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Networks of urban interaction  

- Growth and centrality in the complex geography of urban activity 

 

ALEXANDER HELLERVIK 

Department of Space, Earth and Environment 

Chalmers University of Technology 

 

ABSTRACT 
How cities and regions grow and decline depend on technological, social and economic 
factors. Understanding the interplay of these forces is central in research efforts aiming to 
improve urban and transport planning. The purpose of this thesis is to explore how 
mathematical modelling and computer simulation can contribute to these efforts and a central 
aim is to achieve practically useful models with retained conceptual simplicity as well as 
correspondence to important empirical patterns. 

The approach combines a spatially fine-grained representation of land, with processes of 
urban interaction based on the theory of complex networks. Urban activity at a location is 
modelled as the sum of all economic interactions stemming from that location. The potentials 
for interactions and activity are deduced mainly from spatial constraints, such as transport 
networks and land use regulations. Concepts that are studied include urban growth, 
accessibility and urban agglomeration. 

For model validation, an extensive data set on Swedish land taxation values is used. These 
values are based on actual sales prices and rent levels and can thus be considered as 
reasonable proxies for urban economic activity. Comparisons are made between empirical 
data and model outcomes, both with regard to probability distributions and geographical 
distributions.  

The empirical probability distribution of land values is found to be well approximated by a 
power law, strengthening the case for modelling the system as a complex network based on 
a process of multiplicative growth. By combining these principles with spatial interaction 
mediated by a transport network, the preferential centrality model is formulated. The activity 
predictions generated by this model reproduces empirical geographical patterns of land 
values.  

The presented models provide explanatory links between the structure of transportation 
networks and the geographical distributions of urban economic activity. This makes them 
attractive as starting points for the further step of creating practically useful planning 
applications. For example, the models could be used to assess how specific transport 
infrastructure improvements influence urban expansion. 
Keywords: urban growth, complex networks, centrality, transport infrastructure, urban activity, power law, 
Zipf’s law, accessibility, spatial interaction  
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Part I 

1 Introduction 

1.1 Background and aim 
Cities and regions are shaped by a constant struggle to overcome the physical 
constraints hindering human and economic interaction. To this end, 
technological, social and economic structures are continuously developing into 
an increasingly intertwined urban system. Many of the components in this 
system can be described as being connected in networks. At the bottom, there 
are physical networks, such as rivers, roads, and rail-roads, and on top of them, 
we can find several layers of increasingly abstract networks of social and 
economic interactions. 

The location, growth and decline of urban activities, such as workplaces, 
services and housing, are to a large extent dependent on access to other activities 
and how this access is mediated through transportation networks. At the same 
time, the transportation system itself is slowly transformed in response to the 
needs and locations of these urban activities. The slowly changing physical 
urban structures, such as buildings and transportation networks, set the stage for 
more rapid changes in activities and in their interactions.  

The fact that physical structures might have a strong influence on many social 
and economic outcomes has spurred a growing interest in how policy and 
planning for land use and transportation can achieve broader societal aims. 
Considerations that are becoming increasingly important are, for example, 
limitation of climate and ecological impacts, energy consumption, quality of 
life, segregation and the balance between urban and rural development. The 
question has also been raised regarding the future role of large cities as centres 
for employment and activity. If trends regarding remote working become the 
new norm – what geographical transformations will that entail? What is clear is 
that behavioural changes, as well as changes in infrastructure and technology, 
can have profound impacts on the spatial organization of human and economic 
activities. 

For the purpose of gaining a deeper understanding of all these processes and 
their linkages, it is indispensable to build models. Such models can be either 
plainly conceptual or also involve mathematical and algorithmic aspects. In the 
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mathematical modelling of urban systems, approaches often fall within one of 
two categories, as discussed by Barthelemy (2016) and shown in  Figure 1.  

On one side of the modelling spectrum, we find conceptually and 
mathematically clear models aiming to capture general principles but without 
the intent of providing empirically verifiable predictions for specific cases. On 
the opposite side, we find complicated and data-hungry simulation models with 
detailed representations of many sub-processes. These latter models can be 
calibrated to achieve high empirical accuracy for a particular setting, but this 
comes with a large risk of overfitting.  

Both approaches face substantial (but different) challenges when applied in 
actual urban and transport planning. In the former case, without empirical 
verification, it becomes difficult to trust any specific predictions. In the latter 
case, with too many parameters, there will always be a huge risk that 
conclusions are limited to the time and place represented by the calibration data. 
In a rapidly changing technological environment, this can quickly make a 
detailed model useless in practice. 

 
Figure 1. Adapted from Barthelemy (2016). The rationale for searching for new and minimal 
urban models.  

This thesis is positioned in a line of urban modelling research (Wilson, 2000; 
Batty, 2012; Barthelemy, 2016) that tries to overcome this dichotomy by 
applying concepts and mathematical tools inspired by theories of complex 
systems, statistical physics and complex networks. The aim is to create minimal 
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models with acceptable conceptual clarity, as few parameters as possible and 
satisfactory empirical validation.   

To model urban systems in a way that is relevant in planning for the future, a 
solid grounding in basic principles is needed, and these principles need to be 
verified by observations. Models with a sole focus on phenomenology bear the 
risk of over-emphasizing aspects of the current state of the system that is being 
observed. A minimal model using less data might actually be more reliable in 
understanding processes that extend over time, not at least because we can 
anticipate that unknown non-marginal changes will occur in the future 
regarding transport technology and other system parameters.  

1.2 Conceptual framework 
Urban systems are in this thesis represented as outcomes of a co-evolutionary 
process involving land use and several layers of man-made networks, from 
physical infrastructure to abstract social and economic interaction networks. 
Urban activity at a location is assumed to consist of the aggregate interactions 
involving that location, which means that any non-interacting activity, by 
definition, is excluded from the modelling. 

Figure 2 shows an overview of the underlying framework that forms the basis 
of the studied modelling approaches. Urban land use and its activities are 
modified by constraints from spatial planning and the spatial networks (such as 
streets and roads) together with the economic forces exerted by the interaction 
network. 

The interaction network is shaped by the relative accessibility between different 
activities. Accessibility is determined in the interplay between different classes 
of activities that can take the role of both being attractions and origins for the 
interactions. Travel times (or generalised travel costs) make up the other 
necessary component in an accessibility calculation, and these are largely 
determined by the physical networks. 

The physical network is shaped in part by transport planning and in part by the 
constraints of other urban land use and natural geography. In the physical 
network, we find flows of people, vehicles and goods. These flows are 
determined by the needs posed by the interaction network, but the actual routes 
taken are determined by the physical network structure.  When flows grow large 
relative to capacity, negative feedback is initiated due to congestion, where 
travel times and accessibility, as well as the resulting interactions, might be 
dampened. 
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Since economic flow drives urban land use, positive feedback in the form of 
agglomerative forces can occur. This can be described as a mechanism where 
the urban interaction networks create conditions for their own further growth.   

Between urban land use and the physical network, there is another, slower 
mutual dependency. On the one hand, the changes in urban land use drive the 
demand for new links and increased capacity in the physical network. On the 
other hand, the physical network can create necessary local conditions for the 
development of land. This means that the linkages between transport and land 
use are both direct and indirect, and these distinctions must be handled with care 
in any model or empirical study.  

 
Figure 2. A conceptual framework for the formulation of urban models. 

 

The picture painted in Figure 2 is, of course, only one of many possible ways to 
break apart and simplify the linkages between relevant subsystems. Another 
related conceptualisation is the land-use transport feedback cycle (Wegener, 
1995). However, any conceptual framework can only serve as a starting point. 
The further steps of mathematical modelling and empirical tests are also crucial 
to determine the explanatory relevance of the framework.  
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1.3 Scientific context 
There is a vast literature on using economic theory to describe and model cities 
and regions (e.g. Glaeser, 2008; Fujita et al., 1999). The research presented in 
this thesis is not based in that tradition. No microeconomic interpretation is 
presented, markets are not explicitly modelled, and there are no formal notions 
of supply and demand. With regard to the lack of connections to these economic 
concepts, the research efforts should instead be considered to be about the 
spatial relations between locations and the resulting forces on the geography of 
urban activity.  

Although the research is not based on economic theory, urban economic activity 
is an important underlying concept, both with regard to empirical data and 
interpretation of model assumptions. The main empirical data source is urban 
land taxation values, which we consider to be a relevant proxy for urban 
activity.  

It should also be noted that the empirical studies are not based on an 
econometric tradition. For instance, we have not attempted to derive an 
estimation of land value for particular locations. The presented methods could, 
however, be relevant with regard to land value assessment, but then many more 
empirical factors and methodological concerns should be taken into account. 

Two of the included papers are published in physics journals. This does not 
mean that the presented research should be interpreted as a direct application of 
physics-based modelling to urban systems. The relation to physics should rather 
be considered as a shared approach with regard to modelling principles. Models 
should be based on a minimal number of simple principles, and model outcomes 
should be possible to interpret in relation to observations. Also, urban models 
should provide more than bare numerical predictions – they also need to 
contribute to relevant explanations in the context of geography and planning.  

As discussed by Pumain (2020), regarding the increasing multi-disciplinary 
efforts to understand cities, there is yet no agreed-upon set of terminology, 
entities or core concepts. This, unfortunately, means that any reader of this 
thesis, regardless of their scientific field, will probably find some usage of a 
term or concept confusing or even erroneous. 
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1.4 About this thesis 
The thesis is based on the work documented in the five included papers as 
summarised in Table 1. The first three papers were published during 2003-2006 
and describes a complex network approach to urban growth. The work for the 
two later papers was performed during 2016-2021 and continue building upon 
the same conceptual framework but with a shift of focus toward urban 
centrality. In the meantime, from 2006 to 2016, the author has worked in 
practice, mainly with transport infrastructure planning, which has contributed 
to a shift in focus from abstraction towards models aimed at actual applications.   

The long timeframe for the underlying research has had some impact on the 
consistency of terminology and notation between Papers I-III and Papers IV-V. 
One advantage of the duration has been increased clarity regarding what kinds 
of development of the original models were necessary to increase applicability 
in land use and transport planning. The introduction of an explicit representation 
of the transport network has been the most important of these extensions.    

 

Paper Type of 
model 

Empirical data Empirical 
comparisons 

Scale 

I Urban 
Growth 

Land taxation values Cells National 

II Urban 
Growth 

Land taxation values, 
population data 

Cells and 
clusters 

National 

III Urban 
Growth 

Land taxation values, 
population data 

Cells and 
clusters 

National 

IV Urban 
Centrality 

Land taxation values, 
land use codes, road 
network 

Property-based 
zones 

Single city 

V Urban 
Centrality 

Land taxation values, 
land use codes, road 
network 

Property-based 
zones and 
administrative 
taxation areas 

Regional 
and multi-
regional 

Table 1. Overview of included papers. 
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These are the main claims presented in the papers: 

• Cities are not needed as entities when explaining the observed 
distributions of urban land value. Instead, a cellular (or zonal) 
representation can be considered more fundamental.  

• Conceiving the urban geography as a system of interconnected networks 
provides a natural framework to model and explain the spatial 
distribution of economic activity. 

• A spatial multiplicative growth model can explain several aspects of 
observed statistical distributions of urban activity.  

• A novel centrality model, incorporating the underlying physical 
transportation network, as well as multiplicative attraction of activity, can 
predict spatial patterns of urban activity, both regionally and within cities. 

The thesis consists of two parts. The first part contains a general framing of the 
included papers and the presented models within the contexts of complex 
systems, complex networks and urban modelling. The second part consists of 
the five included papers and supplementary material.  

For complete descriptions of the discussed models, the reader is referred to 
paper II or III for the urban growth model and to paper IV for the centrality 
model.  

2 Complex systems 
Both the natural and social sciences have, during the last century, experienced 
enormous growth in activity and published results. With this growth has also 
come an accelerating branching into disciplines and sub-disciplines. These 
specialisations are naturally followed by a tendency to spend large efforts in 
understanding single components of systems. 

The branching of knowledge-production is in part counterbalanced by efforts to 
synthesise different branches by reaching out to other disciplines. The science 
of complex systems is rooted in these efforts, with an aim to better understand 
how interaction according to simple rules can give rise to higher-order patterns.  

Such emergent patterns are often not intuitively derivable from the behaviour 
of system components. One reason is that nonlinear interactions make aggregate 
patterns non-additive. This applies to many systems of both natural and social 
origin, with the exception of some designed systems, where elaborate care has 
been taken to isolate parts from each other to actively achieve linearity. 
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Complex systems science is far from a well-defined or well-delimited research 
area. Its perspectives are applicable to many branches of science, and its 
contributors come from very different scientific backgrounds. Some of these 
scientists are deeply rooted in a specific discipline and then focus on the 
complexity aspects arising in their particular problems. Others aim to transfer 
conclusions from one subject area to another, for example, from biology to 
economy.  

There is also no agreed-upon definition of complexity, but a useful, intuitive 
notion is that truly complex systems lack compressed descriptions of their 
regularities (Gell-Mann, 1995). Cities and urban systems are great examples of 
this. Many small parts interact according to local rules, causing the whole 
system to behave in a way that is not particularly intended by any specific actor.  

Complex systems theory provides a large toolbox with a diverse set of concepts 
and models. This opens up many interesting perspectives with regard to 
geography and urban systems. In this thesis, only a subset of these possibilities 
has been explored, namely the tools of multiplicative growth, simulation and 
network analysis. 

An important caveat to consider when applying these tools to understand urban 
systems is that there seems to be little to find with regard to universal laws of 
complexity. This means that every model has to be tested in the actual context 
for its suitability for the intended purpose. Or, as stated by Wilson (2000), 
regarding natural science concepts applied to problems in other disciplines: 
“The application of these ideas then have to stand up within the fields in which 
they are applied.” 

