification logic that is suitable for the product, 

the AM process, the company capabilities, and the customer expectations. It is also considered that by 

using guidelines as support for Design for Qualification, there is flexibility in their application depending 

on the product, where for example “adaptability” might not be relevant for specific products purposely 

designed for one system. 

5 CONCLUSION 

AM has been introduced in the space industry to evaluate its potential to find new competitive design 

solutions and to decrease cost and lead-time in development and manufacturing. However, there is a need 

to increase the knowledge about AM process capabilities and AM products to show a solid qualification 

logic to convince customers that the product function can be guaranteed. Qualification is an integral, but 

expensive, part of product development in the space industry, and to mitigate time-consuming and costly 

qualifications activities, the qualification logic should be included as a factor early in the design process. 

This meaning that, since established qualification approaches for AM parts are still missing (Seifi et al., 

2017), products should be designed to facilitate an affordable qualification. This paper proposes to assess 

what knowledge and processes that are available within an organisation to help define a qualification logic 

that is suitable for the organisation’s capabilities. For example, local oversizing might be necessary to 

account for defects since using traditional design approaches based on established defect densities from 

material testing and manufacturing process control is too expensive (Frazier, 2014). Unless the 

qualification strategy is defined when design decisions are made, the cost of qualification might become 

too large. This implies that qualification strategies need to be established in the early phases of product 

development, preferably already in the conceptual phase. 

In this paper, strategies for the creation of guidelines that should support engineers in the development of 

qualification strategies for AM space components are presented. For supporting the process of designing 

parts that can be qualified, several motivators that have an impact on the qualification activities for AM in 

space applications have been identified. These motivators are labelled qualification drivers and serve as a 

knowledge base for creating guidelines to support the development of a qualification logic, and to support 

Design for Qualification. The study is limited to 12 interviews at two companies within the space industry. 

Due to this sample limitation the identified qualification drivers should be considered in the context of AM 

space components and other applications should be further studied. Future research will focus on the 

development of Design for Qualification guidelines that can be applied in product development of AM 

products. Future work is also to develop modelling support to complement the guidelines for AM products 

and to support the associated qualification process. 
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Abstract: Additive manufacturing (AM) is becoming increasingly attractive for aerospace companies
due to the fact of its increased ability to allow design freedom and reduce weight. Despite these benefits,
AM comes with manufacturing constraints that limit design freedom and reduce the possibility
of achieving advanced geometries that can be produced in a cost-efficient manner. To exploit
the design freedom offered by AM while ensuring product manufacturability, a model-based
design for an additive manufacturing (DfAM) method is presented. The method is based on the
premise that lessons learned from testing and prototyping activities can be systematically captured
and organized to support early design activities. To enable this outcome, the DfAM method
extends a representation often used in early design, a function–means model, with the introduction
of a new model construct—manufacturing constraints (Cm). The method was applied to the
redesign, manufacturing, and testing of a flow connector for satellite applications. The results of
this application—as well as the reflections of industrial practitioners—point to the benefits of the
DfAM method in establishing a systematic, cost-efficient way of challenging the general AM design
guidelines found in the literature and a means to redefine and update manufacturing constraints for
specific design problems.

Keywords: function modelling; AM; constraint modelling; test artefact; manufacturing constraints;
DfAM; space components

1. Introduction

Manufacturers of aerospace products are increasingly investigating the capabilities of metallic
additive manufacturing (AM). Compared to subtractive manufacturing technologies, AM allows for
a greater degree of design freedom, which enables the creation of novel and advanced geometries.
Such novel designs and geometries allow substantial reductions in weight and lower “buy-to-fly” ratios
(which represent the amount of material used to manufacture a component with the associated scrap).
Furthermore, AM has the potential to reduce lead time and manufacturing costs significantly [1,2].

Despite these benefits, AM comes with manufacturing constraints that limit design freedom
and reduce the possibility of achieving novel AM geometries that can be produced in a cost-efficient
manner [3]. Although research is advancing and providing a host of design guidelines and best
practices for AM [4], the magnitude of factors influencing product properties (material, machine setups,
powder quality, etc.) has not yet been captured in a way that is applicable for each individual AM
process and design scenario [3].
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To address the ways manufacturing constraints limit achievable design freedoms, aerospace
manufacturers have a number of options, each of which present some serious drawbacks:

1. It is possible to develop a novel design (for example with a complex geometry resulting from a
topology optimization) and ensure its quality by testing a large variety of specimens. This option
ensures a novel design with the requested qualities, but it substantially impacts the cost of
testing to qualify for use. This strategy may be acceptable for technology demonstrations and/or
cost-insensitive applications.

2. Manufacturers may deliberately avoid testing many specimens (and the associated costs) and
develop a conservative design based on general AM guidelines found in the literature [4]. In this
way, the manufacturer efficiently develops a product with the expected quality but misses the
opportunity to achieve a more radical—and perhaps better—design. For instance, a general
AM design guideline is to avoid the generation of support structures; the minimum overhang
angle is 45◦ [5]; however, authors, such as those of Reference [6], have demonstrated that lower
overhang angles may be possible without support structures with adjustments in certain process
parameters. This is known as a “fail-safe” strategy.

3. They can deliver a novel and radical AM geometry without performing much testing which can
only be considered for applications where failures can be acceptable. Such a strategy is rarely
acceptable in space applications to date but is generally denoted as a “safe-fail” strategy.

Such dilemmas are particularly relevant for manufacturers of space components interested in
applying AM to achieve more lightweight and cost-efficient components for spacecraft [7]. However,
these manufacturers also need to fulfill high-quality requirements related to the extreme conditions
associated with rocket launches and satellite operations. These requirements govern the need to ensure
safe and reliable functionality of the product and its possible impact on the entire system. Any new
technology (or material) used to manufacture a product needs to be certified for use. This need puts
the focus on the validity of any new solution proposed to deliver products that meet the requirements
accordingly, and all new technologies need to be qualified. For AM, knowledge on how to validate,
qualify, and, ultimately, certify new products using AM technologies for applications with high
requirements (e.g., structural integrity) is not yet mature. Consequently, the amount of physical testing
required to certify new products may be too expensive for large-scale commercial use. This is one
reason for focusing on test artifacts that can be used to qualify AM processes for typical designs and to
understand how such artifacts can be used to acquire knowledge of design for additive manufacturing
(DfAM) methods.

To make use of AM design freedom while ensuring product manufacturability, designers need
to find a cost-efficient manner to challenge the general AM design guidelines found in the literature
and to redefine the manufacturing constraints that apply to the design scenario of interest (e.g.,
a specific product, machine, and material). Since DfAM methods can facilitate the consideration
of manufacturability aspects in the early stages [8–10], this article presents a DfAM method that
extends a type of representation traditionally used in early design—functional modeling [11,12]—with
manufacturing constraints modeling. In this approach, the AM constraints are modeled concurrently
with the generation and testing of tailored test artifacts. In this way, the knowledge gained from testing
such tailored test artifacts can be capitalized by including the manufacturing constraints in the function
model and using such AM constraints for component redesign.

1.1. The Impact of Additive Manufacturing (AM) on the Design of Metallic Components for Satellites

The recent advancements made in metal AM technologies are attractive for the development
or manufacturing of space components, as the technology promises increased design freedom and
reduced manufacturing costs enabled by efficient material allocation. For instance, AM allows for
weight and material volume minimization which are drivers of costly production in low production
volumes [7]. Metal AM processes are of special interest for the space industry, because they can enable
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cost reductions and performance increases of high-performance and heavy metal components such as
manifolds or engine components.

Researchers and industry practitioners agree that the main challenge when implementing metal
AM to design new components is the lack of experience and the large number of uncertainties
and unknowns associated with the constraints of the manufacturing process [1]. First, there are
non-established standards for machines and processes. Second, there is a lack of knowledge about
the physical phenomena that take place during the AM process which creates difficulty in predicting
the quality of a piece, as parts manufactured with AM have a complex thermal history that involves
repeated fusion, directional heat extraction, and rapid solidification [1,4].

To capture and monitor these complex interactions among different systems, requirements, and
interfaces, systems engineering tools, such as that of McInnes et al. [13], have been suggested to support
developers. Such tools enable the analysis of system architectures, general performance, and cost but
do not support the generation of a concrete design nor the process of making manufacturing-related
decisions. For these challenges, most approaches, such as those proposed by Boudjemai et al. [14] or
Quincieu et al. [15], use individually generated computer-aided design (CAD) models. However, at
the concrete design level, there is a limited ability to systematically capture requirements, constraints,
and manufacturing method-related impacts on a design, even in cases where multiple designs are
generated and tested such as presented by Boschetto et al. [16]. This leaves developers stuck in the
classical iterative design cycle [13], resulting in the abovementioned Option 1.

In short, the recent advancements made in metal AM technologies render this technology attractive
for space applications. However, new design mindsets are required to address the lack of knowledge
concerning AM technologies.

1.2. Design for AM in Space Applications

Two directions for DfAM approaches have been identified in Reference [17]. On the one hand,
opportunity-driven methods focus on design freedom and aim to generate innovative geometries
with new functionality, disregarding geometry manufacturability [18]. This can be seen in the work of
authors such as Orme et al. [19], where the focus of the development process is placed on exploiting
the design freedom offered by AM but paying the price of multiple manufacturing and testing cycles
to verify the design (as described in Option 1).

On the other hand, manufacturing-driven methods require minimal changes to a pre-existent
component geometry to comply with the manufacturing constraints of AM [4], leading to Option
2. An example of this can be seen in the work presented by Quincieu et al. [15], where the only
mentioned adaption to AM is the decision to split a part to fit a required build volume (i.e., application
of manufacturing constraints).

Option 3 is exemplified in the case study presented by Thornton et al. [20], where the authors
purposely made use of design freedom, albeit only in the form of hexagonal cut-outs in one place,
otherwise only scaling the dimensions of the product. This limited use of AM design freedom, alongside
a non-systematic approach for capturing and applying of AM constraints is an example of the need for
an integrated DfAM method.

While the opportunity-driven and manufacturing-driven approaches initially seem to be exclusive,
they are often combined. Research suggests that, as knowledge about AM processes and constraints
is limited and in constant evolution, modeling manufacturing constraints can support designers in
efficiently managing and using that knowledge [21].

However, authors such as O’Brien [1] have suggested that most extant DfAM methodologies
cannot currently compensate for the lack of specific process knowledge about the complex physical
phenomena that take place during an AM process.
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1.3. Expectations toward a Design for Additive Manufacturing (DfAM) Method for Space Applications

Based on the above-described experiences with AM and satellite design, a DfAM method
should be able to represent a product’s design space. This design space is delimited with
constraints, either from the specific use-case of space applications [7]; material properties, as seen in
Booth et al. [22]; or machine-specific impacts, as seen in the dimensioning impact in the work presented
by Quincieu et al. [15]. Within the design space, designers can take advantage of design freedom to
allow for high-performance designs such as the work presented by Orme et al. [19]. Furthermore,
since, in most cases, especially those mentioned by Boudjemai [14], the CAD model plays a large role
in the analysis and verification of a product’s performance, a close coupling to an easily editable CAD
model is desirable.

Several commercial space applications have already been manufactured using a wide range of
AM processes for a variety of materials, including titanium, nickel superalloys, steel, and ceramic [23].
These processes and materials have different constraints and their use can lead to different outcomes or
qualities (e.g., surface roughness or mechanical properties [24]). The relationship between the input
parameters and the expected outcome was schematically shown by Sames et al. [25] and is indeed
very complex. As shown, the outcome (failed builds, mechanical properties, feature quality, etc.) is
specific for each process and process parameters set. Nevertheless, many of the processes share similar
constraints but with different values. For example, a powder bed fusion process may be limited by a
build volume of (200 mm × 200 mm × 350 mm), while a powder feed process may be constrained by a
volume of (900 mm × 1500 mm × 900 mm) [24]. Identifying these common constraints is of great value
for developing DfAM methods.

1.4. Design of Test Artifacts for AM of Space Components

The conceptual phases of the application of DfAM methods for the space industry should include
iterative efforts to assess how the manufacturing processes and material properties influence product
design and product quality [1]. Assessments of the influence of manufacturing processes and material
properties on product design and quality have been widely proposed in the literature about AM
test artifacts [23]. Test artifacts (or benchmark artifacts) are implemented to assess and compare the
capabilities and limitations of different AM processes. Reference [23] presents extensive reviews of
AM test artifacts utilized to compare different AM machines relying on the same or different AM
technologies. The authors stated that test artifacts in general are composed of a series of generic
geometric features to evaluate dimensional accuracy and other parameters such as surface roughness,
mechanical properties, or manufacturing time and costs. However, given that these types of test artifacts
contain generic geometric features, they are often not representative of all of the geometric features
of a specific product [26]. Moreover, they often lead to the utilization of a potentially unnecessarily
large number of test artifacts [27]. The works of Rupal, Ahmad, and Qureshi [27] and Rupal, Secanell,
and Qureshi [28] present pioneering approaches to designing test artifacts for AM. Through their
novel methods, they carefully analyzed product features critical to product quality and functionality
(such as parallelism and concentricity of parallel holes) and built test artifacts based on those findings.
However, their methodologies are not concerned with the redesign of a product itself. The findings
and lessons learned from the manufacturing of the test artifacts were not explicitly used to improve or
modify the product design.

The preceding review suggests the need for a DfAM method that includes prototyping activities
to manufacture product-tailored test artifacts and then iteratively modifying the product design based
on the results obtained using these test artifacts. In this context, lessons learned from prototyping
activities could increase knowledge about AM manufacturing constraints. Moreover, such a method
would support product compliance with qualification (activities performed to demonstrate that a
product or a process meets or exceeds specified quality and reliability requirements [29]).

Designing products with features that can be qualified facilitates the introduction of AM
technologies in highly regulated industries such as the space industry.



Aerospace 2019, 6, 124 5 of 21

In this article, to exploit the design freedom offered by AM while ensuring product
manufacturability, a model-based DfAM method is presented. Lessons learned from testing and
prototyping activities are systematically captured and organized to support early design activities and
reduce late (and costly) redesign and testing efforts. The method establishes a systematic, cost-efficient
way of challenging the general AM design guidelines found in the literature to adapt them and make
them relevant for a specific product development project and the respective AM parameters of interest.

2. Materials and Methods

This article discusses the results of a project, conducted in cooperation with three Swedish
suppliers of space components, which had the objective of demonstrating the feasibility of introducing
and qualifying AM technologies in space applications.

The research adopted an action research (AR, [30]) approach featuring several workshops attended
by industrial practitioners from the participating companies. Action research is a proven methodology
for understanding ill-defined problems in complex organizations that describes how changes in action
or practice can positively impact on the community or practice. In this research, AR was performed
through a total of five workshops and four follow-up meetings attended by 10 experienced industrial
practitioners from the participating companies. The industrial participants were engineers (with 12 to
30 years of designing experience) working in product development.

The first workshop focused on idea generation strategies and presented 10 designs for AM
strategies, such as part consolidation and topology optimization, using examples. These strategies are
summarized in the work presented by Lindwall and Törlind [31]. The presentation of these strategies
acted as random stimuli [32] for the generation of novel concepts. Each company presented one case
study product to be redesigned for AM laser powder-bed fusion (LPBF) during the workshops.

In the second workshop, function modeling techniques were implemented for continuing the
design process. These techniques were preferred because they are a reliable and well-established way
of designing complex products or systems in early design phases [33,34]. The workshop focused on
functional decomposition using enhanced function–means modeling (EF–M, [35]). Function models
were then developed from this decomposition. Later, interviews were conducted at every participating
company to validate the function models. A three-phase DfAM method was then developed and
validated in the third workshop. In this method, a function model (FM) tree of a traditional component
(manufactured with traditional manufacturing technologies) was constructed. The manufacturing
constraints of the traditional technology were included. Next, the original manufacturing constraints
were removed from the function tree. Lastly, AM constraints were introduced in the function tree,
and the component was redesigned for AM. Details concerning this method can be found in work by
Borgue et al. [21].

However, insights from workshops 4 and 5, which were concerned with design manufacturing
and qualification, suggested the need for further developing the previous DfAM method.

The observations from the workshops were transcribed and analyzed through content analysis [36].
To protect company-sensitive information and to show the method rather than the technical details of
the use cases, significant design features were extracted from the three use cases and combined in the
case study presented in this article. The case study features a propellant flow connector which was
verified in terms of fidelity with the industry specialists. The flow connector was redesigned for AM
and then manufactured and analyzed for validation purposes.

3. Results

The data collection activities performed during the workshops and follow-up meetings highlighted
several critical areas to be further explored in the context of AM design for space components.

When designing, the participants recognized that DfAM design constraints (Cs) are related to
several factors such as material, machine, design geometry, and process parameters. However, as
DfAM experience is scarce, the ways in which those factors constrain product design is sometimes
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unknown. For instance, when the same design was sent to different providers for manufacturing,
geometry accuracy and surface finishing differed greatly.

Moreover, the extensive literature about AM processes was found to be not entirely applicable
for specific machine and process setups. General AM design guidelines need to be refined and
revaluated through test artifacts to find reliable manufacturing constraints applicable to the AM
processes implemented. However, the design of test artifacts that can accurately represent relevant
product features that are critical for product performance and qualification was found to be problematic.

The participants reflected on the fact that during early design stages, product design must be
performed concurrently with studies on and analysis of the AM manufacturing process and the way it
interacts with a product geometry. Many current DfAM strategies do not propose strategies for or
palliative methods against AM unknowns such as the manufacturing limitations of a certain machine,
defect generation, or surface quality. These reflections lead to the express need to develop design
strategies that are able to incorporate these studies and analysis in early design practices.

These findings were used as inputs to propose a DfAM method for space components that
included in the design process the iterative manufacturing of product-tailored test artifacts and
posterior improvement of the product design.

3.1. Proposed DfAM Method

The proposed model-based DfAM method was developed to exploit the freedom offered by AM
design freedom while ensuring product manufacturability. The method is based on function models
representing a product’s design rationale in the form of hierarchically arranged objects of different
types based on the EF–M technique [37]: functional requirements (FRs), design solutions (DSs), and
Cs. The proposed model extends the normal use of EF–M modeling by actively using a constraints
release and replacement technique. Constraints release and replacement represents a novel strategy
for identifying critical geometrical features in a design that need to be tested for manufacturability.
The identified features included in product-tailored test artifacts provide valuable insights about AM
manufacturing limitations (constraints) and their interaction with the product’s geometry.

The method is structured into six phases, from decomposition of the baseline design to
manufacturing of the AM-optimized new design. The first three phases build on previous work by
Borgue et al. [21]. In this article, three more phases were included as presented in Figure 1.

1. Functional decomposition: An EF–M model representing the traditionally manufactured product
is created.

2. Constraint replacement: Constraints based on traditional manufacturing methods are identified
and removed. In their place, AM constraints are introduced into the function model.

3. First redesign for AM: The function model is redesigned for AM. New DSs are developed to
replace the previously removed ones. Inactive AM constraints are removed from the model.

4. Prototype manufacturing: Critical geometric features of the design are identified and included in
various test artifacts [38] which are then manufactured.

5. Function model improvement and redesign: Lessons learned from the test artifacts are used to
improve the AM function model and AM design.

6. Iterative design improvement and manufacturing: Phases 4 and 5 are repeated iteratively.
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The diagram highlights the iterative process of the prototyping activities.

3.1.1. Phase 1: Functional Decomposition and Modeling

A function tree of the original part is built to facilitate understanding of the product architecture.
The function modeling technique EF–M [36] was chosen because it provides a distinct modeling of
constraints. However, other modeling strategies are also suitable for functional decomposition such as
those proposed by Chesnut [39]; Umeda, Takaeda, and Tomiyama [40]; and Heller and Feldhusen [41].

When implementing the EF–M technique, the part geometry is analyzed to find FRs directly
associated to DSs. Then, constraints with an impact on specific DSs are identified and included in the
function tree associated with the applicable DS. In the proposed method, a distinction is made between
manufacturing constraints (Cms) and functional constraints (Cfs). This is not part of the original EF–M
theory but has proven beneficial in a redesign for an AM process [21]. Manufacturing constraints
depend on the manufacturing process, such as minimum manufacturable wall thickness, while, in
contrast, Cfs depend on FRs such as the maximum pressure a pipe needs to endure. The distinction
among constraints facilitates the process of identifying the DSs that are only manufacturing dependent
and that can therefore be targeted to be redesigned for AM. To achieve this purpose, configurable
components (CCs) are implemented in the function tree as well. These CCs, introduced by Claesson [35],
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are objects that encapsulate entire branches of related DSs and sub-elements to serve as components in
the analysis.

3.1.2. Phase 2: Constraint Replacement

The Cms derived from traditional manufacturing methods and the DSs (and their respective
sub-trees) constrained by them are pruned from the function tree. Then, the function model is
re-constrained, with AM constraints being introduced to replace those previously removed. For instance,
when machining a component, internal cavities cannot be manufactured (as the tool cannot reach
them), which leads to the Cm that Cavities must be reached by tools. When designing for AM, internal
cavities can be manufactured. However, geometries with overhang angles smaller than 45◦ need
support structures [5]. As internal support structures cannot be removed, the Cm that Cavities must be
reached by tools is then replaced by the AM constraint Minimum overhang angle, 45◦. At this point, as
the AM component has not yet been conceptualized, a general body of AM constraints—general AM
guidelines—is considered.

3.1.3. Phase 3: First Redesign for AM

The sub-branches removed in the previous phase open the design space for a new, DfAM-guided
design. Other parts of the function model, which are not pruned in this step, provide interfaces and
geometry which must be retained. Under consideration of the AM constraints, making use of the
explicitly freed up design space, the product is now redesigned. Through this procedure, areas in
the function tree that are solely constrained by AM Cms are identified as parts of the product that
can be redesigned for AM. Then, a new function tree redesigned for AM is built, and a new product
geometry can be conceived. At this point, the focus should be on applying the minimum number of
Cms as possible (minimally restrictive constraints [42]) in order to not over-constrain the design space,
facilitating AM design freedom while ensuring product manufacturing. Following the definitions
established by Patterson and Allison [42] in their design framework for ensuring manufacturability of
mechanical components, once AM constraints are identified, they can be classified as active, inactive
and unnecessary (IU), inactive and redundant (IR), inactive and internally dominated (IID), or inactive
and externally dominated (IIE). Table 1 introduces the terminology for constraint activity according to
Patterson and Allison [42].

Table 1. Constraint activity as introduced by Patterson and Allison [42].

Constraint Activity Characteristics

Active The constraint restricts the design space (e.g.,
minimum manufacturable wall thickness).

Inactive and unnecessary (IU)

Other type of constraints (non-manufacturing related)
dominate (e.g., internal pressure requirements
establish a wall thickness that is thicker than the
minimum manufacturable).

Inactive and redundant (IR) The constraint is identical to others already
constraining the design.

