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Abstract 
Understanding how transportation networks affect regional development has been 
a long-standing challenge for modellers in several disciplines, both in research 
and practice. Approaches span between light-weight accessibility and centrality 
models, to data-heavy land use-transport interaction models. Centrality models 
have been increasingly employed to support spatial planning on the city-scale, 
where such techniques are attractive due to their low requirements of socio-
economic and demographic data, while they also maintain representations of 
essential features such as accessibility. However, it has been less clear if such 
approaches can be successfully extended from the urban to the regional scale. In 
this paper we demonstrate how a recently introduced centrality measure – 
preferential centrality – can be used as a modelling framework on the multi-
regional scale, while retaining high intra-urban spatial resolution. Centrality is 
calculated on a zonal level, with local plot characteristics and network travel times 
as input. Preferential centrality is calculated similarly to Google PageRank and 
eigenvector centrality, but with preferential growth as an additional component 
that represents local agglomeration processes. To examine the explanatory power 
of this approach, we compare computed centrality with empirical land taxation 
values, using the southern half of Sweden as a case study area. Using a static 
accessibility model as benchmark, we find that the preferential model has a higher 
capacity to reproduce empirical patterns, with regard to geographical correlations 
as well as for probability distributions. Our findings suggest that preferential 
centrality analysis can have practical value in urban and regional planning 
contexts, for example when assessing the geographical distribution of impacts 
from transport infrastructure investments. 

 

                                           
1 alexander.hellervik@chalmers.se 



PREPRINT, 2021-09-29  2 

1. Introduction 
When determining the potential for urban activity and land use in a location, the 
amount and quality of transportation opportunities are essential factors. Change 
in the transportation system is thereby a driver of urban transformation, such as 
construction of new buildings, changing patterns of housing and employment, or 
changing customer bases for services (Hansen, 1959; Alonso, 1964). The effects 
of such changes are frequently analysed as changes in accessibility using a 
number of distinctly different measures (Handy and Niemeier, 1997). Most 
accessibility measures, however, rely on manual categorization of the types and 
locations of the attractions (destinations) that the measured accessibility refers to. 
This tends to create ambiguity, as well as considerable sensitivity to input data 
availability, and to methods of data interpretation. 

Moreover, in a dynamic setting, attractions themselves frequently change in 
response to changes in the accessibility-related factors, which are computed using 
these attractions as input data. For example, new road infrastructure can 
substantially affect the locations of firms and the local level of employment 
(Gibbons et al., 2019), and Baum-Snow (2007) has shown how highway 
expansion has contributed to the transformation of population density in US cities. 
Accessibility modelling using static attractions can therefore not be expected to 
capture the full dynamics of long-term urban agglomeration processes. To do so 
it is necessary to internalize these dynamical feedbacks into the model.   

Models that aim to capture feedbacks between accessibility and agglomeration 
have been developed in the purview of two main traditions. The first is Land Use 
Transportation Interaction (LUTI) modelling, where highly detailed model 
systems, consisting of several sub-models, interact in data-heavy computer 
simulations (Wegener, 2004; Acheampong and Silva, 2015). The other tradition 
is based on theoretical urban economic modelling, where economies of scale and 
transport costs are central forces, but spatial details are less elaborated (Alonso, 
1964; Krugman, 1996; Fujita et al., 1999; Glaeser, 2008). 

In LUTI modelling, the integration of numerous sub-models tends to give rise to 
complicated internal dependencies, as well as a forbidding need for input data. 
This is not only costly, but also hampers model portability and scalability since 
data is unevenly accessible, and since models will tend to be constructed around 
idiosyncrasies in local data availability. It is often the case that additional data is 
used to cover up for missing or poorly calibrated internal model mechanisms. 
Even in situations where all necessary data is available, and model calibration 
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seems successful, the quality of model results can still degenerate, for example 
when forecasting or scenario analysis requires large changes of parameter values.  

Theoretical models in urban and regional economics can, by using a range of 
assumptions and simplifications, stay within a window of mathematical 
tractability. In this way they provide important in-principle insight into how 
different forces interact to shape an urban system. However, because of the lack 
of spatial details, it is less clear how these models can be used to understand and 
model a specific real region, for example by providing forecasts to guide a 
planning process. 

The limitations of traditional modelling may imply that simplicity and clarity in 
modelling must be sacrificed to arrive at empirically useful results. As argued by 
Barthelemy (2016) this must not necessarily be the case, since there exists 
substantial potential in using minimal models, inspired by statistical physics of 
complex systems, that are in agreement with empirical urban patterns, while 
retaining theoretical transparency. The methodology that we develop in this article 
is clearly based on such an ambition: a minimal, light-weight model where much 
of the needed information does not enter as data but is derived from a smaller and 
more robust set of data that is consistently available across time and space.  

Our approach is based on a network centrality measure, which we use to analyse 
the relative importance of urban locations, using only simple geographical data 
and transportation networks as input. This approach makes it possible to view the 
urban system as a network of interacting locations (Barthélemy, 2011; De Montis 
et al., 2013; Andersson et al., 2006), with a detailed geographical representation, 
combined with simple activity dynamics. There are several common centrality 
measures that can be used in urban analytics (e.g. Porta et al., 2006; Sevtsuk and 
Mekonnen, 2012; Hillier and Hanson, 1989): betweenness centrality, closeness 
centrality, degree centrality, eigenvector centrality (e.g. Agryzkov et al., 2019) 
and PageRank centrality (e.g. Jiang, 2006). All these measures have different 
characteristics and can be expected to capture different aspects of an urban 
system. However, none of them include mechanisms to represent an urban 
agglomeration process. Therefore, in this study we focus on the newly introduced 
preferential centrality measure (Hellervik et al., 2019) that includes such a 
mechanism. Preferential centrality is derived as an extension of eigenvector 
centrality (Bonacich, 1972), with the incorporation of activity feedback to 
represent agglomeration.  
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The main contribution of this study is to extend the scope of the analysis of 
preferential centrality by Hellervik et al. (2019), from the urban to the regional 
and sub-national level. Calculated centrality values for different parameter 
settings are compared to land taxation values that are used as a proxy for urban 
economic activity. The performance of preferential centrality is also benchmarked 
against that of eigenvector centrality and of a static accessibility measure. The 
results develop and lend further support to our hypothesis that transportation 
infrastructure networks strongly influence the spatial structure of the societal 
systems that they serve – structure that methods based on the preferential 
centrality measure can reveal. The upshot is that this can be achieved without 
using large amounts of detailed socioeconomic data. This, in turn, reduces the 
problems inherent to LUTI models, as outlined above, and opens the door for new 
types of light-weight models based on widely available data, such as Open Street 
Map. Such models could be used in many additional roles and settings and they 
could be integrated into planning processes on local, regional and national scales.  

 

2. Methods and data 
2.1. Preferential centrality modelling 

To model urban economic activity using preferential centrality the procedure 
described in (Hellervik et al., 2019) is followed closely. The main equation, 

𝑎𝑎𝑗𝑗 = �𝑎𝑎𝑗𝑗 + 𝛼𝛼𝑅𝑅𝑗𝑗��
𝑎𝑎𝑖𝑖𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖�

∑ (𝑎𝑎𝑘𝑘 + 𝛼𝛼𝑅𝑅𝑘𝑘)𝑓𝑓(𝑐𝑐𝑖𝑖𝑖𝑖)𝑘𝑘𝑖𝑖

 , 

is solved iteratively for every zone j in the system, where 𝑎𝑎𝑗𝑗 is the activity for the 
zone, 𝛼𝛼 is a parameter, 𝑅𝑅𝑗𝑗 is a static local weight measuring the suitability of the 
zone (see section 2.3 for details) and 𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖� is a deterrence function decreasing 
with increased generalised cost 𝑐𝑐𝑖𝑖𝑖𝑖. The resulting preferential centrality value of 
each zone is taken to be exactly the activity value of the zone when the model has 
found a stable solution satisfying (within a numerical threshold) the above 
equation for all zones. 