3 Urban modelling 
Cities and urban systems have been studied within many subject areas, 
including demography, economics, geography, architecture, transportation, 
sociology, ecology, history and anthropology. From a methods perspective, the 
list could be extended with the disciplines of philosophy, statistics, 
mathematics, physics, computer science and complex systems science. This 
plethora of perspectives makes it impossible to give a compact overview of all 
different approaches towards theory and modelling. 

Within a more narrow scope of models that can be more directly related to the 
complexity perspective, early examples include the models of von Thunen 
(1826), Weber (1929) and Christaller (1933). These models are, however, 
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mostly concerned with a static urban structure and are not well adapted to 
describe the spatial structure of modern growing cities. Von Thunen’s ring 
model depends on the interaction with a pre-defined urban centre and has no 
notion of relations between other locations.  Weber’s model of location includes 
no concept of urban form at all, since all focus is on the decisions of a single 
firm. Christaller’s model could be used to describe urban structure, but the 
dependence on a pre-defined hierarchy makes it difficult to include a realistic 
representation of spatial urban dynamics. 

In paper III, a distinction is made between conceptual and topical models for 
urban growth. Conceptual models are mostly aimed at providing theoretical 
insights about general characteristics of urban systems, with less focus on 
numerical predictive power for actual, specific cities. Examples of such models 
are multiplicative growth models, models of correlated percolation, diffusion-
limited aggregation, agent-based evolutionary models, and neoclassical 
economic models (Alonso, 1964; Alonso, 1972; Arthur, 1987; Axtell and 
Florida, 2001; Batty, 1991; Batty and Longley, 1994; Berry and W. L. Garrison, 
1958; Dendrinos and Rosser, 1992; Fujita et al., 1999; Gabaix, 1999; 
Henderson, 1974; Lane, 2002; Makse et al., 1998; Manrubia et al., 1999; Marsili 
and Zhang, 1998; Reed, 2002; Rosser, 1998; Simon, 1955). 

Topical models for urban growth are typically designed to answer questions 
about specific cities or regions. They often have a complicated structure with 
many submodels. A common framework is cellular automata (CA), with Tobler 
(1979) as a pioneer. CA has been further developed and explored by Couclelis 
(1985), White and Engelen (1997), Clarke et al. (1997), Itami (1988), 
Andersson et al. (2002b), White et al. (2015) and many others. Another line of 
topical urban modelling is characterised by the use of agent-based models, such 
as the Simpop model (Sanders et al., 1997). 

In both conceptual and topical modelling, it is useful to make the distinction 
between extensive and intensive urban growth. Cities can grow both by 
expanding outwards (extensive growth) as well as by densification (intensive 
growth). Densification can also come in several forms; the first concerns new 
buildings on previously unbuilt land lots, the second takes place by replacing 
low buildings with higher ones, and the third is by an intensification of activity 
within existing buildings.  

Intensification of activity could mean higher turnover, more customers and 
more densely packed workplaces. In an economic sense, local urban 
intensification could also occur due to changing services or products towards 
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higher value per area. For a residential area, intensification could take the form 
of residents getting jobs with higher wages.  

The urban growth models presented in papers I-III deal both with intensive 
growth and extensive growth, but the two processes are governed by separable 
parameters to acknowledge the significant qualitative differences. However, the 
processes are also modelled as interlinked since a primary extensive growth 
event can cause secondary intensive growth and vice versa. 

The transportation system is an integral part of any city or region. 
Transportation serves the urban system by allowing the movement of people 
and goods. However, these opportunities for transport also change the 
opportunities for land use. Good transportation opportunities (i.e. good 
accessibility) can transform a location and change the land use (Hansen, 1959). 
New land might be developed, and already developed land can be intensified.  

Over time, a growing urban system might produce increased flow, leading to 
congestion in the transportation system. New transportation links are built to 
alleviate congestion and sometimes also to form straighter connections. 
Negative aspects of transportation flows can also generate needs for detours and 
bypasses. All of these processes create a feedback loop back from land use to 
transportation (Wegener, 1995).  

The feedback between land use and transportation is only implicitly included in 
the models presented in papers I-III since no transportation network is part of 
the explicit representation. The implicit linkage arises from the special growth 
potential of the urban perimeter. The perimeter is, compared to completely 
external locations, assumed to have better access to transportation infrastructure 
(Andersson et al., 2002a). Urban clusters with a large perimeter will thus 
experience a higher growth rate in the model. 
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4 Power laws and fat-tailed distributions 

4.1 Power laws in natural and social systems 
Power-law distributions, and more generally, fat-tailed distributions, are often 
observed in natural systems, as well as in social and artificial systems. A 
measured property is said to follow a power-law distribution if the probability 
frequency distribution 𝑝𝑝(𝑥𝑥) behaves as: 

𝑝𝑝(𝑥𝑥) ~ 𝑥𝑥−𝛾𝛾, 
for some exponent 𝛾𝛾 > 0. The power law property is usually observed only in 
the tail (i.e. for sufficiently large values of 𝑥𝑥), and the body of the distribution 
then has some other shape.  

Power-law distributions belong to the wider class of fat-tailed (or heavy-tailed) 
distributions, which refers to distributions with a higher skewness than normal 
and exponential distributions. The high skewness implies an increased 
probability for observing large deviations from the mean. 

Empirical observation of these distributions goes back to Pareto (1896) and Zipf 
(1949). The earliest examples regarded income distributions, city sizes and 
word frequencies. As more and more large datasets have become available, new 
systems with power-law signatures have been added to the list. For reviews, see 
Newman (2005), Clauset et al. (2009) and Farmer and Geanakoplos (2005). 
Examples include financial markets, firm sizes, scientific citations, web page 
hits, book sales, telephone calls, the intensity of wars, personal wealth and 
frequencies of family names. 

Observing a fat-tailed distribution is valuable since it provides a starting point 
for modelling by pruning the huge tree of possible model specifications. If a 
property is found to be power-law distributed, certain underlying models 
become less plausible. This is because most generative models do not produce 
power laws, even if a power law in itself does not point towards any specific 
model. Any explanatory model of a system with power-law properties should 
be able to reproduce these power laws, especially if the model is claimed to be 
valid on multiple scales. 

There has been a substantial discussion in the literature regarding if particular 
systems are best described by a power-law distribution or instead by some other 
fat-tailed distribution. A partial reason for this debate is probably the mistaken 
claim that all complex systems must have a power-law signature. The 
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misconception could stem from the concept of self-organised criticality (Bak, 
1996). Bak argued that many systems can self-organise into a critical state and 
noted that such critical systems do obey power-law scaling. However, criticality 
is not a necessary condition for power laws since plenty of alternative 
explanations are available (Sornette, 2002). 

No claim is made in this thesis that power laws in themselves are signatures of 
a certain model. This also means that measuring and estimating if a data set 
exactly obeys a power law or not is somewhat beside the point. When studying 
the empirical properties of complex systems, any chosen specific functional 
form of the distribution will be approximate. If a power law is deemed to be a 
relevant description or not should then be determined within the context.  

4.2 Urban power laws  
A famous urban power law is Zipf’s law (1949) for city sizes. In its simplest 
form, it states that (within a country) the second largest city has half the 
population of the largest city, and that the third city has a population one-third 
of the largest, and so on. This distribution is easily spotted in a log-log rank-
size diagram. 

With some generalization, Zipf’s law can have a variable exponent, with the 
original law having this exponent set to one. Empirical studies show that the 
exponent differs between countries (e.g. Ioannides and Overman, 2002). 

Most studies of urban size distributions have focused on cities as objects and 
population as the measured quantity. In this thesis, the main data source is 
instead land values, and it is shown in paper II that this data also follows fat-
tailed distributions. In the same paper, it is also demonstrated that aggregate 
land values are strongly related to population. This means that similar models 
can be used to explain both land values and population numbers as long as we 
stay on the city scale. 

The aggregate level of cities is, however, not the only relevant scale for studying 
urban probability distributions. Understanding processes internal to cities is also 
highly relevant. When zooming in to a cellular (or zonal) level, an additional 
power law is found with regard to land values. In papers I-III, this finding is 
discussed further as a basis for model formulation.  
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4.3 Models for generating power-law distributions 
There are many possible explanations and suggested generative processes that 
can create power-law distributions (Mitzenmacher, 2003). Common to most 
explanations is that some assumption of non-additivity is needed. Additive 
processes tend to be governed by the law of large numbers, which results in 
normal (Gaussian) distributions.  

The simplest generative mechanisms for fat-tailed distributions are different 
variations of multiplicative random processes, of which Simon’s model (1955) 
is an early example. More generally, it can be shown that exponential growth 
combined with random survival times are sufficient to produce power-law 
distributions (Reed, 2002).  The assumption of multiplicative (exponential) 
growth is thus a natural starting point for more elaborate modelling of urban 
systems (Gabaix, 1999).  

Another mechanism that can give rise to power laws is optimization (Carlson 
and Doyle, 1999). Highly optimized tolerance (HOT) can explain power laws 
in certain designed systems, where trade-offs are made between robustness and 
cost of inputs and outputs. For urban systems, this might, however, not often be 
very plausible because these systems are seldom designed from the top-down. 
Instead, growth and design take place in a piece-wise manner, suggesting that 
evolutionary or incremental models are better suited as explanations.  

4.4 Urban allometric scaling laws 
The study of urban allometric scaling has been gaining increasing attention 
(Bettencourt et al., 2007; West, 2017). Similar types of scaling relations with 
regard to urban fractal geometry were also studied by Batty and Longley (1994). 
Allometric scaling concerns the power-law relation between different measured 
quantities of organisms and other systems. Such scaling laws for cities can also, 
in a general sense, be considered to be “urban power laws”, but allometric 
scaling is not at all equivalent to power-law distributions, such as Zipf’s law 
(Pumain, 2004).  

In this thesis, allometric scaling is not the main focus. However, in Paper II, 
certain relations of this kind are demonstrated for urban clusters regarding area, 
perimeter, population and land price. It would be a worthwhile future effort to 
examine the theoretical connections between the presented models and 
allometric scaling theory.  
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According to Bettencourt (2013), certain network characteristics, such as space-
filling, can explain many urban scaling laws. This opens up possibilities for 
interesting theoretical connections between the structure of physical networks 
and the resulting potential for urban activity. 

5 Complex networks 

5.1 Large networks 
A network is a representation of a system as a set of nodes connected by a set 
of edges. Edges could be directed or undirected and can, in the general case, 
have different attributes, such as weights. In some networks, multiple edges can 
connect the same pair of nodes. 

Graph theory is the mathematical domain where networks are studied. 
Traditionally, graph theory studied small networks, easy to visualise and 
analyse, such as the Seven Bridges of Königsberg studied by Euler (1741)1. 

However, many real networks have a large number of nodes. This makes many 
graph-theoretical computations overwhelming to perform by hand, for example, 
Dijkstra’s algorithm (1959) for shortest paths. With the increasing power of 
computers, empirically based studies of much larger networks have thus 
become possible.  

The possibility of computer simulation has also given rise to many models of 
graph formation (see below) as well as studies of dynamical processes taking 
place with the graph as a substrate (e.g. Holme and Saramäki, 2012). Epidemics, 
computer communication and city traffic, are examples of the latter. 

In the theoretical treatment of large networks, it seldom makes sense to 
explicitly compute properties of specific graph configurations. This is an 
important reason why most modelling studies instead focus on statistical 
properties. This is in analogy to the futility of describing the location of all the 
gas molecules in a room using Newton’s equations of motion. Instead, statistical 
physics is employed to derive aggregate properties, such as temperature and 
entropy. A commonly studied statistical property of large networks is the degree 

                                           
1 Euler did not actually use the terminology of graph theory, instead he referred to his theory 
as “geometry of position”. (Hopkins and Wilson, 2004) 



27 
 

distribution, where the degree of a node refers to the number of connected 
edges. 

A well-understood model of large random networks is the Erdös-Renyi model 
(1960). In this model, any two nodes have an equal, fixed probability of being 
connected to each other. All nodes and edges are independent. This results in a 
degree distribution that can be approximated by Poisson distribution. 

Another way to model large networks is to assume high regularity, such as in 
lattice networks. A physical analogue for regular networks would be crystalline 
structures. 

In between regular networks and Erdös-Renyi random networks, we find a class 
of large networks are that can be classified as complex. Such networks have 
more internal structure than purely random networks and more variations than 
lattice networks. In analogy to complex systems, the structure of complex 
networks can be explained by a small set of underlying mechanisms.2 Many 
complex networks show fat-tailed or power-law signatures in their degree 
distributions (see references below). 

A large body of literature now exists laying out both empirical and theoretical 
findings regarding complex networks. Examples include small-world networks 
(Watts and Strogatz, 1998), the internet (Pastor-Satorras et al., 2001), the World 
Wide Web (Albert et al., 1999), social networks (Holme, 2003; Jin et al., 2001), 
human sexual contacts (Liljeros et al., 2001), ecological networks (food webs) 
(Camacho et al., 2002), phone call networks (Aiello et al., 2000), citation 
networks (Redner, 1998), international trade (Serrano and Boguñá, 2003), 
power grids (Albert et al., 2004), flight networks (Barrat et al., 2004), brain 
activity networks (Bullmore and Sporns, 2009) and protein folding problems 
(Scala et al., 2001). See, for example, the reviews of Albert and Barabási (2002) 
and Newman (2003) for additional treatments of this subject. 

5.2 Growing networks 
In paper I, we have suggested that the power-law signature in land values could 
be due to the network characteristics of the underlying urban economy. 

                                           
2 If no such mechanisms can be identified, these systems could be called complicated 
networks instead of complex, in accordance with the distinction between complex and 
complicated systems (Andersson et al., 2014). 
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However, a network structure in itself is not sufficient to explain the observed 
fat-tailed distribution. There must also be some plausible mechanism at work 
that gives rise to that degree distribution in the urban network.  

