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a b s t r a c t

Limestone calcined clay cement (LC3) is a new type of low-carbon cement that can reduce

energy consumption and carbon dioxide emissions while meeting the performance re-

quirements of ordinary cement. In this study, polypropylene (PP) fibers were mixed into

limestone calcined clay cement-based materials to make new low-carbon ECCs. In this

study, a total of 24 sets of specimens were designed for 4 groups of curing ages and 6 types

of mix ratios. The compressive loadedisplacement data were measured the compressive

curve characteristics were analyzed then, a compressive constitutive model of the com-

posites was deduced and obtained. Through XRD, SEM-EDS and MIP experiments, the

reasons and laws of the compressive strength ranges of adding PP fibers and LC3 to

engineered cementitious composites (LC3-PP-ECCs) are further explained from the

perspective of the pore size, microstructures and hydration products. The results show

that, after 28 days, the compressive strength values of LC3-PP-ECCs generally decreases

with increasing PP fiber content and the combined effect of PP fibers and hydration

products causes the compressive strength of LC3-ECCs with 0.5% PP fibers to drop sharply.

In addition, the specimens showed better properties in terms of toughness, ductility and

energy absorption. However, in the microstructures, the addition of PP fibers will cause

more internal defects and flaws. This results of this study can provide some theoretical

experience and technical support for the engineering application of LC3-ECCs.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cement is an indispensable and important material and it has

been used in construction and infrastructure construction for

a long time. In the 1990s, Victor C. Li et al. began to try to mix

fibers into cement and established a theoretical model of the

pull-out test that considers the change in the bond strength

during the pull-out process [1]. Composite materials

composed of fiber and cement have begun to be widely stud-

ied. At present, fiber-reinforced cement-based composite

materials have been studied on with a variety of fibers,

including steel fibers [2,3], polyethylene fibers [4,5], poly-

propylene fibers [6], glass fibers [7,8] and plant fibers [9,10].

There are differences in the properties of the different types of

fibers. To obtain cement-based composites with better

comprehensive performance, some current studies investi-

gated [11,12] mixed multiple fibers.

Engineered cementitious composites (ECCs) are advanced

fiber-reinforced cement-based composite materials with

excellent tensile strain capacity and strain hardening perfor-

mance [13,14]. According to the theory ofmicromechanics, the

synergy between the fibers, matrix and fibers/matrix are

combined in ECCs. The ECCs will not lose their load-bearing

capacity immediately after the first crack. The tensile strain

capacity of typical ECCs is greater than 3% [15]. The strain

hardening capacity of ECCs can reach hundreds of times that

of traditional concrete [16]. In addition, the crack width of

ECCs can be controlled to below 100 mm even under extreme

compression, bending and tensile loads and large de-

formations [15e17]. Therefore, the abovementioned excellent

features of ECCs help to improve the elasticity, durability and

sustainability of cement-based materials [18e20], prevent

cement-basedmaterials from cracking due to their brittleness

and improve the safety of RC structures. Their excellent me-

chanical propertiesmake ECCswidely used buildingmaterials

[21]. However, most ECCs will not only increase the cost of

material production but also the raw materials that require a

large amount of cement and polymer fibers will generate large

energy and carbon footprints [22,23].

Baiano et al. emphasized the need of environment-

friendly, alternative and, ideally, carbon-neutral strategies

for energy production [24]. Fossil fuel consumption is

responsible for CO2 emissions and adverse global environ-

mental changes. Portland cement is always regarded as the

main contributor to the environmental impact and energy

consumption of cementitious materials [25]. Because its pro-

duction needs to consume a lot of fossil fuels. The cement

industry is one of the largest producers of carbon dioxide

(CO2), accounting for approximately 7% of total atmospheric

CO2 emissions [26,27]. The use of auxiliary cementitious ma-

terials (SCMs) to reduce cement will become the developing

trend of green building materials. Because materials such as
Table 1 e The main chemical composition of raw materials (%

Type of materials SiO2 Al2O3 CaO

Calcined clay 55.8 38 0.26

Cement 20.31 5.62 61.78
fly ash (FA) and metakaolin are different from ordinary Port-

land cement (OPC), they not only do not consume energy

during the production process but also do not produce carbon

dioxide [6,28]. In the study of SCMs, it was found that using an

SCM can reduce the energy consumption by 71% when

compared to benchmark materials [29]. The energy con-

sumption of LC3 cement-based composites was also lower

than that of ordinary concrete [30]. Thus its use is very ad-

vantageous. In this context, various SCMs have been exten-

sively studied. Hosan and Shaikh combined nano-CaCO3 with

high-volume slag and slag-fly ash concrete. They found that

its carbon footprint was reduced by 54% and its 28 d

compressive strengthwas greater than that of the control OPC

concrete [31]. Chun et al. found that the tensile strength of a

strain hardening superfast hardening mortar containing a

large amount of an auxiliary cementing material and poly-

ethylene fiber can reach 7.3 MPa [4]. Zeyad et al. studied high-

strength concrete mixed with volcanic pumice powder and

polypropylene fiber. They found that it can replace cement for

production and it would reduce costs [6]. Souza et al. used

limestone powder instead of OPC for the production of pre-

fabricated slender structural mortar components. They found

that its strength is higher than 40 MPa and that it has good

durability [32].

Using supplementary cementitious materials (SCMs) to

replace part of the cement can be a reliable solution that can

not only reduce energy consumption and greenhouse gas

emissions but also avoid binder quality problems [33,34].