To facilitate convergence of the iterative solution process, a normalization is 
performed in every step, by dividing all activity values 𝑎𝑎𝑗𝑗  with the maximum 
value of 𝑎𝑎𝑗𝑗. This is a modification of the method used in (Hellervik et al., 2019) 
where normalization was done with regard to the sum of 𝑎𝑎𝑗𝑗, which lead to 
divergence for low values of 𝛼𝛼.  
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The generalised cost 𝑐𝑐𝑖𝑖𝑖𝑖 is calculated for all zone pairs and can in principle include 
any type of impedance hindering the interaction between zones, but we have in 
this study chosen to limit the analysis to travel time in the road network. Travel 
times between zones are calculated using shortest paths with edge travel time as 
weights. The travel time for each edge is taken to be a simple ratio between metric 
edge length and speed limit. A constant (5 minutes in this study) is added to all 
travel time calculations to approximatively account for impedances outside of the 
represented network, such as walking within zones, parking, etc. For the 
deterrence function we have used 𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖� = 𝑐𝑐𝑖𝑖𝑖𝑖

−𝛽𝛽, where 𝛽𝛽 is a parameter. 

In principle, the most realistic deterrence function would be obtained by 
estimation from empirical interaction data. Such an estimation is outside the scope 
of this study but could be recommended if the method is to be used in practical 
applications. Care must then be taken, however, to verify that it is actually 
economic interaction that is being measured, and not only physical interaction. 
Simple trip counts could potentially be misleading for such a purpose, since 
different types of trips could carry different economic value. 

The centrality calculation is based on the travel time between all pairs of zones in 
the model. Each zone pair results in a shortest path calculation, which means that 
the calculation time can become impractically long for systems with many zones, 
as in the current study where high spatial detail is required for large study areas. 
To reduce the computational burden without sacrificing model size, we have 
chosen to use an approximate travel time calculation for zones that are far apart2.  

2.1. Parameters 
There are two key parameters to be varied in the preferential centrality model, 𝛼𝛼 
and 𝛽𝛽. By varying these, the interplay between agglomeration and accessibility 
can be explored within a large space of possible model outcomes. 

The parameter 𝛼𝛼 controls the impact of the static local weights. A high value for 
𝛼𝛼 gives relatively less importance to the dynamic activity 𝑎𝑎𝑗𝑗  and more importance 

                                           
2 The approximation is designed so that errors are proportional to distance between zones, 
which makes it possible to keep relative error within a bounded range. Using a random sampling 
of zone pairs from the model setups used in this study, the relative errors were estimated by 
comparing exact shortest path travel time calculations with approximations. The average 
relative errors were found to be below 6 %, which can be considered acceptable for the purposes 
of this study.  
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to the static local weight. With a very high value of 𝛼𝛼, a zone’s activity will mainly 
be determined by its accessibility to other zones with high local weights. With a 
low value of 𝛼𝛼, the model becomes more preferential, which means that a zone’s 
activity is highly influenced by its accessibility vis-à-vis other zones with high 
activity. This can be interpreted as the 𝛼𝛼-value controlling the strength of the 
activity agglomeration in the model, with a low value corresponding to high 
agglomeration and a stronger self-reinforcing process, i.e. positive feedback. A 
decrease in the value of  𝛼𝛼 could for example represent increased levels of 
refinement in production and services, and to a decreasing fraction of the economy 
directly tied to natural resources. It may be surmised that 𝛼𝛼 has decreased 
historically. For a theoretical discussion of possible micro-mechanisms for 
agglomeration processes, see e.g. Duranton and Puga (2004). 

The parameter 𝛽𝛽 is used to control the distance decay of interactions, with 
increasing values representing a stronger distance decay. Increasing values of 𝛽𝛽, 
for example due to lower transportation efficiency, corresponds to a relative 
increase of short-range interactions. On the other hand, low 𝛽𝛽-values can be used 
to model systems, with very efficient technologies for transportation and 
communication, wherein a high proportion of interactions take place over long 
distance.  

2.2. Benchmark models 
For comparison we use two benchmark models that do not involve the 
agglomeration mechanism, but in all other aspects use the same input data. The 
first is denoted as the Accessibility model, and it uses the deterrence function to 
calculate activity as a function of accessible and buildable land (static local 
weights), according to  

𝑎𝑎𝑗𝑗 = 𝑅𝑅𝑗𝑗�𝑅𝑅𝑖𝑖𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖�
𝑖𝑖

. 

The other benchmark model is the Eigenvector model,  

𝑎𝑎𝑗𝑗 = 𝑅𝑅𝑗𝑗�
𝑎𝑎𝑖𝑖𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖�

∑ 𝑅𝑅𝑘𝑘𝑓𝑓(𝑐𝑐𝑖𝑖𝑖𝑖)𝑘𝑘
,

𝑖𝑖

 

which can be solved with iteration in a similar fashion as the preferential model. 
The resulting activity will correspond to the eigenvector centrality of the dense 
network of interaction between locations, determined by the deterrence function 
and static local weights. 
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2.3. Input data 
The modelling approach is based on three main data sources. Road network data, 
property polygons and property building restrictions.  

Roads are imported with preserved topology and attributes from Open Street Map 
(OSM), using OSMnx (Boeing, 2017). In cases where speed limit data is missing 
in the source data, default values are used for the particular road type. Non-
drivable roads are removed based on road types and attributes. Ferry connections 
where motor vehicles are allowed are treated as roads with limited speed and a 
fixed waiting time. 

Property polygons are obtained from the Swedish National Land Survey 
(Lantmäteriet). Properties are the smallest administrative building blocks in the 
official land registry. The precision and quality of this data is high and consistent, 
since the purpose is to establish and prove ownership (which needs to be precise 
and just). This is the first reason for our choice of using property polygons as the 
spatial entities in this modelling framework. The second reason is that this spatial 
representation gives us an exact physical correspondence between model zones 
and empirical zones with data on land taxation. A third reason is that property 
polygons represent the most fine-grained geographical subdivision in many actual 
planning contexts. 

Property building restrictions for every zone is obtained by retrieving the taxation 
type code for the property. The type codes are in most cases the effect of local 
planning restrictions, which means that they can be interpreted both as a factual 
description of current as well as potential land use.  

Using the type codes, some initial filtering is applied to include only relevant 
property polygons in the model: properties with one- and two-dwelling buildings, 
properties with multi-dwelling and commercial buildings, and properties with 
industrial buildings. This means that properties with attributes indicating a lack of 
buildings are excluded, as well as properties mainly used for agriculture and 
forestry. Properties designated for special use; such as parks, government 
buildings, health care and sports facilities, are also excluded. 

Taxation units are usually uniquely tied to property polygons, but in certain 
special cases one taxation unit can refer to several polygons. In these cases, all 
relevant data is aggregated to a merged property zone. A property is in the normal 
case made up by a single polygon, but in certain situations it can comprise several 
polygons. In those cases, data is split proportionally (according to area) between 
the polygons. 
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To arrive at zones to be used in the model, properties are dissolved along common 
borders. This yields modelling zones approximately on the block level (see Figure 
1), with an average number of 3.3 properties included. Finally, model zones are 
connected from the centroid to the nearest driveable road (excluding highways, 
bridges and tunnels) by a virtual road connection. 

A static local weight (𝑅𝑅𝑗𝑗) is computed for each zone based on the accessible, 
permissible and buildable land area, according to  

𝑅𝑅𝑗𝑗 = 𝐴𝐴𝑗𝑗𝑃𝑃𝑗𝑗𝐵𝐵𝑗𝑗, 

where 𝐴𝐴𝑗𝑗 is the physical zone area, 𝑃𝑃𝑗𝑗 is the fraction of the area with type codes 
indicating that building development is allowed, and 𝐵𝐵𝑗𝑗 is the fraction of the area 
that is accessible for development with regard to the current road network. A 
zone’s maximum value for 𝑅𝑅𝑗𝑗 equals the physical zone area. 

𝐵𝐵𝑗𝑗 is determined by calculating a 30 m wide buffer along all roads assumed 
suitable for nearby building development. Suitable roads are defined to exclude 
motorways, bridges, tunnels and any road with a speed limit above 60 km/h. The 
estimated unbuildable extent of all roads are also geometrically subtracted from 
the developable buffers. 

2.4. Land taxation data for validation 
As a proxy for urban economic activity, property taxation values are used. 
Taxation data was obtained from the Swedish National Land Survey 
(Lantmäteriet), for the taxation year 2018.  