As mentioned above, many complex networks have fat-tailed degree 
distributions, and there is not a single common generative mechanism for all of 
these types of networks. One very common characteristic, though, is that of 
network growth, i.e. the addition of new nodes and edges. 

In a seminal paper, Barabási and Albert (1999) introduced a growth model for 
generating scale-free networks. The mechanism is simple, and the key 
component is that new edges attach preferentially to existing nodes according 
to the node degree. In the original model, there is a linear relationship between 
the node degree and the propensity for attracting new edges. 

An intuitive explanation for preferential selection is to consider the edges 
instead of the nodes. If any edge is chosen with uniform probability, and then 
one of the two nodes connected by the edge is chosen randomly, the resulting 
probability for a node to be chosen will be proportional to the node degree.  

Is this a plausible mechanism for the formation of an urban interaction network? 
If edges, as we claim in papers I-III, represent beneficial interactions between 
locations, then edges themselves could be natural triggers of new edge 
formation. Against this hypothesis can be raised the argument that the benefits 
represented by edges are not independent of each other. Edges connected to the 
same node could, taken together, be more or less beneficial than the simple sum 
of edges. 

The argument can be summarised as: Many large networks have fat-tailed 
degree distributions, and several measurements on urban systems also have fat-
tailed distributions. Also, there are many properties of urban systems that lend 
themselves very well to a network representation. Can we from this chain of 
reasoning deduce that it is the network properties of cities that give rise to urban 
power laws? 

Not necessarily, since there are many other plausible explanations for how 
urban power laws could arise without explicitly referring to a network 
representation, for example, due to local growth processes constrained by 
certain economic forces (Gabaix, 1999). 

Nevertheless, the relations between complex networks and urban power laws 
seem to be a fruitful starting point for the formulation of hypotheses and model 
building and also for empirical testing of the hypotheses and models.   
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5.3 Node deletion and rewiring 
An important feature, shared by the Barabási-Albert and the underlying Simon-
model (1955), is the constant addition of nodes. This assumption is probably 
unrealistic for many networks since it requires a rather quick growth rate of new 
nodes. A slow growth rate would imply a very long duration to reach a 
stationary state with regard to the degree distribution.  

One possible way to have multiplicative growth in a system of stationary size 
is to remove entities at the same rate as they are created. Reed (2002) describes 
how random survival times combined with exponential growth can give rise to 
a power law, and it is natural to extend this model to networks. Hellervik and 
Rodgers (2007) have also shown that a model with preferential attachment and 
the creation and deletion of entities can generate a power-law distribution in a 
non-growing system.  

A complementary process to the deletion of nodes is the rewiring of edges. 
Some networks have nodes that are static by their nature, for example, citation 
networks, where new publications are introduced into the network with a fixed 
set of links. After that, the publication sits idle, and the only growth occurring 
is the slow aggregation of new citations from publications added at a later stage. 

Other networks constantly rewire, either by the deletion of edges matched by 
the addition of new edges or by the change of just one of the endpoints of the 
edge. Social networks, where edges are undirected and represent a mutual 
relationship between individuals, is an example of the former type. Demand and 
supply networks in the economy can often be of the latter kind. 

5.4 Spatial networks 
Many real networks are embedded in a spatial setting, which means that nodes 
have locations and that the edges have a spatial structure (Barthelemy, 2011).  

The first urban network model introduced in paper I, is non-spatial, meaning 
that the distance between nodes is unrelated to the probability of forming a new 
connection. When modelling an urban system, this is a very strong assumption, 
which gives rise to the second model presented in the same paper. 

The second model has similar properties as the first one, except for an additional 
spatial mechanism. The probability of forming a new connection is assumed to 
decrease with distance. The important conclusion is that the sought-for fat-tailed 
distributions are retained, regardless of many types of spatial constraints.  
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6 Urban networks 

6.1 Physical networks 
It is difficult to imagine an urban system without a network of physical 
connections. These physical networks can be of artificial or natural origin and 
are means of transporting people, goods, waste, energy or information.  

In any modern city, we find a multitude of physical networks: roads, streets, 
railroads, water pipes, power grids and communication networks. These 
networks differ from non-physical networks in certain important ways. For 
example, since connections have costs dependent on the length, long edges are 
relatively rare. Physical networks are thus prime examples of spatial networks3.  

In the models presented in papers I-III, there are no explicit physical networks. 
Instead is the urban periphery is modelled as being in its own special category. 
This periphery category should be interpreted as unbuilt land with access to the 
urban physical networks, such as roads and utilities. 

In papers IV and V, road networks are explicitly represented and are used as the 
main input data. It is the streets and roads that provide the possibility to calculate 
the travel times that are used to determine the interaction network and hence the 
resulting potentials for urban activity. 

When representing a physical network, such as a street network, there are some 
choices to be made regarding nodes and edges. For travel time calculations, the 
most common choice puts street segments as edges and intersections as nodes. 
This is what has been used in papers IV-V. 

However, another possible representation inverts the above-stated relations. 
The street segments (or longer contiguous entities) can be taken as nodes and 
intersections as edges – linking the streets. Such a representation lies at the heart 
of the strain of theory and model building, which is often called “Space syntax” 
(Hillier and Hanson, 1989). In this thesis, such a representation has not been 
used. However, when travel impedances are to be calculated in a walking 
network, such a “dual approach” (Batty, 2013) could be a valuable direction for 
future explorations.  

                                           

3 All spatial networks are not physical, though. For example, social networks can have a 
strong spatial component, but their edges are not of a physical nature. 



31 
 

6.2 Transit networks 
In uncongested settings, for car travel, biking and walking, the relationship 
between the physical network and the travel time is fairly straightforward. The 
calculation might involve speed limits and some other physical or regulatory 
restrictions, but on the whole, the travel time is basically taken as distance 
divided by average speed.  

For public transit, however, the relationship is more complicated, mainly due to 
the dependence on a timetable and a stopping pattern. For example, arriving at 
a railroad track will not by itself transfer travellers to their desired destinations. 
Operational train services are also needed, and the final travel time will also 
depend on waiting time and the distance from the train stop to the destination. 

These considerations make it more natural to represent public transport as its 
own network, on top of, but distinct from, the physical network. Nodes are 
stops, and edges represent lines of service between them. Weights are needed 
on the edges to account for frequency. 

Public transit networks are thus not pure physical networks and also cannot be 
described fully as some derived flow of vehicles on the physical network. This 
is due to the planned nature of the time tabled service. Flight networks can also 
be included in this category. However, they are even less clearly tied to a 
physical network since the only physical infrastructure needed is the nodes 
(airports).  

Ferry connections are usually also time-tabled, but with the special 
characteristic that they might carry road vehicles. When used in the latter sense, 
they can be considered as extensions of the physical road network but with a 
slow average speed that is heavily dependent on trip frequency. In the centrality 
model used in paper V, where a road network is considered on the national scale, 
ferry connections are treated in this manner. 

Except for ferry connections for cars, public transit is not studied explicitly in 
this thesis. In papers I-III, all physical networks are abstractly represented, 
which means that the treatment of public transit can be viewed as being on par 
with car traffic. However, in papers IV-V, the lack of a public transit 
representation4 must be viewed as a simplification that could affect results and 

                                           
4 Bus service could however be considered to be implicitly represented in an average sense, 
since the included road network can be used also by buses.   
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conclusions. To include public transit is thus an important model improvement 
worth pursuing in future work. 

6.3 Interaction networks 
Interaction networks, such as social networks and business networks, are most 
commonly observed and described with individual agents (persons or firms) as 
nodes and their connections as edges. By adding location data to the nodes, a 
spatially embedded representation can be created. We can then describe the 
interactions between places, for example, between housing and workplaces, 
creating a commuting network.  

The directionality of edges in an urban interaction network can be ambiguous. 
Both agents often benefit from the interaction – in this sense, the relationship is 
mutual and undirected. However, in a trade relation, the flow of money is 
directed, and the corresponding flow of services and goods is oppositely 
directed.  

In most cases, one of the agents initiates the interaction by seeking to fulfil a 
demand, which will be delivered by the counterpart. In papers I-III, this is 
represented as “primary effects”, where the initiator creates the first edge 
endpoint. In papers IV-V, the flow of money is explicit, with incoming and 
outgoing flows seeking a balance. 

The following examples give an overview of how the presented interaction 
models can be interpreted.  

Example 1: A firm needs a new employee, and interaction is established with 
a worker. Money flows from the workplace to the housing location of the 
worker. The worker provides labour by travelling to the work-place5. A reverse 
physical flow is also present, with the worker travelling back home. 

Example 2: A household needs groceries, and interaction is established with a 
supermarket. Money flows from the household to the supermarket, and 
groceries flow in the opposite direction. Physically the interaction is facilitated 
by a shopping trip or home delivery.   

Urban interaction networks are conceptually powerful, but they are also 
inherently hard to observe, making them problematic as objects for empirical 
scientific inquiry. We might obtain snapshots of interactions by using travel 

                                           
5 For some remarks on remote work, see section 7.2 
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surveys or data from mobile devices, but these will necessarily be far from 
complete. In most cases, we are left with having to observe only the 
consequences of the interactions.  

In Papers I-V, the edges in the interaction networks are never empirically 
studied. Instead, edges are implied by the model, and the values observed are 
proxies for the activity values at nodes. 

6.4 Modelling of urban interaction networks 
When designing a network model to represent urban interactions, the first step 
is to define what is represented by the nodes and the edges. As discussed above, 
a fundamental definition would use agents as nodes, with agents representing 
individuals in the system.  

Using agents as nodes has the problem of agents not being spatially static, which 
would make the spatial representation very complicated. An ever-moving 
spatial network might be fascinating to study, but there is low hope of 
tractability. 

Our choice has instead been to use locations as nodes, based on the fact that 
most agents perform their activities at one or a few recurring places. Many 
localised activities are also more persistent over time than particular agents. 
There are several different possible choices for locational entities, for example, 
buildings, organisational entities with a location (such as firms and households), 
legally defined land lots or geometrically created cells. The two latter choices 
have been employed in this thesis. 

Edges represent interactions between zones (or cells). In the most general case, 
different types of interactions must be considered since both social and 
economic forces are at play in the urban system. However, in the spirit of 
constructing a minimal model, we have used the concept of a generalized 
economic interaction represented by single-valued edge weights.  

Another aspect to consider is how the concepts of co-location and internal 
interactions (self-interactions) are handled. When a node is a single agent, this 
is rarely a problem, but when a node represents an aggregation such as a 
geographical zone, self-interaction can become significant since a large number 
of agents could reside and be bundled together within one node. However, 
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numerical explorations of the presented models have shown that self-interaction 
does not significantly alter results6. 

In papers I-III, where the aim is to model a growth process, new nodes are 
introduced into the system at a constant rate. Since nodes represent land lots, 
the growing number of nodes corresponds to an urban system growing in 
physical extent. This could be interpreted either as the construction of new 
buildings or as existing rural buildings being transformed into urban use. 

In papers IV-V, the aim is instead to model the urban activity pattern at a single 
snapshot in time7. The interaction network is assumed to develop on such a short 
time scale so that the physical network and urban extents can be approximated 
as static. This means that the set of nodes is constant in the model, and it is only 
the edges that are being updated. The nodes (that represent zones) are extracted 
from empirical data using a set of criteria. Hence, it is a cross-sectional picture 
of the network that is being studied.  

Interaction edges are created either from new nodes (papers I-III) or by 
connecting already existing nodes (papers I-V). No difference is made between 
weights and multiple edges between the same pair of nodes. An additional edge 
between already connected nodes is equivalent to incrementing the weight of 
the existing edge. 

In papers I-III, all edges remain forever once they are formed, which can be 
considered overly unrealistic. In papers IV-V, this assumption is relaxed, and 
edges are allowed to rewire until a stationary state is achieved.  

How edges are attracted is a key modelling mechanism, determining both the 
resulting spatial structure and the statistical distributions. In all presented 
models, this attraction is modelled as a combination of background factors and 
preferential (multiplicative) factors. The background factors can be interpreted 
as influence caused by constant characteristics of the location itself, such as 
zone area and suitability for construction. These are assumed to be independent 
of the activity level. Conversely, the preferential factors are strongly dependent 
on activity, creating further attraction in a positive feedback loop.    

                                           
6 For example, see supplementary material for Paper IV. 
7 An overarching aim is to achieve an empirically valid combined model, where the centrality 
model in papers IV-V could form the basis for a model of growing physical networks and 
growing urban extents. See also section 12.5. 
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6.5 A complex network model for urban growth 
Papers II and III describe a complete urban growth model based on the 
framework of complex networks. Here follows a compact description of the 
model structure8.  

The geographical area is divided into equally sized cells, where every cell can 
be in either a developed or undeveloped state. All developed cells are assumed 
to contain some economic activity and are thus also nodes in the interaction 
network. The number of interactions (the node degree) for cell 𝑖𝑖 is denoted 
by 𝑎𝑎𝑖𝑖. This can interchangeably be called the activity of the cell, and all 
developed cells have 𝑎𝑎𝑖𝑖>0. Cells adjacent to developed cells (according to queen 
contiguity) are called perimeter cells. All other cells are called external. The 
numbers of perimeter cells and external cells at iteration 𝑡𝑡 are denoted 𝑛𝑛𝑡𝑡(𝑃𝑃) 
and 𝑛𝑛𝑡𝑡(𝐸𝐸) . 