Inactive and internally dominated (IID) The constraint was originally active, but a
subsequently imposed Cm rendered it inactive.

Inactive and externally dominated (IIE) The constraint was originally active, but a
subsequently imposed Cf rendered it inactive.

At this point, as manufacturing constraints are geometry-dependent [43], components with
different geometries have different active AM constraints in their function model (FM) trees.
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3.1.4. Phase 4: Prototype Manufacturing

Additive manufacturing product design must be performed concurrently with studies and analysis
of the AM process to be implemented [1,3]. Therefore, studies on the AM process of interest must be
closely related to product geometries [27].

In this phase, to assess design manufacturability, the AM manufacturing constraints identified
in the previous phases are evaluated [38]. Test artifacts are used to evaluate which manufacturing
constraints found in the literature are applicable to the product geometry and AM process implemented.
For instance, the minimum overhang angle for support avoidance is known to be 45◦ [5]; however,
this value is a generalization, and the actual minimum overhang depends on material and process
parameters [6]. To evaluate manufacturing constraints in the test artifacts, the constraints are
parametrized, and the different parameter values evaluated. In a constraint such as minimum overhang
angle, the overhang angle is considered a parameter. For its evaluation, geometries with an overhang
angle variation from 0 to 45◦ are manufactured. If machine process setups are also considered a
variable parameter, a multiparameter evaluation should be performed following procedures such as
design of experiments (DOEs, [44]). The constraint evaluation through test artifacts is complete when
the constraint is established, which means that a concrete value is defined for the set of manufacturing
process parameters of interest. The importance of distinguishing between active and inactive constraints
is highlighted in this phase, as only active constraints are included in the test artifacts.

3.1.5. Phase 5: Function Model Improvement and Redesign

The parametric analysis from Phase 4 provides an accurate understanding of the AM constraints
involved in the design. These lessons learned should be documented and introduced in the function
model as Cms to systematize and preserve the information. The component is then redesigned
according to the improved function tree. In the case of overhangs, test artifacts may have demonstrated
that the minimum overhang angle (for the material and process parameters of interest) was less than
45◦. In that case, the Cm corresponding to Minimum overhang angle, 45◦ would change, and the design
can be changed accordingly. When the component is redesigned, Cms that were inactive in the previous
design can become active due to the changes in geometry; these recently active constraints should be
included in the FM tree. For example, if an earlier version of the design had attachment holes with a
diameter larger than the minimum manufacturable hole, the Minimum manufacturable hole diameter was,
at that time, an IU Cm. However, if the design changes and the hole diameters are reduced, the Cm
Minimum manufacturable hole diameter can become active.

3.1.6. Phase 6: Iterative Design Improvement and Manufacturing

If, during the redesign process from Phase 5, new AM constraints become active due to the
changes in component geometry, they must be evaluated in test artifacts. If this is the case, Phases 4
and 5 must be repeated until every active manufacturing constraint has been evaluated. When every
active manufacturing constraint is established, a new and improved AM design can be manufactured.

3.2. Application of the DfAM Method: Redesign of a Propellant Flow Connector

To illustrate the development of the proposed method, a propellant flow connector for satellite
applications was designed. The flow connector was developed to represent significant design features
from the three use cases presented at the workshops. Moreover, it was verified in terms of fidelity
with industry specialists. The flow connector is a 5 cm tall pipe structure connecting interfaces of
different shapes and dimensions that has the main function of guiding fluid with a pressure of 300 bar.
Different models of the connector can have from two to six interfaces. One interface corresponds to a
vertical circular inlet (1 mm diameter), while the other (up to) five interfaces correspond to horizontal
rectangular outlets. Flow connector designs with two to six interfaces are presented in Figure 2.
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Currently, the outer shape of the connector was machined from a steel block, the vertical inlet was
drilled, and the horizontal outlets were milled from the bottom. The cavity resulting from this process
was welded shut with a plate. Afterwards, “ears” for screwing the connector onto the satellite were
integrated into the product. In this case study, the flow connector was redesigned to be manufactured
with AM LPBF.

3.2.1. Functional Decomposition

As detailed in Section 3.1, the first step in the redesign process was a functional decomposition.
During this procedure, FRs, DSs, and Cs were identified by an expert panel. Then, those FRs, DSs, and
Cs were organized in a hierarchical function tree, as shown in Figure 3, where DSs were connected
with other DSs through “iw” connections and Cs through “icb” connections. More details about this
process can be found in previous work by Borgue et al. [21].

Lastly, the function tree was encapsulated into different CCs (tube, outlet, inlet, and satellite
interfaces) to ease the identification and substitution process as shown in Figure 3.
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3.2.2. Constraint Replacement

Captured in the function model in Figure 3 are both Cfs and Cms. Since the welded connection
with the system level (inlet and outlets) cannot be changed, the respective Cm was retained. However,
due to the change in manufacturing methods (from machining to AM), the Cm Machining constraints
for the CC Tube was removed. Its removal frees the design space for the entire CC Tube. Moreover,
due to the “iw” connection from the DS Weld on plate in the CC Tube to the DS “Ears” in bottom plate in
the CC Satellite interface, the CC Satellite interface was affected by the design change as well and could
be redesigned.

To replace the traditional manufacturing constraints with appropriate AM constraints, LPBF
constraints were obtained from the European Powder Metallurgic Association [5]; these are presented
in Table 2. Due to the reduced size of the propellant flow connector, constraints such as the maximum
building volume or the maximum channel diameter (10 mm) to avoid support structures were not
considered in the analysis.

Table 2. The Additive Manufacturing (AM) laser powder-bed fusion (LPBF) constraints relevant for
the manufacturing process of the propellant flow connector [5].

Constraints Regards

Building orientation

Surfaces facing down in the building plate (down
skin) should be those able to be machined afterwards
for improved surface roughness. Their thickness
must be increased to account for the portion to be
machined out.

Removal of support structures Orient part to ease support removal.

Reduce support structures Overhang angle > 45◦.

Enable heat dissipation

Avoid “thin to thick” geometries placed in the vertical
direction of the building machine. The heat generated
by the laser beam does not have a “path” in the part
to evacuate quickly, with detrimental consequences
on surface roughness.

Hole definition
Holes below 0.4 mm are not feasible both because of
powder removal and the possible occurrence of
consolidation between the top and bottom of the hole.

3.2.3. Component Redesign for AM

After the CC Tube design space was freed, the DS Machined tube from block was removed and
replaced by the AM Tube, which was constrained by the Cm LPBF constraints. Table 2 lists the LPBF
manufacturing constraints. Making use of the wider design freedom in AM, a new design based
on physics models was created for the tube part. The design takes the form of a curved connector
shape with a continuous change in cross-section which reduces fluid resistance. This shape connects
inlet and outlet interfaces while minimizing the energy loss of the fluid [45]. The FR and DS in the
CC AM Tube and Satellite interface are illustrated in Figure 4. Based on the previously discussed AM
constraints, the DS Wall thickness was constrained by Minimum wall thickness. At the same time, the
DS Hydrodynamically optimized shape was constrained by Overhang angle > 45◦, Thickness ratio (vertical),
Thicker down skins, and the Maximum height-to-diameter ratio. As the inlet was connected to one or more
outputs, the DS AM progressive shape was constrained by Minimum distance between outlets. This latest
constraint followed the same principle of the minimum diameter for AM holes. If the distance between
outlets is too narrow, powder particles can be trapped in between, which can generate surface defects.

The connectors for attaching the propellant tube to the satellite interface were integrated into the
tube structure and were also redesigned as the DS Connector support. Connector support was constrained
by the LPBF constraints Minimum wall thickness, Thicker down skins, Thickness ratio (vertical), and Flatness.
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The DS Affix screws was constrained by Cylindricity. Figure 4 presents the CC AM Tube and CC Satellite
interface for the redesigned connector model next to the redesigned geometry and build orientation.
As CC Inlet and CC Outlet were not redesigned, they are not included in Figure 4. In the proposed
component design, there were no holes with diameters below 0.4 mm; for this reason, this constraint
was not further considered in the FM analysis (the constraint was IU).
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3.2.4. Prototyping

Additive manufacturing powder bed processes are based on complex physical phenomena,
and AM manufacturing constraints are largely geometry dependent [43]. For this reason, each
manufacturing constraint obtained from the literature must be evaluated for the product geometry
of interest. However, several manufacturing constraints can be evaluated in the same test artifact
as exhibited in Figure 5. Figure 5 presents the three types of test artifacts chosen to evaluate the
manufacturing constraints obtained from the literature in respect to the product geometry. In this
case, due to the reduced size of the flow connector, it was possible to manufacture its entirety as
one of the test artifacts to assess the constraints Thickness ratio (Vertical), Thicker down skins, Flatness,
and Cylindricity. This test artifact had one inlet and one outlet and was printed in the same printing
direction as a final product with one outlet would have.

The constraint Thicker down skins was translated into a 1 mm thicker connector support bottom.
The constraint Minimum wall thickness was evaluated with the constraint Cylindricity using tubes with
different wall thicknesses. The constraint Minimum distance between outlets was evaluated with test
artifacts that were similar in appearance to an open book to assess how close the “book leaves” can be
without observing defects between them. Moreover, the book-like test artifacts were printed in various
orientations to observe how the orientation in the AM machine influences defect generation. These
results shed light on the possible printing orientations of flow connectors with more than one outlet.



Aerospace 2019, 6, 124 13 of 21

Aerospace 2019, 6, 124 12 of 21 

 

geometry and build orientation. As CC Inlet and CC Outlet were not redesigned, they are not included 
in Figure 4. In the proposed component design, there were no holes with diameters below 0.4 mm; 
for this reason, this constraint was not further considered in the FM analysis (the constraint was IU). 

 
Figure 4. Propellant flow connector redesigned for AM presenting the preferred build orientation and 
the support structures generated for its manufacturing. The configurable components (CCs) AM Tube 
and Satellite interface depict how the AM constraints are modeled in the AM tree. 

3.2.4. Prototyping 

Additive manufacturing powder bed processes are based on complex physical phenomena, and 
AM manufacturing constraints are largely geometry dependent [43]. For this reason, each 
manufacturing constraint obtained from the literature must be evaluated for the product geometry 
of interest. However, several manufacturing constraints can be evaluated in the same test artifact as 
exhibited in Figure 5. Figure 5 presents the three types of test artifacts chosen to evaluate the 
manufacturing constraints obtained from the literature in respect to the product geometry. In this 
case, due to the reduced size of the flow connector, it was possible to manufacture its entirety as one 
of the test artifacts to assess the constraints Thickness ratio (Vertical), Thicker down skins, Flatness, and 
Cylindricity. This test artifact had one inlet and one outlet and was printed in the same printing 
direction as a final product with one outlet would have. 

The constraint Thicker down skins was translated into a 1 mm thicker connector support bottom. 
The constraint Minimum wall thickness was evaluated with the constraint Cylindricity using tubes with 
different wall thicknesses. The constraint Minimum distance between outlets was evaluated with test 
artifacts that were similar in appearance to an open book to assess how close the “book leaves” can 
be without observing defects between them. Moreover, the book-like test artifacts were printed in 
various orientations to observe how the orientation in the AM machine influences defect generation. 
These results shed light on the possible printing orientations of flow connectors with more than one 
outlet. 

 
Figure 5. Test artifacts to assess LPBF manufacturing constraints in relation to the flow connector 
geometry. 

Figure 5. Test artifacts to assess LPBF manufacturing constraints in relation to the flow
connector geometry.

Figure 6 shows the test artifacts that were manufactured with a LPBF machine (from Electro Optical
Systems (EOS), GmbH, Munich, Germany) EOS M290 equipped with a Yb-fiber laser. The feedstock
material was a gas-atomized stainless steel 316L powder with particle size distribution of 20–53 µm.
The artifacts were fabricated utilizing standard process parameters provided by EOS. These parameters
included a strip scanning strategy with a 67◦ rotation and contour scanning as described in detail
by Leicht, Klement, and Hryha [46]. The parameters were optimized for high density, low surface
roughness, and high dimensional accuracy, and they adjusted automatically for different design
features such as up and down skins. These sets of parameters were used for the manufacturing
process of the final product as well. Figure 6a exhibits the flow connector after removal from the build
plate without any post-treatment. In Figure 6b,c, the support structures were removed, the part was
sandblasted, and 1 mm of the connector support bottom was machined out. However, it can be noted
in Figure 6c that surface defects persisted and that more material must be machined out to improve
surface quality. Moreover, as the ears (for connecting to the satellite) were separated from each other
(Figure 6c) and the post-processing activities in this case were manual, there was a risk of having an
uneven flow connector bottom after post-processing.
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Figure 6. (a) Flow connector with support structures; (b) flow connector without support structures; (c)
flow connector underside; after the removal of a 1 mm layer of material, the surface defects persisted;
(d) separation between outlets should be larger than 30◦ to avoid the generation of defects among the
outlets; (e) no manufacturing defects were observed in the pipe-like test artifacts.
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The most convenient way to remove the support structures generated in the outlet was to cut a
large portion of the outlet structure. This process eliminated 3 mm of the outlet interface, the length
which serves for connecting the flow connector to other devices.

The book-like test artifacts (Figure 6d) show that the separation among outlets should be greater
than 30◦ to avoid an inferior surface roughness and dimensions among the outlets; below 30◦, the
presence of unmelted particles on the outlet surfaces was observed. Moreover, on certain building
orientations, support structures among the leaves were observed, as the overhang angle was too low.

The pipe-like test artifacts (Figure 6e) were manufactured with an 8:1 height-to-diameter ratio
and wall thicknesses from 0.2 to 1 mm to test the connector’s structural stability. The parts were all
successfully manufactured without any build failures. Furthermore, based on visual inspection, it
seems that the presented design had a high manufacturing quality.

3.2.5. Function Model Improvement and Redesign

Based on the results obtained from the test artifacts, several constraints were updated and others
created. Table 3 summarizes the lessons learned from the prototyping activities.

• To remove the support structures from the connector outlet, 3 mm of the outlet length was cut off.
A new constraint (Length + 3 mm) was added to the DS Minimum IF distance.

• As the support removal procedure is manual, complying with the constraint Flatness was
problematic while having two separated ears. For this reason, the constraint Joined bottom was
included for the DS Connector support.

• To ensure the complete removal of the rough down facing surface, the constraint Thicker down skin
was replaced by Thickness + 2 mm in the DS Connector support.

• From the results of the pipe-like test artifacts, the constraint Minimum wall thickness was established
as Minimum wall thickness = 0.2 mm.

• The results from the book-like test artifacts suggested the creation of the constraint Minimum outlet
separation = 30◦.

• The sole evaluation performed regarding the constraint Thickness ratio (Vertical) was to determine
whether the current design presented rough surfaces due to the poor heat dissipation.
As the features implemented in the design seemed to avoid this phenomenon, this constraint
remained unchanged.

Table 3. Lessons learned from the prototyping activities.

Constraint Status Comments Action

Thickness ratio
(Vertical) Unchanged No observable surface defects due to

the poor heat dissipation -

Thicker down skins Updated Surface defects persisting after
removing a 1 mm layer

Change to Thickness + 2
mm

Flatness Unchanged Problematic to ensure with current
design

Introduce new constraint
Joined bottom

Minimum wall
thickness Updated No observable defects from pipe-like

test artifacts
Change to Minimum wall

thickness = 0.2 mm

Length + 3 mm New Created to ensure outlet weldability
after support removal -

Joined bottom New Created to facilitate bottom flatness -

Minimum outlet
separation = 30◦ New Created to avoid the generation of

unmelted particles between outlets -

The previously mentioned changes in the manufacturing constraints were introduced in the
function model presented in Figure 7.
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3.2.6. Iterative Design Improvement

After updating the function model with updated and new manufacturing constraints, a new
propellant flow connector implementing the same AM machine and process parameters used for the
prototypes was manufactured. The new propellant flow connector is presented in Figure 8. The design
has a joined bottom and, as the outlet length (to compensate for the removal of support structures)
and the connector support thickness were extended in the design, the outcome was a connector with
a weldable outlet and a smooth bottom. As the manufacturing of the second flow connector was
successful, no other changes in the component geometry were required, and every AM constraint was
established as suggested in Table 4. Therefore, there was no need to continue the prototyping activities
and design iterations.
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Table 4. AM constraints established after prototyping activities.

Constraint Status Comments Action

Thickness ratio (Vertical) Established
No observable surface
defects due to the poor

heat dissipation
-

Thickness + 2 mm Established
No observable surface

defects after removing a
2 mm layer

-

Flatness Established Ensured with current
“joined bottom” design -

Minimum wall thickness
= 0.2 mm Established

No observable defects
from the pipe-like test

artifacts
-

Length + 3 mm Established Ensured weldability after
support removal -

Joined bottom Established Facilitates bottom
flatness -

Minimum outlet
separation = 30◦ Established No observable unmelted

particles between outlets -

4. Discussion

In this article, a DfAM method intended to support designers in considering how manufacturing
processes and material properties influence product design was proposed. The method is based on
refining the general AM design guidelines found in the literature [5] to make them relevant for a
specific product development project and the respective AM parameters of interest. The AM design
guidelines are represented in relation to the product’s function structure in the form of manufacturing
constraints. This representation is made by implementing the EF–M function modeling technique.
As manufacturing constraints are dependent on various process parameters (such as the material used,
machine setups, and geometry [3]), the constraints obtained from the literature need to be adapted for
the product to be designed. This is done through the manufacturing of test artifacts. The literature
on the development of AM test artifacts is vast [26]; however, there is a lack of methodologies for
selecting test artifacts based on product features. The modeling approach proposed in this paper is
intended to support designers in evaluating the manufacturability of specific product features, thereby
contributing to shorter development times and time to market. One of the latest methodologies for
test artifact design based on product features was proposed by Rupal, Ahmad, and Qureshi [27]
and Rupal, Secanell, and Qureshi [28], where product-critical features were identified and included
in AM test artifacts. The method presented in this article takes this procedure one step forward by
utilizing the results from the test artifacts to iteratively improve the design of a product and ensure
its manufacturability and quality. Moreover, studies conducted by authors such as Booth et al. [47]
highlight the need for establishing process- and product-specific guidelines to accurately account for
the unique limitations of each AM process. Implementing product-tailored design artifacts supports
the development of a knowledge database or design guideline adapted to a specific product and
AM process.

In this article, the test artifacts were specifically designed based on the constraints and geometry
features available in the product in correlation with the machinery, material, and manufacturing
parameters used. The results from these test artifacts were reintroduced into the function model, where
they were used to update previous constraints or even create new ones. Therefore, the function model
acts as a model-based database for product and manufacturing process information which can be reused
to further develop a product or product family and increase AM-documented knowledge. Similar
development of product families based on EF–M models has been described by Johannesson and
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Claesson [37]. Function modeling and the carryover of the DfAM constraints in such a scenario allow
for continuous knowledge capture and development. Moreover, a model-based database that includes
both conceptual design information (DSs) and manufacturing information (Cms) has the potential to
act as a boundary object [48,49] between manufacturing and design teams. Experts’ manufacturing
knowledge (perhaps tacit) can be documented in the model with ease and communicated to designers
or less experienced engineers thus facilitating communication and coordination efforts that could
further reduce development time and costs. Furthermore, as AM constraints are machine-dependent,
early constraint modeling efforts can support decision-making procedures concerning future machine
purchases and technology development activities.

The function model supports the distinction between active and inactive manufacturing constraints.
The identification of active constraints reduces and clarifies the geometrical features to be tested in
design artifacts. In the case study, for instance, when the machining constraints were replaced by
AM constraints (before the first AM redesign was created), the minimum manufacturable AM hole
(0.4 mm diameter) was considered an active constraint. However, as the AM flow connector did not
have such small holes or pockets, that constraint became IU and was not included in the test artifacts.
This distinction and the results it enabled resonate well with the work of authors such as Patterson
and Allison [42] where distinguishing between active and inactive constraints facilitated the design
of manufacturable components while imposing as few restrictions on the design space as possible
(minimally constrained). Table 1, in Section 3.1, presents five constraint distinctions (active, IU, IR, IID,
and IIE, [42]). However, due to the simplicity of the case study developed in this article, only the use of
active and IU constraints were evidenced. Moreover, as the case study was conducted for illustrative
purposes, the AM active constraints identified and tested in the case study were not a complete set of
active manufacturing constraints for the flow connector. Furthermore, no verification or validation was
conducted to be able to confirm that the identified constraints and their distinction (active or inactive)
were accurate.

In a real design scenario, during long design processes for complex or critical products, it may be
possible to identify a larger number of active Cms. However, in such a scenario, the implementation
of the five constraint distinctions is recommended, as some manufacturing constraints might be
overridden by other design requirements such as fatigue response, material specifications, or cost
limitations. Regarding active and inactive constraints, their identification starts concurrently with the
design conceptualization with assumptions being based on previous design experience. The iterative
nature of the proposed method nevertheless facilitates the continuous identification and distinction of
constraints thus providing the possibility of reevaluating previous assumptions. Furthermore, the
documentation ability provided by the function model can be an advantage when identifying and
distinguishing constraints in future design projects.

The proposed product-tailored test artifacts contribute to ensure component manufacturability
which has the potential of reducing costs for development, manufacturing, and, later in the product
development process, qualification activities. Moreover, product-tailored AM test artifacts contribute
to reducing material consumption and prototyping costs [27].

The presented method emerges from an empirical study performed through workshops with
industrial practitioners from three different space component manufacturers. A main reflection
reported by the industrial practitioners is that the AM product design must be performed concurrently
with the analysis of the AM manufacturing processes and especially on the ways that such process
parameters interact with the product geometry. Such reflections are in accordance with the literature
(e.g., [1]). Moreover, the workshop participants recognized that, at present, DfAM design experience is
limited, and the extensive literature on AM processes is not entirely applicable for specific geometries,
machines, and process setups. General AM design guidelines must be refined and re-evaluated
through test artifacts. These results resonate well with those presented by authors such as Rebaioli and
Fassi [26]; Rupal, Ahmad, and Qureshi [27]; and Rupal, Secanell, and Qureshi [28] who focus their
work on the design of AM test artifacts.
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In the case study, AM constraints were identified and evaluated based on product geometry and
process parameters. To ensure reliable, repeatable, and structured results, implementing techniques,
such as DOEs [44], are considered for a future extension of the presented method. The use of these
techniques has proven to be a reliable and efficient strategy for optimizing testing activities in the
aerospace sector [50]. Currently, research on how process parameters impact product quality is
scarce [51]. However, several authors have addressed this knowledge gap with the implementation of
various DOE techniques, such as central composite design [51], half-factorial design [52], or Taguchi
methods [53].

When evaluating the minimum distance between outlets, for instance, a DOE can be established
for the parameters angle between outlets and building orientation. In the presented method, a DOE
technique was not applied but is considered a promising extension of the method.