Land taxation data has a range of features making it our choice for validation data 
for urban areas. Compared to population or building density, land value can give 
a much more distinct picture of urban agglomeration, since different local 
economic activity levels are clearly related to the willingness to pay for renting or 
buying real estate. For example, two different urban areas could have the same 
population or building density but very different economic output. These 
differences should show up clearly in well-estimated land valuation. Another 
feature is the absence of an upper bound on the land value. Physical characteristics 
such as night lights, population or building heights are not able to respond in the 
same way, or the same pace, as land value, to the underlying economic activity 
that is really taking place. 

The actual market price for every piece of land is not possible to obtain, both 
because most properties are not sold very often, and because land is in most cases 
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sold together with buildings. This means that any complete set of land value data 
must be based on an assessment based on sales prices and rents in the area, 
together with data on the characteristics of the sold, rented and assessed 
properties. It is not within the scope of this study to perform such an assessment 
and that is why we instead rely on the official assessment made by the tax agency. 

In Sweden, all properties have a determined taxation value (updated every third 
year) that according to law is required to correspond to 75% of the current total 
market value (land and buildings) for the property. Partial values are also 
determined for land and buildings separately. The tax agency has established 
detailed procedures for how to accomplish these assessments of market value, and 
when such data is available, the taxation values are based on representative sales 
prices and rental values.  

2.5. Aggregation, filtering and regression 
To compare resulting centrality values (𝑎𝑎𝑗𝑗) with empirical land taxation data (𝑦𝑦𝑗𝑗), 
we estimate a simple logged regression model,   

log𝑦𝑦𝑗𝑗∗ = 𝑏𝑏0 + 𝑏𝑏1 log𝑎𝑎𝑗𝑗∗ + 𝜖𝜖𝑗𝑗  , 

where 𝑦𝑦𝑗𝑗∗ and 𝑎𝑎𝑗𝑗∗ are values aggregated to administrative taxation assessment areas 
(TAA). TAAs are used by the tax authority as a smallest subdivision when 
estimating key parameters determining local market value. In Figure 1 the typical 
size of these areas can be compared to model zones and property polygons. The 
main reason for this aggregation is the strong spatial autocorrelation of land 
taxation values within the administrative areas. 

The centrality models we investigate are designed to represent urban processes 
and urban areas. Thus, we cannot expect relevant results in rural settings, where 
other processes dominate how land is used and valued. Therefore, only the zones 
with a land taxation value above a pre-defined threshold, were included in the 
aggregation to TAA. The threshold was chosen to be the geometric average for 
land taxation per area unit for Sweden, since this can be expected to give a good 
estimate for the scale for the underlying fat-tailed distribution (Nelson et al., 
2019). 

The filtering and aggregation process results in some TAAs that comprise only a 
few properties. Since these observations tend to introduce noise and distort the 
overall picture we apply a filter based on the number of properties per TAA. The 
choice of threshold in this filter is somewhat arbitrary so we take as a starting 
point the official Swedish definition of a locality, which requires a cluster to have 
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200 inhabitants (Statistics Sweden, 2016). Since population data is not used in the 
current study, we translate this to filtering out all TAAs with less than 66 
properties, assuming an average of 3 inhabitants per property. Also, we have 
chosen to exclude very large (> 2x107 m2) TAAs, because these can only be found 
in rural contexts.  

Access to the sea is a highly valued attribute for a property. In principle this could 
be handled by introducing additional factors in the regression model. However, 
the effect of property taxation of access to the sea is very varied which might 
distort the analysis of centrality. For the purposes of this study, we have instead 
chosen to remove those TAAs where more than 50% of the properties are within 
500 m of the coastline.  

 
Figure 1 Three levels of spatial detail – property polygons, model zones, and tax assessment 
areas (TAA). Model zones without visible subdivision contain only a single property polygon. 
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2.6. Choice of study areas. 
We present results both for the single Swedish region Östergötland as well as for 
a multi-regional study area comprising southern half of Sweden. The northern part 
of the country is relatively sparsely populated and was excluded to reduce spatial 
heterogeneity and simplify analysis.  

The region of Östergötland was chosen as a suitable study area, since it contains 
at least two middle-sized cities but no major cities and no significant coastal areas. 
This is to avoid “monocentric bias” in the analysis, and to demonstrate that the 
model can handle multiple regional centres.  

The chosen study areas are shown in Figure 2, together with a more detailed 
picture of the geographical patterns of land taxation values, as well an example of 
corresponding model results. 

 
Figure 2. Left panel (a): Land taxation in Sweden, showing the boundaries of the two study 
areas. Top right panel (b): quantile classification of model results on a zonal level (single 
region preferential model with 𝛽𝛽 = 2.5 and 𝛼𝛼 = 0.06). Bottom right panel (c): quantile 
classification of land taxation values for the corresponding model zones. 
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3. Results 
3.1. Distribution of land value 

From the complementary cumulative distribution function (CCDF) diagrams 
shown in Figure 3, it is clear that the preferential model better captures the fat-
tailed aspects of the empirical distribution, compared to the eigenvector and 
accessibility models. The agglomeration parameter 𝛼𝛼 makes it possible to get a 
distribution of model values in reasonable agreement with empirics.  

We have not quantified how the probability distributions fit to the empirical data 
with any higher degree of exactness since the purpose of this study is not to argue 
for a certain “true” set of parameters. However, a visual comparison of model and 
empirical probability distributions alerts us to the importance of studying the tails 
of the distributions. The benchmark accessibility and eigenvector models cannot 
produce the heavy tails that characterize the empirical data. The preferential 
model, however, shows such tails, and Figure 3 serves to illustrate that the general 
empirical shape of the system coincides with the range of predictions produced 
by the preferential centrality model.  

 
Figure 3. Complementary cumulative distribution functions (CCDF) for: empirical land 
taxation values (bold line), the preferential model, and the benchmark models – Accessibility 
and Eigenvector. Note that the lines for Accessibility and Eigenvector coincide. These model 
results were produced using the interaction parameter setting 𝛽𝛽 =  2.0. All zones within 500 
m from the coastline were excluded from this analysis. 
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3.1. Linear regression 
Table 1A compares, for a single geographical region, the performance of the 
preferential model with different parameter settings, with the eigenvector model 
and the benchmark accessibility model.  Clearly, not all sets of parameter values 
perform equally well, with performance interpreted as high association (as 
measured by R2) between model outcome and empirical land taxation values. The 
worst performing (R2 = 0.11) combination of parameter values is the preferential 
model with the highest agglomeration (𝛼𝛼 = 0.001 ) and the strongest distance 
decay (𝛽𝛽 = 3.5). Low performance is also found on the opposite side of the 
parametric space for the preferential model with R2 = 0.32 for 𝛼𝛼 = 8.0 (low 
agglomeration) and 𝛽𝛽 = 0.5 (weak distance decay). These poorly performing 
parameter values can be interpreted as poorly representing the underlying 
processes of the empirically observed system. The best R2-values are found for 
parameters chosen in the intermediate range, where 𝛼𝛼 = 0.06 and 𝛽𝛽 = 2.5 yield 
R2 = 0.65.  

For all 𝛽𝛽–values, the simpler models, Accessibility and Eigenvector, have almost 
identical performance to each other, and for every column there is a choice of 𝛼𝛼 
for which the preferential model outperforms these models. The crucial difference 
between the simpler models and the preferential model is the presence of an 
agglomeration mechanism in the latter. This interpretation is reinforced by 
observing the similarity between results for the highest studied value of 𝛼𝛼 (0.8) 
with results for the simpler models. With a high α-value the agglomeration 
process in the preferential model is substantially tuned down, forcing it to behave 
very similarly to the Eigenvector model (Hellervik et al., 2019). 

Table 1B shows the same set of regression results for the multi-regional study 
area, with similar but somewhat less clear-cut observations, compared to the 
single region. First, we get a better fit (with regard to R2) between model and 
empirical data for the single region. Second, more long-range interaction (𝛽𝛽 ≈
2,0) gives a better fit for the multi-regional area, compared to the single region 
where less long-range interaction (𝛽𝛽 ≈ 2,5) yields better performance. This is 
probably due to boundary effects, causing the distance decay of interaction to 
affect a smaller study area differently compared to a larger one. A low distance 
decay cannot play out fully in a small region because the lack of long-range 
options for interaction.  
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Further information about the regression results, including estimated parameters 
and spatial diagnostics, can be found in the Supplementary material. Regression 
analysis and spatial diagnostics were performed using PySAL (Rey and Anselin, 
2007). 