There is also a set of constant spatial interaction strengths between every pair 
of cells, denoted by 𝐷𝐷𝑖𝑖𝑖𝑖. These values are calculated based on the Euclidian 
distance 𝑑𝑑𝑖𝑖𝑖𝑖 between the cells using an interaction function 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑑𝑑𝑖𝑖𝑖𝑖), for 
example, 𝑓𝑓�𝑑𝑑𝑖𝑖𝑖𝑖� = (1 + 𝑑𝑑𝑖𝑖𝑖𝑖)−𝛽𝛽. 

The interaction network is updated in every iteration by adding edges according 
to the following rules: 

1. Assign local weights 𝑅𝑅𝑖𝑖 to every cell. 

𝑅𝑅𝑖𝑖 = 1 for developed cells (i.e. 𝑎𝑎𝑖𝑖>0). 

𝑅𝑅𝑖𝑖 = 𝑏𝑏 for perimeter cells, where 𝑏𝑏 is a parameter. 

𝑅𝑅𝑖𝑖 = 𝑏𝑏𝑏𝑏𝑛𝑛𝑡𝑡(𝑃𝑃) /𝑛𝑛𝑡𝑡(𝐸𝐸) for external cells, where 𝜖𝜖 is a parameter. 

2. Choose a cell 𝑖𝑖 for primary growth (source of the new edge).  
a. Randomly choose between additive growth (with probability 𝑞𝑞) 

and preferential growth (with probability 1 − 𝑞𝑞 ). 
b. For preferential growth, an already developed cell is chosen with 

probability in proportion to the degree 𝑎𝑎𝑖𝑖. 
c. For additive growth, choose among all cells with probability 

proportional to local weight 𝑅𝑅𝑖𝑖. 

                                           
8 The notation is here adapted for consistency with papers IV and V. 
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3. Choose a cell 𝑗𝑗 for secondary growth (destination of the new edge) 
a. Again, choose randomly between additive growth (probability 𝑞𝑞) 

and preferential growth (probability 1 − 𝑞𝑞 ). 
b. For preferential growth, an already developed cell is chosen with 

probability in proportion to 𝐷𝐷𝑖𝑖𝑖𝑖𝑎𝑎𝑗𝑗, i.e. in proportion to the activity 
dampened by the static spatial interaction with the primary cell. 

c. For additive growth, choose among all cells with probability in 
proportion to 𝐷𝐷𝑖𝑖𝑖𝑖𝑅𝑅𝑗𝑗. 

4. Add an edge between the primary cell 𝑖𝑖 and the secondary cell 𝑗𝑗. The 
node degree (activity) is thus increased by one for both cells.  

The simulation can be started from an empty grid since additive external growth 
will make sure that some urban seeds are created. Figure 3 illustrates how the 
iterations can play out with different combinations of additive and preferential 
growth. During the growth process, more and more cells will be activated, and 
they will form urban clusters. Both node degrees and cluster sizes (both with 
regard to area and aggregate degree) will evolve into following fat-tailed 
distributions, well approximated by power laws, as shown in papers II and III. 

Figure 3. An example of the sequential process for updating the interaction network in the 
urban growth model. (This figure also appears in paper III.) 



37 
 

When comparing to other models of urban growth, two distinctions are 
important to make. The first is whether cities are modelled as composed entities 
or as emergent clusters. The second is whether the aim is to reproduce actual 
historical processes, or if the main interest is the statistical properties observed 
in current urban systems. 

For example, the Simpop models (e.g. Bretagnolle and Pumain, 2010) use 
villages, towns, and cities as agents represented as points without spatial extent. 
These models have thus less spatial detail but more rules and parameters guiding 
the growth process, including a more detailed mechanism for the economy than 
what is implicit in our model. These model details give the Simpop models some 
capacity to describe actual historical transitions of settlements. The aim of the 
complex network model presented here is not that ambitious. Instead, the 
purpose is to show that these microscopic rules are sufficient for reproducing 
current statistical patterns on cellular and cluster levels. 

Statistical patterns can also be observed in historical growth trajectories. 
Verbavatz and Barthelemy (2020) have shown that rather large fluctuations 
occur in interurban migration flows, casting into doubt the stability of 
empirically observed power-law distributions and their exponents. Our urban 
growth model does not in its current form capture such fluctuations, but they 
could be incorporated into the model formulation on the cellular level. One 
appealing possibility to generate significant volatility would be to let growth 
and decline events cascade over the interaction network.   

6.6 Flow: Interaction materialised on a physical network 
When an interaction network is to be realised within an urban system, it must 
use physical means to transport information, people and goods. This makes the 
interactions visible through the manifested flow in the underlying physical 
network. Observing the flow, however, will not give full information about the 
interactions since the same flow can result from different sets of origins and 
destinations. 

There is also another sense in which interactions can be more intricate than 
physical flow. Two physically similar trips could carry very different amounts 
of economic and social value. For example, it would be difficult for an outside 
observer to discern the difference between an emergency drive to the hospital 
and a trip to the local convenience store.  
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Figure 4 shows how a modelled interaction network (from paper V) can be 
attributed to a physical network. The resulting flow has many visual similarities 
with measurements for traffic flow. However, an exact correspondence is not 
expected since the model does not include any concepts of actual vehicles or 
traffic. 

 
Figure 4. Left: Simulated flows on the major roads, for the model of southern Sweden, as 
implemented in Paper V. Right: Vehicular flow as measured by the Swedish Transport 
Administration 

7 Urban activity 

7.1 Definitions of urban activity 
In this thesis, urban activity at a location is defined to be the summed value of 
interactions involving this location. In network terms, this corresponds to the 
weighted node degree. Activity is thus a generalised single value quantity 
representing both monetary economic value as well the intensity of non-
monetised urban land use. Since the interaction-based definition makes activity 
additive, it can be used both at the level of land lots as well as on aggregates 
such as larger zones or cities.  

In paper I, the definition is formulated as trade gains in “currency per unit area 
and unit time”. This goes back to the definition of interactions that must give 
some surplus to both endpoints of the edge. 
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In papers IV-V, activity is found by an assumed equilibrium between inflow 
and outflow of interaction. It could be argued that this definition is not 
equivalent to the definition in paper I since flow seems to measure turnover 
instead of surplus. The distinction has no importance for modelling results but 
could result in somewhat different interpretations.  

The trade gain definition can also be interpreted as a willingness to pay for the 
interaction to occur. In many cases, but not all, this should stand in close relation 
to the monetary flow incurred by the interaction.  

The idea behind a generalised concept of activity is that all types of urban land 
use should be measured by the same unit of account. Both services, workplaces 
and housing can then contribute to a unified quantity of activity. This makes 
land value a reasonable proxy for activity since the combined activities paying 
to reside at a location can be expected to have an aggregate activity level at least 
equal to the land rent.  

If urban activity by definition is measured by interactions with other urban 
locations, there is room for an opposite definition for rural activity. Rural 
activity, such as agriculture and forestry, will then mainly interact with the land 
itself. Enjoyment of natural beauty could, in this dichotomy, also be classified 
as rural since the value and the choice of location for such activity stems from 
the characteristics of the landscape. 

The rural and the urban networks are, however, in reality deeply integrated, in 
a way not truly visible in the models described in this thesis. In the models in 
papers I-III, the rural is represented as a constant (uniform) source of probability 
for spawning new clusters of activity. In paper IV, the local characteristics of 
zones can be used to represent a connection between land characteristics and 
urban activity. In paper IV, this is made explicit for coastal areas, which are 
given an extra local factor to represent the attraction of this particular type of 
location.   

7.2 Observing activity 
Using a generalised activity measure is valuable for creating simple models. 
Also, it is advantageous when dealing with empirical data since the measure is 
single-valued. In practice, however, it is not straightforward to observe urban 
economic activity. In this thesis, the main assumption is that economic activity 
affects land prices, opening up the possibility to compare model outcomes with 
empirical data. 
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Can we be sure that there is a linear and geographically homogenous relation 
between land price and urban activity? Probably not, since there will likely be 
many local, regional and national deviations from any linear relationship. For 
example, varying land-use regulations between cities could imply different 
amounts of land available for development. This means that the same amount 
of activity could cause different land prices in different cities.  

Digital interaction might be another factor weakening the relationship between 
activity and willingness to pay to reside at a certain location. However, even 
when using digital communication, some fraction of the interaction will often 
be physical. For example, digitally interacting co-workers might also regularly 
meet at a physical location. This will certainly change the distribution of 
distances for interactions, in one sense making them less spatial9, but the 
remaining spatial component might still be relevant for choosing a location. 

For land price to remain a good indicator, there must be some competition. At 
least one other actor must stand in line to pay the price to pursue an equal 
amount of activity on the same piece of land. Physical land adaptations (such as 
buildings) must be assumed to be general enough so that competing agents can 
potentially achieve a comparable amount of total interaction at a location. 

When considering remote work from this perspective, the digital economy 
might make employees more replaceable. This means that there will be ample 
opportunities for other agents to buy the house of a remote worker and start 
working remotely. The effect will be an expanding sphere of possible 
interaction, but this should still be observable through land prices. In other 
words, if remote work gives more people the opportunity to locate in more rural 
settings, then this should affect land prices for such locations. 

Urban interactions and the resulting activity is not the sole factor affecting land 
price, even in a perfect market. Local environmental qualities, such as natural 
beauty, are obvious distorting factors. Potential negative interactions, such as 
criminality, might also cause deviations in the relationship between activity and 
price.  

In paper V, an additional discussion can be found regarding the use of land price 
as a proxy for urban activity. 

                                           
9 Also, digital communications over distance is not without cost. Even computer systems 
might need to be in close physical contact to achieve competitiveness, due to time lags. One 
example is co-location for high-frequency trading (Aitken et al., 2017).  
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7.3 Modelling activity growth and agglomeration 
In all the presented models, activity is assumed to grow in concert with the 
underlying interaction network. For the activity to grow at a location, new 
interactions must be created or attracted. Both the creation and attraction are 
assumed to be linearly related to the current activity, making the growth 
multiplicative, or in other words, preferential. 

Using linear preferential attachment is obviously not the only possible 
modelling choice. For example, it could also be argued that low-activity 
locations should be more attractive than those that are already busy with 
intensive activity. 

The main argument for using preferential attachment comes from empirical 
observations of urban fat-tailed distributions. Some mechanism of 
multiplicative growth seems to be the simplest assumption to generate these 
patterns. Large deviations from linear multiplicative growth would have caused 
deviations in the observed distributions. 

Another argument comes from the economics of agglomeration. On average, 
there are more options when interacting with a location offering a higher activity 
level. This is in part due to economics of scale reducing the costs of delivering 
large amounts of similar goods and services from one location, for example, due 
to specialised buildings and infrastructure. Also, intensive urban activity could 
take the form of high diversity and specialisation, making a location attractive 
for interaction. More possible micro-mechanisms for agglomeration are 
discussed by Duranton and Puga (2004). 

A non-economical but simpler explanation is discussed in section 5.2. If each 
edge represents an independent unit of activity, then attachment to a randomly 
chosen such unit will result in linear preferential growth. 

The included papers do not hinge on any exact underlying mechanism for 
preferential growth since this is not necessary for achieving working models 
and empirical validation. However, a plausible interpretation on the micro-level 
would certainly improve the explanatory power. Also, a clear understanding 
would make it easier to estimate parameters in the model and to determine how 
well results generalize to other countries and contexts. 

Most likely, the agglomeration processes captured by preferential attachment is 
a useful approximation for a collection of many underlying phenomena. This 
means that the parameters controlling preferentiality can be expected to vary, 
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depending on region or country. Such variations are not further explored in this 
thesis but are highly relevant for further study. 

In the economics literature, agglomeration is often described as a phenomenon 
taking place mainly on the city or regional scale, not for individual land lots. 
That is not in contradiction to the mechanisms of local preferential growth but 
could be viewed as a natural aggregation of the local growth mechanisms, 
possibly amplified by city-wide interactions.  

Agglomeration of activity does not in itself imply increased productivity. It is 
also empirically challenging to assess the effects on productivity from increased 
agglomeration (Graham and Dender, 2011). However, productivity is not part 
of our presented models, and it is thus only the geographical agglomeration that 
we aim to model and explain.  

It would also be less plausible that effects on productivity could be explained 
by minimal geographical interaction models since sector-specific economic 
factors might determine the productivity response.  This implies that long-term 
trajectories of urban growth might deviate quite far from what any pure spatial 
model predicts.  Changes in productivity could give feedback to the spatial 
process by attracting more activity and investments to a city or region. On the 
other hand, if productivity gains are only marginal, a minimal model could be 
expected to perform well, also in the long run.  

In Paper III, the concept of spatial endogenous node fitness is introduced. This 
can be interpreted as an underlying growth potential exerted on every location 
without regard to the current activity. A spatial structure is exposed that is 
modifying the pure multiplicative growth, opening up for the hypothesis that 
the transportation network might have long-lasting effects on urban activity.  

From the concept of spatial fitness, there is just a minor theoretical step towards 
the development of a centrality measure compatible with multiplicative growth. 
By letting all activity iteratively adjust until a stable state is achieved, a model 
outcome is obtained that is only dependent on the physical network, the 
interaction function and an agglomeration parameter. This forms the basis for 
the modelling and empirical investigations in papers IV-V. 
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8 Centrality and accessibility  

8.1 Accessibility 
The concept of accessibility can be used to describe the link between land use, 
activity and interactions. A metric of distance (or cost) is needed to calculate 
accessibility, together with some measure of the destinations to which the 
accessibility refers. A functional relationship between these factors and some 
method of summation are also necessary. Depending on these choices, many 
different accessibility measures can be obtained  (Handy and Niemeier, 1997).  

In network terms, accessibility can be described as the linkage between the 
physical network and the interaction network. The physical network and the 
agents’ capabilities and preferences, together with the spatial distribution of 
opportunities, are what creates accessibility. Accessibility then forms the 
potential for interaction.  