The method proposed in this paper requires a certain degree of abstraction and formalism which
often implies additional efforts by designers and the organization in general. However, there are some
considerations that motivate such an increased degree of formalism:

1. In an aerospace organization, design and testing are normally conducted by different departments
or even by different companies. The proposed method can facilitate iterative efforts between
design and testing activities to assess how manufacturing processes and material properties
influence product design and product quality [1].

2. Additive manufacturing capabilities are maturing (and improving), and there could be a need
to capture such a level of maturity over time. Introducing this formalism can facilitate the
management of knowledge regarding manufacturing constraints.

5. Conclusions

To support designers in making use of AM design freedom while ensuring product
manufacturability, a DfAM method was presented. The method is based on the main assumption
that the lessons learned from testing and prototyping activities can be systematically captured and
organized to support design activities. To enable this capturing, this study introduced a DfAM method
in which a representation often used in early design, a function–means model, was extended with
the introduction of a new model construct, Cm. In this approach, the association between AM Cms
and DSs was made by the concurrent testing of tailored test artifacts based on the design scenario
of interest.

The method was applied to the redesign, manufacturing, and testing of a flow connector for a
satellite. The application in this case study illustrates how the method can be used as a cost-efficient
method to challenge the general AM design guidelines found in the literature and as a means to redefine
and update manufacturing constraints. Furthermore, the DfAM method can be used to document and
manipulate the associations between product functions, DSs, and AM manufacturing constraints thus
providing the basis for a manufacturing constraints database to be used for future designs. This can
contribute to the effective increase in the AM knowledge inside an aerospace organization, thereby
shortening future products’ development times and costs.
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ABSTRACT
Test and qualification (T&Q) phases take a significant portion of the
time to market for critical products in the space industry, especially
when introducing new technologies. Since T&Q are treated as stan-
dard procedures, they tend to be independent of the architectural
design phases and kept away from design decisions. However, when
introducing new technologies, qualification procedures may differ
from those established in regular design scenarios, and the estima-
tion of qualification costs and duration is problematic. There is a lack
of design for qualificationmethods capable ofmodelling these activ-
ities in early phases anduse thosemodels to support the architecture
design of products with affordable test and qualification phases.
In this article, a computer-assisted, model-based design method to
model T&Qactivities concerningearlyproduct architecturedesigns is
proposed. Product architecture alternatives, test schedules and cost
are connected through the quantification of T&Q drivers and driver
rates. The design method is demonstrated using a case study about
electric propulsion for satellites. The method is applicable for design
situations where the choice of technology has a strong dependence
on the qualification procedure.
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1. Introduction

To remain competitive in the market, companies strive to introduce new technologies to
increase product performance and reduce costs and time to market. These technologies
often introduce changes in the product’s architecture, which is defined as the product’s
basic physical building blocks and their interactions (Ulrich and Eppinger 2015).

Research has shown that designers are prone to developing product architectures
that maximise the implementation and benefits of new technology based on perfor-
mance, functionality and projected product cost (Wyatt, Eckert, and Clarkson 2009; Borgue,
Panarotto, and Isaksson 2019). Consequently, they risk missing to include the impact that
the integration of new technologies may bring onto the realisation process (Tatikonda and
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Rosenthal 2000). This tendency is also present in high-cost, high-reliability industries, such
as the space industry, where established realisation processes have evolved through deep
knowledge of the behaviour of the technologies utilised.

In recent years, there has been an increase in the demand for access to space, with new
actors competing for market shares. Market developers now expect leaps in cost decrease
and time to market while maintaining high reliability (Öhrwall Rönnbäck and Isaksson
2018). Incentives to introduce novel and high-potential technologies and manufacturing
techniques are high.

However, the rigorous processes required to test and qualify new technologies extend
the actual lead time for testing procedures, and due to the uncertainty of their outcome,
there is a risk of long design iterations (Engel and Barad 2003; Dordlofva et al. 2019). More-
over, as qualification procedures for new technologies can differ from those standardised
for regular design scenarios, test phases may further increase costs and redesign iterations
(Dordlofva et al. 2019). Therefore, the ability to account for qualification procedures in early
design phases has become increasingly important.

The early consideration of qualification requirements, through design for qualification
(DfQ) strategies, would support the design of architectures with affordable test and quali-
fication phases and reduce redesign iterations (Wang, Azarian, and Pecht 2008; Dordlofva
et al. 2019), reducing the duration and cost of the product development process (PDP) as
well. Once the product architecture is successfully implemented, the designer can choose
between optimising its performance and reducing the cost of realisation, where test and
qualification activities play an important part.

A well-known limitation for early design assessment of test and qualification activities
is the lack of model-based methods (methods based on the implementation of models) to
estimate the duration and cost of these activities (Tahera et al. 2019). Therefore, this study
aims at answering the following research question:

How can qualification activities be modelled during preliminary design to support design
efforts and reduce future redesign iterations?

This article aims to propose a method for modelling test and qualification activities that
enables designers to include unique requirements stemming from test and qualification
(T&Q) of new technologies when exploring alternative product architectures. A case study
froma technology-developmentproject at a satellite spacepropulsionmanufacturer serves
to illustrate this method.

2. Background

2.1. Test and qualification activities in the product design and development
process

Test activities are performed throughout the PDP to attain different objectives, from con-
cept development to detailed design (Tahera and Earl 2018). Among test activities, quali-
fication activities are performed to demonstrate that a product meets specified safety and
legislative norms and quality and reliability requirements (ISO 2020). Similar objectives can
be attributed to the verification, validation and testing (VVT) activities in the systems engi-
neering field (Shabi, Reich, and Diamant 2017). VVT activities are performed throughout
a PDP before delivering or marketing products for ensuring product quality. Verification is
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most often used to test the fulfilment of requirements, whereas validation activities test the
fulfilment of stakeholders’ needs and expectations. The ISO/IEC/IEEE 12207-2:2020(E) stan-
dard draws a clear parallel between verification and qualification activities (ISO 2020).

Design development and test activities are performed iteratively throughout the PDP.
Data obtained from test activities can be expensive both in terms of cost and time. For this
reason, how and when these data are used is critical, as it can impact the cost and duration
of the product development activities.

In their review of the modelling of test activities, Tahera et al. (2019) argue that most
modellingmethods focus on the schedule of a given set of design and test activities to opti-
mise development times. Other studies are concernedwith choosing themost appropriate
test activities in terms of cost and risk.

Engel and Barad (2003) and Tahera et al. (2019) indicate that the cost of test activities can
be as much as 55% of the total life cycle cost. Moreover, test activities depend on product
architectures and design contexts; therefore, they should be adapted to different product
architecture scenarios (Wang, Azarian, and Pecht 2008).

However, the reviewed literature does not providemechanisms to enhance the concep-
tual design phases with insights (or requirements) from the T&Q phases. There seems to be
anunderlying assumption that there is enoughupfront information about the technologies
considered, the product itself, as well as how the T&Q of these technologies can be con-
ducted. However, when introducing new technologies, information about product design
and the corresponding T&Q activities may not be available. Consequently, test phases can
result in unexpected costs or difficulties that lead to expensive redesign iterations (Wang,
Azarian, and Pecht 2008; Dordlofva et al. 2019).

2.2. Modelling test activities to support DfQ in early design phases

To model T&Q activities and connect them to product architecture requirements, the
factors or variables that influence the cost and duration of these activities must be first
identified. In this article, those factors are referred to as T&Q drivers.

The notion of a driver is used in literature to describe the causes that affect the output
of a system. The term – in this case, cost driver – is usually implemented when referring
to factors that cause a change in cost (Shank 1989). Authors such as Ben-Arieh and Qian
(2003), for instance, developed a parametric cost-estimation model for modelling costs of
manufacturing activities using cost drivers ofmachinedparts; the authors identified activity
cost drivers (ACD) for themanufacturing processes. For eachACD, they defined activity cost
driver rates (ACDR) as the total activity cost divided by the number of cost drivers. Their cost
model allows for modelling the costs of manufacturing activities in the early design and
development phases.

However, as authors such as Shabi, Reich, and Diamant (2017) and Tahera et al. (2019)
point out, the identification of activity drivers and the consequent model of test activities
have received significantly less attention in the research community in comparison with
other design and analysis activities in a PDP.

Some authors, such as Wyatt, Eckert, and Clarkson (2009) and Tahera et al. (2019), men-
tion that design complexity, product architecture, degree of novelty, the timing of testing
and susceptibility to design change affect the duration and cost of test activities. Moreover,
when redesigning or upgrading a product, companies attempt to limit the implementation
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of new components as they increase test activities. These factors are identified as test
drivers. These studies, however, do not present a clear statement about the extent towhich
those drivers affect test activities or how test activities can bemodelled and linked to prod-
uct architecture. Similar insights about VVT activities canbe found in literature, for example,
in the work by Shabi, Reich, and Diamant (2017). However, the relationship between VVT
drivers and product architecture is not established directly.

Dordlofva et al. (2019) presented a compendium of qualification drivers extracted from
manufacturers of space components but did not explain further their influence on prod-
uct architecture design or selection. There is a need for DfQmethods that connect product
architecture design phases to T&Q activities; this connection can be achieved bymodelling
T&Q activities. The main contribution of this article is a model-based design for the quali-
fication method to link T&Q activities to early design phases through the identification of
T&Q drivers.

3. Researchmethodology

A case where qualification has a direct impact on the selection of new technologies and
the concept selection for new products was identified within an advanced manufacturing
demonstration project for next-generation satellite-propulsion systems. The project is part
of Horizon 2020, funded by the European Commission, with the objective of developing
three different electric propulsion subsystems.

This article is focused on developing a T&Q model and its implementation during the
conceptual design phases of an electric propulsion system (EPS). The study focused on con-
ventional EPS architectures, implementing a power-processing unit (PPU), and innovative
EPS architectures, implementing a direct drive (DD) technology (Impresario 2015).

The core of the data collection activities for this study was performed during a three-
month visit to a satellite manufacturer participating in the project. During this period, the
first and second authors worked on site in collaboration with the EPS design team. Full
access to real company data and the possibility to perform interviews and participate in
their technical meetings were provided. The second author already worked at the com-
pany in a supporting role formission analysis. The first author had the role of an observer to
gather data during the study. The authors invested the equivalent of 60 full working days
(8hs/day) in the data collection activities of this study.

The information gathered can be divided into (1) information gathered from docu-
mented sources (documented information) and (2) information gathered through interac-
tions with practitioners (tacit information). Information-gathering activities are detailed in
Sections 3.1 and 3.2.

From the study, a generic method for modelling T&Q activities and including them in
early design phases was developed. The method aimed at supporting architectural design
decisions and developing products with affordable T&Q phases. The method was applied
for the design of a high-power propulsion system for space exploration.

The performed activities are schematised in Figure 1 and hereby presented.

3.1. Data collection of documented information

The data collection of documented information was performed through the analysis of
the company’s internal documentation, including mission-specific (where and how the
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Figure 1. Researchmethodology diagram illustrating the performed data collection activities and time
for activity completion.

product was going to be utilised) and product-specific (design and test requirements to
comply with the specific mission) documents. As presented in Figure 1, the first data col-
lectedwere stored in a function-meansmodel of the EPS (Claesson 2006). A functionmodel
was preferred, as it facilitates product architecture understanding and the establishment
of system boundaries (Müller, Siiskonen, and Malmqvist 2020), assessing the components,
subsystems and interactions that were going to be included in the study.

Later, documentation about product development and testing was gathered and doc-
umented in preliminary lists. Those lists and further information collected about activity
schedules were later stored in Gantt and PERT (Program evaluation and review technique)
charts.

Finally, another portion of the data was obtained from the ESA’s product and T&Q stan-
dards for space components, such as ECSS-Q-ST-70-45C for mechanical testing of metallic
materials (ECSS 2008), or ECSS-Q-ST-60C Rev.2 for electrical, electronic and electromechani-
cal components (ECSS 2013). This documentation supported the identification and analysis
of the drivers that motivate the implementation, cost and duration of T&Q activities.

3.2. Data collection of tacit information

In addition to the collection of documented information, a series of meetings and semi-
structured interviewswith company practitioners was performed. As presented in Figure 1,
most of themeetings were held to validate 1) the EPS functionmodel, 2) the T&Q list, 3) the
T&Q schedule, 4) the T&Q drivers, and 5) the T&Q activities models.

Semi-structured interviews were held to gather information about the best-, average-
and worst-case scenario for activity cost and duration. Moreover, the interviewees were
requested to provide information about the activities’ sequences. Data obtained from dif-
ferent participants and documented information were compared, and when discrepancies
were found, additional meetings were held. The meetings and interviews for the data col-
lection of tacit information were held with seven company practitioners, with an average
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of 10 years of expertise in the areas of systems engineering, design and T&Q of EPS. Each
meeting lasted between one and two hours.

During the interviews, practitioners were also asked about the factors that influence the
cost (cost drivers) and duration (duration drivers) of T&Q activities. However, the informa-
tion gathered about cost and duration was further analysed to find commonalities and
trends among activities and their relation to architectural components. This analysis was
performed to find cost and duration drivers not mentioned by the practitioners.

The performed data collection and study led to the development of the method pro-
posed in this article formodelling T&Q activities and its implementation to support product
architecture design decisions. The proposedmethod is introduced in the following section.

4. Modelling T&Q activities for supporting architecture design decisions

This section presents a DfQ method and its implementation to support product architec-
ture design decisions. The method is based on identifying the factors that drive (drivers)
duration and cost of T&Q activities and their interaction with activity schedules.

The input of this method is the current product design information, such as CAD files,
datasheets, etc., and the T&Q activities related to it, such as development and testing docu-
mentation. The outputs of this method are the total cost and duration of T&Q phases and a
T&Qmodel, which can then be implemented to estimate the duration and cost of the T&Q
activities for future product architectures. The T&Qmodel and the cost andduration of each
T&Q activitiey are used to support the design of product architectures with affordable T&Q
phases.

To support design decisions, the DfQmethod combines function-modelling techniques,
which support the decomposition and visualisation of alternative product architectures,
with the identification and quantification of T&Q drivers to model T&Q activities.

Figure 2 presents the proposed method, which can be divided into six steps presented
in the following sections.

4.1. Step 1: construct functionmodel

With information about product architecture and design, a function model of the product
is constructed. Function models are representations of the hierarchical decomposition of
a product’s functional requirements (Claesson 2006). In this article, the function-modelling
technique preferred is enhanced function-means (EF-M), which associates one design solu-
tion (DS) with each functional requirement (FR) (Claesson 2006; Müller, Siiskonen, and
Malmqvist 2020), as presented in Figure 3, left. Interactions between the DSs can be mod-
elled using “interacts with”’ connections. Such interactions can be of four types: geometry,
signals, energy, and material flow. In this article, DSs are used to represent components or
component assemblies.

4.2. Step 2: construct PERT diagram

In this step, PERT diagrams are constructed (Dodin 1985). These representations facilitate
the understanding of the T&Q workflow and are necessary for performing a calculation of
the total duration of T&Q activities.
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Figure 2. Process diagram of the design for qualification method.

Figure 3. EF-M (Enhanced Function-Means) elements representing a product architecture (left) and
activities performed for testing and qualifying such architecture (right). Their connection through test
and qualification (T&Q) drivers enables the proposed design for qualification method.

Using the function model as a visual guideline of product architecture, T&Q activities
should be grouped according to the system level they belong to (system, subsystem,
module or component level). Generally, every activity in the PERT diagrammust have a cor-
responding element in the product architecture; however, several activities can share the
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same element. The functionmodel, in this case, provides a structure for T&Q activity identi-
fication, as it can depict interfaces among components or subsystems, interfaces which are
often tested, as highlighted with dashed arrows in Figure 3.

4.3. Step 3: gather T&Q activities’ information

Step 3 concerns gathering information about the duration and cost of T&Q activities. The
duration and cost of each activity are represented by a beta probability distribution func-
tion (PDF). In a beta probability function, the area under the curve on the right side of the
most likely activity completion time is greater than the area on the left side, representing
the human tendency to extend the duration of a task to fill the available completion time
(Browning and Eppinger 2002). In this article, however, the beta representation is estimated
by a triangular distribution, using three values for activity duration: best-case, most likely,
and worst-case scenario durations. The height of a triangle distribution (the most likely
activity duration) is normalised; therefore, the area under the distribution equals one. This
estimation has been extensively implemented by authors such as Browning and Eppinger
(2002) or Wu (2016).

Step 3 is focused on details for breaking down cost and duration information. For exam-
ple, if 20 h are required to test electronic equipment, the duration breakdownmay include
a list of every test performed, their duration and sequence (which, in the end, will add
up to 20 h). A cost breakdown would include information about necessary resources for
the tests, such as the number of engineers or technicians, equipment implemented and
consumables.

The information gathered in this step enables the construction of a Gantt chart of
the T&Q activities, which facilitates the assessment of schedule and activity duration by
practitioners (Wilson 2003).

4.4. Step 4: develop T&Q drivers

In Step 4, T&Q drivers are identified by analysing the data obtained in the previous steps.
After their identification, activity driver rates for each driver are established. In research

conducted by Ben-Arieh and Qian (2003), the authors identified ACDs and their respective
ACDRs for manufacturing processes.

For example, the authors determined that the activity “Discuss product (manufacturing)”
had a total cost of $17.53. After performing a cost breakdown, it was found that such cost
was driven by the “Number of tool changes”, which in their case was equal to six (six tool
changes were performed). Therefore, the activity cost driver rate for the driver Number of
tool changes is $17.53 / 6 = $2.91.

In Step 4, ACD and ACDR are identified for each T&Q activity. Moreover, following the
logic behind the definition of ACD and ACDR, activity duration drivers (ADD) and their
respective activity duration driver rates (ADDR) are identified as well. The identification of
ADD and ADDR enables the assessment of T&Q activities’ duration in early design phases.

4.5. Step 5: develop T&Qmodel

By implementing the T&Q drivers and their respective driver rates, the duration and cost
of such activities can be modelled in relation to the product’s architectural features. As
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Ben-Arieh and Qian (2003) have previously proposed, the cost of a manufacturing process
defined by ACDs and ACDRs can bemodelled as

∑
i=1

ACDixACDRi. The same principle can be

implemented to model the duration and cost of T&Q activities once ACDs and ACDRs are
identified. Then, implementing the PERT diagram from Step 2, the total cost and duration
of the T&Q phase are obtained through an activity network calculation code that reduces
the whole activity schedule to one equivalent activity, as proposed by Dodin (1985).

4.6. Step 6: implement T&Qmodel to support architectural design

The developed T&Qmodel is implemented to support architectural design and selection in
early design phases (bottom of Figure 3).

5. Applying the DfQmethod on a high-power EPS design

The proposed DfQmethod is illustratedwith the analysis of an already developed 5 kW hall
thruster (HT) EPS. The analysis performed on this thruster enables the development of T&Q
models to support the development of a future high-power (20 kW) HT EPS architecture.

A conventional EPS for an HT comprises a PPU, a fluid management system (FMS) and a
thruster unit (TU), which comprises a thruster and a cathode. A conventional EPS architec-
ture is presented in Figure 4. The EPS is fedby the satellite’s power-generation system (PGS),
consisting of solar arrays (SA), a power bus and batteries. The PPU modulates the power
from the power bus, controls the operation of the subsystem components and provides
housekeeping telemetries.

Thrust is generated and sustained by the TU and cathode, ionising propellant, typically
xenon, provided by the FMS. The ionised propellant (plume) is acceleratedwith amagnetic
field, propelling the satellite (Impresario 2015).

To ensure compliance with quality requirements, different tests are performed at com-
ponent, module and subsystem levels. Some tests include mechanical tests, such as vibra-
tion and shock tests, and vacuum tests, performed in an adequate vacuum environment
with high pumping capabilities (ECSS 2018). The long duration and high costs of these tests
constrain the product development schedule.

Through each development and test step, different physical thruster models are imple-
mented following the ECSS standards (ECSS 2018). Thesemodels include (1) an engineering
model (EM), representative in terms of fit, functionality and form, (2) an engineering quali-
ficationmodel (EQM), which fully respects the final product excepts for standard parts, (3) a
proto-flight model (PFM), representing the end product during the qualification tests, and
(4) a flight model (FM) as the end product before the acceptance phase.

With the development of increasingly powerful HTs, system complexity and mass may
increase.

The main drawbacks of EPSs with conventional PPU arrangement are heavyweight and
large volume. A solution canbe a direct-drive architecture, with power from the SAs directly
transferred to the TU, simplifying the PPU with the removal of the power modules for the
operations of the TU and cathode (Impresario 2015).

However, when implementing a DD architecture, the power bus must be designed to
sustain the high-voltage levels of the TU. Moreover, the rest of the components of the PGS
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Figure 4. Satellite system architecture.

shall be adapted to copewith high-voltage levels, relaying (in some architectural solutions)
on high-voltage SAs. However, an inconvenience of such SAs is the risk associated with
arcing and the interaction of the SA with the TU plume. These events require additional
T&Q activities (Impresario 2015).

To assess the duration and cost of T&Q activities for a 20 kW HT and implement these
insights formaking architectural design decisions, a T&Qmodel for knownHT architectures
is developed in section 5.1, following themethod introduced in section 4. In section 5.2, the
model is implemented to support the conceptual design of a 20 kW HT.

5.1. Development of a T&Qmodel for a 5 kWHT

Following step 1, CAD designs, datasheets and other product architecture data were used
to build a function model of the 5 kW HT. Figure 5 illustrates a simplified version of such
a model. The model alternates functions with DSs and represents interfaces among com-
ponents and modules (coloured lines). The work done by Claesson (2006) offers a detailed
explanation of the theory and methods for building an EF-M.

From the information gathered about T&Q activities, the PERT diagram presented in
Figure 6 was built. In this case, the PPU, the FMS and the TU are different modules of the
EPS. Therefore, the EPS and the PGS are subsystems of the satellite system.

In general, the process of building the PERT and function models is iterative. A com-
mon complaint about EF-M modelling is the lack of modelling guidelines on what to
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Figure 5. Simplified function model of a hall thruster.

Figure 6. PERT diagramwith a simplified representation of the test and qualification activities. Different
EPSmodules and the PGS are identifiedwith different colours: orange (TU), blue (Cathode), yellow (PPU),
green (FMS) and pink (PGS).

include in the model and how (Müller, Siiskonen, and Malmqvist 2020). As every activity
in the PERT diagram must have a corresponding element in the product architecture, iter-
ating between the PERT and function models helps in building a complete function model
without unnecessary details. Moreover, information from CAD designs and datasheets can
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evidence elements in the functionmodel without a corresponding test activity. In this case,
further efforts to find information about those test activities and include them in the PERT
diagram should be made.

In the PERT diagram, testing activities related to single components from the different
product modules (such as PPU, FMS, TU and cathode) are performed in series with other
activities from the same module but in parallel to activities performed on the other mod-
ules. Later, the atmodule level and EPS subsystem level, testing activities can be performed
either in series or in parallel. The choice depends on the implementation of one or more
test models (EM, EQM and PFM), as the latter option allows for several activities to be per-
formed in parallel. Figure 6 includes the PGS as well. The PGS is presented in a general way,
not distinguishing its modules and components to reduce figure complexity, presenting,
however, the T&Q activities performed to evaluate its interaction with the EPS.