3.1. Discussion of results 
The presented results provide insights about to what degree spatial patterns in 
urban activity, here by proxy of land taxation data, may be predicted as patterns 
of centrality computed using the proposed preferential model. By pattern we 
mean, more specifically, a combined pattern of frequencies (probability 
distribution) and locations of urban activity (spatial distribution).  

Since the preferential centrality model incorporates agglomeration and interaction 
as its two principal forces, it is tempting to posit that agglomeration may 
correspond to frequencies (how much), while interaction would correspond to 
location (where). The results, however, support a picture where the effects of these 
forces cannot be easily disentangled. For example, the R2-values clearly show that 
both interaction (𝛽𝛽) and agglomeration (𝛼𝛼) influence the degree of 
correspondence with the empirical spatial distribution.  

The results suggest that it is valuable to include the agglomeration process to 
improve the performance of centrality models. Preferential centrality modelling 
makes it possible to capture the basic feedback loop between land use and 
transportation, while retaining a high degree of simplicity.  

Interaction and agglomeration are not separable in the preferential centrality 
model, and this is probably also true of the real world feedback loops that we aim 
to represent in the modelling. For example, agglomeration might cause the central 
district of some specific city to grow. Interaction can then give a spatial spill-over 
to nearby cities, causing them to grow, which, in turn, is enhanced further by local 
agglomeration. The end result is a larger amount of regional growth than would 
have been predicted if interaction and agglomeration were treated separately. 



PREPRINT, 2021-09-29  15 

Table 1. R2-values for a collection of linear regressions comparing model activity values to 
empirical land taxation. Each row corresponds to a specific 𝛼𝛼-value (only for the preferential 
centrality model). The columns represent variation of the parameter 𝛽𝛽 in the deterrence 
function. For Table 1A, the regressions are based on 185 tax assessments areas and for Table 
1B the number is 2831. High values for R2 are indicative of a better correspondence between 
model and empirics.  

 

 Model 
version 3.5 3 2.5 2 1.5 1 0.5

Preferential 0.001 0,11 0,37 0,54 0,43 0,40 0,38 0,37

“ 0.002 0,16 0,41 0,56 0,46 0,43 0,40 0,39

“ 0.004 0,23 0,47 0,59 0,49 0,46 0,43 0,41

“ 0.006 0,29 0,51 0,60 0,51 0,48 0,45 0,43

“ 0.008 0,33 0,54 0,61 0,53 0,49 0,46 0,44

“ 0.01 0,35 0,55 0,61 0,54 0,50 0,47 0,45

“ 0.02 0,43 0,59 0,63 0,57 0,52 0,49 0,48

“ 0.04 0,46 0,60 0,64 0,61 0,55 0,52 0,52

“ 0.06 0,47 0,61 0,65 0,63 0,58 0,54 0,55

“ 0.08 0,48 0,61 0,65 0,64 0,60 0,56 0,56

“ 0.1 0,48 0,61 0,65 0,64 0,61 0,58 0,57

“ 0.2 0,51 0,62 0,65 0,65 0,63 0,60 0,55

“ 0.4 0,55 0,62 0,64 0,64 0,62 0,59 0,50

“ 0.6 0,56 0,61 0,63 0,63 0,61 0,57 0,46

“ 0.8 0,56 0,61 0,62 0,62 0,60 0,55 0,44

“ 1.0 0,56 0,60 0,61 0,61 0,59 0,54 0,42

“ 2.0 0,56 0,59 0,59 0,58 0,56 0,50 0,37

“ 4.0 0,55 0,57 0,57 0,57 0,54 0,47 0,34

“ 6.0 0,54 0,57 0,57 0,56 0,53 0,46 0,33

“ 8.0 0,54 0,56 0,56 0,55 0,52 0,46 0,32

Accessibility - 0,55 0,56 0,55 0,54 0,51 0,44 0,30

Eigenvector - 0,55 0,55 0,55 0,54 0,51 0,44 0,30

 Model 
version 3.5 3 2.5 2 1.5 1 0.5

Preferential 0.001 0,10 0,17 0,27 0,46 0,48 0,47 0,35

“ 0.002 0,10 0,17 0,27 0,48 0,49 0,47 0,36

“ 0.004 0,11 0,18 0,29 0,51 0,50 0,47 0,36

“ 0.006 0,11 0,19 0,32 0,53 0,51 0,47 0,36

“ 0.008 0,11 0,19 0,36 0,53 0,51 0,48 0,36

“ 0.01 0,11 0,19 0,38 0,54 0,52 0,48 0,36

“ 0.02 0,12 0,20 0,44 0,55 0,54 0,47 0,37

“ 0.04 0,12 0,19 0,47 0,56 0,55 0,48 0,37

“ 0.06 0,12 0,19 0,49 0,57 0,55 0,48 0,37

“ 0.08 0,12 0,19 0,48 0,57 0,56 0,48 0,36

“ 0.1 0,12 0,19 0,49 0,57 0,55 0,48 0,35

“ 0.2 0,12 0,36 0,48 0,56 0,55 0,48 0,29

“ 0.4 0,27 0,35 0,53 0,56 0,54 0,44 0,22

“ 0.6 0,26 0,36 0,53 0,56 0,52 0,41 0,18

“ 0.8 0,27 0,44 0,53 0,55 0,51 0,38 0,16

“ 1.0 0,27 0,42 0,52 0,54 0,50 0,36 0,15

“ 2.0 0,27 0,41 0,51 0,52 0,46 0,31 0,12

“ 4.0 0,31 0,41 0,50 0,50 0,43 0,28 0,10

“ 6.0 0,30 0,41 0,50 0,50 0,42 0,26 0,10

“ 8.0 0,30 0,41 0,50 0,49 0,42 0,26 0,09

Accessibility - 0,46 0,50 0,52 0,49 0,40 0,24 0,09

Eigenvector - 0,45 0,50 0,52 0,49 0,39 0,23 0,08

A) Single region: Östergötland

B) Multi-regional: South Sweden

0,11 0,65

0,08 0,57

𝛼𝛼
𝛽𝛽 = 

𝛽𝛽 = 
𝛼𝛼
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4. Discussion and conclusions  
We have investigated how well a preferential centrality model can capture 
patterns of urban activity on the regional and multi-regional scales. This 
comparatively simple model incorporates important urban processes, such as the 
interplay between agglomeration and accessibility, which normally requires much 
more complicated models, for example LUTI- or spatial computable general 
equilibrium (SCGE) models. 

Output from several model versions was compared to empirical data, both for a 
single region (Östergötland in Sweden) and for a larger multi-regional area 
(southern half of Sweden). Under the used performance indicators, the 
preferential model outperforms the simpler accessibility and eigenvector models, 
suggesting that while spatial interaction plays a crucial role, it is an irreducible 
interplay between spatial interaction and agglomeration that is in play, and the 
preferential centrality measure shows promise as a general basic model to capture 
these processes. 

The results also demonstrate that the parameter 𝛽𝛽 , controlling distance decay of 
interactions, has a major influence on how well the model fits empirical data. 
Values of 𝛽𝛽 that represent substantial influence of long-range interactions produce 
the best empirical fit, confirming that urban land value variation should not be 
studied only as local phenomenon.   

The results show strong correlations between road network structure and land 
taxation values and suggest that models without agglomeration feedback will tend 
to systematically underestimate these effects, especially for locations with high 
land values, such as regional and urban centres. The preferential model 
demonstrates that agglomeration and accessibility can be studied in an integrated 
fashion that captures interactions on many scales, using only a few key parameters 
to reproduce empirically observed spatial patterns 

When comparing single regional- with multi-regional results, it is clear that model 
outputs fit empirical data better for the single region. This suggests that modelling 
on the multi-regional scale might require additional model mechanisms to take 
care of regional heterogeneity. One possibility would be to introduce regional 
variation of parameters reflecting different underlying economic structures. Other 
important factors that we have not studied, are the impacts of railway networks, 
air travel, and information technology. These could possibly have larger influence 
on the multi-regional scale compared to within a single region.  
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The travel time calculations used in this study are simplified, representing free 
flow car traffic moving according to speed limits. For a more realistic 
representation of urban transportation other modes such as walking, cycling, 
public transport as well as traffic congestion must also be considered. The choice 
to not include these aspects in the current study was based on the ambition to 
retain transparency and simplicity in the model structure. However, in future 
practical applications, it is clearly possible to use a separate full transportation 
model to generate realistic travel times for all relevant transport modes.  