In papers IV-V, accessibility is in main focus, by the use of a detailed network 
travel time calculation. In papers I-III, accessibility is treated more 
simplistically, with Euclidian-distance based calculations.  

In all included papers, it is mainly accessibility to urban activity that is being 
modelled. However, in paper V an additional simpler accessibility model is also 
studied for comparative purposes. This model measures accessibility to 
buildable land. 

8.2 Network centrality 
Just like accessibility, network centrality is not one single measure. Instead, 
network centrality is a broad category of approaches with the common theme 
of trying to infer the importance of nodes (or edges) within a network. This 
means that it is futile to compare all possible centrality measures to find one 
single “best” definition. Which concept of centrality to choose depends on the 
specific application and the adequate kind of node- and edge-importance. 

In the literature about urban networks, many different centrality measures have 
been explored. It is not possible to review all of them in this thesis, but a few 
need to be mentioned. 
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Betweenness centrality 

Betweenness centrality (Freeman, 1977) measures the number of paths through 
a node in a network, assuming that all paths (between all pairs of nodes) follow 
the shortest path. The actual paths and the resulting centrality will depend on 
which concept of distance is being used. Betweenness centrality corresponds 
closely to the concept of flow in a network.  

Closeness centrality 

The closeness centrality (Bavelas, 1950) of a node is proportional to the sum of 
the inverse of the distance to all other nodes. The nodes with the shortest 
average distance to all other nodes will thus get the highest centrality scores.  

Degree centrality 

Degree centrality is equal to the degree of a node, i.e. the number of connected 
edges, or more generally, the sum of weights of these edges. This means that 
only direct connections can affect the centrality value. 

Eigenvector centrality 

The eigenvector centrality (Bonacich, 1972) of a node is proportional to the sum 
of the eigenvector centrality of all the node´s neighbours. In this way, it is 
closely related to degree centrality but in a recursive fashion, giving higher 
importance to nodes that are connected to many other important nodes.  

PageRank centrality 

PageRank was developed by Brin and Page (1998) to find the centrality of web 
pages, using the network of hyperlinks as a basis. It is closely related to 
eigenvector centrality but also takes the directionality of edges into account.  

8.3 Urban centrality 
Urban centrality could refer to centrality in an urban network, but also more 
generally to the centrality of a location or a settlement. Such a centrality can be 
devised and analysed also without an explicit network, such as in Christaller’s 
theory of central places (1933). 
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On a larger scale, there is also a possibility for modelling regional centrality. 
Can the location of a city, town or village within a regional area affect its social 
and economic performance? It would greatly simplify both theory and applied 
analysis if the same theory of centrality could be applied on several scales.  

In paper V, the preferential centrality model (see also paper IV and section 8.5) 
is explored both within regions and on a multi-regional scale. From that 
analysis, it seems plausible that agglomerative mechanisms can give rise to 
regional centres and that the accessibility to these centres creates another level 
of centrality on a smaller scale. 

Centrality in the physical network  

The most studied urban networks, with regard to centrality, are the physical 
networks, especially the street network (e.g. Sevtsuk and Mekonnen, 2012; 
Porta et al., 2006b; Porta et al., 2006a; Hillier and Hanson, 1989; Agryzkov et 
al., 2019; Jiang, 2006). 

One problematic aspect of considering only the physical network when 
calculating centrality is that the importance of certain physical connections 
might be over-emphasized. The exact topological configuration of nodes and 
edges is very influential on the result. Also, by most definitions of street 
centrality measures, the immediate physical neighbourhood becomes hugely 
important. 

Using centrality measures with system-wide interactions, such as betweenness, 
is one way to remedy this problem. In such a calculation, all nodes can influence 
the result of all other nodes. However, this brings the risk of instead introducing 
too large long-range dependencies, raising the need for setting arbitrary 
geographical boundaries. This is a hint that some fundamental principle is 
missing in the model. 

Another problem with using betweenness centrality is the focus on flow. Many 
essential aspects of urban activity are not directly related to physical flow, 
especially not to the flow of cars. A highway can be very considered central if 
it is flow (i.e. betweenness centrality) that is being measured, but nearby 
buildings might, in many cases, get only adverse effects.  
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Another remedy for the too localised measures is changing the representation 
of nodes to make them more extended. In space syntax, this is achieved by using 
streets (delimited in different ways) as nodes and intersections as edges. A 
similar effect can be achieved by using other distance metrics than Euclidian, 
for example, angular distance. Such a modelling choice will cause straight 
streets to become almost a single entity with regard to accessibility.  

An obvious drawback of these modelling choices is that curves and intersections 
are not, in reality, the only impediments to interactions over long distances. 
Travel time is, for example, also a significant factor causing impedance in a 
transport system. More generally, the generalised cost could be considered. 
Such a generalised cost can include all the above-mentioned features and can 
also differ between transport modes.  

8.4 Centrality in the interaction network  
Following from the above discussion, we would like a centrality measure that 
extracts as much information as possible from the structure of the transport 
network while respecting: 

• Generalized costs (including travel time and if needed also curvature and 
intersections), using some choice of paths and modes. 

• Weights for nodes to acknowledge local differences between locations 
(such as different activity levels). 

• Integration of information about the whole system, but with heavier 
weights placed on nearby locations.  

To consider all of these factors, it seems like that we would end up with a 
somewhat complicated model, arguably quite far from a simple centrality 
measure. The risk of having to introduce arbitrary assumptions, parameters and 
data requirements seems overwhelming.  

However, there is a modelling choice that can naturally solve many of these 
issues. The key idea is to shift focus from the physical network and instead study 
the interaction network. The interaction network can be explicitly measured, or 
it can be inferred from the physical network using some model. In papers IV 
and V, this line of modelling is pursued, with the choice of using an interaction 
network inferred from travel times calculated based on the physical network.  



47 
 

The interaction network tends to be very dense, with many nodes having 
connections to most others. Thus, the ability to that take into account weights 
on the interactions becomes crucial for attaining meaningful measures of 
centrality. Degree centrality and eigenvector centrality can easily work with 
weighted networks using the adjacency matrices.  

The degree centrality 𝑎𝑎𝑗𝑗  for node 𝑗𝑗 in a weighted network becomes: 

𝑎𝑎𝑗𝑗 = �𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖

, (1) 

where 𝑀𝑀𝑖𝑖𝑖𝑖 are the elements in the adjacency matrix. 

If we assume that 𝑀𝑀𝑖𝑖𝑖𝑖 represents the edge weights in an interaction network, 
then the values can be inferred from the physical network, using some 
interaction model. A straightforward choice is to assign static weights 𝑅𝑅𝑗𝑗  to each 
node (based on, for example, area of the zone represented by the node) and use 
these for both generating and attracting interactions, dampened over distance 
using a function 𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖� with generalised travel costs 𝑐𝑐𝑖𝑖𝑖𝑖 as input. The values 𝑐𝑐𝑖𝑖𝑖𝑖   
are assumed to be static and can be calculated from the underlying 
transportation network. 

The interaction weights can now be defined as 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑗𝑗𝑅𝑅𝑖𝑖𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖�, and we get 
from Eq. (1) that 

𝑎𝑎𝑗𝑗 = 𝑅𝑅𝑗𝑗�𝑅𝑅𝑖𝑖𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖�.
𝑖𝑖

(2) 

From this, it is clear that degree centrality in the interaction network is 
proportional to accessibility in the physical network. What is being measured is 
then accessibility within the network, to the network itself, since no specific 
attractions are specified apart from the nodes. 

If, instead of using static weights for generating interaction, we let the 
interactions in the weighted network be modulated by the centrality values 
themselves, we can arrive at the eigenvector centrality, 

𝑎𝑎𝑗𝑗 =
1
𝜆𝜆�𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖

𝑖𝑖

, (3) 

where 𝜆𝜆 is the largest eigenvalue, which in this case works only as a normalising 
factor without specific model interpretation. 



48 
 

Also, in the eigenvector case, the interactions can be inferred from the 
transportation network, together with some definition of zonal attraction 𝑊𝑊𝑗𝑗. 
Using the derivation of the flow 𝑆𝑆𝑖𝑖𝑖𝑖 from paper IV, which is summarised in 
Figure 5, we get  

𝑎𝑎𝑗𝑗 = 𝑅𝑅𝑗𝑗�𝑆𝑆𝑖𝑖𝑖𝑖
𝑖𝑖

= 𝑅𝑅𝑗𝑗�
𝑎𝑎𝑖𝑖𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖�

∑ 𝑅𝑅𝑘𝑘𝑓𝑓(𝑐𝑐𝑖𝑖𝑖𝑖)𝑘𝑘𝑖𝑖

, (4) 

where we have defined attractions to be equal to local weights, 𝑊𝑊𝑗𝑗 = 𝑅𝑅𝑗𝑗.  

By inspecting Eq. (3) and Eq. (4), we can identify 

𝑀𝑀𝑖𝑖𝑖𝑖 =
𝑅𝑅𝑗𝑗𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖�

∑ 𝑅𝑅𝑘𝑘𝑓𝑓(𝑐𝑐𝑖𝑖𝑖𝑖)𝑘𝑘
(5) 

and 1
𝜆𝜆

= 1. The rationale for this centrality measure in an urban context is further 
discussed in paper IV. One interpretation is that eigenvector centrality measures 
the accessibility to centrality (in a recursive manner), or in other words: the 
accessibility to accessible locations.  

For many networks, degree centrality and eigenvector centrality can give very 
similar results, except for specific highly connected nodes. In paper V, results 
are compared with empirical data, both for eigenvector centrality and degree 
centrality (called static accessibility model in the paper), showing that they are 
almost indistinguishable in this modelling context. 

 
Figure 5. From activity and attraction to a flow of interaction. (Adapted from paper IV.) 

𝑎𝑎𝑖𝑖 – Level 
of activity 
in zone 𝑖𝑖. 

𝑊𝑊𝑗𝑗 - How 
attractive is 
zone 𝑗𝑗?  

𝑓𝑓(𝑐𝑐𝑖𝑖𝑖𝑖) – 
Decreasing 
interaction 
when costs are 
increasing 

∑  𝑘𝑘 – Summation across 
all zones 𝑘𝑘 to uphold local 
constraint on interactions. 

𝑆𝑆𝑖𝑖𝑖𝑖 =
𝑎𝑎𝑖𝑖𝑊𝑊𝑗𝑗𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖�
∑ 𝑊𝑊𝑘𝑘𝑓𝑓(𝑐𝑐𝑖𝑖𝑖𝑖)𝑘𝑘

 

We obtain a flow 𝑆𝑆𝑖𝑖𝑖𝑖 
between zones 𝑖𝑖 and 𝑗𝑗:  
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8.5 Preferential centrality 
In paper IV, the measure of preferential centrality is introduced. As described 
in Figure 6, it can be derived similarly to the eigenvector centrality by using the 
attraction 𝑊𝑊𝑗𝑗 = 𝑎𝑎𝑗𝑗 + 𝛼𝛼𝑅𝑅𝑗𝑗, where 𝛼𝛼 is a parameter and 𝑅𝑅𝑗𝑗 are the static weights.  

In analogy to Eq. (4), we arrive at  

𝑎𝑎𝑗𝑗 = 𝑊𝑊𝑗𝑗�
𝑎𝑎𝑖𝑖𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖�

∑ 𝑊𝑊𝑘𝑘𝑓𝑓(𝑐𝑐𝑖𝑖𝑖𝑖)𝑘𝑘𝑖𝑖

= �𝑎𝑎𝑗𝑗 + 𝛼𝛼𝑅𝑅𝑗𝑗��
𝑎𝑎𝑖𝑖𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖�

∑ (𝑎𝑎𝑘𝑘 + 𝛼𝛼𝑅𝑅𝑘𝑘)𝑓𝑓(𝑐𝑐𝑖𝑖𝑖𝑖)𝑘𝑘
,

𝑖𝑖

(6) 

which is a recursive definition of activity (centrality) since 𝑎𝑎𝑗𝑗 appears on both 
sides. This means that the equation must be solved for all nodes simultaneously. 

The centrality measure has been presented as a model specifically for urban 
systems, but with some generalisation, it can be applied to any weighted 
network. To simplify, we can assume that 𝑅𝑅𝑗𝑗 = 1 for all nodes, and we can then 
write 

𝑎𝑎𝑗𝑗 = �𝑎𝑎𝑗𝑗 + 𝛼𝛼��𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 ,
𝑖𝑖

(7) 

where 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑖𝑖
∑ (𝑎𝑎𝑘𝑘+𝛼𝛼)𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘

 and 𝐷𝐷𝑖𝑖𝑖𝑖 are static interaction strengths. However, the 

dynamic interactions 𝑀𝑀𝑖𝑖𝑖𝑖  are not static, but dependent on the centrality values 
of all other nodes. 

In the simplest case 𝐷𝐷𝑖𝑖𝑖𝑖  could be taken as the elements of the pure adjacency 
matrix of a network, but it is important to note that the centrality measure hinges 
on two networks – the underlying static network determining 𝐷𝐷𝑖𝑖𝑗𝑗 and the 
dynamic interaction network that determines 𝑀𝑀𝑖𝑖𝑖𝑖. 

Preferential centrality can be derived from a few assumptions (see paper IV): 

1. For every node, the sum of incoming interactions equals the sum of 
outgoing interactions 

2. The centrality value for a node equals the sum of interactions. 
3. Interactions are attracted to nodes based on a linear function of the 

centrality 
4. Outgoing interactions are distributed according to connection strengths 

in the underlying static network 
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When applied to urban modelling, the assumptions can be interpreted as 
follows: 

1. For every zone, the summed value of incoming interactions equals the 
summed value of outgoing interactions 

2. The activity value for a zone equals the summed value of interactions. 
3. Interactions are attracted to zones based on the linear function of activity 

and background attraction 
4. Outgoing interactions are distributed according to an interaction function 

based on the generalized cost of connecting through the physical 
transportation network 

This means that the physical network, together with values for background 
attraction, form the static basis for the resulting activity values. The interaction 
network is derived and thus only intermediary for the calculation. This is an 
essential feature of the centrality measure, making it possible to calculate 
centrality with only physical data as input. 