Table 1 presents a compendium of the duration and cost of T&Q activities performed at
the component level. The details of those activities are not included in the table to preserve
company-sensitive information.

Table 2 presents a simplification of the activities performed on different test models
(EM, EQM or PFM) for the different EPS modules and PGSs. Only representative activity
placeholders were included; this simplification preserves company-sensitive information
while supporting the presentation of the proposed T&Q activities model. For the same
reason, activity durations and cost values are not representative of the real company data.

From Tables 1 and 2, T&Q duration and cost drivers can be extracted. However, some
of the drivers do not depend on the EPS design. This is the case for the duration of the
module level tests, which are determined by the satellite mission and standardised test
configurations, such as the ECSS-Q-ST-70-45C for mechanical testing of metallic materi-
als (ECSS 2008), or the ECSS-Q-ST-60C Rev.2 for electrical, electronic and electromechanical
components (ECSS 2013).

Similar to the procedure followed by Ben-Arieh and Qian (2003) and introduced in
Section 4.4, design-dependent driver rates were obtained from the activities in Tables 1
and 2. Some of the driver rates are presented in Tables 3 and 4.

Table 1. Data collected for components in the PPU, FMS and TU modules.

Duration (days) Cost (euros)

Component B M W B M W Cost remarks Duration remarks

PPU
Components without
firmware

12 22 35 264 484 770 1 engineer. Proportional to
time

Firmware increases
duration.

Components with firmware 18 30 45 396 660 990

FMS
Mechanic components 6 11 17 110 220 330 New materials, coatings,

manufacturing techniques
or design geometries
increase duration

Electronic components 12 22 35 264 484 770

TU
Electromagnets comp. 6 11 17 110 220 330 Proportional to testing time.

Average of 1.5 engineers.Anode 10 14 18 220 308 396
Electromagnet assembly 1 2 4 22 44 88

PGM
Electrical components 12 22 35 264 848 770 Proportional to time. 1

engineer
Depends on SA
voltage.
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Table 2. Data collected for module level.

Duration (days) Cost (x102 e)

Cathode B M W B M W Cost remarks Duration remarks

Tests at EM level 200 340 520 18000 30000 46000 2 engineers. Depends on type
of propellant and thruster
power. Proportional to time.

Depends on test
configuration and
satellite mission.

Tests at EQM level 200 340 520 19000 31000 47000

FMS
Tests at EM level 16 24 40 180 185 195
Tests at EQM level 40 70 100 250 255 265
Tests at PFM level 16 24 40 740 750 770

TU
Tests at EM level 140 300 40 4600 5100 5400 2 engineers. Depends on

type of propellant, vacuum
chamber and number of
models tested. Thruster
power increases costs.
Proportional to time.

Tests at EQM level 70 100 140 5100 7300 10000
Tests at PFM level 60 90 120 4400 6600 8800

PPU
Tests at EM level 140 300 400 650 690 710 1 engineer. Proportional to

timeTests at EQM level 70 100 140 2000 21000 23000
Tests at PFM level 60 90 120 2000 21000 23000

Other
Coupling tests 40 60 120 10 14 30 2 engineers

PGS
Tests at EM level 140 300 400 900 1200 1500 2 engineers. Proportional to

time.
Duration of the electro
discharge test depend
on voltage level.

Tests at EQM level 70 100 140 2000 2100 2200
Tests at PFM level 60 90 120 3800 3900 4000

For example, Table 1 indicates that T&Q activities for PPU components without firmware
have a duration of (12, 22, 35) days, and components with firmware have a duration of (18,
30, 45) days. Every PPU component requires at least (12, 22, 35) T&Q days; hence, the num-
ber of PPU components (Nmp) is a qualification driver and (12, 22, 35) days/Nmp is its driver
rate. PPU components with firmware (Nmf) require (6, 8, 10) extra T&Q days; hence, Nmf is
a qualification driver with the driver rate of (6, 8, 10) days/Nmf.

Activity cost drivers that depend on activity duration drivers are not included in Table 4.
For example, the number of PPU modules increases the duration of test activities, thereby
increasing costs due to an increase in required manpower. However, the number of PPU
modules is not considered a cost driver.

In Table 2, the cost and duration of the test activities on the module level depend on
the number of models (EM, EQM or PFM) tested. If the number of models tested increases,
cost increases as more test models are manufactured; however, the total duration of T&Q
activities performed in a module is reduced, as several tests can be performed in parallel.
In Table 3, the number of modules tested (Nemd, Nqmd and Npmd) can vary from one to
the total number of T&Q activities performed. If the number of PPU EMs is one (Nem = 1),
every test activity at the PPU EM level is performed in series. However, if the number of PPU
EMs is equal to the number of test activities, every activity is performed in parallel.

From thedata collected in previous steps, a T&Qdependency structurematrix (DSM)was
built (Maheswari and Varghese 2005), as presented in Figure 7, top.

In the matrix, columns and rows represent test activities. Nondiagonal matrix compo-
nents indicate that an activity in a certain row is dependent on the results from a previous
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Table 3. Driver rates for activity duration drivers. Duration is presented in days.

Activity duration drivers

Driver rate (days / N of driver)

Activity Driver B M W

PPU components test Nmp Number of components 12 22 35
Nmf Number of components with firmware 6 8 10

PGS components test Nbu Number of buses tested 12 22 35
Nb Number of batteries tested 12 22 35
Ncon Number of converters tested 12 22 35
Vsa SA voltage (Vsa/100)B (Vsa/100)M (Vsa/100)W
Nsa Number of components on the SA 12 22 35

TU components tests Nn# Materials, coating, manufacturing
technique or design geometry not
implemented in previous projects

∗B/(2Nn) ∗M/(2Nn) ∗W/(2Nn)

Nc Number of coils tested 0.5 1 2
Ne Number of electromagnets assemblies

tested
1 2 4

Nfe Number of ferromagnetic parts tested 5 10 15
Na Number of anodes tested 10 14 18

FMS Nfmc Number of mechanical components 6 11 17
Nfec Number of electronic components 12 22 35

Tests at component level Neg Number of engineers (1< Neg < Number of tests)
Coupling tests Nct Number of coupling tests 40 60 120
All tests on module level Nem Number of EM tested 1< N#m < Number of tests

Nqm Number of EQM tested
Npm Number of PFM tested

∗The driver rate equals a proportion of the test activity. For example, if the anode is manufactured with newmanufacturing
technologies (such as additive manufacturing), test activities are increased in a 50%.
#Nn# can represent Nnc (coils), Nne (electromagnet), Nnfe (ferromagnetic) and Nna (anode).

activity (or activities). If activity A depends on the results of activity B, A and B are in series,
and their durations are added to compute the total T&Q duration. If activities A and B
depend on the results of the same activity and their results are necessary for the execu-
tion of another activity, A and B are in parallel (Dodin 1985). In this case, only the duration
of the longest activity is added to the total. In this way, the DSM is simplified until an equiv-
alent single activity is reached (Figure 7, bottom). When the DSM becomes irreducible,
duplication techniques are implemented, as suggested by Dodin (1985).

The DSM presents information in the same way a PERT diagram does; however, it
has a better performance in schedule optimisation since it can allow operations such as
sequencing or partitioning and tearing (Maheswari and Varghese 2005).

In the DSM, it is assumed that the test activities performed at the PPU component level
are performed in series; however, they are performed in parallel to the tests performed at
the TU component level. In the sameway, only onemodel (one EM, one EQM and one PFM)
is used at the module level. For instance, tests at the PPU module level are performed in
series; however, they are performed in parallel to the tests performed at the TU module
level.

The main contribution of this article is not the development of an algorithm for activity
network calculation. Consequently, to simplify the duration and cost calculations, the activ-
ity model assumes that (1) activity durations are independent of each other: Dependencies
are only accounted for in the interactions between the activities, and (2) activity duration
accounts for any internal rework efforts.
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Table 4. Driver rates for activity cost drivers. Duration is presented in days.

Activity cost driver

Activity Driver Driver rate (euros / N of driver)

All activities Neg Number of engineers 22 per hs (Worldsalaries 2019)
PPU Npeb Number of EM 50 K(1+ 0.1(Power-5 kW))

Npeq Number of EQM 250 K(1+ 0.1(Power-5 kW))
Npp Number of PFM 250 K(1+ 0.1(Power-5 kW))

Cathode Ncem Number of EM 10 K(1+ 0.1(Power-5 kW))
Nceq Number of EQM 20 K(1+ 0.1(Power-5 kW))
Ncp Number of FPM 20 K(1+ 0.1(Power-5 kW))
Tp Thruster power ∗∗(22Duration)76× 10−5

FMS Nfem Number of EM 75 K(1+ 0.1(Power-5 kW))
Nfeq Number of EQM 300 K(1+ 0.1(Power-5 kW))
Nfp Number of FPM 300 K(1+ 0.1(Power-5 kW))

TU Ntem Number of EM 40 K(1+ 0.1(Power-5 kW))
Nteq Number of EQM 80 K(1+ 0.1(Power-5 kW))
Ntp Number of FPM 80 K(1+ 0.1(Power-5 kW))
Tp Thruster power ∗∗(220Duration) 76× 10-5

PGS Ngem Number of EM 10 K(1+ 0.1(Power-5 kW))
Ngeq Number of EQM 30 K(1+ 0.1(Power-5 kW))
Ngp Number of FPM 30 K(1+ 0.1(Power-5 kW))

∗∗For Xenon, 760 euros/kg.

Consequently, the most probable total duration and cost of the T&Q activities for the
5 kW EPS are 1,340 days and e64,000,000. These results resonated well with company
practitioners.

Modelling T&Q activities

Based on the work presented by Ben-Arieh and Qian (2003), the duration and cost of the
T&Q activities can be estimated using drivers and driver rates as

Activity duration =
∑

i=1

ADDixADDRi (1)

Activity cost =
∑

i=1

ACDixACDRi (2)

In these equations, activity duration and cost are represented by a vector of three com-
ponents, namely, best-case-, most-probable-case- and worst-case-scenario duration and
cost. The analysis was performed assuming that one test model (one EM, one EQM and one
PFM) is used. (Tests are performed in series).

For example, the modelling equations for the total duration (equation 3) and cost
(equation 4) for activities at a PPU component level are presented below. The rest of the
modelling equations can be obtained through equations 1 and 2, after implementing the
drivers and driver rates from Tables 3 and 4.

DPPUcomp = Nmp(12, 22, 35) + Nmf (6, 8, 10) (3)

CPPUcomp = Neg × 22 × DPPUcomp (4)

Where T&Q activity durations:

– Nmp: (ADD) Number of PPU components
– Nmf: (ADD) Number of components with firmware
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Figure 7. T&Q DSM (top) and operations performed to calculate the total duration of the T&Q phase
(bottom). Different EPS modules and the PGS are identified with different colours: orange (TU), blue
(Cathode), yellow (PPU), green (FMS) and pink (PGS).

– (12,22,35): Best-case-, most-probable-case- and worst-case-scenario ADDR for Nmp
– (6,8,10): Best-case-, most-probable-case and worst-case-scenario ADDR for Nmf
– T&Q activities cost:
– Neg: (ACD) Number of engineers
– 22 (euros/hrs): engineer’s salary (Worldsalaries 2019)

5.2. Application of the T&Qmodel for architectural design of a 20 kWHT

In this section, the developed T&Qmodel is implemented to analyse the impact of different
product architectures on the duration and cost of T&Q activities and support the develop-
ment of additional architectures. Fivedifferent architectures of a 20 kWHTare analysed. The
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Figure 8. a) PPU architecture alternatives, b) DD architecture alternatives.

first three architectures are basedon variations of a conventional PPUmodule, as presented
in Figure 8a. One of the alternatives is a PPUwith one 20 kWpower cell (PPU1), anotherwith
two 10 kW power cells (PPU2) and a third with five 4 kW power cells (PPU3). The advantage
of multiple power cells is the possibility to modularise the PPU to make the design flexible
and adaptable to future mission requirements.

The last two alternatives are variations of a DD configuration, where the anode module
of the PPU is removed and the TU is directly fed from the power bus connected to the PGS.
This configuration has the objective of reducing weight, volume and the number of com-
ponents (Impresario 2015). The TU is directly connected to an HV power bus connected to
a high-voltage SA. As other satellite subsystems might require a low voltage, converters
are implemented in the PGS to adapt to the power requirements of the different satellite
subsystems. One of the DD alternatives, presented in Figure 8b, has a centralised volt-
age converter (DD1). The other alternative (DD2) has a distributed converter arrangement,
where different converters are assigned to different components.

A centralised converter reduces the number of components and the weight and vol-
ume of the equipment that protects the converter from radiation degradation; however, it
concentrates thermal control efforts to a single hot spot.

The distributed converter arrangement implements a larger number of smaller convert-
ers, facilitating modularity, redundancy and design adaptability. However, these smaller
converters can increase volume and weight.

Direct coupling between the PGS and the TU implies the implementation of a high-
voltage power bus, which leads to the implementation of a high-voltage battery and solar
arrays (Hoskins et al. 2003).
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One of the concerns that industrial practitioners raised about the DD configuration is
that the new interface presumably requires a new coupling test between the TU and the
PGS. This new coupling test is modelled as presented in equations 5 and 6.

Duration:

DCouplingPGS−TU = (40, 60, 120)
VSA
100

(5)

Cost : CCouplingPGS−TU = Neg × 22 × DCouplingPGS−TU (6)

By implementing the T&Q model adapted to the 20 kW HT and equations 5 and 6, the
cost and duration of T&Q phases for the five architecture alternatives can be analysed.

Figure 9a (table) and 9b (graph) present the results of the T&Q activities for the five
different architectures (PPU1, PPU2, PPU3, DD1 and DD2) performed under two different
schedules (Figure 9c–d).

Firstly, a schedule with single test models (only one EM, EQM and PFM for eachmodule)
was implemented, denotedwith the index “A”, as in PPUA or DDA (Figure 9c). This schedule
alternative eliminates the possibility of parallel activities inside the modules.

Secondly, a schedule with as many test models as necessary for performing activities on
the different modules in parallel was considered, denoted with the index “B”, as is PPUB or
DDB (Figure 9d).

The three PPUA alternatives (PPU1A, PPU2A and PPU3A) have the same total T&Q dura-
tion (1,340 days). This result suggests that the tests performed at a component level in the

Figure 9. Duration vs. cost distribution of T&Q activities for 10 architecture alternatives (a, b) under two
different schedules (c, d).
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PPU are not part of the critical path of schedule A. Therefore, an increase in the number of
PPU components did not increase the total duration of the T&Q activities; however, their
cost slightly increased. The same can be observed with PPUB alternatives. From Figure 9a,
the schedule B reduced the total duration of the activities to 340 days, increasing their costs
by approximately 5%.

The DDA alternatives have a total duration of 2,642 days (DD1) and 2,730 days (DD2)
with costs that are approximately 20% higher than the conventional PPU architecture. This
result suggests that the converters are part of the critical path of schedule A.

After implementing schedule B, costs increased by approximately 4%. DDB architectures
have T&Q activitieswith a total duration of 476 days, implying that the T&Q activities for the
converters are not in the critical path of schedule B.

These results suggest that architectural changes can have a different, sometimes unin-
tuitive, impact on the T&Q activities, depending on the part of the system they are
implemented in.

Moreover, the duration of the T&Q activities for conventional PPU configurations for
20 kWHT and5 kWHT is the same, as the identified drivers for activity duration are indepen-
dent of the thruster power. However, the T&Q of a 20 kW HT is estimated to be 60% more
expensive than the T&Q of a 5 kW TH. These results resonated well with estimations made
by company experts.

DD architectures enable a reduction in weight and volume (Hoskins et al. 2003),
corresponding to a reduction in the number of components (the anode supply is
removed from the PPU) and component interfaces (the two interfaces, PGS-anode sup-
ply and anode supply-anode, are replaced with the interface PGS-TU), as presented in
Figure 10.

In Figure 10, the cost and duration of T&Q activities for PP1A and DD1A are compared.
The activity DSMs have been colour-coded from green (low cost/duration) to red (high
cost/duration).

Figure 10. Comparison of PPU and DD architectures. In the middle, DSMs have been colour-coded to
compare activity cost and duration for both architecture alternatives.
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Figure 11. Representation of T&Q duration and cost in a function model scheme.

However, this component reduction negatively impacts the duration and cost of the
T&Q performed and visualised in the colour-coded DSMs in Figure 10 as the red rows and
columns. This increase is mostly related to the high-voltage components and the coupling
tests between the TU and the SA.

In Figure 11, the colour-codedDSMs are represented in a functionmodel scheme to visu-
alise the T&Q duration and cost of different architectural components. In this figure, the
activities in the DSM are connected to their corresponding design solutions (white boxes)
in the function model, as diamonds. These diamonds indicate activity duration (top) and
cost (bottom) and are colour-coded from green to red, as done in Figure 10.

The model implementation and visualisation of its results in Figure 11 suggest that to
render the DD architectures conveniently, test activities related to the SA and coupling
between the TU and the SA must be redesigned. Moreover, design efforts should focus
on redesigning the components or interfaces that undergo long and expensive tests. One
solution can be the implementation of dedicated SAs (physically separated SAs with differ-
ent voltages), reducing the number of converters and the consequences of the interaction
between the SA and the TU plume (Impresario 2015).

6. Discussion

The proposed DfQ method supports the development of products with affordable T&Q
phases. The method is based on modelling T&Q activities by linking product architecture
and test schedule through the identification and quantification of drivers and driver rates,
as proposedby Ben-Arieh andQian (2003). In this article, theirwork is taken one step further
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to support architectural design trade-off decisions to reduce the duration and cost of the
PDP while still developing a reliable product.

The DfQ method is not intended to frame T&Q requirements as the only require-
ments to be addressed during architectural design. The method and proposed models are
tools for facilitating the introduction of T&Q requirements in early multidisciplinary design
trade-offs.

Identifying and quantifying drivers and driver rates allow the identification of test-
intensive components, modules and subsystems. Table 1 evidences that electrical com-
ponents undergo longer testing and incur more costs than mechanical TU components.
Moreover, it is possible to identify the longest and more expensive tests (Figures 10 and
11).

In the case study, significant differences were observed between the duration and cost
of T&Q activities for architectures with conventional PPU and architectures with DD. The
results suggest that conventional PPU architectures can be modularised and designed to
be adaptable to different requirements of an EPS product family without incurring higher
costs and longer T&Q phases. In the case of the DD configuration, however, adaptability
and modularisation are penalised with longer and more expensive T&Q phases.

In this context, by implementing the DfQmethod, the expensive and long T&Q activities
for a DD architecture can be identified and targeted for redesign. In the same way, the DD
components and interfaces that undergo long and expensive tests can be also identified
and redesigned.

The DD configuration changes not only the PPU architecture at a component level but
also the subsystems interfaces. Thesemodifications at the subsystem interface level lead to
additional test activities and modifications at the component level in the PGS. The impact
that design changes have on T&Q duration and cost depends on the system level affected.
Therefore, the importance of computer-based schedule calculations is based on the DSMs.

In this context, the presented method can facilitate communication and cooperation
between the development and testing departments, where colour-coded activity DSMs
from Figure 10 and the function model from Figure 11 can function as boundary objects.
Themethod, therefore, enables the concurrent design of product architecture, T&Q sched-
ule and T&Q activities as well. This fact is particularly interesting for the implementation of
new technologies or in any other design situationwhere the qualification phasesmight not
be well defined.

The data gathering and model development for this method was performed for the
equivalent of 60 working days (8hs/day; Figure 1), in the context of a product with qual-
ification phases lasting around 1,400 days (4%). However, these activities included the
development of the method, where the information and models are meant to be updated
with each development project of similar nature in a design organisation.

The time to perform the study is likely to depend on the type of product to be designed,
the components and the design context, which is why the effort needed to perform it
cannot be generalised.

To increase the capabilities of the method and the accuracy of its results, three areas of
improvements have been identified:

• In this study, the activitymodel and, consequently, theDSMhavebeen simplified assum-
ing that activity durations are independent of each other and that activity duration
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accounts for rework efforts. However, the DSM representation was preferred, as it
enables future calculations about the interdependencies and overlapping of activi-
ties, the design iteration and the schedule optimisation, as proposed by Maheswari
and Varghese (2005) or Huang and Chen (2006). These capabilities can improve T&Q
estimations and contribute to cost and duration optimisation.

• Companies designing products for space applications strive for extreme reductions
in cost and time to market while maintaining high reliability. Relaxing qualification
requirements of individual units is an increasingly popular alternative among, for
instance, mega satellite constellation developers to reduce costs and time to mar-
ket (Öhrwall Rönnbäck and Isaksson 2018). In this case, reliability is achieved at the
mega-constellation level instead of the unit level (Sánchez, Soares, and Wolahan 2017).
Regardless of the preferred approach to attain reliability, T&Qmodels can be combined
with risk analysis strategies to assess the risks (product and financial) of not performing
(or partially performing) certain T&Q activities. In this case, the risk would be considered
a T&Q driver. An example of risk assessment in the context of VVT activities can be found
in the work of Engel and Barad (2003). Efforts to include risk assessments in the pro-
posed methodology are currently ongoing. These efforts propose the implementation
of fuzzy logic techniques formodelling technologyuncertainties and risks related to T&Q
in space products.

• Cost and duration were modelled with a triangular PDF as a simplification of beta PDFs.
This modelling choice assumes that the shape of PDFs is known and able to be repre-
sented as beta functions (Liberatore 2002). To improve the representation of duration
and cost probability, a fuzzy logic modelling strategy can be adequate, as previously
demonstrated by Liberatore (2002) or Masmoudi and Haït (2012).

The presented model-based DfQ method is meant to be generalised for the integration
of new technologies into product architectures. The case study in this article is specific to
the EPS design of a satellite thruster. As such, generalised validity will require the method
to be repeated on other technologies and other product contexts.

An appropriate method validation must be based on validation strategies for design
methods, such as the one proposed by Pedersen et al. (2000). Emphasis should be on eval-
uating whether the results obtained (products with affordable T&Q phases) are related to
themethod application and not to other factors. Such a study can compare design outputs
from different design teams, some with the DfQ method and some without.

Conclusion

In this article, a model-based DfQmethod for integrating T&Q procedures into the concep-
tual design andevaluationof product architectures is presented. Thenovelty of themethod
lies in linking product architecture alternatives with T&Q activities and schedules through
the identification and quantification of T&Q drivers and driver rates. It is demonstrated how
the method implemented in the case of a satellite thruster component allows designers to
design their components to mitigate the substantial risk of design iterations due to late
discovery of qualification issues.