Some studies [35e38] have explored the effect of commonly

used SCMs on the performance and durability of concrete,

confirming the feasibility of using SCMs. On this basis, the use

of SCMs such as fly ash, slag, pozzolan and silica fume have

also been extensively studied in ECCs [39e44] and they have

also shown good performance. However, most of these SCMs

are industrial byproducts and the existing reserves and pre-

dicted outputwill not be able tomeet the expected demand for

cement [45e47]. Therefore, these SCMs are difficult to use on a

large scale. In contrast, calcined clay will have greater ad-

vantages in the future because clay minerals are naturally

present in the Earth crust throughout the world [48] and

calcined clay can be produced by only heat treatment. The

progressive reduction of fossil resources and the severe

environmental problems associated with their extensive use

are pushing both academia and industry to resort to different

routes for the development of more sustainable added-value

products and processes. The progressive reduction of fossil

resources and their widespread use have brought serious

environmental problems. It has prompted academia and in-

dustry to resort different routes for the development of more

sustainable added-value products and processes [49]. The

advantage of limestone over cement is that it does not need to

consume fossil resources for calcination. At the same time,

the replacement of limestone in OPC mixtures with calcined
).

K2O Fe2O3 MgO SO3

3.35 1.57 0.35 0.18

1.55 3.54 2.11 2.47
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Fig. 1 e Rawmaterials (cement, limestone powder, calcined

clay powder, gypsum powder and PP fiber).

Table 2 e Mixture proportions of LC3-ECCs (kg/m3).

Mixtures NO. W/B Binder proportion PP fibers

OPC CC LS GYP

LC3-PP-1 534.22 702.93 400.67 200.33 31.63 0.00

LC3-PP-2 531.55 699.41 398.66 199.33 31.47 4.55

LC3-PP-3 528.88 695.89 396.66 198.33 31.32 9.10

LC3-PP-4 526.20 692.37 394.65 197.33 31.16 13.65

LC3-PP-5 523.53 688.85 392.65 196.32 31.00 18.20

LC3-PP-6 520.86 685.34 390.64 195.32 30.84 22.75

Note: LC3 in mixture NO. is for limestone calcined clay cement, PP

is for PP fibers, and the numbers 1, 2, 3, 4, 5 and 6 inmixture NO. are

0%, 0.5%, 1%, 1.5%, 2% and 2.5% of PP fibers blended in volume,

respectively. OPC: ordinary Portland cement; CC: calcined clay; LS:

limestone; GYP: gypsum.
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clay shows ideal compressive strength and durability by pro-

ducing aluminates that promote the formation of ettringite

[50e53]. Combining calcined clay and limestone has become

an outstanding solution [54]. This method shows a higher

level of clinker replacement and at a high replacement rate, it

can maintain the same or even exceed the mechanical prop-

erties [46,55,56], durability [57] and physical and chemical

properties of OPC [58e61]. In addition, it has been demon-

strated that LC3 cement can be mass-produced in existing

factories [62,63]. A large number of studies has shown that LC3

has the characteristics of low carbon, environmental protec-

tion, economy and good performance, which means that LC3-

ECCs have great research value.

At present, there have been preliminary evaluations of

LC3-ECCs and the 28 day compressive strength values of

LC3-ECCs meets the requirements of RC structures [64]. At

the same time, LC3-ECCs are more malleable, more durable,

more environmentally friendly and has a less expensive

than OPC-ECCs [30], which means that LC3 has shown

feasibility in developing low-carbon ECCs with good tensile

ductility. In previous studies [30,64e66], a 2% volume con-

tent of fibers was selected for study. As a new material, it is

necessary to consider the effect of fiber contents on LC3-

ECCs. In addition, there have been only a few studies on

the compressive performance of LC3-ECCs and the reasons

for the ranges in compressive performance have not been

studied enough and explained in consideration of multiple

factors.

Based on the above research background, starting from the

excellent performance of LC3-ECCs, this study explores the

compressive performance and law of LC3-PP-ECCs under 4
different curing ages and 6 different fiber contents. Among

these conditions, he cross-section and failure states of the

specimens were observed. Through XRD, SEM-EDS and MIP,

the crystal compositions, micromorphology and compound

products of the LC3-ECCs were explored and the toughening

mechanism of the PP fibers was explained. At the same time,

the mechanical properties of LC3-PP-ECCs, such as compres-

sive stress and strain, were studied and a summary of the law

of changes in the mechanical properties of LC3-ECCs under

the combined effects of the various fiber contents and curing

ages were evaluated. At the same time, the mechanical

properties of LC3-PP-ECCs, such as stress and strain, were

studied and the range law of the mechanical properties of

LC3-ECCs was summarized under the combined effects of the

various PP fiber contents and curing ages. Based on this, the

feasibility and applicability of LC3-ECCswere investigated and

the results of this investigation provide some ideas and

experience for accelerating the promotion and application of

new low-carbon ECCs.
2. Experimental design and raw materials

2.1. Raw materials

Fig. 1(a) shows the raw materials, including P$O 42.5 ordinary

Portland cement (OPC), limestone powder, calcined clay

powder, gypsum powder and polypropylene fiber and their

particle size distributions are shown in Fig. 1(b). This study

selected Conch brand commodity ordinary Portland cement

produced in Yingde City, Guangdong Province, which com-

plies with GB 175e2007 General Portland Cement [67]. Table 1

shows the chemical composition of the raw material. For the

PP fibers, the length of the PP fiber was 1.2 cm, the diameter

was 25 mm, the Young's modulus was 7.1 GPa and the tensile

strength was 630 MPa. The detailed description of the project

was also published elsewhere [68].