51 
 

 
Figure 6. From spatial interaction to activity modelling using preferential centrality. (This 
figure also appears in paper IV.) 

In spatial interaction modeling, activity 
𝑎𝑎𝑖𝑖 represents demand while attraction 𝑊𝑊𝑗𝑗 
represents supply. Interactions are thereby 
directed, going from demand to supply. 

In the basic eigenvector centrality model, 
activity 𝑎𝑎𝑖𝑖 represents any activity. Most 
types of activity generate both supply and 
demand on an aggregated level. Attraction 
𝑊𝑊𝑗𝑗 is refined into an intrinsic property 𝑅𝑅𝑗𝑗 of 
the zone, reflecting suitability for 
development. 

We posit that activity is in equilibrium when 
total interaction from a zone is in balance 
with total interaction to the zone. Our task 
is then to find such a configuration of ai to 
fulfil this for all zones. 

To achieve this, we iteratively adjust ai 
across the zones. If interactions in and out 
are not in balance, the current estimate must 
be adjusted. We repeat until a convergence 
criterion has been reached. 

   

+ - 

In our preferential centrality model, we refine the definition of attraction to reflect a 
dynamic coupling with activity. Development suitability 𝑅𝑅𝑗𝑗 now figures as one aspect of 
attraction 𝑊𝑊𝑗𝑗  together with activity 𝑎𝑎𝑗𝑗. A parameter 𝛼𝛼 is used to set the balance between 
these aspects. 
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Eigenvector and preferential centrality in a star network 

To get a basic understanding of the workings of the presented centrality 
measures, some simplified network topologies can be studied. The first one is 
the star network (see Figure 7) with 𝑁𝑁 + 1 nodes and an adjacency matrix with 
elements 𝐷𝐷𝑖𝑖𝑖𝑖, with values 𝐷𝐷𝑖𝑖𝑖𝑖 = 0 and 𝐷𝐷𝑖𝑖1 = 𝐷𝐷1𝑗𝑗 =  1, and 𝐷𝐷𝑖𝑖𝑖𝑖 =  0 for all other 
relations. 

Since there are no special node weights, we can use the simplified definition 

𝑎𝑎𝑗𝑗 = �𝑎𝑎𝑗𝑗 + 𝛼𝛼��
𝑎𝑎𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖

∑ (𝑎𝑎𝑘𝑘 + 𝛼𝛼)𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖

. (8) 

For j>1, all nodes are equal, and we can, without loss of generality, set 𝑎𝑎𝑗𝑗  =
 𝑎𝑎2. The solution is easily obtained: 

𝑎𝑎1 = (𝑎𝑎1 + 𝛼𝛼)
𝑁𝑁𝑎𝑎2

(𝑎𝑎1 + 𝛼𝛼) = 𝑁𝑁𝑎𝑎2 (9) 

𝑎𝑎2 = (𝑎𝑎2 + 𝛼𝛼)
𝑎𝑎1

𝑁𝑁(𝑎𝑎2 + 𝛼𝛼) =
𝑎𝑎1
𝑁𝑁

(10) 

Here it can be noted that the value of 𝛼𝛼 does not affect the resulting centrality 
values, which means that in this particular case, preferential centrality will be 
equal to eigenvector centrality. If some interactions are introduced between 
peripheral zones, by setting 𝐷𝐷22 > 0,  we get  

𝑎𝑎1 = (𝑎𝑎1 + 𝛼𝛼) �
𝑎𝑎1𝐷𝐷11

∑ (𝑎𝑎𝑘𝑘 + 𝛼𝛼)𝐷𝐷1𝑘𝑘𝑘𝑘
+ 𝑁𝑁

𝑎𝑎2𝐷𝐷21
∑ (𝑎𝑎𝑘𝑘 + 𝛼𝛼)𝐷𝐷2𝑘𝑘𝑘𝑘

� = 

=
𝑁𝑁(𝑎𝑎1 + 𝛼𝛼)𝑎𝑎2

(𝑎𝑎1 + 𝛼𝛼) + 𝑁𝑁(𝑎𝑎2 + 𝛼𝛼)𝐷𝐷22
(11) 

𝑎𝑎2 = (𝑎𝑎2 + 𝛼𝛼) �
𝑎𝑎1𝐷𝐷12

∑ (𝑎𝑎𝑘𝑘 + 𝛼𝛼)𝐷𝐷1𝑘𝑘𝑘𝑘
+

𝑁𝑁𝑎𝑎2𝐷𝐷22
∑ (𝑎𝑎𝑘𝑘 + 𝛼𝛼)𝐷𝐷2𝑘𝑘𝑘𝑘

� = 

=  
𝑎𝑎1
𝑁𝑁 +

𝑁𝑁(𝑎𝑎2 + 𝛼𝛼)𝑎𝑎2𝐷𝐷22
(𝑎𝑎1 + 𝛼𝛼) + 𝑁𝑁(𝑎𝑎2 + 𝛼𝛼)𝐷𝐷22

. (12)
 

The second equation can be rewritten 

𝑎𝑎1
𝑁𝑁 = 𝑎𝑎2 �

(𝑎𝑎1 + 𝛼𝛼)
(𝑎𝑎1 + 𝛼𝛼) + 𝑁𝑁𝐷𝐷22(𝑎𝑎2 + 𝛼𝛼)� , (13) 

i.e. Eq. (12) yields the same result as Eq. (11). 
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Figure 7. Star network with N=7. Bold lines have interaction 𝐷𝐷1𝑗𝑗=1. Dashed lines have 
interaction 𝐷𝐷𝑖𝑖𝑖𝑖 =  𝐷𝐷22 

Since the two equations are not independent, some additional assumption is 
needed to obtain a single solution. We can either choose to keep total activity 
constant or instead study relative activities. We choose now the latter option, 
since only relative activity values are of interest in this theoretical investigation. 
We assume that 𝑎𝑎1 = 1, and from Eq. (12) we get 

𝑎𝑎2 =
(1 + 𝛼𝛼)
𝑁𝑁 + 𝛼𝛼𝐷𝐷22

(1 + 𝛼𝛼) − 𝐷𝐷22
. (14) 

Now we can observe one necessary requirement for positive solutions, 
(1 + 𝛼𝛼) > 𝐷𝐷22, (15) 

which is fulfilled if 𝐷𝐷22<1. 

If 𝐷𝐷22 = 0, we retrieve the previous simpler solution, where 𝛼𝛼 is without 
influence,

𝑎𝑎2 = 1
𝑁𝑁

. (16) 

In the limit of large 𝛼𝛼, we get the eigenvector centrality solution, 

𝑎𝑎2
(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) =

1
𝑁𝑁 + 𝐷𝐷22. (17) 



54 
 

It can be noted that the eigenvector centrality, in this case, will be equal to 

relative degree centrality, 𝑎𝑎2
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

𝑎𝑎1
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 

= 1+𝑁𝑁𝐷𝐷22
𝑁𝑁

 . 

We can also make some other observations: 

• A large periphery (large N) reduces relative activity in the periphery, 
especially if the interaction is weak and agglomeration is strong (low 𝛼𝛼). 

• Increased interaction (𝐷𝐷22) between periphery and periphery increases 
peripheral activity. 

• Strong agglomeration (low 𝛼𝛼) reduces relative peripheral activity.  

In the limit of large N, we get 𝑎𝑎2 = 𝛼𝛼𝐷𝐷22
(1+𝛼𝛼)−𝐷𝐷22

, which makes it possible to create 

the curves shown in Figure 8, with the effect on 𝑎𝑎2 of changing 𝐷𝐷22, for different 
values of 𝛼𝛼. It is clear that the effect of an increasing preferentiality (i.e. 
decreasing 𝛼𝛼) is to strengthen the nonlinear response to changes in interaction 
within the periphery (𝐷𝐷22). 

If agglomerative forces are strong, changing interaction can thus have effects 
that are difficult to predict. They could either be much smaller than expected or 
much more prominent. It would barely make sense to talk about a specific effect 
size in this context. Changes of interaction must thus be studied in a broader 
context, including network topology and assessments of the agglomerative 
strengths.  

 
Figure 8. Peripheral activity in the star network (in the limit of large N), as a function of 
interaction (𝐷𝐷22) and preferentiality (𝛼𝛼). 
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Preferential centrality in the one-dimensional city 

When considering more complicated networks, numerical solutions provides 
the easiest way forward. A traditional urban toy model is the one-dimensional 
linear city. We can consider N locations distributed on a line and transport costs 
equal to the distance between locations. 

Figure 9 shows the one-dimensional numerical solution of the preferential 
model for different values of the agglomeration parameter 𝛼𝛼. As agglomeration 
is increased (i.e. a lower value for 𝛼𝛼) the activity profile becomes increasingly 
sharp, despite that the interaction function is unchanged. This means that 
preferential centrality has the capacity to combine distinct concentrations of 
activity with long-range interactions. Both these features are important in an 
urban model aiming to achieve realistic results. 

 

 

 

 

 
Figure 9. One-dimensional numeric results for the preferential centrality model, with varying 
values of 𝛼𝛼. The iterative solution is normalized with regard to the maximum value. The 
interaction function is 𝑓𝑓�𝑑𝑑𝑖𝑖𝑖𝑖� = �𝑑𝑑𝑖𝑖𝑖𝑖 + 5000�−2. 
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8.6 Implementation of the centrality model 
To perform calculations for an actual urban system, the preferential centrality 
model requires a transport network. In the simplest case, no land-use data is 
needed since land can be represented by all cells within a certain distance of the 
network. For realistic results, however, a more detailed land use representation 
is needed, with some distinction between parts of the network where 
connections to land can plausibly be created. For example, it is not possible to 
access land directly from a motorway without some sort of junction.  

In the model implementations used in papers IV and V (see also Figure 10), a 
zonal model based on property polygons is used. This makes it possible to have 
a more realistic spatial representation compared to cells, but the size difference 
between zones must be handled by adjusting the local weights.  

 

 
Figure 10. Implementation structure for the preferential centrality model.  

 

The centrality calculation can be described as having two parts. The first part 
consists of calculating travel times from all zones to all others, and the second 
part of the algorithm uses these travel times as static inputs to adjust activity 
levels until an interactive equilibrium is reached (according to Eq. (6)). 

Input: 
• Road network  
• Zonal representation 

Centrality 
calculation 

Results: 
• Centrality values for all zones 

Parameters: 
• Agglomeration factor 
• Interaction factor 
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The travel time calculation could, in principle, be made arbitrary detailed, with 
many nuances and parameters. It could also be calibrated using actual data on 
travel behaviour. However, no such calibration has been performed for the 
results obtained in this thesis.  

In Paper V, the number of zones is too large for the all-to-all computation of 
travel times to be computationally feasible. This is solved by using an 
approximate travel time calculation, where representative nodes are chosen in a 
hierarchical fashion. This means that for shorter distances, an exact travel time 
is achieved, but for longer distances, travel times are instead calculated using 
the representative nodes. 

One important feature of the model structure is that it only has two main 
parameters, 𝛼𝛼 (agglomeration factor) and 𝛽𝛽 (interaction factor). There are, 
however, also several intermediate parameters needed to calculate both the 
zonal weights (buffer sizes, road impediments, etc.) as well as the travel times 
(speed limits, start/end-penalty).  

These intermediate parameters are of a more physical nature and can be 
considered less fundamental to the global model dynamics. Locally, choices for 
these parameter values can, however, have significant impacts on resulting 
activity levels for specific locations. In the supplementary material for paper IV, 
sensitivity analyses are presented where a selection of these parameters are 
varied. 
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9 Empirical results 

9.1 The urban growth model 
In Figure 11, empirical results are shown from the urban growth model 
developed in papers I-III and described in section 6.5. The same model 
simulation reproduces observed patterns both on the cellular level and 
concerning urban clusters. The clusters can be considered to correspond to cities 
but with an algorithmic delimitation instead of an administrative.  

The clusters were identified by a simple method that has later been dubbed as 
CCA by Rozenfeld et al. (2008). Our analysis used land value as the delimiting 
factor for determining if a cell shall be considered urban or not. This is in 
contrast with many other similar studies where population data has been used. 

For this urban growth model, there are only four essential parameters. The first 
is 𝑞𝑞 which determines the ratio between additive and preferential growth. It can 
be determined from empirical data based on the relation between total activity 
and developed area. 

The second and third parameters are 𝑏𝑏 and 𝜖𝜖, determining the rate of perimeter 
and external growth. The value of 𝜖𝜖 can be inferred from the ratio between the 
numbers of clusters and the total activity, and 𝑏𝑏 is constrained by the values of 
𝜖𝜖 and 𝑞𝑞 together with the empirical ratio between the number of perimeter cells 
and the total activity.  

The fourth parameter 𝛽𝛽 controls the level of distance decay. This parameter 
cannot be estimated from cross-sectional activity data since it does not strongly 
affect the simulated activity levels. To find the empirically correct value for 𝛽𝛽 
for a particular application, additional interaction data would be needed, for 
example, data on the distribution of travel distances. 
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Figure 11. Empirical results for Sweden, compared with model outcomes for the urban 
growth model. (Figure reproduced from Paper III.)  
a), b), and c): Squares denote simulated values and crosses denote empirical values. 
a) Probability distribution for land value aggregated to cells with the size 400  x 400 m. 
b) Probability distribution for land value aggregated to clusters. 
c) Probability distribution for area aggregated to the same clusters as in b) 
d) Empirical (broad boxes) and simulated (thin boxes) cluster areas are plotted against 
exponentially binned cluster perimeters. 
e) Empirical (broad boxes) and simulated (thin boxes) land value aggregated to clusters 
are plotted against exponentially binned cluster perimeters. 
f) Empirical cluster population plotted against exponentially binned empirical aggregated 
cluster land values. Crosses indicate the median values in the bins. 
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9.2 The urban centrality model 
The preferential centrality model is compared to empirical land taxation values 
for a single city (paper IV), for a single region (paper V) and for a larger multi-
regional area comprising the southern half of Sweden (paper V). 