It is proposed that by defining qualification drivers, the defining characteristics of a
qualification procedure can be quantitatively modelled and integrated into a design study
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where alternative technologies and concepts are investigated. Therefore, the method can
be applied to various design situations where the choice of technology has a strong
dependence on the qualification procedure. However, further validation of the method’s
generalisability is required and is left for future research activities in this domain.

The DfQ method was utilised to model T&Q phases for a 5 kW hall thruster. After imple-
menting the T&Q model, qualification procedures were integrated into the conceptual
design and evaluation process of a 20 kW thruster.
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ABSTRACT 
 

The uncertainties and variation of AM material properties and its impact on product 

quality, troubles designers. The lack of experience in AM technologies renders the 

experts´ assessment of AM components and the establishment of safety margins, 

difficult. Consequently, unexpected qualification difficulties resulting in expensive and 

lengthy redesign processes might arise. To reduce the risk of qualification failure, 

engineers might perform copious time-consuming and expensive specimen testing in 

early phases, or establish overconservative design margins, overriding the weight 

reduction benefits of AM technologies. In this article, a model-based design method is 

proposed for the conceptual design of AM space components with affordable test phases. 

The method utilizes fuzzy logics to systematically account for experts´ assessment of AM 

properties variation, and to provide an early estimation of a product qualification 

likelihood related to design parameters of interest, without the need for copious testing. 

The estimation of qualification likelihood can also point out which are the unique AM 

material uncertainties that require further specific testing, to enable the design of a 

product with a better performance and more affordable test phases. The method is 

demonstrated with the design for AM gridded of ion thrusters for satellite applications.  

 

INTRODUCTION 

 

Qualification procedures used in the space manufacturing industry aim at ensuring that a 

product, with its materials and manufacturing processes, meets design requirements [1,2]. 

For traditional technologies such as forgings and castings and even weld assemblies, 

general qualification activities are well recognized and standardized. The predictability of 

final product property variation (regarding, for instance, material defects, microstructure 

variation, etc..) is generally better than for additive manufactured products.  

However, design specifications are less precise in early design phases and are 

continuously developed as the product development process advances. The uncertainty in 

design specifications is often accompanied by uncertainties in the manufacturing process, 

which requires designers to assess from experience and previous data how design choices 

will impact the qualification process. Casting technologies, for example, present an ample 

variation of material properties. When designing for casting, however, decades of 

mailto:ola.isaksson@chalmers.se
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experience allow designers to assess in early design phases how material variations might 

impact qualification and allow them to set experience-based design margins [3].  

However, the introduction of novel technologies raises the question on how design and 

qualification procedures need to be adapted to the new products? The lack of experience 

about design and qualification procedures for new technologies, can lead to unexpected 

difficulties in designing a qualifiable product, resulting in expensive redesign processes 

and schedule delays [4,5]. Such is the case with the introduction of additive 

manufacturing (AM) in the space industry. 

Based on nominal (average) values of material data, AM promises to enable weight [6], 

lead times and costs reduction [7]. However, the magnitude and interaction of factors that 

lead to material properties variations, such as material type, process parameters or 

powder quality, are still not well understood and documented in a way that is applicable 

for each individual AM design [6]. Unlike casting technologies, in addition to properties 

variation, the lack of experience in AM technologies complicates the experts´ assessment 

of AM components and the establishment of design specifications and safety margins [2]. 

For this reason, products might fail their qualification tests resulting in expensive and 

lengthy redesign processes [9]. In this context, manufacturers of space components have 

several options [8]: 

 

1.      Develop novel AM designs ensuring their quality through exhaustive 

statistic-based testing and reliability methods in early design phases to reach sufficient 

confidence in material data (required  by procedures such as failure mode, effects, and 

criticality analysis (FMECA) [10]), usually involving between 300 and 900 test 

specimens [11]. Considering that AM mechanical properties are dependent on part 

geometry, this strategy could lead to cost and schedule overrun if several possible product 

geometries are considered. 

2. Avoid testing many specimens by developing a conservative design based 

on general AM guidelines [2]. In this way, the manufacturer develops a high-quality 

product but misses the opportunity of design exploration to develop a more radical and 

perhaps better design, leading to suboptimal designs with excessive design margins [13]. 

3. Develop a novel AM design without performing much testing. Such a 

strategy facilitates design exploration and innovation. However, it is rarely acceptable in 

critical space applications to date but might be implemented in non-critical “safe-fail” 

components, (limits design applicability). 

 

Authors such as Seo [11], Karlow Herzog [14] or Mokhtarian et al. [15], recommend a 

combination of the three strategies, proposing the early implementation of model-based 

design methods to reduce the number of tests needed and to evaluate the influence of 

design and process parameters on component quality  to establish data-based  design 

margins.  

At present, however, there is a lack of methods to overcome the lack of experience about 

AM technologies and quantitatively include AM uncertainties early in the design loops, 

to support the development of qualifiable products [2].  

Modelling and quantifying the impact of AM process variation on a product´s 

qualification ability, would support the identification of design features where further 

testing is required (and affordable) to establish tighter design margins. The classical 
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approach to reduce uncertainty and variation of materials through test campaigns is found 

to be too expensive, which is why there is a need to find alternative strategies to assess 

qualification strategies when designing for additive manufacturing. For this reason, the 

study presented in this article aims at answering the research question: 

 

RQ: How can AM process uncertainties and their impact on qualification be 

modelled and included in early design phases? 

 

The attractiveness of AM to offer better design freedom governs the necessity to 

better know the consequences and possible risks of relying on AM technologies already 

in the conceptual stages. For safety critical and weight optimized components, 

qualification is critical, likeliness to successfully qualify the product is decisive. 

In this article, a model-based design for qualification method is proposed that 

aims at supporting the conceptual design of AM components for space applications with 

affordable test phases. Through the implementation of fuzzy logic techniques, experts´ 

assessment of AM properties variation is modelled to develop a quantitative metric for 

qualification ability. The novelty of the method lies on utilizing the quantitative metric 

for qualification ability to elaborate qualification maps that model the impact of design 

parameters and their interactions, on a product´s qualification ability.  The 

implementation of qualification maps supports reducing the amount of test specimens, 

identifying the design parameters where further testing is valuable to establish tighter 

design margins. Design parameters where further testing is excessively costly or time 

consuming can be assigned larger design margins. 

A detailed design case from the implementation of AM technologies in the manufacturing 

of satellite propulsion systems is developed to demonstrate the method.  

 

 

BACKGROUND 

 

Qualification activities are test activities which are performed to demonstrate that a 

product meets its design, quality, and reliability requirements as well as safety and 

legislative norms [1, 2]. Similar objectives can also be attributed to the verification, 

validation, and testing (VVT) activities performed in the systems engineering field [17], 

moreover, the systems engineering ISO standard 15288 that include processes and 

lifecycle stages draws a parallel between verification activities and qualification [18].   

For already established manufacturing technologies, several qualification standards that 

guide qualification activities exist. Such is the case of NASA qualification standards for 

casting NASA-STD-6016 (Materials), -5009 (Non-destructive tests) -5012 (Structures), -

5019 (Fracture Control) [19]. According to standards and common practices [16], each 

qualification test had its own pass/fail criteria determined before the test is performed. In 

the case of qualification tests to assess component response to environmental loads for 

instance, a test can be considered failed when the presence of fatigue cracks, excessive 

structural deformation or instabilities are observed in the component after the test.  

The criteria for the evaluation of qualification tests are often identified and formulated 

from a FMECA (Failure Mode Effect and Criticality Analysis) study [10], where 

criticality of failure modes is identified and their impact is assessed. Potential failure 
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modes are classified according to their impact on the system and can be utilized to 

complement, among other things, an assessment of components and subsystems 

criticality.  

In early design phases, product design specifications and associated loads (including 

those related to failure modes and their criticality) are not completely established and are 

typically evolved and refined as the product development process advances. The 

insufficient precision in defined design specifications pose a problem when designing 

qualifiable products. Designers must assess from experience, early testing activities and 

previous projects data how design choices will impact the qualification processes [3, 10]. 

In this context, design development and qualification are performed iteratively during 

product development; however, design iterations due to failed qualification tests can 

incur in expensive delays on a product development schedule [5]. 

Authors such as Pecht [20], Preussger et al. [21], Yadav et al. [22] or Dordlofva and 

Törlind [3] sustain that to reduce design iterations due to failed qualification tests, 

qualification procedures and requirements need to be addressed in the early stages of a 

product development process. 

Pecht [20], Preussger et al. [21] and Yadav et al. [22], for instance, have proposed 

methodologies and guidelines for the electronics industry focusing on reliability 

assessment, test activities and test planning early in the development process. However, a 

continuation of their work including guidelines for approaching product design 

considering how the product should be qualified, is still missing.  

FMECA [10] is often included as a mandatory activity within the development process, 

and since it identifies risks and require mitigation plans, it typically drives design and 

analysis iterations to reduce uncertainties and reach satisfactory reliability. However, 

these methods are often criticized since quantifying consequences may require extensive 

test campaigns, being labor and cost intensive [23]. One reason is the quantitative nature 

of risk identification, which is often based on experience, whereas the effort to resolve 

the potential risks can be substantial.  

In the work by Dordlofva et al. [5], the authors proposed a method for identifying factors 

that motivate and influence product qualification, called “qualification drivers”. The 

identification of qualification drivers is intended to reduce the amount of required testing 

and support the development of Design for Qualification guidelines and methods. 

Nevertheless, the authors did not propose qualification guidelines or quantifiable ways to 

link the influence of design parameters with qualification procedures. Moreover, it is 

assumed in their method that there is enough information about qualification activities 

and requirements already in early design phases.  

When introducing a new technology, in early design phases the problem related with 

loosely defined qualification requirements is aggravated with the lack of experience 

about designing and qualifying a product with the new technology.   

 

Qualification of additive manufacturing components 

 

Although there is a growing interest to introduce AM to reduce weight, cost, and time to 

market [2, 6], most examples of AM parts that have been successfully developed and 

implemented in the space industry are non-critical [6]. This means that a failure can be 

accepted without fatal consequences, and the margins can be narrowed down and 
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accepted. The consequence and criticality of the risks identified in an FMECA are 

consequently lower for non-critical products. The lack of critical space components 

manufactured using AM is mostly due to qualification of AM still being a challenge [24], 

as there is a lack of understanding of AM processes [9] and a lack of standardized 

approaches to ascertain the quality of AM parts [17]. The statistical spread in properties 

is not acceptable for critical products.  

The need to support engineers early in product development to allow them to explore the 

design potentials enabled by AM is often highlighted, such design for additive 

manufacturing (DfAM) methods and strategies have been previously reviewed by authors 

such as Gibson et al. [12]. However, there is little focus on methods to explicitly support 

engineers in designing products that can be qualified, especially for critical applications 

such as satellite components [2, 6]. 

AM parts exhibit characteristics that are challenging for engineers designing for AM, 

such as: anisotropic and location dependent material properties, material defects (such as 

cracks, pores, or lack of fusion), or rough surfaces. It has also been shown that part 

geometry impacts these material characteristics [24], putting additional responsibility on 

engineers to understand the capabilities of AM processes, and to design qualifiable AM 

components.  The lack of understanding and previous experience with AM contributes to 

lengthy and expensive FMECA activities and the development of AM products with 

ample design margins [13] that might undermine the weight reduction benefits from this 

technology. 

Dordlofva [2] introduced a design for qualification framework for AM that proposes to 

design a product concurrently with its qualification process. To account for loosely 

defined qualification requirements in early design phases, the author proposes over 

dimensioned safety factors, such as those implemented for casting technologies [3, 13].  

The author, however, does not provide explicit guidelines to propose those safety factors. 

In the case of casting technologies, those safety factors are established through data from 

previous projects and experts´ experience, in AM, however, the lack of knowledge about 

the technology renders this assessment difficult. 

To address the lack of knowledge about AM and to be able to establish those safety 

factors at the expense of product weight and without performing exhaustive and 

expensive tests [10, 24], authors such as Seo [11], Karlow Herzog [14] or Mokhtarian et 

al. [15], recommend the early implementation of model-based design methods [25].  

In contrast to design methods based on text descriptions and drawings, model-based 

design methods capture designs in a model environment for design analysis and 

simulations purposes, facilitating information sharing and collaboration [25].  Model-

based methods can reduce the consequences of AM uncertainties and implement the little 

data and experience available about AM, to evaluate the influence of design and process 

parameters on component quality. 

 

Fuzzy logic implemented in the product development process 

 

One type of model-based methods to support problem solving when sources of 

uncertainty are involved, are fuzzy logic methods [26]. Probability is related to the 

frequency of occurrence of events, captured by repeated experiments. Fuzzy logic 
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methods, on the other side, provide a framework for evaluating the possibility of events 

rather than their probability [26].  

In fuzzy theory, the possibility of events is represented through fuzzy membership 

functions. A membership function μA(x) for a fuzzy set A on the universe of X is defined 

as µA:X → [0,1]. Each element of X is mapped with a membership value between 0 and 

1. Each membership function μA(x) ∈ [0,1]. If μA(x)=0, it implies that x ∉ A. On the 

other hand, if μA(x)=1, then x ∈ A [27]. The shape of a membership function is adapted 

to the data it represents [26]. In Figure 1, triangular and trapezoidal membership 

functions, μ(T), are used to model to people´s perception of different temperatures. At 19 

degrees, some people will feel cold (70%), while other will feel warm (30%); at 26 

degrees, some people will feel warm (90%) and some other hot (10%).  At 15 degrees, 

everyone agrees that is cold, and on 35 degrees, everyone agrees that is hot (example 

based on the content of the work by Zimmermann [27]). 

 
Figure 1. Triangular membership functions modelling people´s perception of 

different temperatures 

 

One of the main benefits of fuzzy logic is to approximate the behavior of a system when 

analytic representations do not exist. Hence, they are inherently useful for dealing with 

complex systems, such as engineering design systems, where multiple inputs and outputs 

cannot be captured analytically [26]. 

In this context, one of the most widely implemented fuzzy logic techniques is Mamdani 

inference [28]. Mamdani fuzzy systems were developed to describe operators´ decisions 

when controlling processes with a set of linguistic IF-THEN rules, to be then used by a 

machine to automatically control the same processes [28]. This method is especially 

appropriate when sophisticated mathematical models are not needed, and where experts’ 

knowledge and experience can be easily included in the model structure [29].  

Another widely implemented fuzzy logic technique is Sugeno interference [30]. Its main 

difference respect Mamdani interference is its outcome; Mamdani interference enables 

fuzzy outcomes which can be then defuzzified (crisp outcome), Sugeno interference 

directly provides a crisp outcome. Consequently, Mamdani interference provides a higher 

expressive power and more nuanced and interpretable results, which makes it a better fit 

for decision support applications [26, 30]. 

These characteristics render Mamdani fuzzy logic increasingly attractive for product 

development applications. The main advantage of these approaches is that they 

systematically implement experts´ assessments in a quantifiable manner, which is rarely 

the case on product development processes, as can be found in the work by Saridakis and 

Dentsoras [31] or Boujour et al. [32]. These authors implemented fuzzy logic for 
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supporting model-based product design activities in early phases. Such studies, however, 

are not concerned with designing qualifiable products for novel technologies, such as 

AM.  

Other authors [33, 34], have implemented Mamdani fuzzy sets in designing for AM 

strategies for considering the uncertainty of AM processes outcomes. In their work, 

Elkaseer et al. [33], for instance, developed a fuzzy logic-based algorithm that mimicked 

knowledge-based expert systems to automatically take corrective actions to improve 

printing quality. Lanzotti et al. [34] implemented a fuzzy approach for supporting the 

evaluation and selection of optimal design concepts where AM alternatives were 

evaluated. In these articles, however, the insights obtained from the fuzzy logic methods 

are not fed back to early design stages to improve a design. 

Fuzzy logic methods seem to be appropriate to support the introduction of AM 

technologies in the space industry. These methods can be an asset for modelling AM 

manufacturing uncertainties without incurring into long and expensive test phases to 

attain the statistical determination of material properties and probabilistic assessment of 

qualification risk [35]. 

 

RESEARCH METHODOLOGY 

An application where qualification impacts and sometimes hinders the implementation of 

new technologies, such as additive manufacturing, was identified in the context of an 

advanced manufacturing demonstration program, with the objective of developing the 

next generation of electric satellite propulsion systems. 

In this context, this article is focused on the activities concerning the qualification of a 

high-power electric propulsion system adopted on interplanetary missions. The focus of 

the study is the conceptual design of the thruster unit (TU) from an electric propulsion 

system (EPS) and the design decisions made around its components design when the 

implementation of AM is intended.  

The core of the data collection activities for this study was performed through a three 

months study visit at a company manufacturer of EPS systems and various satellite 

components. During that period, the authors worked on site, in close collaboration with 

the company design team of the present technology program where full access to real 

design and qualification company data, was provided. Moreover, it enabled continuous 

interactions with designers while they made real design decisions. 

However, the on-site visit was a part of a four-year project, from 2017 to 2021, period 

where the industrial partners developed and tested the EPSs. The researchers attended the 

project, prepared the 3 months study and have follow up with the company after the 

three-month focus study was over. 

From the study, a fuzzy model-based method for assessing the impact of design 

parameters on the outcome of qualification procedures and for including these insights in 

early design phases, was developed. The method aims at supporting design exploration 

and design decisions to develop qualifiable products. To illustrate its implementation, the 

method was applied in a sample case study featuring the redesign for AM of two 

components in a TU of a propulsion system for space exploration.  
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MODEL-BASED DESIGN FOR QUALIFICATION FOR ADDITIVELY 

MANUFACTURED SPACE COMPONENTS 

In this section, a model-based design method that supports the affordable introduction of 

AM technologies in space components, is presented. The method implements fuzzy logic 

techniques for modelling qualification requirements during conceptual design phases. 

Fuzzy logic techniques were preferred due to the unpredictable nature of AM defects and 

their ill-defined influence on product quality [11, 24].  

In Figure 2, the proposed method, is presented. The necessary inputs for the method are 

overall product architecture and test and qualification plan, a datasheet of the components 

intended to be redesigned for AM and general AM design guidelines [12, 36]. 

 
Figure 2. Model-based method for design for qualification 

 

Step 1: Identification of design parameters that influence qualification 

In this step, component design parameters that can affect the outcome of qualification 

activities (pass/fail) are identified. Due to the additive nature of AM technologies, design 

parameters can influence the presence of unexpected material defects, microstructure 

variations or geometrical deformations (among others) that might have a negative 

influence in the qualification processes. The stair stepping effect observed in angled 

surfaces, for instance, is the main cause of low surface quality [14]. If a component 

requires a specified surface roughness, qualification activities will be performed to ensure 

compliance with this design requirement. If the surface cannot be treated to improve its 

surface finishing, surface inclination angle is a design parameter that can influence the 

outcome of qualification activities. Such case is presented in depth in the work by 

Dordlofva [2], when designing the untreatable internal surfaces of a manifold for a rocket 

engine.  

Step 2: Establishment of membership functions 

Each design parameter identified in Step 1, is assigned a membership function whose 

shape should be chosen to fit the design parameter data set. In Figure 3, an example of 

how the shape of a membership function is established is presented. 

In Figure 3, the membership function µ(α) for the surface inclination angle, α, and its 

influence on the outcome of the qualification tests is trapezoidal, and obtained from the 

Root mean square height, Arithmetical mean and Maximum peak height data. High 
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surface quality is achieved in completely horizontal (90°) and vertical surfaces (0°) [14]. 

The worst surface roughness seems to be obtained from a range of angles that starts at 

~30° and covers angles up to ~70° (three graphs from Figure 3, top). If the component 

requires a smooth surface, after a certain threshold angle (around 30°), there is a range of 

angles where the surface becomes too rough (~30° to ~70°), resulting in a failed 

qualification test (red area in Figure 3, bottom). Angles below ~30 and above ~70 are 

more likely to result in a high likelihood of a successful qualification.  

Design requirements would determine which surface roughness range are acceptable and 

which are not, which is essentially the establishment of the membership function 

parameters α2 and α3, from Figure 3 (red zone). Due to the complex physical phenomena 

taking place in AM and the sometimes-unpredictable nature of the manufacturing 

outcome [2, 9, 37], surface angles lower than α2 and higher than α3 might still present 

rough surfaces and compromise component compliance with qualification requirements. 

Some α values might result in a failed qualification test but might also result in a 

successful one (orange zone). 

 

 
Figure 3. Top, surface roughness data [14]; bottom, membership function 

 

Step 3: Assessment of membership functions parameters 

When a membership function is selected for each design parameter, the membership 

function parameters must be established. In this step, design specifications are assessed to 

determine when x ∈ A (μA(x)=1) and when x ∉ A (μA(x)=0).  

For aerospace grade metallic materials, the qualification procedure for introducing a new 

alloy is rigorous [11]. Minimum design values that should be considered as membership 

function parameters are based on component criticality and established through thorough 

statistical procedures. Critical, non-redundant structures usually require A-Basis 

minimum values, where the minimum data requirement for material properties is around 

300 samples for an isotropic material and 900 samples for anisotropic materials. 

Although, the amount of testing required to fully define the mechanical behavior of the 

material (both static and dynamic perspectives) might require thousands of individual 

tests [11, 35]. This rigorousness, however, delays time to market, increases costs, and 

hinders innovation and the introduction of new technologies to aerospace components 
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[35]. Currently, if two different manufacturing processes for the same material are used 

to manufacture a component, current practices treat them as two different materials 

because the microstructures cannot be proven to be identical [35]. In the case of AM, 

mechanical properties and microstructure are also dependent on part geometry [24], 

which requires different geometries to be treated as different materials during the material 

qualification processes. Such rigorous test strategies might not be affordable in scenarios 

where design exploration is desired. 

An alternative pathway for the thorough statistical procedures is using experts´ opinions 

for establishing membership function parameters. A similar approach was proposed by 

Dordlofva [2] in the study of the AM manifold, where overconservative AM safety 

factors were determined by company practitioners. In this context, the determination of 

the membership functions parameters is closely related with the determination of AM 

safety factors, which can be established with an assessment of available AM inspection 

methods or post-processing techniques. Moreover, the assessment of these parameters 

can be related to qualification schedule and cost. If the component under analysis is part 

of the critical path of the general product qualification activities, stringent parameters can 

be applied to reduce the risk of failing qualification tests and incurring in redesign 

procedures that can delay overall product qualification. 

Since experts´ experience is in general vague and hard to capture, a Multi-Expert Multi-

Criteria Decision Making (ME-MCDM) fuzzy approach, is implemented [33] in this step. 

The proposed ME-MCDM fuzzy approach, is supported by an Ordered Weighted 

Average (OWA) technique [38], for combining different experts´ opinions. This approach 

has been successfully tested by authors such as Saridakis and Dentsoras [28] and Lanzotti 

et al. [33]. 