2.2. Design of mix ratio and preparation of test pieces

The mix ratio of this study refers to previous studies [57,69].

Thewater-to-binder ratio (w/b) usually ranges from0.35 to 0.5.

A w/c of 0.4 was selected in this study. In the amounts of

https://doi.org/10.1016/j.jmrt.2021.09.023
https://doi.org/10.1016/j.jmrt.2021.09.023


j o u r n a l o f ma t e r i a l s r e s e a r c h a nd t e c hno l o g y 2 0 2 1 ; 1 5 : 2 1 1 7e2 1 4 42120
cementitious materials, OPC accounts for 50%, calcined clay

powder accounts for 30%, limestone powder accounts for 15%

and gypsum powder accounts for 5%. The OPC used therein

contains 5% gypsum, and only 2.4% gypsum is added when

calculating and weighing. This study employed 4 different

curing ages, namely, 1 d, 3 d, 7 d and 28 d. In addition, 6

different PP fiber contents were designed and the volume ra-

tios were 0%, 0.5%, 1%, 1.5%, 2% and 2.5% with 3 specimens in

each group. The specific volumes of raw materials are shown

in Table 2.

The production process is shown in Fig. 2 and the prepa-

ration of mortar refers to GB/T 17671e1999 “Cement Mortar

Strength Inspection Method (ISO Method)” [70]. According to the

designed raw material ratios, the amounts of each material

were carefully weighed. Then, the cementitious materials

were placed into themixtures and stirred for 2 min so that the

cementitiousmaterials were evenlymixed. Then, the PP fibers

were evenly added around the sides into the mixer and water

was slowly added after the PP fibers were completely added.

The speed of the mixer was adjusted and the mixer was

operated slowly and quickly for 2 min. After the mixing was

completed, the PP fibers that remained on the equipmentwere

put into the container. The fully stirred mixtures were placed

into a mold of 40 mm � 40 mm � 160 mm and placed on a

vibrating table. At the same time, the pastes were filled three

times. The calcined clay in LC3 is very viscous and the incor-

poration of PP fibers will also introduce air bubbles. Then, the

outer surface of the finished specimen was wrapped with

plastic wrap to ensure that moisture was not lost, and the

hydration reaction of the test pieces proceeded normally.

After 24 h of setting, the test specimens had a certain me-

chanical strength and the model was removed and the spec-

imen was placed in a standard curing room with a

temperature of 20 ± 2 �C and a relative humidity of 95%.
Fig. 2 e Production process of th
2.3. Compressive test

The compressive strength was tested by a constant-load

cement flexural and compressive testing machine, as shown

in Fig. 3(a). The equipment adopted displacement control and

the loading rate was 1 mm/min. The test refers to GB/T

17671e1999 “Cement Mortar Strength Test Method (ISO Method)”

[70] and to the literature [71]. Through processing, the

compressive stressestrain curves of the materials can be ob-

tained. Based on the literature [71], the compressive charac-

teristics of the peak stress sm, peak strain εm, elastic modulus

E, residual stress su and residual strain εu in the curve char-

acteristics can be obtained. The analysis methods of these

parameters are described in detail in Chapter 3.2.2. By further

analysis, it can be obtained the compressive constitutive

model of the ECCs.

2.4. XRD test

To analyze the specimen product phases, this study applied

an X-ray diffractometer (the model is MICROXCT-400, manu-

factured by XRADIA Company, America), as shown in Fig. 3(b).

The scanning angle was set to the 2q range of 5e80� and the

phase composition ranges of the samples were collected [72].

The specimens were analyzed after the destruction of the

compression test. The sample was placed in a drying oven to

dry and then it was ground to below 5 mm. The sample powder

was compacted on a glass dish and placed in the instrument

for measurement.

2.5. SEM-EDS test

To study the microscopic structures of the pastes, this study

applied scanning electron microscopy-energy dispersive
e LC3-PP-ECCs specimens.

https://doi.org/10.1016/j.jmrt.2021.09.023
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Fig. 3 e Test equipment.
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spectrum analysis (Quanta TM 250 FEG, manufactured by FEI

Company, America), as shown in Fig. 3(c). The broken speci-

mens from the compression test were placed in a drying box

for drying. In this study, pieces of the paste of approximately

5 mm from the surface and internal area of the mixtures were

extracted. . Moreover, to increase the electrical conductivity of

SEM specimens, the samples were gold plating before the test

[73].