This study used land taxation data as a proxy for urban activity on a detailed 
spatial scale. Compared to other possible data sources, such as population or 
employment, the main advantage is that land taxation is not limited by physical 
constraints. This means that the differences between urban economic activity at 
different locations can be observed clearly. However, the usefulness of land 
taxation data rests on the assumption that taxation values give a reasonable 
representation of underlying land values. For many countries in the world this 
might not be the case, which points towards a need for further studies where 
preferential centrality is compared to other data sources, for example satellite 
night light data.  

The present results are derived from a cross-sectional analysis with a static road 
network and a snapshot of land taxation data from one year. This means that the 
empirical observations cannot prove any causal link between network centrality 
and land value. Reverse causality or confounding factors, such as unobserved 
processes driving both network growth and land value, cannot be ruled out. 
However, since transport network growth takes place on a much slower timescale 
than land value change, it is plausible that network structure is an important 
underlying causal factor. To test this empirically, longitudinal studies are needed, 
where changes in the transport network are compared with changes in urban 
activity. 

Another related future line of work is to study how the parameters for interaction 
(𝛽𝛽) and agglomeration (𝛼𝛼) can be estimated for specific model settings. For 
interaction, it is probably possible to use direct methods such as analysis of 
mobility data. Agglomeration, however, is a process that is more difficult to 
observe directly, raising the need to use indirect methods, such as the longitudinal 
studies suggested above. In these estimations it must also be considered that the 
forces of interaction and agglomeration might change over time due to changing 
technology and policy. 
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Although the aforementioned limitations of the reported empirical results, the 
preferential centrality model has many potential merits. The model can be used 
both as a framework to understand principal linkages between transport networks, 
accessibility and agglomeration, as well as a tool in practical planning processes. 
A possible application is the analysis of potential changes in urban activity due to 
alterations of the transport network. For example, preferential centrality 
calculations for a network with and without a proposed new road can provide 
insights into the geographical distribution of the economic impacts.   

Compared to more complicated models, such as LUTI or SCGE, the lightweight 
approach of a preferential centrality model substantially lowers the barriers of 
entry into urban and regional modelling, especially in settings where data and 
resources are limited. This is achieved while retaining the important capacity to 
describe urban agglomeration processes, which is not present in other network 
centrality measures and static accessibility indicators.   
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Preferential centrality as a multi-regional model for spatial interaction and urban agglomeration

 - supplementary regression results

This document contains a number of supplementary tables to provide additional information about the regression results. Results are presented for two separate modelling set-ups: A) The 

single Swedish region of Östergötland (N=185 observations), and B) a multi-regional area covering most of south Sweden (N=2831 observations).

The columns in the tables represent variation of the parameter β in the deterrence function, and the rows represent variation of model version and the parameter α. 

All regression analyses were performed in PySAL (v 2.0.0) using ordinary least squares with spatial diagnostics.  Nearest neighbor weights matrices were used, based on 4 nearest 

neighbors. The weights matrices were symmetrized and row-standardized.

All results refer to this regression model, described in the main article:

log 𝑦𝑗
∗ = 𝑏0 + 𝑏1 log 𝑎𝑗

∗ + 𝜖𝑗



 Model version 3.5 3 2.5 2 1.5 1 0.5 3.5 3 2.5 2 1.5 1 0.5

Preferential 0.001 0.11 0.37 0.54 0.43 0.40 0.38 0.37 0.10 0.17 0.27 0.46 0.48 0.47 0.35

“ 0.002 0.16 0.41 0.56 0.46 0.43 0.40 0.39 0.10 0.17 0.27 0.48 0.49 0.47 0.36

“ 0.004 0.23 0.47 0.59 0.49 0.46 0.43 0.41 0.11 0.18 0.29 0.51 0.50 0.47 0.36

“ 0.006 0.29 0.51 0.60 0.51 0.48 0.45 0.43 0.11 0.19 0.32 0.53 0.51 0.47 0.36

“ 0.008 0.33 0.54 0.61 0.53 0.49 0.46 0.44 0.11 0.19 0.36 0.53 0.51 0.48 0.36

“ 0.01 0.35 0.55 0.61 0.54 0.50 0.47 0.45 0.11 0.19 0.38 0.54 0.52 0.48 0.36

“ 0.02 0.43 0.59 0.63 0.57 0.52 0.49 0.48 0.12 0.20 0.44 0.55 0.54 0.47 0.37

“ 0.04 0.46 0.60 0.64 0.61 0.55 0.52 0.52 0.12 0.19 0.47 0.56 0.55 0.48 0.37

“ 0.06 0.47 0.61 0.65 0.63 0.58 0.54 0.55 0.12 0.19 0.49 0.57 0.55 0.48 0.37

“ 0.08 0.48 0.61 0.65 0.64 0.60 0.56 0.56 0.12 0.19 0.48 0.57 0.56 0.48 0.36

“ 0.1 0.48 0.61 0.65 0.64 0.61 0.58 0.57 0.12 0.19 0.49 0.57 0.55 0.48 0.35

“ 0.2 0.51 0.62 0.65 0.65 0.63 0.60 0.55 0.12 0.36 0.48 0.56 0.55 0.48 0.29

“ 0.4 0.55 0.62 0.64 0.64 0.62 0.59 0.50 0.27 0.35 0.53 0.56 0.54 0.44 0.22

“ 0.6 0.56 0.61 0.63 0.63 0.61 0.57 0.46 0.26 0.36 0.53 0.56 0.52 0.41 0.18

“ 0.8 0.56 0.61 0.62 0.62 0.60 0.55 0.44 0.27 0.44 0.53 0.55 0.51 0.38 0.16

“ 1.0 0.56 0.60 0.61 0.61 0.59 0.54 0.42 0.27 0.42 0.52 0.54 0.50 0.36 0.15

“ 2.0 0.56 0.59 0.59 0.58 0.56 0.50 0.37 0.27 0.41 0.51 0.52 0.46 0.31 0.12

“ 4.0 0.55 0.57 0.57 0.57 0.54 0.47 0.34 0.31 0.41 0.50 0.50 0.43 0.28 0.10

“ 6.0 0.54 0.57 0.57 0.56 0.53 0.46 0.33 0.30 0.41 0.50 0.50 0.42 0.26 0.10

“ 8.0 0.54 0.56 0.56 0.55 0.52 0.46 0.32 0.30 0.41 0.50 0.49 0.42 0.26 0.09

Accessibility - 0.55 0.56 0.55 0.54 0.51 0.44 0.30 0.46 0.50 0.52 0.49 0.40 0.24 0.09

Eigenvector - 0.55 0.55 0.55 0.54 0.51 0.44 0.30 0.45 0.50 0.52 0.49 0.39 0.23 0.08

0.11 0.65 0.08 0.57

A) Single region: Östergötland B) Multi-regional: South Sweden

Table 1, R
2
-values for the OLS regression. (This table appears also in the main article.)