As the quality and reliability of their assessments depends on the experience of each 

expert [39], they provide their opinions in the shape of fuzzy sets which are then 

weighted according to an established weighting system. These fuzzy sets are proposed 

(before the weighting process) as triangular functions which can be interpreted as a  main 

parameter value (triangle top vertex) considered with a certain error defined by the lateral 

triangle vertices. Their opinions are aggregated and then defuzzified following equation 

(1) [26, 27, 31], which represents the centroid of all the considered fuzzy sets: 

         (1) 

Where μA(x) is the membership function value for  x .  

If a specific x has more than one membership function associated, the equation considers 

the value of the μ(x) function with the highest value. 

There are numerous defuzzification methods, and their selection is context dependent. 

For this study, the centroid method was preferred due to its popularity and computational 

convenience when defuzzifying simple membership functions, however, other methods 

might yield similar results [26, 27]. 

Following the surface roughness example, three experts would evaluate each membership 

function parameter α1 and α2, providing an error margin in their estimations. The 

designers have weights of (0.9, 0.8, 0.6) according to their experience in the field in 

design for additive manufacturing. In Figure 4, each designer´s fuzzy set (identified with 

different shades of blue) is presented for the parameters α1, α2. The sets are cut at levels 

corresponding to their opinion weighting. The area formed by all the fuzzy sets after the 
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weighting process is then defuzzified finding the centroid of the formed area with 

equation (1). 

 
Figure 4. Fuzzy sets from three experts (different shades of blue) to obtain 

parameters α1, α2 to be used in the membership function for assessing surface 

inclination and its effect on qualification 

 

Step 4: Development of fuzzy design for qualification maps  

Having established the parameters of every membership function, those functions can be 

combined to create qualification maps, as the one exhibited in Figure 5. In Figure 5, the 

combination of the parameters α (surface inclination angle) and τ (wall thickness), and its 

impact on likelihood of a successful qualification test, is presented.  

Qualification likelihood for α, μ(α), is added to qualification likelihood for τ, μ(τ), 

creating a three-dimensional plot of qualification likelihood (evaluated from 0 to 1), α 

and τ. Every point in the plot is defined by the value [α , τ , μ(α) + μ(τ)], the qualification 

likelihood is then scaled to provide values from 0 to 1. 

These qualification maps map the design space according to their likeliness to pass 

qualification tests. In the surface roughness example, μ(α) is mapped against a μ(τ) which 

represents the possibility of failing a qualification test depending on the wall thickness, τ. 

Both thin walls and rough surfaces are in high risk of failing the qualification tests. The 

combination of the two, reduces qualification likelihood even further. 

      

 
Figure 5. Qualification map for two generic design parameters α and τ 

 

Step 5: Design for qualification 

The qualification map helps the visualization of design alternatives and their assessment 

regarding qualification. It can be used, for example, in a multidisciplinary design trade-

off analysis to compare different product concepts. The map, however, is intended to be a 

dynamic tool, a way  for designers to assess which parameters combinations can result in 
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qualifiable products and then use that information when comparing alternative designs 

and making design and test related decisions. If a design alternative is superior to others 

in some ways but it is located in an orange zone in a qualification map, it is an indication 

that the design might not pass a qualification test. In this case, extra material testing 

activities can be performed to redefine that specific orange zone and perhaps, reduce the 

distance between α1 and α2 or α3 and α4. In this case, the qualification map indicates 

where it is worth it to perform extra testing and where it is not. This feature enables the 

development of a design exploration strategy for the development of a high-quality 

product, while reducing the test phases related to the material qualification of numerous 

different geometries.  

Different companies and different products with the same design parameters (such as α or 

τ) will likely have different membership function parameters (different α1, α2, α3 and α4) 

due to the variability of human assessment and the variation of component requirements 

among companies. This fact suggest that a qualification map can support questioning the 

established design specifications and AM safety factors (is it necessary to have such a 

smooth surface?), as they are not inherently fixed.  

AM data obtained from the implementation of the proposed model can be formalized and 

documented in the qualification maps, or in various design/documentation platforms such 

as those proposed by Borgue et al. [8] and be reused in future development projects. 

 

MODEL-BASED DESIGN FOR QUALIFICATION OF ADDITIVELY 

MANUFACTURED GRIDDED ION THRUSTER COMPONENTS 

 

In this section, the developed model-based design for qualification method is 

implemented in the redesign for AM of two components of a TU in a gridded ion thruster 

with an approximate diameter and height of 20 cm and 12 cm respectively. A CAD 

model of the TU is presented in Figure 6. A thorough description of the functionality of a 

TU can be found in Kindberg [40]. 

The anode and the external shell are intended to be redesigned for AM. In the anode, the 

propellant is ionized and then accelerated. This component requires a smooth internal 

surface and is machined from a metal block to form the anode geometry. The anode is 

usually in contact with the ”screen grid”, the first grid of a series of three acceleration 

grids [40].  

The external shell, on the other side, encloses the internal TU circuitry and provides a 

general protective function. This component is manufactured with soft iron. 

Redesigning these two components for AM can reduce component weight, to satisfy 

industry requirements for cost efficient space systems [36, 41], and overall manufacturing 

costs, as AM processes can reduce costs of tooling and machining  and require less 

skilled labor forces [7]. 
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Figure 6. CAD model of a gridded thruster. To the right, chamber and shell to be 

redesigned for AM 

   

Using design for AM guidelines, such as those proposed in literature [12, 36]. The shell is 

redesigned for AM with the inclusion of diamond-shaped holes in the protective walls 

(Figure 7.a), to reduce its overall weight. In this design, three parameters can influence 

qualification: wall thickness, number of diamond-shaped holes and separation between 

holes. 

The presence of AM defects such as pores, lack of fusion or cracks can lead to 

catastrophic failure of  thin AM walls and clustered holes [37, 42]. Moreover, Saneai et 

al. [37] reported that surface proximity can negatively influence defect size and density, 

which can affect functionality (or the outcome of a qualification test) in a component 

with a large number of surface holes. 

The AM anode design is optimized including a curved bottom (Figure 7.b.) and is 

designed to be integrated with the screen grid. This integrated design is based on two 

parameters that can influence the outcome (pass/fail) of qualification procedures: grid 

wall thickness τ, and angle of the anode wall α. The anode thickness is not modified as is 

a component from the magnetic circuit and is designed to carry the magnetic flux from 

the magnets. 

The surface inclination angle in the anode will affect the component orientation in the 

building chamber to avoid internal support structures. Rough surfaces (product of stair 

stepping effects [14] from various component orientations in the building platform) in the 

outside surface of the screen grid can enable arcing between this grid and the next one. If 

the grid is too thin, those surface defects cannot be machined out. 

 
Figure 7. External shell and anode to be redesigned for AM 

 

For supporting design exploration and decision making regarding the design parameters, 

the proposed model-based design method is implemented. 



14 

In Figure 8, fuzzy membership functions for the design parameters that influence 

qualification outcome for the shell and the anode, are presented. In the case of the 

protective shell, there is no number of holes that ensures a successful qualification, 

therefore, µ(N) contains only orange and red zones. The orange and red qualification map 

is not necessarily a “showstopper”, is just an indication that future qualification problems 

might arise in the orange zone. With this information designers can different strategies 

such as eliminating holes, increasing design margins or strengthening the external shell 

with an additional component. 

In the case of the anode, when the surface inclination angle increases there is the 

possibility of sandblasting  the surface to improve its roughness. However, rougher 

surfaces in the outside of the grid would need larger proportions of its thickness removed, 

which can result in compromising structural integrity.  

Implementing a ME-MCDM [31] fuzzy approach, a panel of experts negotiates the 

parameters of the membership functions introduced in Figure 8 (the starting points of the 

different color zones). As Dordlofva [2] proposed, their assessment should be based on 

three pillars:  

• Current relevant material data. 

• Additional AM safety margins  

• Process control and inspection  

Relevant material data and process control can be performed through the implementation 

of product tailored test artefacts [2], to evaluate the influence of geometry and process 

parameters on the manufacturing outcome. As AM mechanical properties are geometry 

dependent [24], the combination of experts´ assessment and product tailored test artefacts 

is intended to identify which geometries should undergo a more rigorous test process 

(statistical analysis), reducing in the end the number of test specimens. Insights on how to 

design tailormade test artefacts can be found in the work by Borgue et al. [8]. With an 

OWA technique [38], the different experts´ assessments are combined. 
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Figure 8. Membership functions for design parameters that can influence 

qualification outcomes 

 

The weights assessment is context dependent and reflects the perhaps subjective 

importance or experience of each expert regarding design, qualification, or AM. Experts´ 

assessments are then defuzzified for determining the membership functions parameters, 

implementing the centroid equation (1) and exemplified in Figure 9. On the top of Figure 

9, experts´ assessments for the membership functions parameters presented in Figure 8 

for the external shell (number of holes N, and thicknesses thao τc1, τc2, τn1 and τn2) and 

for the anode (inclination angles α1 and α2, and thicknesses thao τ1 and τ2) are 

presented.   

The parameters values according to the different experts are summarized on a table at the 

bottom of Figure 9. For obtaining the parameters values for the qualification maps, the 

MATLAB built-in methods for Mamdani fuzzy inference system defuzzification were 

implemented. The centroid was obtained through equation (1) with an error obtained 

considering on the outmost values provided by the experts. The table results are 

summarized below: 

External shell: N=  holes/cm2; τc1=  mm; τc2=  mm; τn1= 

 mm; τn2=  mm  

Anode: α1=( )°; α2=( )°; τ1=( )mm; τ2=( )mm       
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Figure 9. Membership functions parameters assessment with their calculated 

centroid. Each expert provides their assessment through a central value with error 

margins. 

 

The main objective when redesigning these two components for additive manufacturing 

is reducing costs, lead times  [7], and component weight [41]. 

In Figure 10, qualification maps for the chamber and shell are presented. The maps were 

build utilizing the MATLAB Fuzzy logic designer. On the maps from Figure 10.a, the 

colored scale from green to red represents the increase in likelihood of failing 

qualification tests, related to different component design parameters. The maps support 

the visualization of design parameters interaction and the impact of this interaction on the 

outcome of the qualification activities as well. In the case of the external shell, when µ(τ) 

is isolated there is a range of values of τ that are likely to pass a qualification test (green 

zone). Nevertheless, when µ(τ) interacts with µ(N) there is no value of τ likely to pass a 

qualification test, as there is no green zone in the qualification map. In Figure 10.b error 

bands for the horizontal variables are indicated, these bands express the uncertainties 

related to AM procedures and can enable a rapid identification of robust design 

alternatives where the uncertainties about AM technologies are low (outside the error 

bands). Vertical error bands were omitted to  not clutter the figure. 

As indicated in Figure 10.c, a blue color-coded mapping of the achievable weight 

reduction percentages is included as well.  
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In the case of the anode, there is one zone (dark green) in the qualification map that 

represents the lowest risk of failing qualification tests (9mm-4mm; 0°-20°). A concept 

design located in this area has a 46% reduced weight, Concept A. Pursuing the design of 

Concept A, would not require extra testing. On the limit between the light green zone and 

the yellow zone the percentage of weight reduction reaches 55% with high chances of 

passing qualification tests.  

Further increasing α and reducing τ can end up in 72% weight reduction (center of the 

dark orange zone), however, the risk of failing a qualification test is high, due to the 

established overconservative AM safety margins. 

 
Figure 10. Qualification maps and weight reduction percentages for shell and anode 

 

As Figure 10.c suggests, if a Concept B would aim for a weight reduction beyond 55%, 

specific material tests with test artefacts [2] can be performed to better define α2 and τ1 

and τ2 and hopefully reduce the AM safety margins. As the preliminary selection of these 

parameters was overconservative, further testing can stretch those limits (increasing the 

size of the green zones) providing material testing information where is needed.  
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Similar analysis can be performed contesting qualification likelihood against other 

requirements such as, for example, manufacturing costs reduction. Moreover, 

qualification likelihood can be included as a parameter in a multidisciplinary design 

trade-off analysis, assigning requirements weight according to specific design contexts. 

In Figure 11, a parallel coordinates [43] example is presented to illustrate qualification 

likelihood in a design trade-off analysis with requirements about weight, post-processing 

time and manufacturing time for the integrated anode-screen grid. This multidimensional 

representation can be used for evaluating the influence that design parameters such as 

wall thickness, τ (lines with different colors, from 1mm to 7mm), and inclination angle, 

α, have on different design specifications, including qualification likelihood. On Figure 

11, there are several lines with the same colors (same values of τ), these lines represent 

the different values of α for the same value of τ. Post processing costs are a function of 

post-processing time and post-processing resources (such as manpower or tools). 

Manufacturing time costs are a function of manufacturing time (machine set-up and 

printing) and resources (such as manpower, materials, or electricity).  

For the external shell, the highest weight (51%) reduction is obtained with a small 

number of holes (N) and a thin separation among them. The attainable weight reduction 

with the lower risk of qualification fail is around 38% (yellow zone). On the orange zone 

(with a thinner separation among holes), however, the weight reduction possibilities are 

8% higher. As recommended for the anode, further tests can be performed with test 

artefacts to try stretch the yellow area and increase low-risk and low-weight possibilities. 

 
Figure 11. Qualification likelihood can be included in trade-off analysis such as 

parallel coordinates 

 

Nevertheless, other strategy for enlarging the yellow area in the qualification map is to 

relax the requirements of the shell as a structural component and transfer those 

requirements to another component. 
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In Figure 12, a new qualification map with an extended yellow zone for the shell is 

presented. This extension was obtained relaxing the structural requirements on the shell 

(reducing τ1 and τ2) by introducing a new component whose function is to strengthen 

and reinforce the shell structure. It is now the assembly of the shell and its reinforcement 

what protects the internal TU component. The dimensions of the reinforcement 

component are closely related with those of the shell to ensure that the assembly can 

fulfill its structural requirements. For that reason, to obtain the qualification likelihood of 

the assembly, the design parameters of both components should be included 

simultaneously in qualification maps. 

 

 
Figure 12. Relaxation of shell structural requirements with the introduction of a 

support component 

 

DISCUSSION  

 

The main contribution of this study is a model-based design for qualification method and 

its capability for enabling designers to better account for qualification risk when 

including AM technologies in the design of space components.  

The proposed design for qualification method enables the implementation of qualification 

metrics as another design requirement in trade-off analysis through strategies such as 

parallel coordinates assessments [43] or trade-off curves [44] to support the design of 

affordable and qualifiable products. 

The introduction of qualification metrics in trade-off studies is enabled by applying fuzzy 

logics techniques to model experts´ assessment of AM properties variation, and 

quantifying in early design phases, the effect that design parameters have in a product´s 

qualification ability. 

Some combinations of design parameters have a rather predictable qualification outcome, 

for example, designs with extremely thin walls will fail a structural integrity qualification 

test. For some combinations of design parameters, however, the qualification outcome is 

uncertain.  

In addition to product qualification uncertainty, the dependency of AM mechanical 

properties on product geometry generates material qualification uncertainties that can 
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affect the design exploration processes. In conventional design scenarios, material 

uncertainties are solved by extensive material qualification phases to gather statistically 

significant data about numerous product geometries [11, 35]. If this process would 

include design space exploration it would be prohibitively expensive because every 

different geometry should undergo a material qualification testing phase (300/900 

samples) [11, 35]. For this reason, material qualification is performed once and the data 

generated  “fix” the materials, processes and geometry constraining design exploration 

and innovation [35]. 

In this article, fuzzy logics are implemented to complement probabilistic assessments of 

qualification failure and enable design exploration. The experts´ assessment and the 

qualification maps support design exploration previous to material qualification phases 

with the objective of identifying geometries that should undergo material qualification 

analysis.  

The proposed used of fuzzy techniques for quantifying experts´ assessments in 

conceptual stages provides a less precise assessment of the possibility of qualification 

failure. However, at such early phases this unprecise model and assessment might be 

enough, such was the case of Concept A, or concepts with over conservative safety 

margins. This result resonates well with authors such as Seo [11], Karlow Herzog [14] or 

Mokhtarian et al. [15], which sustain that through model-based design methods, relevant 

decisions can still be made even with unprecise models and information.  

To avoid overconservative AM safety margins, however, the use of qualification maps 

(built through fuzzy techniques) enables the identification of design concepts where these 

safety margins can be reduced (Concept B), through test campaigns and a more precise 

and probabilistic assessment of the manufacturing process and its impact on qualification 

failure. This feature was highly valued by the practitioners as large design margins result 

in sub optimized heavy products. 

This way, fuzzy logic techniques are a complement, rather than a replacement, to 

probabilistic assessments techniques. 

The design for qualification method addresses the uncertainties between design 

parameters and their incidence on qualification failure. However, these uncertainties are 

the consequence of the uncertainties from the manufacturing processes, due to the current 

AM lack of knowledge. For instance, to enable major weight reductions for Concept B, 

test campaigns and a more precise and probabilistic assessment on how manufacturing 

process affects the parameters α2 and τ1 and τ2 must be performed. Therefore, the second 

contribution of this article is the identification of the process uncertainties that require 

immediate clarification.  

Contrary to what happens when implementing conventional design analysis methods, 

fuzzy logics emphasizes uncertainty through  “degree of membership” (abscissa values 

between 0 and 1). This feature was recognized as a reflection enabler, allowing designers 

to grasp the magnitude of the impact qualification uncertainty has on the design process. 

Moreover, it enables collaboration among designers, helping them to look over their own 

aggregated judgements, discuss the accuracy of their first assessments and plan for 

eventual test phases. These statements are in line with literature findings [28, 31, 33] 

Qualification maps analysis can not only support the design activities around singular 

components (in this case, anode, and external shell) but can transcend components 

parameters and influence a more general product architecture design. Such is the case for 
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the external shell design, where an additional component was introduced to provide a 

failsafe mechanism and relaxing the structural requirements on the shell, enabling the 

design of a lighter component. 

In several space manufacturers, design and testing activities are conducted by different 

departments. Experts stated that the presented design for qualification method can 

facilitate communication between these two departments, as qualification maps can serve 

as boundary objects. Moreover, as qualification maps can support both component and 

product design, as well as test activities (through suggesting test artefacts targeting 

specific design parameters), they enable concurrent product and test activities design. 

Practitioners identified this fact as particularly interesting when introducing new 

technologies, where test phases might be ill-defined, which suggests that the proposed 

method could be applied to other manufacturing technologies. Moreover, the 

acknowledgement and inclusion on the maps of the uncertainty (or error) bands, 

facilitates a rapid assessment of parameters combinations that provide robust design 

alternatives. 

After presented to several practitioners with experience from both design and 

qualification of AM in critical components, the proposed method, was deemed adequate 

for generating qualification metrics and allowing qualification risk to be integrated in 

design studies. 

These capabilities have a high potential for reducing the overall cost and duration of test 

phases.  

Moreover, the implementation of the proposed method is expected to require a negligible 

among of time and resources (in the overall schedule of a product development process) 

for its implementation. In regular design scenarios, experts are engaged and asked to 

provide their comments during design phases, this process, however, is yet not 

formalized. The method in this article proposes a way to formalize these types of 

discussions with experts. The method would require a short training (an hour or two), 

whereafter the experts can easily express their comments as parameters to the model 

instead. As it addresses experience-based opinion no extra time is expected.  

However, this claim has yet to be proven, furthermore, the proposed method has not been 

validated. The validation of the design for qualification method is the subject of another 

study, where the usefulness of the method is put under scrutiny following guidelines from 

authors such as Pedersen et al. [46]. For a reliable validation process, emphasis is put on 

evaluating that the method yields the promised results (a reduction of costs and duration 

of test phases, while designing a qualifiable product), and that the results obtained are 

related to the method application and not to other factors.   

The proposed method utilizes a general modelling strategy; therefore, it can be inferred 

that the method can be generalized and applied to various design contexts and novel 

technologies. A further assessment of the method’s generalizability is, however, still 

required and part of the future validation studies. 

On that note, the method has several limitations: 

1-  The method addresses the uncertainties between design parameters and their 

incidence on qualification failure. However, it does not provide a strategy for 

identifying which are the design parameters with an uncertain impact on 

qualification. In fact, their identification largely depends on the practitioners´ 

experience. Some parameters might be easier to identify, as they are well-known 



22 

as having an impact on qualification, such as wall thickness. Nevertheless, other 

parameters that influence qualification outcomes might be unknown, and 

designers might not be aware of them (unknown uncertainties, also known as  

“unknown unknowns” [47]). Elicitation techniques for unknown uncertainties,  

such as those found in the work by Sutcliffe and Sawyer [47], could be a 

complement for the method proposed in this article. 

2- The identification of design parameters of interest depends on the practitioners´ 

experience with design, qualification and AM. Additional training efforts on the 

necessary topics are recommended for unexperienced practitioners. The method 

itself can also be interpreted as a training tool; as the method is applied, and 

knowledge about AM increases, the method meaningfulness and accuracy are 

expected to improve. 

In an industrial context, the proposed method would enrich the conceptual stages with 

qualification risk assessments and could be a valuable complement to digital 

parametric designs or abstract product representations such as function modelling 

techniques [8]. The method proposed in this article can be also complemented and 

enriched through a connection with qualification schedules. The qualification 

likelihood obtained from the qualification maps can be utilized as a metric for 

“activity rework likelihood” or schedule risk [48] to be included in the qualification 

schedule calculations, to account for the possibility of design iterations. Linking the 

design for qualification method to parametric product representations and 

qualification schedules enables the assessment of the impact of design parameter on 

qualification likelihood and consequent qualification schedule and schedule delays. 

 

CONCLUSION 

In this article, a model-based design for qualification method, is proposed.  The method is 

based on fuzzy logic for modelling AM process uncertainties and developing 

qualification maps for supporting designers to develop qualifiable products.  

The novelty of the method lies in the modelling and quantification of qualification risk 

and its integration into design studies and concept evaluation.  

In regular design scenarios, when introducing new technologies in the space industry, 

hundreds of samples are tested to achieve strong statistical knowledge bases before 

design and qualification phases. However, as AM material properties are geometry 

dependent, this process can become time and resource consuming if design exploration is 

desired.  

In this study, experts´ assessments and qualification maps are combined to facilitate 

design exploration and the identification of product geometries that should undergo 

rigorous material testing, reducing the time and cost spent in test activities, still ensuring 

the development of a qualifiable product. Indicating which design parameters 

combinations yield qualifiable products, qualification maps were proven to support 

design activities for single components, and for product assemblies as well. Moreover, 

qualification maps allow designers to look over their own aggregated judgements and 

discuss the accuracy of their first assessments.  

This goes beyond what other studies have reported, enabling qualification to be included 

in sensitivity studies, trade off studies and other digital experiments where a range of 

concepts need to be simultaneously evaluated.  
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A major limitation of the method is its reliance on experts´ assessments (and therefore, 

their experience with AM). Unexperienced practitioners might face difficulties 

identifying design parameters that impact qualification likelihood and developing 

accurate membership functions for those design parameters. Additional AM training 

might be required and could be supported by the method itself. 