2.6. MIP test

To analyze the pore size and porosity of ECC mixtures, this

study applied mercury intrusion porosimetry (MIP) and the

mercury intrusion instrument (Autopore IV 9500 porosimeter,

Micromeritics, USA), which is often selected to study the pores

of mixtures, as shown in Fig. 3(d). The samples used in this

study were taken from the surface of the ECC pastes, the

diameter of the samples was approximately 5e15mm and the

samples were placed in an oven at 30e60 �C for 24 h before the

MIP analyses [72].
3. Results and discussion

3.1. Patterns of compressive failure

Fig. 4 (a)-(f) show compression failure characteristics of the six

groups of specimens LC3-PP-1, LC3-PP-2, LC3-PP-3, LC3-PP-4,

LC3-PP-5 and LC3-PP-6 after curing for 28 days. Because LC3-

PP-1 was not added PP fiber, during the process of compres-

sive failure the parts at both ends will break first and then the

internal cracks will spread out from the outer edge. When the

cracks penetrate, they will peel off layer by layer, as shown in

Fig. 4 (a), and the final shape of the specimenswill be similar to

a pit. For LC3-PP-2, LC3-PP-3, LC3-PP-4, LC3-PP-5 and LC3-PP-6-

containing PP fibers, it can be observed from Fig. 4 that, due to

the connection and bridging effect of the PP fibers, the speci-

mens will not be completely separated when they are broken,

and the cracks will basically expand vertically. In addition,

transverse cracks can be observed in the specimens with low

PP fiber volumes. However, for specimens with large amounts

of PP fibers, the above phenomenonwill not appear. Moreover,

the numbers of cracks are relatively small, the compressive

failure time is longer and the specimens are more intact after

compressive damage.

Fig. 5 shows the compressive fracture section of the ECC

test pieces. After comparison and observation, it can be found

that there are some pores and bubbles on the cross-section.

Among them, bubbles with larger diameters are more likely

to appear in LC3-PP-1, indicating that the addition of PP fibers

can be combined with LC3, preventing the existence of larger

diameter bubbles. With the increase in the PP fiber volume,

the number of pores with a diameter lower than 1 mm on the

cross-section also increases, indicating that the incorporation

of PP fibers will cause small bubbles in the ECC matrix, which

negatively affects the mechanical properties of LC3-ECCs. In

addition, the distribution of PP fibers can also be observed on

the cross section. Due to its excessive fiber content of 2.5% by

volume, the fiber distribution on the cross-section of LC3-PP-6

is obviously uneven and there are agglomerations of PP fibers

https://doi.org/10.1016/j.jmrt.2021.09.023
https://doi.org/10.1016/j.jmrt.2021.09.023


Fig. 4 e Different compressive failure patterns of the ECCs after 28 days curing age.
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Fig. 5 e Compressive fracture cross-section of the LC3-

ECCs.
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in some areas, which will have an impact on the mechanical

properties of LC3-ECCs.

3.2. s-ε curves analysis of LC3-PP-ECCs

3.2.1. Overall analysis of compressive s-ε curves
Fig. 6 (a)e(f) show the s-ε curves of specimens LC3-PP-1, LC3-

PP-2, LC3-PP-3, LC3-PP-4, LC3-PP-5 and LC3-PP-6 at 4 curing

ages. Through the analysis, the influence of the curing ages on

the compressive performance of LC3-ECCs can be explored.

Fig. 6 shows that the s-ε curves of the LC3-PP-ECCs are similar

to those of other ECCs and the curves are mainly composed of

a linear rising stage and a nonlinear descending stage. Fig. 6

shows that in the initial compressive phase, the line

segment basically grows in a straight line and, as it ap-

proaches the peak, the slope gradually decreases. Through

comparison, it can be found that, at early curing ages, the

shapes of the s-ε curve at the peak are smoother and with

longer curing ages the shapes of the s-ε curves ages are

sharper. At the same time, with the longer the curing age of

the specimens, the faster the curve in the descending process.

In the subsequent stages, the s-ε curves gradually flattened

out, until they finally tend to extend horizontally. For the

same group of specimens with different curing ages, the

heights of the linear stage are very similar.

Fig. 7 explores the influence of the fiber volume on the

compressive performance of LC3-ECCs, where Fig. 7 (a), (b), (c)

and (d) correspond to curing ages of 1 d, 3 d, 7 d and 28 d,

respectively. Fig. 7 shows that with increasing PP fiber volume,

there is no significant difference in the peak strain of each

group of LC3-ECC specimens. The peak stress gradually de-

creases and LC3-PP-1 is obviously themaximum in each group

after 3 d, 7 d and 28 d of curing ages. After 1 d, the slope of each

group of specimens in the ascending phase is relatively

discrete and the slope of LC3-PP-1 is the largest. At 3 d, 7 d and

28 d, the slopes of the curves of each group become closer and

it can be observed that the slopes of the 6 groups of specimens

are basically the same after 28 d; the curves in the rising phase

are basically coincident. This shows that, under a curing age
of 28 days, the PP fiber content has little effect on the elastic

modulus. At the peak, the specimens with more PP fiber

content formed a smoother arc, while the specimens with less

PP fiber content formed a sharper arc. In the descending stage,

the curves of the specimens with lower PP fiber content de-

creases faster, so the curves can be observed to intersect in

Fig. 7. This causes the curves to change from the highest peak

stress to the smallest stress, and the other groups also change

the order of height in turn. In the next stage, the s-ε curves

begin to extend horizontally.

3.2.2. Overall phase analysis of the s-ε curves
By analyzing the s-ε curves (shown in Figs. 6 and 7), it can be

found that there is a certain change law between the

compressive stress and strain of the LC3-ECCs. Through

further analysis, the s-ε curve ismade (shown in Fig. 8(a)). The

development of the curve is divided into multiple stages and

the stress characteristics of each stage are described sepa-

rately, combined with experimental phenomena, and the ef-

fects of changes in different curing ages and fiber contents are

explained.

(1). OA stage

The OA stage is the linear growth phase. In this stage, the

LC3-ECCs undergo elastic deformation under uniaxial

compressive loading, the appearance of ECCs does not change

significantly and the initial internal defects basically do not

expand. As long as the loading process does not exceed this

stage, the mechanical properties and appearance dimensions

of the specimens can be restored to their original state. The

slope of this stage is the elastic modulus E, which can be used

tomeasure the ability to resist elastic deformation. The elastic

modulus is affected by factors such as the fiber content and

curing age. Point A is the upper limit of the elastic phase.