For the single city results, regressions are performed on the level of modelling 
zones (comparable in size to city blocks). An 𝑅𝑅2-value of 0.58 is obtained that 
can be compared to 0.54 for a monocentric benchmark model. The monocentric 
model also has the drawback that a centre has to be manually specified. I.e. the 
preferential centrality model achieves better performance even when using a 
smaller amount of input data. Also, using spatial statistics, it is shown that 
residuals are less correlated for the preferential model compared to the 
monocentric model. 

In paper V, where areas involving several cities are studied, it does not make 
sense to use a monocentric model as a benchmark. Instead, the outcomes of the 
preferential model are compared to those of a simple accessibility model. All 
models that are compared uses the same set of input data since the addition of 
other data sources would make comparisons difficult to interpret. 

Regressions are performed on values aggregated to administrative tax 
assessment areas. The best single-regional model achieves an 𝑅𝑅2-value of 0.65 
that can be compared to the best accessibility model achieving 0.55. In the 
multi-regional case, the best result is 0.57 for the preferential model and 0.52 
for the accessibility model. Also, studying the complementary cumulative 
distribution functions shows that only the preferential model achieves the broad 
distribution of values that is observed empirically. 

Figure 12 shows results from the multi-regional model on the detailed level of 
model zones. Figure 13 shows empirical values and model values on the 
aggregated level used for regression. 

To arrive at these results, two main parameters needed to be tuned, as 
demonstrated in paper V. The first parameter is 𝛼𝛼, controlling the rate of 
preferentiality (agglomeration), and the second is 𝛽𝛽, which describes how the 
amount of interaction decays with regard to travel time. 
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Figure 12. Comparing the multi-regional preferential centrality model (left) with empirical 
land taxation data (right). Values are shown on the zonal level relative to area.  

  
Figure 13. Comparing the multi-regional preferential centrality model (left) with empirical 
land taxation data (right). Values (model and empirical) are aggregated to larger 
administrative tax assessment areas. Shown values are relative to area.  
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10 Applications in planning 

10.1 Motivation and possibilities  
An overarching motivation for the construction of new and useful urban models 
is the possibility to answer relevant questions in planning. For this, we need 
models that are responsive to parameters and physical factors that are of interest 
in decision-making. We also need a certain level of trust in the models’ 
predictions and an understanding of the limitations of the results.  

In transport planning, there are two broad classes of questions suitable for this 
type of modelling. The first class encompasses the study of different scenarios, 
where models can be used to analyse the effects of system-wide variations, such 
as new technology, changing energy prices or new regulations. The other class 
of questions includes the planning of specific changes in the transportation 
system, such as new roads and railroads. 

In urban planning, typical modelling questions arise with regard to both 
strategic and detailed planning. On the strategic level, a possible question to ask 
is at what pace it is suitable for a city to expand with regard to its urban footprint. 
On a more local level, specific development projects need to be evaluated with 
regard to consequences for their surroundings on several scales. Impacts of 
different zoning structures are also often of interest.   

It is not very plausible that any single land-use and transport model should be 
able to reliably handle all these questions on all different scales. However, the 
preferential centrality modelling framework can potentially be adapted to 
address quite a wide range of questions. In actual planning, it is necessary to 
validate the different use-cases in their own contexts and in relation to existing 
operational models. The examples that follow should therefore only be 
considered as demonstrations of general model capability. 
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10.2 Scenario analysis 
Many aspects of the calculated outcomes resulting from the preferential 
centrality model are controlled by the interaction and agglomeration 
parameters. They can be considered to vary slowly in time and space, and both 
are determined by combinations of technological, political, behavioural and 
economic factors.  

Figure 14 shows the consequences of increasing agglomeration (lowering 𝛼𝛼)  - 
activity becomes concentrated in a few dominant urban areas. Decreasing 
agglomeration, on the other hand, gives rise to a more broadly distributed 
pattern. If a large fraction of the agents in the system prefers to interact with the 
background instead of with other agents, this corresponds to low agglomeration. 
Interaction with the background can be interpreted as using natural resources 
(i.e. agriculture or forestry), enjoying natural amenities or just preferring a large 
living area.   

 

 
Figure 14. Results from the preferential model, for the southern half of Sweden, using 
different values for the agglomeration parameter 𝛼𝛼. 

  

𝛼𝛼 = 0.05 – high 
agglomeration 

  

𝛼𝛼 = 1.0 – low 
agglomeration 

  

α = 0.0005 – very high 
agglomeration 
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In Figure 15, the spatial interaction factor 𝛽𝛽 is varied10, while the 
agglomeration parameter is held constant at 𝛼𝛼 = 0.1. The effects can be 
likened to a change of scale. With many long-range interactions (low 𝛽𝛽), 
activity is spread widely, but there is only one dominant city. With intermediate 
𝛽𝛽-values, a pattern with several large cities is revealed. With very high values 
of 𝛽𝛽, a scenario is achieved where there are almost no long-range interactions. 
The result is a more widespread spatial distribution of activity around a large 
number of local cores.  

A change in  𝛽𝛽 is most easy to interpret as a change in transportation technology 
or transportation costs. For a cost-change to actually affect 𝛽𝛽, there needs to be 
some non-linearity in the cost structure, i.e. different impacts per distance 
travelled, for long compared to short trips. A homogenous change in costs 
would not show up as a change in 𝛽𝛽.  
 

 

 
Figure 15. Results from the preferential model, for the southern half of Sweden, using 
different values for the interaction parameter 𝛽𝛽. 

 

                                           
10 The interaction parameter 𝛽𝛽 is used in the interaction function 𝑓𝑓�𝑐𝑐𝑖𝑖𝑖𝑖� = 𝑐𝑐𝑖𝑖𝑖𝑖−𝛽𝛽. See papers 
IV and V for more details. 

𝛽𝛽 = 1.0 𝛽𝛽 = 2.5 𝛽𝛽 = 5.0 
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10.3 Modifying the physical network 
The preferential centrality model can be applied to analyse changes in the 
infrastructure network. Centrality is then calculated, with and without the 
network change, and relative differences in model outcomes can be studied.  

An example is shown in Figure 16, where the network is changed by adding a 
motorway bypass around a major city. For comparative purposes, the total 
activity level is held fixed, regardless of network changes. This means that it is 
a redistribution of activity that is being modelled. Whether the modified spatial 
structure is more economically productive cannot be deduced from this model 
by itself. 

For planning purposes, however, interesting questions can be posed regarding 
to what extent such modelled geographical redistributions are in line with local 
and regional goals for spatial development. 

 
Figure 16. Simple case study of a bypass (thick brown line) around the Swedish capital, using 
the preferential centrality model. The colour scale is based on a quantile classification, with 
red indicating increased relative centrality.  
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10.4 Changes in flow and activity 
In the preferential centrality model, interaction and activity are theoretically 
equivalent. This means that the concepts can be interchanged depending on the 
intended planning application. For example, the perspective of changing 
activity at different locations can be expected to be in focus for urban planners, 
and the perspective of changing flow in the physical network might be more 
relevant for transport planners.   

The combination of the two perspectives into one modelling framework, where 
neither of the two is considered to be more fundamental, opens up for improved 
integration between land use and transport in actual planning practice. 

In Figure 17, an example is shown where a network modification gives rise to 
changes in flow and new routes. Note that the changing flow of interactions 
cannot be interpreted as equal to changes in vehicular flow, as discussed in 
section 6.6. However, they can be expected to be closely related. 

 
Figure 17. Changes in flow due to network modifications along the Norwegian coastline, 
according to the preferential centrality model. Left: Modelled flows before modification. 
Right: Differences in modelled flows due to the introduction of six fixed links (circles) 
replacing ferry connections. Red indicates increased flow, and blue indicates reduced flow. 
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11 Discussion 

11.1 Urban activity 
Since urban activity is notoriously difficult to measure fully, any interpretation 
of model results tends to be ambiguous. This concerns all the presented models, 
both for urban growth and urban centrality. If activity is predicted to increase at 
a location, this could take the shape of new or improved buildings; increased 
land values, population, and income levels; increased turnover; new 
workplaces; or any combination of these effects. Having a generalized measure 
of activity is thus a double-edged sword. It provides the basis for a clean and 
simple model structure but adds the mentioned complications in interpretation. 

However, in a planning context, the ambiguity might also be a positive feature 
since a lot of details are kept outside of the model scope. The somewhat abstract 
model output could be used to guide decisions about what paths to take in the 
development of an urban area. Locations could be identified as having a high or 
low potential for generalized activity, and then the planning could adapt 
accordingly. Adaptation could occur either by accommodating the changes in 
activity by physical adjustments (such as new buildings) or by studying 
counteracting network alterations. 

11.2 Multiplicative growth and agglomeration 
In all the presented models, multiplicative growth (preferential attachment) is 
an essential mechanism. In the general case, there are some benefits of using 
the term attachment instead of growth. One such conceptual benefit is that an 
attachment process does not require absolute growth in the system. As long as 
local activity growth (attachment) is balanced by declining activity at other 
locations, fat-tailed distributions are retained.  

To achieve a good fit between distributions of modelled activity and empirical 
data, it seems that the relation between activity size and activity attraction 
cannot deviate too much away from linearity. However, assuming such a linear 
preferential attachment is not obvious with regard to economic theory since it 
implies some sort of constant returns to scale. Many economic processes deviate 
from linearity, both into the sublinear domain with decreasing returns to scale; 
or towards the super-linear with increasing returns. 

The analysed models are not aimed towards answering why linear preferential 
attachment might be so dominant. One hint could lie in the random selection of 
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links, as discussed in section 5.2. However, for that explanation to make sense, 
edges in the interaction network must be reasonably independent of each other.  

It should also be noted that the empirical studies reported in this thesis do not 
include any data on time dynamics. Theoretically, the models suggest some 
mechanisms of systems changing over time, both with regard to urban growth 
and changing centrality. Some of these assumptions should, in principle, be 
open to empirical investigations in future research. 

11.3 Interaction and agglomeration 
In the presented models, for urban growth as well as for centrality, the 
agglomeration parameters could in one limit be reduced to insignificance. In the 
urban growth model, this is called uniform growth (or additive growth), and in 
the case of centrality, the preferential model is reduced to the eigenvector 
model. In these model versions, spatial interaction is preserved, but there is no 
multiplicative attraction (i.e. no local agglomeration). This leads to model 
outcomes that deviate from empirically observed patterns.  

This means that spatial interaction (or accessibility) in itself cannot be 
considered as a full explanation of urban growth and urban centrality. It is not 
enough that activities (such as jobs and housing) are located near each other. 
Some additional force of local agglomeration is also needed.   

One suggestion of the local multiplicative agglomerative force is the movement 
of people (Hillier and Hanson, 1989). In our theoretical framework that would 
correspond to saying that it is the flow in the physical network that is the 
attractive driving force. It can, of course, not be disregarded that this is crucial 
for many urban economic activities such as shops and restaurants. However, the 
majority of the flow is not searching for random attractions along the way but 
is aiming for an intended destination. Movement-based models for 
agglomeration, such as betweenness centrality, are thus not plausible as full 
explanations. Mechanisms of destination-based attraction are also needed, as 
captured by the preferential centrality model.  

In papers IV-V, dealing with interaction without agglomeration is represented 
by the accessibility and the eigenvector models that we use for comparison. The 
opposite case of agglomeration without interaction, is not explicitly considered 
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but can be understood as a low 𝛽𝛽-value in combination with strong 
preferentiality.11  

In paper V, it is observed that the regional model shows a higher empirical 
correspondence in comparison with the multi-regional model. This could 
possibly be because of the implicit assumption that interaction and 
agglomeration (represented by parameters 𝛼𝛼 and 𝛽𝛽) behave uniformly across 
the system.  If parameters then are tuned to fit observations in one region, adding 
other regions would tend to drag the performance down. There could also exist 
factors of regional productivity not directly linked to road network accessibility 
and agglomeration, for example, due to nationally allocated activities, such as 
public universities.  

Also, international interactions (travel and trade) are not included in the current 
modelling setup, and these factors could cause regional variability. Railroads 
and information technology are other missing modelling components that are 
likely to affect results. 

11.4 A minimal model? 
In all types of modelling, there is always a tension between simplified and 
complicated models. Simplified models can be theoretically sound and 
analytically tractable but at the cost of empirical faithfulness. Complicated 
models might leave tractability aside to achieve empirical accuracy, at least in 
specific cases.  

New theoretical approaches can, in principle, raise the quality in both ends of 
the modelling spectrum. More accurate mechanisms can be used, both to bring 
the simple models closer to empirical reality as well as to help the more 
complicated models to drop a few parameters without losing accuracy.   

Compared to a simple accessibility model, preferential centrality seems to add 
empirical value. In relation to urban economics, however, some theoretical 
foundations in microeconomics are lost. Compared to full-blown LUTI-models, 
a preferential centrality model is missing many details, but the predictions on 
offer might be considered good enough. There is also the added value that a 

                                           
11 Using pure local agglomeration as a sole explanatory variable might not even make sense, 
since any real agglomeration takes place in a spatial setting, on several scales. If treated as a 
spatially uncorrelated factor, the agglomeration effect can then be both over- and 
underestimated. 
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centrality model avoids the LUTI-models’ challenging requirements of input 
data and estimation of many different parameter values.  