The method has been demonstrated for the redesign for AM of the anode and protective 

shell of a gridded ion thruster for satellite applications. However, a further validation of 

the method’s generalizability is required and left for future research activities in this 

domain. 
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Abstract 
 
When introducing new technologies in product design, failing to identify and 

address uncertainties regarding technology feasibility, and the way technology 

introduction impacts the whole product development process, hinder the 

establishment of appropriate design requirements during conceptual stages. Ill-

defined design requirements often lead to unpleasant and expensive surprises that 

arise late on the product development process, rendering the introduction of a new 

technology an expensive and time-consuming endeavor.  

Uncertainties about the new technology can be known (information designers know 

is missing), or unknown (information designers do not know is missing). 

Previous research by the authors has proposed a digital design platform and 

respective design methods to support cooperative efforts to identify and model 

uncertainties during conceptual phases. In this article, the usefulness of such 

platform is evaluated using a Solomon Four-Groups design study featuring the 

design of satellite components for additive manufacturing. The results of the study 

suggest that the proposed digital platform and associated design methods are useful 

for identifying uncertainties and for proposing measures to address them, through 

a cooperative modeling environment. 

 

Keywords: Digital design platform, design uncertainties, manufacturability, 

testability, Solomon four-groups design study.  
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1. Introduction 

 

One of the most powerful strategies to ensure market permanence is the 

introduction of new technologies (Porter, 1985; Passemard and Kleiner, 2000). 

However, new technology introduction is often hampered by uncertainties 

regarding technology capabilities, and the way the new technology impacts the 

whole product development process (Stroud, 2002). Failing to assess new 

technology capabilities and its impact on the oveall PDP activities, can lead to the 

establishment of ill-defined product design specifications and, consequently, a final 

product that fails to deliver the promised business benefits (Stroud, 2002; Goldberg 

et al., 2018).  

The consequences of ill-defined design specifications can range from expensive and 

time-consuming redesign loops to technology abandonment (Thompson et al., 

2016). 

To avoid these consequences, there is a need to increase the knowledge about the 

new technology and reduce the number of uncertainties during conceptual phases 

(Dordlofva and Törlind, 2020).  

In general, uncertainties can be described as known uncertainties (information 

designers know is missing, known unknowns, KU), or unknown uncertainties 

(information designers do not know is missing, unknown unknowns, UU) (Jensen 

et al., 2017). Strategies for dealing with known unknowns include test campaigns 

and assessments by experts (Sutclife and Sawyer 2013; Ramasesh and Browning, 

2014; Dordlofva and Törlind, 2020). However, unknown unknowns are difficult to 

find as practitioners do not know what information is missing (Jensen et al., 2017), 

as a consequence, UU are the source of unpleasant surprises during late PDP where 

design changes are the most expensive. Failing to account for UU can lead to the 

establishment of non-adequate project budget for contingencies (Raydugin, 2012). 

Previous research (REF) by the authors have proposed model-based design methods 

for uncertainty identification and modelling based on multidisciplinary, holistic 

product representations compiled in a digital design platform, and a technique of 

design constraints modelling and replacement.  

The digital platform has been developed as a boundary object where different 

product representations (such as function models and activity models) can interact 

and support design endeavors and knowledge transfer among practitioners with 

different expertise and perspectives. 

The proposed methods and design platform have been applied to specific case 

studies before, yielding positive results in the identification of uncertainties, both 

known and unknown; however, it is yet to be determined if the results obtained are 

due to the methods application or to the influence of confounding variables 

(Sawilowsky, 1994; Trochim, 2021). 
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To assess the usefulness of the proposed methods and digital design platform for 

uncertainty identification and modelling, an experimental set up inspired on the 

Solomon four-group design study was implemented to qualitatively prove or refute 

the following hypotheses: 

 

Hypothesis 1: The proposed multidisciplinary, holistic design methods have a 

positive effect on the identification, during conceptual phases, of design 

uncertainties (both known and unknown) related to the feasibility of a new 

technology and its impact on later product development activities. 

 

Hypothesis 2: The modelling environment supports the transformation of the 

identified uncertainties into known knowns. 

 

2. Background 

 

2.1.Uncertainties during technology introduction  

Introducing new technologies in their products, companies aim at market 

permanence (Porter, 1985; Passemard and Kleiner, 2000). 

However, not every technological change is strategically convenient, technology 

increases competitive advantage if it has a significant role in reducing overall costs 

and increasing product uniqueness or performance (Porter, 1985).  

The successful assessment of a new technology introduction and the eventual 

establishment of design requirements for its implementation is often hampered by 

uncertainties (Mavris et al., 1999; Goldberg et al., 2018). These uncertainties are 

related to technology capabilities (what the technology is and is not capable of), and 

the way the technology introduction impacts the whole product development 

process regarding its activities, resources and schedule (Porter, 1985; Stroud, 2002; 

Browning and Ramasesh, 2015).  

The solution to this problem is to reduce the number of uncertainties, increasing the 

knowledge about the new technology and its impact on the PDP (Dordlofva and 

Törlind, 2020). Literature (Browning and Ramasesh, 2015) divides uncertainties in 

two categories, known uncertainties, information designers know is missing, known 

unknowns (KU) and unknown uncertainties, information designers do not know is 

missing, unknown unknowns (UU). 

Strategies for dealing with known unknowns are well-studied and implemented on 

literature and on industrial contexts, they often include prototyping (Elverum and 

Welo, 2015; Jensen et al., 2017), test campaigns or assessments by experts (Sutclife 

and Sawyer 2013; Ramasesh and Browning, 2014; Dordlofva and Törlind, 2020). 

However, unknown unknowns are difficult to find as practitioners do not know 

what formation is missing (Browning and Ramasesh, 2015; Jensen et al., 2017). 
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Moreover, UU are sometimes facts that practitioners know but did not come to their 

minds when designing (Ramasesh and Browning, 2014). 

If the UU are left unknown, the unknown data gap about the new technologies might 

be filled with carried over knowledge from previous design projects, due to the 

tendency to design products with similar features to their predecessors (Kumke et 

al., 2016; Seepersad et al., 2017). As previous data is not always applicable to new 

design contexts, ill-defined design specifications can be established, leading to the 

development of products that do not fulfill their full potential (Kumke et al., 2016; 

Seepersad et al., 2017). Other, more serious consequences are the establishment of 

non-adequate project budget for contingencies (Raydugin, 2012) and the 

development of products that fail to deliver business benefits (Mavris et al., 1999; 

Goldberg et al., 2018). 

Sutcliffe and Sawyer (2013) presented a review of existent techniques to deal with 

uncertainties. Their work indicates that techniques such as interviews, observations, 

workshops, scenarios, or prototypes are quite mature and well-established. These 

techniques can, however, be expensive or time consuming specially if they are not 

systematic and well-planned. 

Prototyping strategies, as those proposed by Jensen et al. (2013), Borgue et al. 

(2019), or Dordlofva and Törlind (2020) are adequate for transforming KU into 

KK, however, they seldomly result on the discovery of UU. In the work by Borgue 

et al. (2019), for example, the authors use prototypes for shedding light into 

manufacturing uncertainties for additive manufacturing technologies (AM) in the 

context of a flow connector for satellite applications. During this process, they 

uncovered an UU, related to the difficulty of removing the flow connector from the 

building platform; for this reason, an appropriate new design specification was 

established to address this difficulty. Nevertheless, the discovery of this UU was 

accidental and relying on prototyping for UU discovery is not time or cost effective. 

The work by Ramasesh and Browning (2014) and Browning and Ramasesh (2015) 

presents a list of factors thar foster UU, and several strategies for UU identification. 

On essence, techniques for UU identification call for a purposeful and systematic 

UU identification procedure based on modelling strategies, communication, and an 

alertness culture. These statements are aligned with those from Sutcliffe and 

Sawyer (2013), who also stated the importance of models and problem 

decomposition for UU identification. However, as these authors point out, there is 

still room for improvements in what concerns modelling strategies for UU 

identification. 

Multidisciplinary product development modelling strategies and performance 

simulations are widely used for uncertainty assessment and reduction (Mavrik, 

1999; Struck and Hensen, 2007; Ogaji et al., 2007; Goldberg et al., 2018) during 

conceptual stages. These strategies are tailored for KU reduction and for mitigating 
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their effect on the overall PDP, however, they are in general not concerned with the 

identification of UU, especially those related to design specifications. Some 

approaches from the software industry, such as the one proposed by Henricksen and 

Indulska (2004), focus on UU identification through user-based object modelling 

approaches to model information quality and manually flag UU. Their graphical 

representation is well suited for developer and user based UU identification and 

specification of requirements of an application. These approaches, however, are not 

applied to the architecture design of hardware.  

In general, there is a lack of systematic model-based (Sutcliffe and Sawyer, 2013; 

Browning and Ramasesh, 2015; Dordlofva and Törlind, 2020) platforms to 

systematically identify, model and solve design specifications uncertainties. 

 

2.2.A multidisciplinary design platform to model uncertainty and identify 

unknown unknowns  

Previous work by the authors (REF) have proposed the implementation of a 

multidisciplinary digital design platform for identifying, modelling, and solving 

design specifications uncertainties through the collaborative efforts of practitioners 

with different expertise.  

This digital design platform is based on product architecture representations 

realized on enhanced function models (FM). This platform is intended to act as a 

boundary or intermediary object (Boujut and Blanco, 2003) to foster collaboration 

among practitioners with different expertise and support design exploration and 

decision making. 

The function models the platform is based on, present a hierarchical decomposition 

of a product architecture from the main product functional requirement (FR) to the 

lowest level FRs to ensure product performance (Claesson, 2006). One design 

solution (DS) is assigned to each FR, representing the function´s physical 

embodiment in the product architecture (Figure 1). Moreover, constraints are linked 

to the DSs, to reduce design space and specify the boundaries inside which the DS 

should be realized. In the case of new technology introduction, and in this model 

representation, constraints are related to technology capabilities and testing in the 

context of the PDP.  

To evaluate the impact that different product architectures have on the PDP, the 

platform links the function model (FM) with PERT diagrams that model the 

different PDP activities. Moreover, to enable schedule assessment and 

optimization, the risk of not performing a certain activity (or performing it partially) 

is included on PERT diagram and on the portion of the FM related to that activity.  

In Figure 1, the FM in which the product architecture model is based on is presented 

along the respective PERT diagram. An example featuring a flow connector for 

satellite applications and its respective validation activities is included in the Figure 
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1 as well, to illustrate the connection of the FM with the activity models and risk 

assessment.  

To identify UU related with new technology introduction, a process of constraints 

replacement is proposed. As design processes rarely start from scratch, many design 

and development processes with new technologies start from an old product that 

implements a previous, well-established technology. In the process of constraints 

replacement, the FM of the product with the previous technology is reused, and the 

constraints related to the old technology are removed and replaced with their 

counterparts for the new technology. 

 
Figure 1. Proposed design platform that links a product´s function model 

with PERT diagrams and risk assessments about downstream PDP activities. 

 

In the example from Figure 1 the flow connector is traditionally machined from a 

metal block, and the constraints in the function model are related to this 

manufacturing technology. To redesign the flow connector for, for example, 

additive manufacturing, the machining constraints are removed and replaced with 

their AM counterparts, as presented in Figure 2.  

Through this constraints replacement technique practitioners are encouraged to 

systematically analyze how a new technology would affect a product architecture 

and PDP activities. This way, new technology KU can be included in the 

architecture analysis during conceptual phases. Moreover, the constraints 

replacement procedure enables the discovery of UU related to technology 

feasibility and the effect the technology has on the PDP.  

The constraints replacement technique and the design platform have been applied 

to specific case studies before, yielding positive results in the identification of 

design specifications uncertainties; however, it is yet to be determined if the results 
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obtained are due to the methods application or to the influence of confounding 

variables (Sawilowsky, 1994; Trochim, 2021). 

 
Figure 2, constraints replacement procedure. 

 

2.3.Experimental design methods for evaluating the usefulness of a 

method 

One of the simplest methods for evaluating the usefulness of a method or a tool is 

a two-group posttest-experiment (Figure 3.a) (Trochim, 2021). In this arrangement, 

one group applies the method or tool to perform a task, and the other group does 

not. The results are them compared based on preestablished metrics. However, this 

method does not provide a way to compare both groups’ baselines, so the results 

from these studies could be due to intrinsic differences between the two groups. For 

instance, when evaluating the usefulness of a design tool for reducing conceptual 

design times, the two groups could represent two different companies. If one 

company uses the tool and the other does not, it is not possible to know if the 

differences obtained in design times are due to the tool or the companies.   

One way to establish a baseline to compare both groups is performing a pretest-

posttest experiment (Figure 3.b) (Trochim, 2021). In this arrangement, both groups 

perform a pretest, to establish their baseline results to be then compared with the 

results obtained after applying the method or tool of interest. When evaluating the 

design times of two companies, a pretest would establish a comparison of the 

current (without the tool) design times of each company. 

Nevertheless, a drawback of this configuration is the difficulty to establish if the 

obtained results are due to the method, or the “practice” obtained during the pretest. 

The Solomon Four-Group Design (Figure 3.c) (Sawilowsky, 1994; Trochim, 2021) 

is an experiment arrangement designed to deal with the effects of the pretest. This 

arrangement requires four groups, two of the groups use the method or tool and two 

do not. Furthermore, two of the groups receive a pretest and two, do not.  
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This experiment design is more complex to set up and analyze due to the number 

of groups involved, however, it reduces the internal validity issues, enables the 

researcher to exert better control over the experiment variables, and to make sure 

that the pretest did not influence the experiment results (Sawilowsky, 1994; 

Trochim, 2021; May et al., 2020). 

 

 
Figure 3. Comparison of experimental design methods 

 

3. Method 

 

To evaluate the previously proposed holistic design platform and the technique of 

constraint replacement, the Solomon-four group design experiment was 

implemented in the context of a Swedish research project. 

This project aimed at demonstrating the development of a digital infrastructure and 

platform for the industrialization of Additive Manufacturing (AM). Industrial case 

representatives, digital environment providers and research institutes were brought 

together as representative stakeholders to the introduction of AM in industrial 

contexts. The objective of the project was to evaluate current solutions enabling 

digital data traceability and digital modelling and simulation activities for optimal 

design of product and process definition. 

In this research project, the proposed design platform served two objectives: (1) 

Evaluate the platform´s usefulness to identify UU and propose measures to cope 

with them; (2) Showcase design capabilities developed through four years of 

previous research. 

To evaluate the platform´s usefulness, the Solomon-four group design experiment 

was preferred, as it has been proved advantageous to reduce the effect that 

confounding variables and external factors have on the study results (Trochim, 

2021).  

A purposeful, homogeneous sampling (Palinkas et al., 2015) with two associative 

hypotheses in a qualitative study context (Chigbu, 2019), was preferred. 
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A total of 12 industrial practitioners participated in the study in six groups of two 

participants. Moreover, a test run was performed at the beginning of the study with 

two extra participants to adjust experiment details and improve instructions. Further 

details of the experiment and its participants are found in the next section. 

The Solomon-four group design experiment showcased the design platform to 

industrial practitioners as well. Moreover, after the study was finished, its results 

were presented to the research project participants, which enabled a further 

discussion, included in the “Results” section of this article. 

 

3.1. Solomon-four group design experiment 

The experiment was designed to probe or refute two hypotheses: 

 

Hypothesis 1: The proposed multidisciplinary, holistic design methods have a 

positive effect on the identification, during conceptual phases, of manufacturability 

and testability unknown unknowns related to the implementation of a new 

technology. 

 

Hypothesis 2: The proposed multidisciplinary, holistic design methods have a 

positive effect on the establishment of measures to address the identified 

uncertainties. 

 

In this experiment, two design case studies are implemented where practitioners 

evaluate the redesign for AM of two products which are part of a fluid management 

system of a satellite: (1) a flow connector and, (2) a heat exchanger.  

To limit the scope of the study, the function models of the analyzed products 

contained only constraints related to manufacturability and testability. Moreover, 

the PERT diagrams used in the study have just included the system´s validation 

activities, which in the context of space components are comparable with the 

qualification or acceptance phases. Validation activities are those performed to 

control if the product fulfills the intended function and business case. 

The Solomon-four group design experiment was performed twice (Iteration 1 and 

Iteration 2), each time with three groups of two participants each. On the first 

iteration, the flow connector was used the pre-test, and the heat exchanger as the 

test. On the second iteration, the roles were inverted, and the heat exchanger was 

used as the pre-test and the flow connector as the test. This way, the need for Group 

D was eliminated, as its results are obtained from the Group A of the opposite 

iteration (Figure 4). Moreover, interchanging the pre-test and test increases results 

reliability, as it eliminates the concerns of the methods results being due to the test 

of choice. 
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Figure 4. Implemented Solomon-Four Groups experiment design. 

 
Table 1. Experiment participants´ company roles and experience (ys)* 

*Experience is expressed in years unless explicitly expressed in months 

 Group Participant 
Current 

company role 

Total 

industrial 

experience 

Total 

experienc

e working 

with AM 

Experience 

in 

professional 

roles as a 

designer 

DfAM 

professional 

experience 

Experience in 

professional roles 

involving test 

planning or test 

performance 

Iteration 

1 

A 

1A1 Business analyst 4 1 0 0 0 

1A2 
 

CEO 
5 8 months 6 months 6 months 3 months 

B 

1B1 
AM Research 

engineer 
13 3.5 6 months 1.5 0 

1B2 
Lead product 

developer 
6 6 - - 6 

C 

1C1 
Engineer lead 

for AM 
3 2 0 2 0 

1C2 
Software 

Engineer 
4 4 0 0 0 

Iteration 

2 

A 

2A1 R&D engineer +20 2.5 +20 2.5 +15 

2A2 
Researcher in 

data science 
8 3 0 0 0 

B 

2B1 R&D engineer 27 3 0 3 0 

2B2 
Technical 

project leader 
15 6 3 3 3 

C 

2C1 Researcher 3.5 3.5 0 3 7 

2C2 

Technical 

product 

responsible 

24 3 24 3 0 



11 
 

 

3.2. Case studies for pre-tests and tests 

The two products implemented in the experiments are part of a fluid management 

system of a satellite.  A branch of a fluid management system is made of seven 

components, schematized in Figure 5: (1) Heat exchanger, (2) Pressure sensor, (3) 

Temperature sensor, (4-6) Pressure vessel A, B and C, (7) Flow connector. 

The flow connector and the heat exchanger were redesigned for AM, the experiment 

participants were presented with the task of analyzing those redesigns (weather 

during a pre-test or a test) and voice their concerns related to component 

manufacturability and testability. The concerns that practitioners mention are 

interpreted as uncertainties. 

 

 
Figure 5. Conventionally manufactured (left) and redesigned for AM (right) 

flow connector and heat exchanger. 

 

 

3.3. Activities performed during the experiments 

The experiment was performed twice, iteration 1 (I1) and iteration 2 (I2), with six 

participants in each iteration, divided in three groups, Group A, Group B and Group 

C. A series of activities, presented in Table 2, were performed for the different 

groups, respecting the stipulated activity durations and sequence. 

 

Table 2. Activities performed at the Solomon-Four Group experiments 

Activity 
Length 

(min) 
Description Group A Group B Group C 
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Introduction 20 

AM capabilities 

variation across AM 

technologies, 

machines, and 

geometries. 

Introduction to the 

experiment´s tasks. 

Introduction 

to 

document 1, 

pre-test and 

test tasks, 

and design 

platform. 

Introduction 

to 

document 1 

and pre-test 

and test 

tasks. 

Introduction 

to 

document 1 

and test 

tasks. 

Read Tasks 

documentation 
5 – 8 

Participants read the 

experiment´s 

documentation on 

their own. They have 

5 minutes that can be 

extended to 8 if they 

needed (in case of 

language difficulties, 

for example). 

Read 

documents 

1, 2 and 3 

Read 

documents 

1, 2 and 3 

Read 

documents 

1, and 3 

Pre-test 20 

Participants are 

presented with the 

pre-test redesign 

assessment activity, 

where they are tasked 

with voicing their 

concerns about the 

manufacturability and 

test ability of the 

product redesigned 

for AM. 

Flow 

connector 

or heat 

exchanger 

(depending 

on iteration) 

Flow 

connector 

or heat 

exchanger 

(depending 

on iteration) 

- 

Introduction 

to test 
5 

Transition between 

pre-test tasks and test 

tasks. Participants are 

given 5 minutes to 

read the 

documentation for the 

test 

Read 

document 3, 

about the 

flow 

connector 

or heat 

exchanger 

(depending 

on iteration) 

Read 

document 3, 

about the 

flow 

connector 

or heat 

exchanger 

(depending 

on iteration) 

- 

Digital 

platform 

presentation 

10 

Participants are 

introduced the digital 

design platform. On 

the platform, both the 

flow connector and 

the heat exchanger are 

already modelled and 

connected with the 

test activities PERT 

diagram. 

Emphasis 

on the 

models of 

the product 

used for the 

test 

Emphasis 

on the 

models of 

the product 

used for the 

test 

Emphasis 

on the 

models of 

the product 

used for the 

test 

Test 20 
Participants are 

presented with the test 

Heat 

exchanger 

Heat 

exchanger 

Heat 

exchanger 
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redesign assessment 

activity, where they 

are tasked with using 

the digital design 

platform for voicing 

their concerns about 

the manufacturability 

and test ability of the 

product redesigned 

for AM. 

or flow 

connector 

(depending 

on iteration) 

or flow 

connector 

(depending 

on iteration) 

or flow 

connector 

(depending 

on iteration) 

 

 

Three different documents are handled to groups A and B: 

• Document 1, AM capabilities and limitations: The experiments are based 

on metal laser powder bed fusion (LPBF) AM technologies; this document 

summarizes what can and cannot be manufactured with these technologies. 

Among others, minimum manufacturable wall thickness or threshold 

surface angle for requiring supports structures. 

• Document 2, pre-test documentation: The conventional geometry, 

materials, dimensions, and manufacturing processes of the product used for 

the pre-test; a table with the required product validation activities, the 

elements required for each activity, the activity duration, and the risk of not 

performing the activity; a PERT diagram displaying the validation activities 

sequence in the context of the whole fluid management system; the product 

redesigned for AM. Depending on the experiment iteration, document 2 can 

be about the flow connector (Iteration 1) or the heat exchanger (Iteration 2). 

• Document 3, test documentation: The conventional geometry, materials, 

dimensions, and manufacturing processes of the product used for the test; a 

table with the required product validation activities, the elements required 

for each activity, the activity duration, and the risk of not performing the 

activity; a PERT diagram displaying the validation activities sequence in 

the context of the whole fluid management system; the product redesigned 

for AM. Depending on the experiment iteration, document 2 can be about 

the flow connector (Iteration 2) or the heat exchanger (Iteration 1) 

Groups C received only documents 1 and 3, as they do not have a pre-test. 