When this limit is exceeded, the slope of the curve begins to

change and more cracks begin to occur after point A.

(2). AB stage

At the beginning of the AB stage, the slope changes from

the original linear growth to nonlinear growth. This stage is no

longer an elastic stage so, when the ECCs reach this stage, the

deformation produced is only partially reversible. The slope of

the first half has a small change. The initial internal defects

and shrinkage microcracks have just begun to extend and the

cracks were in a stable expansion state. Careful observation

can reveal the spread of microcracks. The slope changes

obviously in the second half and the stress inside the speci-

mens increases slowly during the loading displacement of the

equipment. At this time, it can be clearly observed that the

cracks continue to extend and the crackwidth becomes larger.

If loading continues, for the LC3-PP-1 specimens without PP

fibers, after the main cracks penetrate, the surface of the

specimens begins to peel off for the first time. This phenom-

enon occurs when point B is approaching and the whole

process is very fast. For the other five groups of specimens

with added PP fibers, the fracture noise of the PP fibers due to

compression or drawing can be clearly heard. Different from

the LC3-PP-1 group without fiber, due to the bonding effect of

https://doi.org/10.1016/j.jmrt.2021.09.023
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Fig. 6 e s-ε curves of LC3-PP-ECC groups at different PP fiber contents.
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Fig. 7 e Ranges of s-ε curves of LC3-PP-ECCs at different curing ages and PP fiber contents.
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PP fibers, the group with added PP fibers will also have cracks,

but there will be no surface peeling.

(3). BC stage

Point B is the peak intensity and the data corresponding to

the x-axis and y-axis are the peak strain εm and the peak stress

sm values of the specimens.When peak point B is reached, the

slope of point B begins to decline and vertical cracks gradually

appear on the surface of the specimens at the position of the

main oblique cracks. The number of vertical cracks increases

with increasing fiber content. These vertical cracks continue

to expand, extend and connect and finally form the main

oblique cracks. Then, the s-ε curve reaches point C, which is

the inflection point of the curve, that is, the positionwhere the

second derivative is 0. The data corresponding to the x-axis

and y-axis are the residual strain εu and residual stress su of

the specimens. In addition, under the 1 d curing age, the

specimens containing PP fibers will not produce many cracks

when pressed during the compressive process, but the
specimens will also be compressed more densely. Therefore,

it can be seen in Fig. 8 that, in the stage after point C, some

specimens even starting from point B that the s-ε curve of the

LC3-PP specimens will rise abnormally. At the longer curing

periods, the LC3-PP-1 specimens without fibers will be seri-

ously damaged when the specimens enter the BC stage (Fig. 8

(b)). The damaged surface of the specimens expands inwardly

and then, after peeling off the surfacematrix, the shape of the

specimens after damage appears as an “apple core” shape and

size. In the compressive process, the specimens containing PP

fibers will not be completely separated due to the fixation of

the PP fibers, but cracks will still occur under compressive

loads. There will be obvious separation from the inside of the

specimens at a distance of approximately 2 mm from the

outside. The size of the area enclosed by the OABC stage and

the x-axis is taken as the size of the failure energy Au, which

represents the amount of energy required for the complete

failure of the specimens.

(4). CD stage
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After reaching point C, the lower the fiber content is, the

faster the curve of the specimens will drop. For the specimens

with a large amount of PP fibers, since the PP fibers are con-

nected to the matrix on both sides of the fractured LC3-ECCs

when the cracks develop, the mechanical effect brought by

the incorporation of the PP fibers restricts the damage of the

matrix. This causes the original brittle failure to be converted

to ductile failure. Then, the downward slope of the curve

gradually decreases until point D, the curve continues to

develop into a horizontal line and the specimens gradually

lose their compressive bearing capacity.

3.2.3. Elastic modulus E
Fig. 9 shows the elastic modulus values of the six groups of

specimens at curing ages of 1 d, 3 d, 7 d and 28 d. It can be

clearly observed that, as the curing age increases, the elastic

modulus values of each group of specimens continuously in-

creases. At 1 d curing age, the elastic modulus fluctuates with
Fig. 8 e The compressive char
increasing fiber content. The largest were LC3-PP-1 and LC3-

PP-6, both of which reached 10.9 GPa. The elastic modulus of

LC3-PP-3 is the smallest. At 3 d curing age, the elastic modulus

of LC3-PP-3 is the smallest and the values on both sides

gradually increase. At 7 d and 28 d curing ages, the general

development trend of the elastic modulus is to decrease with

increasing PP fibers. The elastic modulus values of LC3-PP-

ECCs with PP fiber contents of 0%, 0.5%, 1%, 1.5%, 2% and 2.5%,

after 28 d of curing reached 31.3, 29.5, 31.3, 30.3, 30.4 and

27.9 GPa, respectively. LC3-PP-2 and LC3-PP-6 showed lower

values. This shows that they produce less stress under the

same displacement, and the brittleness is correspondingly

smaller.

This study explored the performance of pure LC3mixtures.

The elastic modulus values of LC3-PP-1 at 1 d, 3 d, 7 d and 28 d

were 10.9 GPa, 21.7 GPa, 25.1 GPa and 31.3 GPa, respectively.