𝛼
𝛽 = 𝛽 =



 Model version 3.5 3 2.5 2 1.5 1 0.5 3.5 3 2.5 2 1.5 1 0.5

Preferential 0.001 0.18 0.32 0.43 0.40 0.42 0.43 0.40 0.60 0.62 0.55 0.45 0.39 0.37 0.28

“ 0.002 0.24 0.37 0.49 0.45 0.47 0.48 0.45 0.62 0.65 0.57 0.52 0.45 0.42 0.32

“ 0.004 0.33 0.45 0.54 0.51 0.52 0.53 0.51 0.66 0.70 0.43 0.60 0.51 0.48 0.37

“ 0.006 0.39 0.49 0.56 0.54 0.55 0.56 0.54 0.68 0.73 0.49 0.64 0.56 0.53 0.41

“ 0.008 0.43 0.52 0.58 0.56 0.57 0.57 0.56 0.71 0.76 0.56 0.67 0.59 0.55 0.44

“ 0.01 0.46 0.54 0.59 0.57 0.58 0.59 0.58 0.72 0.79 0.60 0.69 0.62 0.58 0.48

“ 0.02 0.54 0.59 0.61 0.61 0.61 0.62 0.65 0.78 0.87 0.73 0.77 0.72 0.67 0.60

“ 0.04 0.57 0.61 0.63 0.64 0.64 0.67 0.77 0.82 0.98 0.80 0.82 0.82 0.78 0.79

“ 0.06 0.59 0.62 0.64 0.66 0.68 0.72 0.88 0.84 1.01 0.84 0.85 0.89 0.87 0.94

“ 0.08 0.60 0.62 0.64 0.68 0.70 0.76 0.97 0.85 1.03 0.85 0.87 0.93 0.94 1.06

“ 0.1 0.60 0.63 0.65 0.69 0.73 0.81 1.05 0.86 1.05 0.87 0.89 0.97 1.00 1.17

“ 0.2 0.64 0.65 0.68 0.73 0.82 0.96 1.30 0.88 0.76 0.92 0.97 1.07 1.21 1.43

“ 0.4 0.68 0.69 0.72 0.80 0.92 1.14 1.57 0.67 0.81 1.00 1.04 1.20 1.45 1.54

“ 0.6 0.71 0.71 0.76 0.85 1.00 1.25 1.69 0.70 0.85 1.04 1.10 1.29 1.56 1.53

“ 0.8 0.73 0.74 0.78 0.88 1.05 1.33 1.76 0.72 0.93 1.08 1.15 1.35 1.63 1.51

“ 1.0 0.74 0.76 0.80 0.91 1.09 1.38 1.80 0.74 0.94 1.11 1.19 1.40 1.67 1.48

“ 2.0 0.79 0.81 0.87 0.99 1.20 1.52 1.87 0.79 1.00 1.17 1.29 1.52 1.73 1.40

“ 4.0 0.83 0.86 0.92 1.06 1.28 1.60 1.89 0.84 1.05 1.22 1.37 1.60 1.75 1.34

“ 6.0 0.85 0.87 0.94 1.08 1.31 1.63 1.90 0.86 1.06 1.24 1.40 1.63 1.75 1.31

“ 8.0 0.86 0.88 0.95 1.09 1.33 1.65 1.90 0.86 1.07 1.25 1.41 1.65 1.74 1.30

Accessibility - 0.83 0.89 0.98 1.14 1.38 1.70 1.89 1.00 1.10 1.23 1.43 1.69 1.74 1.25

Eigenvector - 0.86 0.90 0.98 1.14 1.38 1.70 1.89 0.99 1.10 1.23 1.44 1.69 1.73 1.25

1.00 1.00

Table 2, OLS estimation for the slope coefficient b1 

0.18 1.90 0.28 1.75

A) Single region: Östergötland B) Multi-regional: South Sweden

𝛼
𝛽 = 𝛽 =



 Model version 3.5 3 2.5 2 1.5 1 0.5 3.5 3 2.5 2 1.5 1 0.5

Preferential 0.001 4.3E-06 2.5E-20 1.9E-32 4.3E-24 3.6E-22 1.0E-20 8.3E-20 6.2E-68 1.8E-117 5.3E-193 0.0E+00 0.0E+00 0.0E+00 2.7E-271

“ 0.002 2.3E-08 9.7E-23 7.9E-35 3.4E-26 5.7E-24 2.9E-22 3.6E-21 1.7E-69 2.6E-120 5.4E-197 0.0E+00 0.0E+00 0.0E+00 6.9E-273

“ 0.004 3.5E-12 3.3E-27 3.7E-37 1.1E-28 4.8E-26 4.4E-24 7.8E-23 7.8E-72 9.3E-125 6.8E-211 0.0E+00 0.0E+00 0.0E+00 7.4E-275

“ 0.006 4.2E-15 2.3E-30 2.9E-38 2.6E-30 1.7E-27 2.7E-25 6.3E-24 1.6E-73 4.5E-128 7.3E-238 0.0E+00 0.0E+00 0.0E+00 1.7E-276

“ 0.008 2.4E-17 1.8E-32 5.3E-39 1.5E-31 2.1E-28 4.6E-26 9.2E-25 8.7E-75 1.2E-130 5.9E-273 0.0E+00 0.0E+00 0.0E+00 6.0E-278

“ 0.01 4.2E-19 5.9E-34 1.6E-39 1.5E-32 4.2E-29 9.8E-27 2.0E-25 8.8E-76 1.0E-132 2.2E-291 0.0E+00 0.0E+00 0.0E+00 1.4E-278

“ 0.02 6.9E-24 2.5E-37 3.7E-41 9.9E-36 3.0E-31 1.2E-28 1.3E-27 1.3E-78 7.2E-139 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.1E-282

“ 0.04 2.1E-26 1.7E-38 1.3E-42 2.8E-39 6.1E-34 5.4E-31 8.2E-31 9.9E-81 2.0E-131 0.0E+00 0.0E+00 0.0E+00 0.0E+00 6.6E-285

“ 0.06 3.8E-27 2.9E-39 3.1E-43 4.0E-41 2.8E-36 4.5E-33 3.6E-33 1.4E-81 9.4E-133 0.0E+00 0.0E+00 0.0E+00 0.0E+00 9.1E-284

“ 0.08 5.4E-28 2.3E-39 1.5E-43 5.1E-42 5.9E-38 7.6E-35 1.9E-34 5.1E-82 1.8E-133 0.0E+00 0.0E+00 0.0E+00 0.0E+00 6.0E-279

“ 0.1 5.1E-28 1.3E-39 1.0E-43 1.4E-42 4.7E-39 3.7E-36 5.1E-35 2.7E-82 6.1E-134 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.0E-271

“ 0.2 4.3E-30 5.6E-40 1.0E-43 2.0E-43 3.8E-41 2.3E-38 1.2E-33 7.4E-83 3.6E-277 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.3E-216

“ 0.4 2.6E-33 4.1E-40 1.3E-42 1.1E-42 9.5E-41 5.5E-37 3.2E-29 5.3E-199 1.6E-270 0.0E+00 0.0E+00 0.0E+00 0.0E+00 6.4E-154

“ 0.6 2.6E-34 1.3E-39 2.0E-41 2.2E-41 2.3E-39 4.7E-35 2.3E-26 2.5E-189 6.0E-273 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.1E-125

“ 0.8 1.7E-34 6.2E-39 2.1E-40 2.9E-40 3.9E-38 1.5E-33 1.7E-24 4.2E-198 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.7E-298 3.7E-110

“ 1.0 1.4E-34 1.9E-38 1.2E-39 2.4E-39 3.7E-37 1.9E-32 3.7E-23 1.6E-198 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.0E-278 7.4E-100

“ 2.0 5.1E-34 8.6E-37 2.2E-37 8.7E-37 2.1E-34 2.0E-29 5.2E-20 3.5E-198 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.1E-230 1.1E-78

“ 4.0 2.8E-33 1.7E-35 8.8E-36 5.6E-35 1.7E-32 2.2E-27 4.1E-18 7.7E-227 0.0E+00 0.0E+00 0.0E+00 0.0E+00 6.6E-201 7.6E-68

“ 6.0 6.9E-33 5.8E-35 3.9E-35 2.9E-34 9.4E-32 1.3E-26 2.0E-17 8.9E-221 0.0E+00 0.0E+00 0.0E+00 0.0E+00 7.5E-190 5.4E-64

“ 8.0 9.8E-33 1.1E-34 8.2E-35 6.7E-34 2.3E-31 3.4E-26 4.4E-17 1.3E-217 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.7E-184 3.2E-62

Accessibility - 3.1E-33 5.0E-34 6.1E-34 7.6E-33 3.6E-30 6.6E-25 5.0E-16 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.8E-168 5.2E-57

Eigenvector - 3.2E-33 5.8E-34 7.8E-34 9.0E-33 4.1E-30 7.5E-25 6.0E-16 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.4E-165 2.8E-56