It is more difficult to assess if the added performance of preferential centrality 
compared to a simple accessibility model makes the extra effort worthwhile. 
The answer is probably dependent on the particular application. In situations 
where strong agglomerative forces are expected, there seem to be good reasons 
to use preferential centrality. 

The modelling and empirical results suggest that multiplicative processes are 
plausible explanations for many urban statistical patterns. When studying 
preferential centrality, it can be found that increased preferentiality makes the 
model more sensitive to small changes in interaction. This could mean a more 
chaotic system with overall less predictability. However, this does not by itself 
suggests that a more linear model should be used. If the real system actually 
encompasses strong non-linear forces, models disregarding this would only give 
an illusory sense of predictability. 

The lack of predictability should here be interpreted in the local sense, i.e. 
regarding what might happen to the activity level for a particular zone or for a 
particular city. Statistical properties of the systems, or the directions of change, 
could nevertheless be possible to model with more confidence. 

11.5 Applications 
An important aim in this search for new approaches in urban modelling is to 
achieve higher applicability in planning. With regard to planning, the centrality 
model presented in papers IV-V seems to have greater potential than the urban 
growth models presented in papers I-III.  

The planning-relevant parameters in the urban growth model are the ratios of 
external growth, perimeter growth, and preferential growth, as well as the 
interaction parameter. Since no explicit road network is included in the model, 
all changes of the interaction function must be global, i.e. by political or 
technological changes. However, the outcome variable (distribution of land 
values and cluster sizes) are shown to not respond very strongly to the changes 
of interaction since all changes happen on the time scale of urban growth. This 
makes the model useful only when considering changes that take place over 
very long time scales. 

The centrality model is better posed to study the short and intermediate time 
scales since the model responds immediately to changes in the physical network 
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and to changes in the interaction function. Thus, both global changes, such as 
changing costs of driving, and local changes, such as new road infrastructure, 
can be studied.  

The quick response of the model can be questioned with regard to realism. In 
reality, physical adaptations and changing activity take place on a longer time 
scale. The centrality model basically points toward a new equilibrium, 
providing only limited information about the system’s path towards this new 
state.  

These features have commonalities with many economic models, which build 
upon assumptions of partial or general equilibrium. Many of the same 
criticisms, and cautions, that has been raised towards such modelling probably 
also apply to spatial centrality modelling. In the end, it must be empirical 
validation that provides the trust needed for the practical application of any 
modelling approach.  

11.6 Contribution of research 
The contributions of the underlying publications can be summarised as follows. 

Paper I 

1. Empirical observation of a fat-tailed distribution in Swedish land values 
on a cellular scale. 

2. Formulation of a conceptual link between complex networks and urban 
interaction. 

3. A spatial complex network model is presented that can reproduce the 
empirically observed distribution. 

4. Demonstration that spatial interactions do not significantly distort the 
power-laws generated by preferential attachment.  

Paper II 

1. Empirical observation of a fat-tailed distribution in Swedish land values 
for urban clusters. 

2. Empirical observations for urban clusters regarding relations between 
land value, population, area and perimeter.  

3. An improved spatial complex network model that can recreate the 
observed empirical distributions and relations. 
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Paper III 

1. Interpretation of the urban growth model within a broader context in 
economic geography. 

2. Adaptation to a spatial setting of the complex network concept of node 
fitness.  

Paper IV 

1. Derivation of eigenvector centrality in the interaction network, from a 
spatial interaction model based on the physical network. 

2. Introduction of the preferential centrality measure by combining 
eigenvector centrality with preferential attachment. 

3. Empirical spatial comparisons within a single city, showing high 
correspondence between preferential centrality and land taxation values. 

Paper V 

1. Extension of the analysis of preferential centrality from the urban to the 
regional and multi-regional scales. 

2. Support for our hypothesis that the road network strongly influences the 
spatial distribution of economic activity both at the inter-city regional 
level, as well as on the intra-city local level. 

3. Preferential centrality is shown to be a better explanation for empirical 
land value patterns in comparison to a simpler accessibility model. 

In a wider context, the contribution can be summarised as a conceptual 
adaptation of the complex network framework to study urban interaction 
networks, specifically with regard to growth dynamics and fat-tailed 
distributions. The second part of the contribution regards the further model 
development to integrate the concepts of preferential attachment within a 
centrality framework.  

The latter contribution makes it possible to study actual cities and regions based 
on transportation networks as input data, opening up for practical applications 
in transport and land use planning. The low data requirements for applying the 
preferential centrality model could make it well-suited for use in countries with 
limited availability of high-resolution socio-economic data. 
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11.7 Limitations 
Regarding empirical tests, the research presented in this thesis has three main 
limitations. First, it is based solely on Swedish data, which can raise the question 
of how well results generalise to other parts of the world. Second, the primary 
source for validation data is property taxation. Other ways of measuring urban 
land use and activity could yield different results and potentially point towards 
other underlying mechanisms. It can also not be ruled out that some of the 
empirical observations are artefacts created by the tax assessment process. 
Third, all presented results are cross-sectional, which implies that some 
observed patterns might not be stable over time. Also, the underlying dynamical 
processes suggested by the modelling have not been empirically tested per se.  
It is only the resulting patterns produced by these processes that we have 
examined empirically. 

Another limitation concerns the model representation of the transportation 
system in papers IV-V. It is the road network only that has been used as a basis 
for calculating spatial interaction, which implies an inadequate representation 
of interactions based on other physical networks. In reality, public transit, rail 
transport and flight networks can also have significant impacts on accessibility.  

However, large parts of the represented road network are open to modes of 
transport that do not require a private car, such as travel by foot, cycle, taxi and 
bus. Since the network is the same, but the usage is different, these other modes 
can be considered to be implicitly included in the modelling. Nevertheless, an 
explicit and more careful treatment of these modes could potentially yield other 
model outcomes. The largest impact can be expected with regard to modes that 
use a separate infrastructure, such as rail. 

Networks for utilities, such as water and electricity, can also be included in the 
category of physical networks, and these might also have large consequences 
for the potential of urban expansion. Peripheral development without access to 
existing utility networks might be costly compared to development in the 
perimeter of urban areas, where connections can be made easily. Peripheral 
development might also be discouraged by planning authorities for economic 
and environmental reasons (such as waste and water management).  

Utility networks have not been explicitly considered in this thesis. Implicitly, 
they are represented in the urban growth models, by the different probabilities 
for development - externally and at the perimeter. In the centrality model, access 
to utilities could, in principle, be represented in the local zonal weights, but this 
has not yet been tested.  
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12 Further research 

12.1 Improved cross-sectional analysis 
Comparing empirical geographical distributions with model outcomes poses 
many problems. In a zone-by-zone comparison, such as in an OLS regression, 
there is a risk that local spatial peaks in model activity can be interpreted as 
large deviations if a corresponding empirical peak is present but with a spatial 
shift. The consequence might be that models without peak-generating processes 
(such as many models lacking multiplicative growth) can look like they are 
performing relatively well. This means that smooth (but unrealistic) model 
results tend to be disproportionally awarded. 

The earth mover’s distance (EMD, Kranstauber et al., 2017; Rubner et al., 2000) 
can provide a possible alternative metric that could be used to examine the 
combined fit of frequencies and locations in model output to empirical data. 
Using EMD could thus be an interesting option when examining how well 
different models reproduce empirical spatial patterns, where the underlying 
statistical distributions are fat-tailed.   

12.2 Longitudinal studies 
A natural next step to further validate the proposed models is to perform 
longitudinal studies. Historical changes in the physical networks can be studied 
in relation to changing activity, both empirically and within the models.  We 
have access to Swedish land taxation data from 1988 and onwards, and in an 
already ongoing (2021-2024) research project, this data will be used to validate 
the preferential centrality model. 

When analysing the effects of improved transport infrastructure, there are 
several methodological problems to consider. One such issue is due to that new 
infrastructure makes it easier to both import and export goods and services 
(Oosterhaven and Knaap, 2017). This means that effects on local economic 
activity cannot be expected to always be positive, nor always negative. Together 
with multiplicative forces causing low predictability in models, it is a daunting 
task to disentangle the causal linkages in an empirical study.   

In the preferential centrality model framework, the issue can be exemplified as 
follows. A new road might influence residents in a small town to redirect their 
local shopping to a nearby larger city. This can be interpreted as increasing 
imports to the town and decreasing local economic activity. At the same time, 



75 
 

the new road might make the town more attractive for commuting, causing 
increasing housing prices, i.e. increased activity. The net effect will depend on 
specific local factors, and the hypothesis implied by the preferential centrality 
model is that these effects can be inferred mainly from physical network 
characteristics. 

12.3 Other transportation modes 
Including public transit in the preferential centrality model is a necessary step 
for achieving applicability for metropolitan areas. A workable procedure to 
create multi-modal networks using timetable data has been presented by Gil 
(2015).  

However, using current timetables is problematic when studying models for 
future cities. Transit networks cannot be considered as static as road networks, 
which blurs the separation of time scales between infrastructure changes and 
changing activity.  

A possible remedy would be to develop models that can predict important 
aspects of transit networks. Transit characteristics could then be modelled as 
consequences of physical networks and urban activity. This would, however, 
add an additional layer of complexity to the modelling, and several iterations 
might be needed between modelled activity and modelled transit network.  

12.4 Congestion and capacity  
Capacity constraints are, in many cases, critical determinants for the 
performance of urban physical networks. Congested networks could be viewed 
as a diseconomy of agglomeration, balancing the agglomerative forces. To 
properly understand the dynamics of megacities, it is thus necessary to consider 
network capacity and congestion.   

These mechanisms could be directly included in the preferential centrality 
modelling by using an external transport model (including effects of 
congestion) to create the travel times used in the interaction calculation. 

However, more in line with the idea of a minimal model, would be to include a 
simple congestion mechanism within the centrality calculation. This would 
make it possible to capture the full feedback between activity, flow and 
congestion. It is an open question if an empirically relevant model of this kind 
is achievable. 
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12.5 Radiation centrality 
The principles for distance decay that we have used are based on spatial 
interaction formulations stemming from the gravity model. Simini et al. (2012) 
have proposed an interesting alternative called the radiation model, which could 
in principle be incorporated into a centrality model, using a similar derivation 
as for preferential centrality. 

The average flow 𝑆𝑆𝑖𝑖𝑖𝑖 of interaction between two zones can be calculated by the 
radiation model using  

𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖
𝑎𝑎𝑖𝑖𝑊𝑊𝑗𝑗

�𝑎𝑎𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖��𝑎𝑎𝑖𝑖 + 𝑊𝑊𝑗𝑗 + 𝑠𝑠𝑖𝑖𝑖𝑖�
, 

where 𝑎𝑎𝑖𝑖 is the activity at zone 𝑖𝑖, and 𝑊𝑊𝑗𝑗 is the attraction of zone 𝑗𝑗. The quantity 
𝑠𝑠𝑖𝑖𝑖𝑖 could be defined12 as the sum of the attraction values for all zones reachable 
from zone 𝑖𝑖, within the travel time between zones 𝑖𝑖 and 𝑗𝑗.  
By using the equilibrium assumption that the sum of incoming flow is equal to 
activity, we can find the radiation centrality by solving 

𝑎𝑎𝑗𝑗 = 𝑊𝑊𝑗𝑗�
𝑎𝑎𝑖𝑖2

�𝑎𝑎𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖��𝑎𝑎𝑖𝑖 + 𝑊𝑊𝑗𝑗 + 𝑠𝑠𝑖𝑖𝑖𝑖�𝑖𝑖

. 

What types of numerical solutions this can yield for different definitions of 
attraction has not yet been explored. One potential upside of this measure is that 
there is no parameter for distance decay, making the model in some sense 
simpler than preferential centrality based on the gravity model. 

12.6 Growing physical networks and evolving urban systems 
Several simple models for growing road networks have been proposed in the 
literature (e.g. Barthelemy and Flammini, 2008; 2009; Courtat et al., 2011; Rui 
and Ban, 2011). Connecting such a model to the preferential centrality model 
could provide further insights into the co-evolution between activity, land use 
and physical networks. By also including the above-mentioned congestion 
modelling, increased realism would be obtained in the growth process since 

                                           
12 The quantity 𝑠𝑠𝑖𝑖𝑖𝑖 was originally defined as the sum of population within a circle centred at 
zone 𝑖𝑖, with a radius equal to the distance between zones 𝑖𝑖 and 𝑗𝑗. Here an adaptation is needed 
to account for the activity formulation and the structure of the road network. 
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congestion can be a significant factor determining decisions about network 
modifications.  

Models for physical network growth, land use development and urban activity 
could be studied in a joint simulation framework. Empirical validation might be 
performed using historical changes in transportation technology, energy costs, 
and taxes since such factors would be exogenous to the joint model. 

12.7 Designing urban systems 
With a simplified joint simulation model as described above, a further step 
could be to use evolutionary methods for designing simulated urban systems 
according to some set of global performance metrics. The resulting 
development trajectories could then be studied to understand the possible 
consequences of different stylized planning principles for transport and land 
use. Hopefully, some guidance could be extracted regarding which principles 
that could be expected to result in robust and desired outcomes. 

12.8 Spatial bubbles 
The preferential centrality model has (if parameters are set to more extreme 
values) the interesting property of being able to form spatial bubbles, i.e. self-
sustaining structures in otherwise homogenous spatial settings. This could be 
likened to how price bubbles might form in asset markets (Sornette et al., 1996). 

Theoretical and empirical studies based on the concept of spatial bubbles could 
yield insights into sudden local changes in property markets, as well as 
processes such as gentrification.  

Jointly with such exploratory modelling, a more thorough mathematical 
treatment of the preferential centrality model is needed, including studies of 
stability and multiplicity of solutions.  
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