For the LC3 mortar [74], the elastic modulus values corre-

sponding to 1 d, 3 d, 7 d and 28 d are approximately 21 GPa,
acteristic of LC3-PP-ECCs.
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Fig. 9 e Elastic modulus E of LC3-PP-ECCs under curing

ages from 1 d to 28 d.
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31 GPa, 34 GPa and 34 GPa, respectively. This shows that the

elastic modulus of LC3-ECCs basically does not increase after

the curing time reaches 7 d, while the elastic modulus of LC3

pastes is still increasing. In addition, the elastic modulus

values of LC3-ECCs differed greatly between 1 d and 3 d of

curing age. At 28 d, the difference between the LC3-ECCs and

LC3 pastes was narrowed to only approximately 3 GPa. PP fi-

bers can appropriately reduce the elastic modulus of the

mixtures, thereby impeding the destruction of the mixtures.

3.2.4. Peak strain and residual strain
Fig. 10 shows the peak strain εm and yield strain εu of the LC3-

ECCs. Comparing the entire compressive process of 1 d, 3 d,
Table 3 e Dimensionless eigenvalue.

Curing age Group εm sm E εu su sD

1 d LC3-PP-1 1.00 1.00 1.31 1.15 0.93 0.49

LC3-PP-2 1.00 1.00 1.55 1.37 0.95 0.78

LC3-PP-3 1.00 1.00 1.40 1.22 1.03 0.97

LC3-PP-4 1.00 1.00 1.26 1.32 0.99 0.99

LC3-PP-5 1.00 1.00 0.90 1.07 1.00 0.99

LC3-PP-6 1.00 1.00 1.63 1.19 1.02 1.00

3 d LC3-PP-1 1.00 1.00 1.16 1.05 0.92 0.32

LC3-PP-2 1.00 1.00 1.27 1.18 0.92 0.44

LC3-PP-3 1.00 1.00 1.13 1.33 0.95 0.60

LC3-PP-4 1.00 1.00 1.18 1.16 0.95 0.62

LC3-PP-5 1.00 1.00 1.24 1.17 0.98 0.71

LC3-PP-6 1.00 1.00 1.19 1.14 0.98 0.81

7 d LC3-PP-1 1.00 1.00 1.08 1.03 0.96 0.26

LC3-PP-2 1.00 1.00 1.06 1.12 0.93 0.42

LC3-PP-3 1.00 1.00 1.19 1.08 0.98 0.45

LC3-PP-4 1.00 1.00 1.11 1.02 0.96 0.56

LC3-PP-5 1.00 1.00 1.11 1.14 0.97 0.65

LC3-PP-6 1.00 1.00 1.18 1.09 0.98 0.63

28 d LC3-PP-1 1.00 1.00 1.01 1.02 0.91 0.16

LC3-PP-2 1.00 1.00 1.10 1.04 0.94 0.35

LC3-PP-3 1.00 1.00 1.06 1.04 0.95 0.42

LC3-PP-4 1.00 1.00 1.06 1.05 0.96 0.40

LC3-PP-5 1.00 1.00 1.09 1.08 0.96 0.44

LC3-PP-6 1.00 1.00 1.12 1.06 0.96 0.59
7 d and 28 d, it can be found that the general change trend of

εm is rising, while the general change trend of εu is relatively

flat. For the same curing age, the law between εm and PP fiber

content has some changes. At 1 d, εm increases with

increasing fiber content. At 3 d, εm is relatively flat with the

fiber content, at 7 d and 28 d εm decreases with increasing

fiber content. The εu and εm values are roughly the same. At

the 28 d curing age, the εm values were 1.88%, 1.73%, 1.74%,

1.80%, 1.73% and 1.69% and the εu values were 1.92%, 1.80%,

1.81%, 1.89%, 1.87% and 1.80%, for PP fiber contents of 0%,

0.5%, 1%, 1.5%, 2% and 2.5%, respectively. In addition to LC3-

PP-1, εm and εu values of LC3-PP-4 were higher. Among these,

the difference between εm and εu can be regarded as the size

of the strain change between the occurrence of cracks and

the complete failure of the LC3-ECCs, which represents the

length of time that the LC3-ECCs resist damage. The differ-

ences between εm and εu decrease continuously with

increasing curing age. At a 28 d curing age, the differences

between εm and εu are 0.04%, 0.07%, 0.07%, 0.09%, 0.14% and

0.11%, for PP fiber contents of 0%, 0.5%, 1%, 1.5%, 2% and

2.5%, respectively. The higher the fiber content shows better

values and the best is LC3-PP-5. However, the value of LC3-

PP-1 is small, which is the most unfavorable in resisting

damage.

3.2.5. Peak stress and residual stress
Fig. 11(a) shows the peak stress of each group of LC3-ECCs. The

top values in the red, green, blue and yellow boxes represent

the peak stress sm at 1 d, 3 d, 7 d and 28 d, respectively. During

the 1 d curing process, the three groups with highest PP fiber

contents increased faster than the other three groups.