 

The purpose of the documentation is to mimic real design processes and the 

information that is collected and available at conceptual stages. In Figure 6, an 

extract of the PERT diagram (6.a) and validation activities table (6.b) are 

presented. 
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Figure 6. Extract of the validation activities table and the PERT diagram. 
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3.4. Variables of interest  

During the study, participants are asked to voice their concerns related to: 

(1) design manufacturability (weather physical features in the product are 

manufacturable with LPBF technologies or not).  

(2) manufacturing processes (process parameters, manufacturing speed, 

manufacturing costs, post processing activities, “hybrid manufacturing”). 

(3) test ability (ability to test the product or its physical features, how the AM design 

would affect test schedules in terms of duration and costs) (Valfre, 2012). 

These concerns are “matters that cause feelings of unease, uncertainty, or 

apprehension” (MerriamWebster, 2021) to practitioners about technology 

capabilities (what can and cannot be achieved with AM) and the respective VVT 

activities. 

What is measured in the experiments is the number of concerns (uncertainties) and 

the number of proposed design changes: 

- Number of concerns about manufacturability (Nm): weather physical 

features in the product are manufacturable or not. 

- Number of concerns about manufacturing processes (Nmp): process 

parameters, manufacturing speed, manufacturing costs, post processing 

activities, “hybrid manufacturing. 

- Number of concerns about test ability (Nt): ability to test the product or its 

physical features, how the AM design would affect test schedules in terms 

of duration and costs. 

- Number of proposed measures to address design manufacturing concerns, 

includes manufacturability and manufacturing processes (NMm). 

- Number of proposed measures to address test concerns (NMt). 

 

The success criteria (Blessing et al., 1998) utilized to probe H1 and H2 are a higher 

number of concerns and proposed measures observed with the use of the design 

platform than without it. 

 

4. Results 

 
In Table 3 the measured variables from the experiment are presented, categorized 

according to group and experiment iteration. The specification “Method” or “No 

method” refers to the use or not of the proposed design platform and constraints 

replacement procedure. 

In Table 4, the differences between the two case studies, flow connector and heat 

exchanger, are presented. In Table 4, the influence of the pre-tests is also 
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highlighted, as the results are categorized as “No practice” (no pre-test) or “With 

practice” (with pre-test). 

 

Table 3. Measured variables from the Solomon Four-Groups experiments. 

Iteration Group 
 

Nm Nmp Nt NMm NMt 
Risk mentioned in 

the discussion 

1 

A 

Pretest – No 

method 
4 0 1 0 1 

No 

Test - Method 7 1 2 0 5 Yes 

B  

Pretest – No 

method 
6 4 0 6 1 

No 

Test – No method 5 1 2 1 4 No 

C 
Pretest - - - - - - 

Test - Method 9 8 5 2 3 Yes 

2 

A 

Pretest – No 

method 
4 1 0 2 2 

Yes 

Test - Method 9 4 1 1 4 Yes 

B 

Pretest – No 

method 
4 3 1 3 0 

No 

Test – No method 3 1 0 2 0 No 

C 
Pretest - - - - - - 

Test - Method 10 6 3 6 6 Yes 

 

From Tables 3 and 4, four results can be obtained: 

 

- The measured variables do not depend on the case study, the flow connector 

and the heat exchanger obtained similar results for every variable. 

- The pre-test activities do not seem to have a positive impact on the test 

results. Moreover, in the pre-test seems to have a negative effect on the 

amount of the number of concerns identified and the number of proposed 

measures to address uncertainties.  

- For both case studies, the number of concerns identified and the number of 

proposed measures to deal with uncertainty increased with the use of the 

design platform. 

- In every instance where the design platform was implemented practitioners 

held discussions about activity risk and used the provided risk assessments 

to propose measures to deal with test and manufacturing uncertainties. Only 

one group (It2 GA) included risk in their discussions without the support 

from the design platform. 

Table 4. Comparison of flow connector and heat exchanger case studies 
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In 

Table 5, the identified manufacturing and test concerns and measures are presented 

in relation to the group that identified them. Concerns explicitly included in the 

design platform as concerns for machining technologies are highlighted with an 

asterisk (*).  

 

Table 5. Identified manufacturing and test concerns and measures are 

presented in relation to the group that identified them. 

 Iteration 1 Iteration 2 

 A B C A B C 

Manufacturing concern FC HE FC HE HE HE FC HE FC FC 

Max. manufacturing volume *  x   x  x   x 

Min. manufacturable radius *  x     x   x 

Min. manufacturable hole diameter*     x  x   x 

Geometry changes between adjacent 

sections 
 

 
x    

 
 

 
x 

Threshold angle for support structures x x x  x   x x  x 

Max. diameter for horizontal holes 

without support  
 

 
x   x  

 
 

 
 

Part geometry to enable removal of 

support 
 

 
x     

 
 

 
 

Max. manufacturable aspect ratio *  x   x  x   x 

Min. manufacturable wall thickness * x x x  x  x x x x 

  Flow connector Heat exchanger 

  No method Method No method Method 

Nm 
No Practice 

4 10 4 9 

6 - 4 - 

With Practice 3 9 5 7 

Nmp 
No Practice 

0 6 1 8 

1 - 3 - 

With Practice 1 4 1 1 

Nt 
No Practice 

1 3 0 5 

2 - 1 - 

With Practice 0 1 2 2 

NMm 
No Practice 

0 5 2 2 

0 - 3 - 

With Practice 2 1 1 0 

NMt 
No Practice 

1 6 2 3 

5 - 0 - 

Practice 0 4 4 5 
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Max. length, diameter, wall thickness 

ratio * 
 

x 
x  x  

x 
 

 
 

Min. achievable surface roughness * x x  x   x   x 

Surface quality improvement   x        

Max. manufacturing speed to avoid 

overheating * 
 x   x  x   x 

Process parameters to avoid 

deformations 
 

 
x    

 
 

 
x 

Dimensional accuracy x      x x x  

Recoating blade problems (blade crush)   x     x   

Part removal from building plate   x        

Influence of manufacturing orientation    x x x x x x x 

Anker the part to the building plate    x       

Min. feature size to enable removal of 

powder 
 

 
 x  x 

 
 

 
 

Mechanical properties homogeneity      x     x 

Min. feature size dependency on the 

material 
 

 
  x  

 
 

 
 

Influence of layer thickness     x      

Influence of idle time between layers     x      

Influence of manufacturing atmosphere     x      

Influence of manufacturing temperatures     x      

Influence of number of lasers     x      

Number of parts on the building plate     x  x    

Influence of location on the building 

plate 
 

 
  x x 

 
 

 
 

Wall thickness separation between 

internal channels 
 

 
   x 

 
 

 
 

Hybrid manufacturing (machining + 

AM) 
 

 
   x 

 
x 

x 
 

Defects generation and overheating 

depending on material 
 

 
    

 
 

 
x 

Defects generation depending on 

manufacturing parameters 
         x 

Test concerns           

Influence of design on the test schedule x          

Fit in the test chamber *  x     x   x 

Cost of changing a test   x         

Inspection of internal geometries    x       

CT scan penetration depth    x x      

Component criticality     x      

Need for stress relief before plate 

removal 
    x      

Test of variable mechanical properties     x      

CT scan resolution     x      

Influence of material on CT usefulness          x 

Affordability of CT scans          x 
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Ultrasonic testing          x 

Measures to address manuf. concerns  b   b  b   b 

Change holes geometry   x   x  x x x 

Make bottom self-supporting   x        

Smooth sharp corners   x     x  x 

Integrate smart fixtures   x x    x   

Make angles between channels larger 

than 90 
     x     

Separate inlet from outlet      x     

Separate in several components         x  

Downscale the component       x   x 

Increase wall thickness          x 

Increase scanning time          x 

Increase layer thickness          x 

Measures to address test concerns           

Perform a mock-up test schedule x          

Change a test  x x  x  x   x 

Change the design  x        x 

Downscale the component          x 

Remove a test  x    x x    

Accept a longer test schedule  x         

Change the schedule (test order)          x 

Gather further information for test 

removal 
 x         

Introduce a new test   x x   x    

Consult CT expert    x       

Perform serial testing    x       

Reduce testing by improving process 

monitoring 
   x x      

Ensure process repeatability     x      

Test a couple of representative samples     x  x   x 

Test several components at the same 

time for distributing the test activities 

and shortening the schedule 

         x 

(*) Concerns explicitly included in the design platform as concerns for machining technologies. 

 

 

4.1. Qualitative assessments from participants 

During the experiments, practitioners were asked to provide feedback from the 

digital platform and the design experience from the experiments. Moreover, after 

the study was finished, the results were compiled and presented to the practitioners 

on the research project to open a discussion about design support platforms and 

uncertainty identification. 
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Practitioners agreed on the fact that without the digital platform, it is difficult to 

understand and analyze the influence that design changes (in this case, from the 

introduction of AM) have on the test schedule. 

This problem seems to be present in regular design scenarios, as practitioners 

mentioned ‘(AM) Sales pitches are about complexity for free and constraints 

reduction, but (the cost of testing) is not as frequently mentioned’  and ‘the platform 

puts a finger in a place we currently do not focus a lot, which is testing and 

validation and how we can change the validation phases’. Linking the test activities 

with the architecture model allows designers to include testing on the early design 

trade-off analysis and make design choices that will reduce the cost and duration of 

the test phases. 

The FM-PERT connection has also highlighted some concerns that need to be 

addressed for an effective introduction of AM in industrial contexts. For critical 

components, validation is of extreme importance, however, due to the physical 

phenomena that takes place during AM processes, the validation activities of AM 

components become too expensive and time consuming. To reduce costs and foster 

AM industrialization, the focus must be set on ensuring manufacturing repeatability 

and validation. To smoothen the transition between current AM capabilities and 

fully repeatable AM processes, practitioners proposed improving the design 

platform with AI technologies: 

‘The platform can be combined with AI technologies to feed the 

model with the likelihood of build success, it could be used to reduce 

risk. Which would be something that evolves and improves over time. 

So, you start with very high validation costs and over time (when the 

AI gains experience on manufacturing assessment) you reduce costs 

with AI’. 

The reason why the digital design platform enables the inclusion of test phases 

during design decision making on conceptual stages is its visualization capability. 

Most of the practitioners mentioned that the platform helped them visualize product 

architecture and its influence on test activities ‘(the design platform) helps with 

visualization and (design) choices’. Moreover, the level of detail is appreciated, as 

it does not group too many things together which enables the platform evolution to 

fit new data and companies´ specific needs. The level of detail and the FM-PERT 

connection enables performing a sort of SWOT (Strengths, Weaknesses, 

Opportunities, Threats) analysis, ‘You can find opportunities to redesign quite 

early, you reduce reprinting processes (and costs) and redesign loops’. Overall, the 

design platform can serve to indicate where extra printing simulations (to gather 

missing data) might be necessary, instead of printing directly and risking the rework 

associated with failed manufacturing, ‘The connection with the PERT diagram is 

useful for experienced designers, they can easily see where the weaknesses and 
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threats in the design are. Where do I need to focus? Where do I need to put more 

(simulation or test) resources?’.  

The inclusion of the risk of not performing a test activity was appreciated, especially 

in the context of products where validation activities are traditionally time 

consuming and expensive, as is the case for the space industry. The benefit of 

including this risk on the FM and PERT diagrams is related with the possibility of 

considering not performing a test, if the risk of not performing this test is 

sufficiently low, and its implications on cost reduction ‘If you think about the 

component industry and all the quality assurance procedures that you can actually 

shave off your process…it will save you a lot of money immediately’ . However, 

strong arguments are required to remove test activities and the design platform is 

not enough to make this type of decisions. Instead, it can point designers to open a 

conversation about this possibility and to gather the necessary data to make such 

decision ‘(The platform) is good to start a conversation about risk management and 

risk reduction. Maybe we can reduce the risk of some tests but we have to increase 

the part costs’. 

In general, de design platform was recognized as a useful boundary object to foster 

communication among design teams and experts from different areas.  

Practitioners indicated some of the design platform weaknesses as well.  

On the current version, the platform does not include pictures of the product, which 

hinders the manufacturability assessment, especially for unexperienced 

practitioners.  

Regarding the constraints replacement procedure, some practitioners indicated that 

is a practice that would benefit unexperienced practitioners mostly ‘The constraints 

replacement technique is mostly unnecessary for experienced practitioners’. 

Unexperienced designers can systematically go through the constraints for the 

previous implemented technology (in the case of the study, machining) and try 

finding their counterpart for AM. Through this procedure, they can find AM 

uncertainties previously unknown and learn about AM at the same time. 

However, other practitioners indicated that that the design platform also benefits 

experienced designers as it guides their discussion (‘It points you out in the right 

direction’ ) and acts as a conversation starter, that fosters reflection and knowledge 

echange. These statements are supported by the authors´ observations during the 

experiments. 

Moreover, it was also observed that the design platform served as a knowledge 

transfer tool from experienced practitioners to unexperienced practitioners (‘I 

learned a lot today!’). 

It was also suggested that more time was required to fully understand the design 

platform and make use of its full potential. Moreover, it was stated that the results 

using the platform might improve over time as designers gain experience and the 
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platform is enhanced with new data ‘The more you use it, the better it gets. Is easy 

to adapt because the model is detailed’ . 

In general, practitioners manifested that they were interested in trying the platform 

for their daily design activities.  

 

5. Discussion 

 

The usefulness of a digital design platform for supporting design uncertainty 

identification and mitigation, was evaluated through a Solomon Four Groups 

experiment design. Its usefulness was evaluated according to H1, useful for 

uncertainty identification and modelling, and H2, useful for transforming 

uncertainties into certainties.  

The results suggest that the design platform enabled discussions about activity risk, 

and its use to propose measures to deal with uncertainties without compromising 

product quality while maintaining an affordable validation schedule. For example, 

the platform enables the identification of test activities with low risk and that can 

be removed or replaced with an inexpensive alternative. 

However, strong arguments are required to remove test activities and the design 

platform is not enough to make this type of decisions. Instead, it can point designers 

to open a conversation about this possibility and to gather the necessary data or 

acquire the expertise to make such decision. 

It was observed that implementing the design platform, the number of 

manufacturing and test concerns identified (uncertainties) and the number of 

proposed measures to deal with those uncertainties increased with the use of the 

design platform.  

As the number of identified concerns increased with the implementation of the 

constraints replacement process, it can be concluded that this process is useful for 

identifying UU. Moreover, certain concerns were only identified through the 

constraints replacement method, such as “Max. manufacturing volume”, “Max. 

manufacturing speed to avoid overheating”, “Max. aspect ratio”, or “Fit in the test 

chamber”.  

However, a drawback from this technique is that UU, are discovered if their 

traditional technology counterpart is well modelled. In this sense, the usefulness of 

this process is related with the model´s depth, breadth, and fidelity (Haskins et al., 

2015). The concerns “Min. feature size to enable removal of powder” and “Part 

geometry to enable removal of support structures” for example, are well-known 

AM concerns, however, they do not have a direct machining counterpart and were 

not mentioned by any group using the design platform. 

These results resonate well with the work by. Roth et al. (2010) which state that the 

performance of past designs does not address all the sources of design uncertainty 
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related with the introduction of new technologies. The main problem in this case is 

that not every constraint of a new technology can be found in a traditional 

technology counterpart. However, the design platform and the constraints 

replacement method itself serve as conversation openers, to initiate a discussion 

about technology uncertainties, and to promote knowledge exchange among 

practitioners within different disciplines. As proposed by Browning and Ramasesh 

(2015), an organization that is actively looking for UU is more likely to identify 

them and turn them into KU.  

It was also observed during the experiments that many uncovered UU were not 

really UU, but aspects of the design, manufacturing process or testing that scaped 

the mind of the participants at the moment of the experiment. For instance, the 

concern “Max. manufacturing volume” is one of the more evident AM limitations, 

however, this concern was only mentioned by participants using the design platform 

and constraints replacement method. This observation was in line with literature 

(Ramasesh and Browning, 2014), in real design scenarios, UU are sometimes things 

that spaced the mind of practitioners or things that no one has bothered to find out. 

Moreover, they propose two types of UU, the knowable UU and the unknowable 

UU. The constraints replacement technique addresses the knowable UU. 

Regarding UUs, there is a connection between the practitioners´ expertise and the 

number of UU they are able to identify with or without the design platform. 

In group C from Iteration 1, one of the participants has 2 years of experience 

working exclusively with AM and design for AM, which enriched the discussion in 

this group. This group identified 17 manufacturing and manufacturing processes 

concerns, from the discussions enabled by the process of constraints replacement. 

On the contrary, the participants of Group A from Iteration 1 where not that 

experienced in AM. Through the process of constraints replacement, this group 

identified eight manufacturing and manufacturing parameters concerns, seven of 

which were almost identical to their machining counterpart. 

Workshops participants had different experience levels, and uncertainties that are 

unknown for a practitioner might be known for another. The design platform made 

explicit the knowledge of experienced practitioners, facilitating knowledge transfer 

to the less experienced. 

The design platform and constraints replacement procedure support unexperienced 

designers, that otherwise, would not be able to identify as many uncertainties. 

Furthermore, for unexperienced practitioners the design platform serves as a 

training tool as well, as it was recognized as an efficient way to acquire and store 

information. 

Furthermore, the platform´s customizable depth, breadth, and fidelity, allows for 

the adaptability and flexibility required when changes such as new technologies, 
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new organizational processes or change of market focus, occur (Subrahmanianet 

al., 2003). 

The results from the experiments suggest that while the platform supports 

uncertainty identification and modeling, it also supports the process of proposing 

affordable measures to deal with the uncertainties. While several measures to deal 

with uncertainty are experience dependent, the link between the FM and the PERT 

diagram highlights design and validation schedule changes that could reduce 

uncertainty or mitigate their effects in a cost and time efficient manner. For 

instance, only participants that did not use the platform proposed “Perform serial 

testing” as a measure to reduce uncertainties, however, this measure is time and 

resource intensive and can render a project unaffordable (Brice, 2011). Participants 

using the design platform had the possibility of simulating and observing the effect 

that these types of measures would have on the overall schedule affordability. 

Moreover, only participants using the platform proposed “Focus on process 

repeatability” to reduce the need for test activities performed on the product. 

However, the platform is not intended to replace other design and uncertainty 

identification methods, rather, is intended to complement them. For example, 

practitioners stated that the platform would work better if it was connected to a 

CAD (physical) product representation that enables the analysis of a product´s 

geometry. These statements are in line with the work by authors such as McKoy et 

al. (2001) who sustain that graphical product representations are better than textual 

representations for engineering design idea generation processes. 

Moreover, other techniques for UU identification, such as interviews, observations, 

workshops, scenarios, or prototypes (Sutcliffe and Sawyer, 2013), should not be 

left aside. They should be performed before or in parallel with the implementation 

of the design platform and complement its information. Designers should strive for 

a communication, and an alertness design culture that fosters the purposeful and 

systematic identification of UU (Ramasesh and Browning, 2014; Browning and 

Ramasesh, 2015). 

The proposed design platform and other UU identification methods are a powerful 

complement for the multidisciplinary product development modelling strategies 

and performance simulations (Mavrik, 1999; Struck and Hensen, 2007; Ogaji et al., 

2007; Goldberg et al., 2018) currently implemented for uncertainty assessment and 

reduction  during conceptual stages.   

In general, implementing the design platform, the number of uncertainties and 

proposed measures to deal with those uncertainties increased. However, the sample 

size of this study (which is its most relevant limitation) is too small and the obtained 

results cannot be generalized (Yin, 2003). Moreover, due to time and resources 

constrains, getting a randomized pool of experienced industrial practitioners able to 

participate in a one-and-a-half-hour experiment is very unlikely. In this situation, a 
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non-random group of practitioners (from the available research project) and a non-

random assignment of to the groups was necessary, this choice undermines the 

strength of the experiment as well. 

Another limitation of this study is the artificial design setting. Practitioners from 

different companies were paired according to their availability and their previous 

experience with design and AM. In addition, one of the authors of this study was 

present during the experiments guiding the design analysis activities, which have 

likely impacted the results.  

Moreover, experiment participants were unfamiliar with the type of product 

proposed for the case studies, as well as with each other. Team and case study 

familiarity is possibly another confounding variable in the study, research shows 

that the performance increases when team members are familiar with each other 

and trust each other (Arrow et al. 2000; Hargadon and Bechky, 2006).  

Adding to the design setting artificial nature, the design intervals were restricted to 

20 minutes each. On one side, some sessions needed to be cut short, it is possible 

that additional uncertainties and related mitigation measures would have been 

mentioned.  On the other side, some other groups needed to “be forced” to talk 

during the 20 minutes, possibly due to the discomfort generated by a lack of 

perceived expertise on the unfamiliar case studies and a lack of familiarity with the 

design partner. Another consequence of the time-constrained design set up is that 

the pre-test seems to have a negative effect on the amount of the number of concerns 

identified and the number of proposed measures to address uncertainties during the 

test. One possible explanation that the authors find for this phenomenon is that the 

pre-test and test case studies we designed to foster the identification of similar 

concerns, to enable case study comparison. However, as both pre-test and test were 

performed within the same hour, having similar uncertainties, it is possible that 

some uncertainties that were mentioned on the pre-test were not mentioned on the 

test as an unconscious attempt to avoid redundancy. 

It is evident that the artificial design setting affected the study results, however, 

literature shows that a large proportion of the research experiments performed for 

testing new tools and design methods are conducted in artificial settings and their 

results are still useful for industry and academia (Ellis and Dix, 2006).  

Despite this study not presenting statistically relevant results, it was useful as a 

discussion enables about design support platforms and a culture of uncertainty 

seeking. Moreover, the results of this study were used to obtain further funding that 

will enable the development of an improved version of the digital design platform 

that can be implemented in real industrial settings for further research purposes. 
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6. Conclusion 

 

When introducing new technologies in product design, design uncertainties hinder 

the establishment of requirements during conceptual stages. Ill-defined design 

requirements can lead to expensive and time-consuming redesign loops.  

Uncertainties can be known (information designers know is missing), or unknown 

(information designers do not know is missing). Unknown uncertainties present a 

big threat to a product development budget and schedule, as they are difficult to 

identify especially during early design phases. 

In this article a digital design platform and a technique of constraints replacement 

are evaluated regarding their usefulness to identify new-technologies-related 

unknown uncertainties and measures to deal with them.  

The platform and method are evaluated with a Solomon Four-Groups design study 

involving 12 experienced industrial practitioners and featuring the design of 

satellite components for additive manufacturing. The results of the study suggest 

that the proposed platform and associated design methods are useful for identifying 

uncertainties and for proposing measures to address them. Moreover, it servs as a 

conversation starter, to initiate discussions about technology uncertainties, fostering 

collaboration and knowledge transfer among practitioners with different expertise 

and from different disciplines. The results further highlight the need of making 

uncertainties seeking a common practice.  

Despite the small sample size and the artificial design setting where the studies were 

performed, the results and conclusions obtained are useful as they invite a 

discussion about design support platforms and a culture of uncertainty seeking.  
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