Table 3, p-values for the slope coefficient b1
A) Single region: Östergötland B) Multi-regional: South Sweden

𝛼
𝛽 = 𝛽 =

𝛼
𝛽 = 𝛽 =



 Model version 3.5 3 2.5 2 1.5 1 0.5 3.5 3 2.5 2 1.5 1 0.5

Preferential 0.001 0.49 6.37 11.60 4.91 5.44 5.53 3.49 42.41 46.05 27.32 2.94 0.35 3.00 22.44

“ 0.002 1.76 6.25 11.56 4.88 5.02 4.75 2.82 43.57 48.09 28.43 3.85 0.63 1.47 17.31

“ 0.004 4.77 7.72 11.40 4.65 4.21 3.68 1.94 45.65 51.96 0.00 5.08 1.21 0.44 11.98

“ 0.006 7.54 9.37 10.53 4.39 3.70 3.01 1.44 47.42 55.47 0.35 5.81 1.84 0.10 8.78

“ 0.008 9.87 10.52 9.91 4.13 3.20 2.48 1.14 48.92 58.61 1.90 6.40 2.47 0.03 6.50

“ 0.01 11.78 11.24 9.38 3.93 2.81 2.13 0.94 50.22 61.43 3.37 6.96 3.06 0.01 4.41

“ 0.02 16.92 12.30 7.87 3.38 1.77 1.18 0.60 54.70 71.96 13.57 10.13 6.79 1.05 0.25

“ 0.04 19.26 12.30 6.88 3.15 1.24 0.77 1.06 59.11 90.11 25.20 14.36 12.80 5.86 3.75

“ 0.06 19.97 12.38 6.58 3.18 1.32 0.92 2.46 61.31 95.58 32.79 17.64 19.53 12.67 15.52

“ 0.08 20.73 12.58 6.51 3.26 1.57 1.35 4.42 62.64 99.17 36.20 20.67 24.33 20.60 32.10

“ 0.1 21.00 12.72 6.53 3.40 1.88 1.94 6.57 63.54 101.75 41.25 23.71 29.62 29.21 50.98

“ 0.2 23.05 13.49 7.10 4.40 3.68 5.61 16.44 65.62 42.65 56.91 39.09 48.46 74.45 123.54

“ 0.4 24.67 14.33 8.61 6.56 7.11 12.04 29.48 39.83 57.85 78.48 54.34 80.26 147.61 175.96

“ 0.6 25.45 15.32 9.95 8.33 9.76 16.72 36.81 48.97 70.30 93.71 68.50 106.39 192.29 189.45

“ 0.8 26.20 16.45 11.06 9.70 11.84 20.17 41.21 53.05 102.10 106.84 83.14 127.13 219.87 190.95

“ 1.0 26.74 17.21 11.95 10.80 13.46 22.78 44.05 57.58 105.37 116.35 95.31 143.57 237.82 187.79

“ 2.0 28.83 19.85 14.67 14.01 18.15 29.70 49.78 70.59 123.87 141.46 128.67 190.25 275.63 169.51

“ 4.0 30.59 22.01 16.83 16.50 21.61 34.29 52.33 91.64 144.18 159.87 154.66 223.46 291.28 152.14

“ 6.0 31.44 22.95 17.77 17.57 23.03 36.04 53.06 93.62 152.17 166.67 166.75 235.95 294.84 144.36

“ 8.0 31.77 23.32 18.20 18.11 23.77 36.92 53.37 94.73 156.41 170.31 172.09 242.86 296.35 140.53

Accessibility - 25.86 21.66 18.95 19.74 26.14 39.69 54.15 207.24 180.56 157.79 178.60 263.49 299.28 128.30

Eigenvector - 28.63 22.59 19.18 19.82 26.24 39.79 54.19 197.94 176.80 156.41 179.71 265.54 297.30 126.31

Table 4, Spatial diagnostics - Robust lagrange multiplier test for spatial lag model, statistic

A) Single region: Östergötland B) Multi-regional: South Sweden

0.5 54.2 0.0 299.3

𝛽 = 𝛽 =

𝛼
𝛽 = 𝛽 =



 Model version 3.5 3 2.5 2 1.5 1 0.5 3.5 3 2.5 2 1.5 1 0.5

Preferential 0.001 0.48607 0.01164 0.00066 0.02676 0.01970 0.01872 0.06181 0.00000 0.00000 0.00000 0.08637 0.55373 0.08344 0.00000

“ 0.002 0.18465 0.01245 0.00067 0.02710 0.02499 0.02933 0.09319 0.00000 0.00000 0.00000 0.04971 0.42793 0.22504 0.00003

“ 0.004 0.02888 0.00545 0.00073 0.03099 0.04008 0.05517 0.16409 0.00000 0.00000 0.98085 0.02426 0.27097 0.50691 0.00054

“ 0.006 0.00605 0.00221 0.00117 0.03616 0.05442 0.08250 0.23060 0.00000 0.00000 0.55440 0.01592 0.17468 0.75263 0.00304

“ 0.008 0.00168 0.00118 0.00164 0.04219 0.07370 0.11532 0.28480 0.00000 0.00000 0.16753 0.01140 0.11620 0.86749 0.01079

“ 0.01 0.00060 0.00080 0.00219 0.04751 0.09389 0.14484 0.33116 0.00000 0.00000 0.06655 0.00833 0.08033 0.93337 0.03574

“ 0.02 0.00004 0.00045 0.00502 0.06618 0.18374 0.27837 0.43797 0.00000 0.00000 0.00023 0.00146 0.00915 0.30505 0.61708

“ 0.04 0.00001 0.00045 0.00872 0.07574 0.26556 0.38052 0.30391 0.00000 0.00000 0.00000 0.00015 0.00035 0.01547 0.05271

“ 0.06 0.00001 0.00043 0.01030 0.07463 0.25018 0.33693 0.11650 0.00000 0.00000 0.00000 0.00003 0.00001 0.00037 0.00008

“ 0.08 0.00001 0.00039 0.01074 0.07108 0.20986 0.24574 0.03556 0.00000 0.00000 0.00000 0.00001 0.00000 0.00001 0.00000

“ 0.1 0.00000 0.00036 0.01058 0.06521 0.17065 0.16417 0.01037 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

“ 0.2 0.00000 0.00024 0.00772 0.03593 0.05520 0.01785 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

“ 0.4 0.00000 0.00015 0.00335 0.01042 0.00768 0.00052 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

“ 0.6 0.00000 0.00009 0.00161 0.00391 0.00178 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

“ 0.8 0.00000 0.00005 0.00088 0.00185 0.00058 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

“ 1.0 0.00000 0.00003 0.00055 0.00102 0.00024 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

“ 2.0 0.00000 0.00001 0.00013 0.00018 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

“ 4.0 0.00000 0.00000 0.00004 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

“ 6.0 0.00000 0.00000 0.00002 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

“ 8.0 0.00000 0.00000 0.00002 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Accessibility - 0.00000 0.00000 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Eigenvector - 0.00000 0.00000 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

B) Multi-regional: South Sweden

0.00 0.98 0.00 0.98

Table 5, Spatial diagnostics - Robust lagrange multiplier test for spatial lag model, p-value

A) Single region: Östergötland

𝛼
𝛽 = 𝛽 =



 Model version 3.5 3 2.5 2 1.5 1 0.5 3.5 3 2.5 2 1.5 1 0.5

Preferential 0.001 9.69 8.08 1.01 4.70 4.28 3.77 3.57 143.01 248.80 346.56 234.74 163.29 176.39 176.24

“ 0.002 9.57 8.17 0.48 4.50 4.49 4.33 4.37 146.22 252.76 350.40 255.39 183.89 190.02 182.05

“ 0.004 8.44 5.77 0.13 4.23 4.84 5.03 5.37 150.57 257.81 348.82 274.43 208.71 209.71 193.26

“ 0.006 7.03 3.53 0.12 4.06 5.02 5.48 6.02 153.29 260.67 367.82 284.53 223.75 223.33 203.50

“ 0.008 5.72 2.18 0.11 3.95 5.29 5.88 6.48 155.08 262.30 385.98 291.22 233.96 231.98 212.86