Therefore, the three groups with the highest PP fiber contents

at 1 d curing age have higher sm values than the other three

groups. At 3 d and 7 d ages, the sm values of the three groups

with less fiber content grew faster than those of the three

groupswith the highest fiber contents, which is different from

the situation at 1 d. This corresponds to the peak stress under
Fig. 10 e The relationship between the peak strain εm and

the residual strain εu of LC3-PP-ECCs at different curing

ages.
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Fig. 11 e The peak stress sm and the residual stress su of LC3-PP-ECCs at different curing ages.
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the curing age, which has a regular decrease with the increase

of the fiber content. At 28 days, the increase in the compres-

sive strength of LC3-PP-2 was significantly lower than that of

the other groups. The sm values of the other groups of mix-

tures decreased with increasing PP fiber content and there

were obvious fluctuations in the LC3-PP-2 specimens. This is

the result of the combined effect of fibers, hydration products

and microstructures. It can be seen from the above phenom-

enon that when the PP fibers are introduced, the fiber in the

early compressive stage can provide part of the compressive

resistance, so that the peak strain of the three groups with

more PP fiber content in the 1 d curing age is greater. In the

later compressive stage, the bearing load is mainly the LC3

matrix, the PP fiber has a smaller effect and the introduced

pores or initial flaws caused by the addition of PP fibers into

the matrix will reduce the compressive strength of the spec-

imens. Research [75] has shown that the strength of LC3

cementitiousmaterial changes little after 28 d of curing age. In

this study, the PP fiber does not affect the hydration reaction
of LC3. Therefore, it can be considered that the strength of the

LC3-PP-ECCs after 28 d of curingwill no longer change. The sm

values of LC3-PP-1 to LC3-PP-6 are 58.3 MPa, 46.6 MPa,

51.5 MPa, 51.3 MPa, 48.2 MPa and 42.2 MPa, respectively. The

sm values increase initially and then decrease. Excluding LC3-

PP-1, LC3-PP-3 showed the maximum value. The compressive

strengths of the LC3 mortar after 3 d, 7 d and 28 d are

approximately 15 MPa, 28 MPa and 32 MPa, respectively [65].

Compared with the compressive strength of LC3-PP-1, the

compressive strength values of the LC3 pastes are approxi-

mately 15 MPa lower than that of the LC3 mixtures over the

entire curing age range.

Fig. 11(b) shows the relationship between the peak strain

and residual strain. The upper and lower edges in Fig. 11(b)

correspond to the values of sm and su, respectively. su appears

in the descending section after sm, so it is slightly smaller than

sm in value. It can be observed that, as the curing age in-

creases, the difference between sm and su increases. With

increasing PP fiber content, the difference between sm and su
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decreases, indicating that the strength of LC3-PP-1 decreases

faster.

3.2.6. Failure energy and toughness
Fig. 12(a) shows the destruction energy of the LC3-ECCs. The

area is obtained by integrating the overall compressive pro-

cess of the s-ε curves from loading to complete failure, which

is used to characterize the failure energy. At a 28 d curing age,

the destruction energy of LC3-PP-1 to LC3-PP-6 reached 114.8,

159.3, 182.5, 174.4, 168.4 and 175.2 J, respectively. LC3-PP-3 to

LC3-PP-6 show better values and the value of LC3-PP-3was the

best. This measure represents the energy required for the

complete destruction of a LC3-PP-ECC specimen. As the curing

age increases, its destruction energy also increases. The LC3-

PP-1 specimen starts at 3 d and the damage energy increases

very slowly. This is because PP fibers are not added to the LC3-

PP-1 matrix and it only depends on the matrix itself to absorb

energy until it fails. For several groups mixed with PP fibers,

the damage energy is significantly greater. This is because the

bonding between the PP fibers and the matrix allows more

energy to be absorbed until it is broken, which proves that the

ECCs with PP fibers have better mechanical performance.

However, the damage energy of LC3-PP-2 from 7 d onwards

increasedmore slowly than the other groups. This is the result

of less fiber incorporation.

Fig. 12(b) shows the toughness index of the LC3-ECCs,

expressed by the area Ad corresponding to the ultimate strain

compared to the area Am corresponding to the upper peak

strain. The toughness of LC3-PP-1 basically remains un-

changed with increasing curing age. The toughness values of

other groups basically increase with increasing curing age.

This is because the bond with the PP fibers keep increasing

with the curing age, and the bonding degree between the PP

fibers and the matrix is better. LC3-PP-1 does not contain PP

fibers, so it is less affected by the curing age.
Fig. 12 e Compressive toughness and destructive energy of

the LC3-PP-ECCs at different curing ages.
3.3. LC3-PP-ECCs compressive constitutive relationship

3.3.1. Selections of feature points
To further analyze the structure, a uniaxial compressive

stressestrainmodel is explored inmore detail. Before deriving

the constitutive relationship, the stressestrain curves are

transformed into dimensionless curves by the peak strain εm

and the peak stress sm. We observed that the LC3-PP-ECC

specimens have the following curve characteristics: Feature

(1):x ¼ 0,y ¼ 0, the curves always start from the origin point.

Feature (2):x ¼ 0,dydx ¼ Ec, the slope at the origin point corre-

sponds to the dimensionless modulus of elasticity. Feature

(3):x ¼ 1,y ¼ 1, this point is the peak stress sm and the peak

strain εm. Feature (4):x ¼ 1,dydx ¼ 0, the slope when the curves

reach the peak stress is 0. Feature (5):x ¼ εu,y ¼ du, this point

corresponds to the residual compressive strength. Feature

(6):x ¼ εu,
d2y
dx2 ¼ 0, this is the inflection point and the second

derivative of the curves is 0. Feature (7):x ¼ εd,y ¼ sd, after

this point the specimen loses its load-bearing capacity.