“ 0.01 4.66 1.42 0.11 3.82 5.52 6.16 6.82 156.31 263.19 394.02 296.04 241.38 240.10 219.87

“ 0.02 2.05 0.33 0.14 3.26 6.15 7.01 7.49 158.81 263.18 405.83 308.46 264.57 266.25 253.84

“ 0.04 1.08 0.19 0.14 2.14 5.92 7.13 6.19 159.26 231.95 398.06 313.84 280.81 291.31 299.33

“ 0.06 0.84 0.09 0.12 1.48 4.80 6.16 3.76 158.90 228.70 390.44 315.69 287.05 305.35 324.35

“ 0.08 0.59 0.07 0.10 1.15 3.73 4.81 1.93 158.51 226.29 389.58 316.85 288.89 311.93 334.03

“ 0.1 0.55 0.04 0.08 0.90 2.92 3.57 0.85 158.18 224.43 384.55 317.81 290.23 314.77 333.49

“ 0.2 0.10 0.00 0.03 0.35 0.90 0.61 0.13 157.22 398.66 375.51 319.15 290.01 306.89 279.95

“ 0.4 0.08 0.03 0.01 0.08 0.10 0.01 1.67 365.49 384.42 329.80 309.85 283.61 274.37 184.98

“ 0.6 0.28 0.05 0.01 0.04 0.01 0.22 2.87 347.91 374.39 318.08 303.09 276.73 249.79 133.40

“ 0.8 0.43 0.08 0.01 0.02 0.00 0.49 3.65 351.19 350.75 313.04 298.68 270.89 231.14 105.25

“ 1.0 0.55 0.10 0.01 0.01 0.02 0.75 4.17 346.95 349.59 306.70 295.04 265.95 216.58 88.13

“ 2.0 0.84 0.18 0.00 0.00 0.17 1.57 5.30 333.73 334.54 291.67 283.35 248.31 175.10 57.51

“ 4.0 1.05 0.26 0.00 0.01 0.36 2.23 5.90 332.34 317.32 282.40 273.30 232.19 146.32 45.42

“ 6.0 1.14 0.31 0.01 0.02 0.46 2.49 6.10 326.98 310.58 278.64 268.31 225.04 135.29 41.88

“ 8.0 1.19 0.32 0.01 0.03 0.51 2.63 6.20 323.97 307.01 276.64 265.95 220.96 129.70 40.35

Accessibility - 0.36 0.10 0.02 0.07 0.72 3.09 6.48 256.85 267.08 274.30 260.63 207.29 112.48 36.37

Eigenvector - 0.78 0.17 0.02 0.07 0.73 3.10 6.50 266.13 271.93 277.11 261.94 205.94 110.41 35.97

Table 6, Spatial diagnostics - Robust lagrange multiplier test for spatial error model, statistic

A) Single region: Östergötland B) Multi-regional: South Sweden

0.00 9.69 35.97 405.83

𝛼
𝛽 = 𝛽 =



 Model version 3.5 3 2.5 2 1.5 1 0.5 3.5 3 2.5 2 1.5 1 0.5

Preferential 0.001 0.00186 0.00448 0.31601 0.03016 0.03864 0.05227 0.05872 5.86E-33 4.74E-56 2.38E-77 5.51E-53 2.16E-37 2.97E-40 3.21E-40

“ 0.002 0.00198 0.00426 0.48878 0.03393 0.03416 0.03742 0.03648 1.16E-33 6.49E-57 3.47E-78 1.74E-57 6.87E-42 3.15E-43 1.73E-41

“ 0.004 0.00367 0.01628 0.71940 0.03972 0.02785 0.02498 0.02045 1.30E-34 5.14E-58 7.66E-78 1.23E-61 2.62E-47 1.59E-47 6.18E-44

“ 0.006 0.00804 0.06044 0.73193 0.04387 0.02501 0.01919 0.01412 3.32E-35 1.23E-58 5.57E-82 7.73E-64 1.37E-50 1.70E-50 3.60E-46

“ 0.008 0.01674 0.13984 0.74310 0.04689 0.02147 0.01536 0.01090 1.34E-35 5.42E-59 6.20E-86 2.69E-65 8.17E-53 2.21E-52 3.26E-48

“ 0.01 0.03080 0.23381 0.73764 0.05057 0.01883 0.01308 0.00901 7.23E-36 3.46E-59 1.10E-87 2.41E-66 1.97E-54 3.75E-54 9.66E-50

“ 0.02 0.15208 0.56793 0.70625 0.07102 0.01318 0.00811 0.00621 2.06E-36 3.47E-59 2.97E-90 4.72E-69 1.73E-59 7.46E-60 3.78E-57

“ 0.04 0.29875 0.66682 0.70784 0.14328 0.01493 0.00760 0.01282 1.64E-36 2.24E-52 1.46E-88 3.19E-70 5.00E-63 2.58E-65 4.61E-67

“ 0.06 0.35820 0.76512 0.72817 0.22407 0.02842 0.01307 0.05248 1.97E-36 1.15E-51 6.65E-87 1.26E-70 2.18E-64 2.25E-68 1.64E-72

“ 0.08 0.44135 0.79053 0.74731 0.28457 0.05336 0.02826 0.16510 2.39E-36 3.85E-51 1.02E-86 7.04E-71 8.67E-65 8.30E-70 1.28E-74

“ 0.1 0.45647 0.83924 0.77083 0.34193 0.08758 0.05897 0.35756 2.82E-36 9.77E-51 1.27E-85 4.35E-71 4.43E-65 1.99E-70 1.67E-74

“ 0.2 0.74985 0.98624 0.85384 0.55619 0.34274 0.43491 0.71987 4.59E-36 1.08E-88 1.18E-83 2.22E-71 4.95E-65 1.04E-68 7.70E-63

“ 0.4 0.78258 0.87129 0.90891 0.77203 0.75231 0.92557 0.19589 1.80E-81 1.36E-85 1.06E-73 2.35E-69 1.22E-63 1.27E-61 3.96E-42

“ 0.6 0.59898 0.81501 0.91973 0.84411 0.93666 0.63881 0.09018 1.21E-77 2.07E-83 3.79E-71 7.01E-68 3.87E-62 2.89E-56 7.41E-31

“ 0.8 0.51370 0.77591 0.92449 0.88089 0.95416 0.48278 0.05617 2.33E-78 2.91E-78 4.76E-70 6.38E-67 7.27E-61 3.36E-52 1.08E-24

“ 1.0 0.45977 0.75210 0.93443 0.90469 0.87645 0.38730 0.04122 1.96E-77 5.21E-78 1.14E-68 3.96E-66 8.67E-60 5.04E-49 6.13E-21

“ 2.0 0.35905 0.67527 0.98459 0.99126 0.67994 0.20962 0.02130 1.48E-74 9.86E-75 2.15E-65 1.40E-63 6.06E-56 5.69E-40 3.37E-14

“ 4.0 0.30521 0.61040 0.95369 0.92539 0.54870 0.13561 0.01516 2.98E-74 5.55E-71 2.25E-63 2.17E-61 1.98E-52 1.10E-33 1.59E-11

“ 6.0 0.28506 0.58004 0.92101 0.88598 0.49888 0.11429 0.01353 4.37E-73 1.63E-69 1.49E-62 2.65E-60 7.19E-51 2.86E-31 9.69E-11

“ 8.0 0.27580 0.57153 0.90697 0.86460 0.47331 0.10454 0.01281 1.98E-72 9.79E-69 4.04E-62 8.68E-60 5.59E-50 4.77E-30 2.12E-10

Accessibility - 0.55030 0.74972 0.90115 0.79460 0.39490 0.07864 0.01090 8.35E-58 4.90E-60 1.31E-61 1.25E-58 5.35E-47 2.81E-26 1.63E-09

Eigenvector - 0.37625 0.67838 0.89185 0.79562 0.39380 0.07806 0.01079 7.92E-60 4.31E-61 3.20E-62 6.48E-59 1.05E-46 7.95E-26 2.01E-09

0.00 0.99 0.00 0.99

Table 7, Spatial diagnostics - Robust lagrange multiplier test for spatial error model, p-value

A) Single region: Östergötland B) Multi-regional: South Sweden

𝛼
𝛽 = 𝛽 =
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