Feature (8):x ¼ εd,
dy
dx ¼ C, after this point the curves enter the

linear phase again and the curve slope is constant C.
3.3.2. Selections of constitutive equation
Previous studies have proposed a variety of constitutive re-

lationships for the compression of cement-based materials

[76e79]. After comparing the characteristics of the constitu-

tive relationships of the LC3-PP-ECCs under uniaxial

compression, the following equation was adopted.

Ascending phase equation,

y¼ axþ bx2 þ cx3 x � 1 (1a)

Downward phase equation,

y¼Ae�Bðx�1ÞC þ D x>1 (2a)

Among them, a, b, c, A, B, C and D are undetermined

parameters.

3.3.3. Coefficient determination
In the ascending phase, the three features (2)e(4) are used to

solve the three undetermined coefficients a, b and c.
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Fig. 13 e Test curves and theoretical curves of the LC3-PP-ECCs after 28 d of curing.
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Fig. 14 e Changes in the constitutive equations of the

various parameters and fiber content Vf.
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(1) x ¼ 0,dydx ¼ Ec. Substituting into the original formula,
dy
dx ¼ aþ 2bxþ 3cx2,

dy
dx

����
x¼0

¼a ¼ Ec$εm
sm

(3)
(2) x ¼ 1, y ¼ 1. Substituting into the original formula,

yjx¼1 ¼aþ bþ c (4)

(3) x ¼ 1,dydx ¼ 0. Substituting into the original formula,

dy
dx

����
x¼1

¼aþ 2bþ 3c ¼ 0 (5)

(4) The finishing Equations (1)e(3) are as follows:

a¼Ec$εm
sm

(6)

b¼3� 2a (7)

c¼ a� 2 (8)

After conversion, the equation of the ascending section is

y¼ axþ ð3� 2aÞx2 þ ða� 2Þx3 x � 1 (9)

According to the formula, the curve of the ascending

segment is related to Ec, sm and εm. Ec is directly proportional to

εm and inversely proportional to sm.

In the descending stage, the four feature points of Features

(3)e(7) are used to solve for the four undetermined coefficients

A, B, C and D.

(5) x ¼ 1,y ¼ 1. Substituting into the original equation,

yjx¼1 ¼Aþ D ¼ 1 (10)

(6) x ¼ εu,y ¼ su. Substituting into the original equation,

yjx¼εu
¼Ae�Bðεu�1ÞC þ D ¼ su (11)

(7) x ¼ εu,
d2y
dx2 ¼ 0.

(8) x ¼ εd,y ¼ sd. When ε is large enough,

Dzsd (12)

(9) The finishing Equations (5)e(8) are:
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Table 4 e Dimensionless coefficient.

Curing age Group a b c A B C D

1 d LC3-PP-1 1.31 0.38 �0.69 0.51 1.24 1.16 0.49

LC3-PP-2 1.55 �0.10 �0.45 0.22 1.11 1.39 0.78

LC3-PP-3 1.40 0.21 �0.60 0.03 �1.64 0.60 0.97

LC3-PP-4 1.26 0.48 �0.74 0.01 3.27 1.78 0.99

LC3-PP-5 0.90 1.20 �1.10 0.01 3.81 1.20 0.99

LC3-PP-6 1.63 �0.25 �0.37 0.00 �4.19 0.27 1.00

3 d LC3-PP-1 1.16 0.68 �0.84 0.68 3.83 1.15 0.32

LC3-PP-2 1.27 0.46 �0.73 0.56 1.17 1.19 0.44

LC3-PP-3 1.13 0.73 �0.87 0.40 0.54 1.17 0.60

LC3-PP-4 1.18 0.64 �0.82 0.38 1.42 1.19 0.62

LC3-PP-5 1.24 0.52 �0.76 0.29 0.52 1.08 0.71

LC3-PP-6 1.19 0.63 �0.81 0.19 0.85 1.11 0.81

7 d LC3-PP-1 1.08 0.84 �0.92 0.74 1.85 1.05 0.26

LC3-PP-2 1.06 0.88 �0.94 0.58 1.35 1.13 0.42

LC3-PP-3 1.19 0.61 �0.81 0.55 0.60 1.05 0.45

LC3-PP-4 1.11 0.78 �0.89 0.44 5.91 1.10 0.56

LC3-PP-5 1.11 0.78 �0.89 0.35 0.66 1.08 0.65

LC3-PP-6 1.18 0.65 �0.82 0.37 0.79 1.07 0.63

28 d LC3-PP-1 1.01 0.98 �0.99 0.84 8.27 1.12 0.16

LC3-PP-2 1.10 0.81 �0.90 0.65 3.82 1.12 0.35

LC3-PP-3 1.06 0.88 �0.94 0.58 3.33 1.10 0.42

LC3-PP-4 1.06 0.87 �0.94 0.60 1.62 1.07 0.40

LC3-PP-5 1.09 0.82 �0.91 0.56 1.05 1.08 0.44

LC3-PP-6 1.12 0.76 �0.88 0.41 2.04 1.11 0.59

j o u r n a l o f ma t e r i a l s r e s e a r c h a nd t e c hno l o g y 2 0 2 1 ; 1 5 : 2 1 1 7e2 1 4 42132
A¼1� D (13)

B¼C� 1
C

� 1

ðεu � 1Þc (14)

C¼ 1

1þ ln su�D
A

(15)

DzsD (the type as shown in Equation (12)).

The descending curve is closely related to su, sd and εu,

while D is approximately equal to sd, C is inversely propor-

tional to su, B is inversely proportional to εu.

The theoretical curve of this equation is the characteristic

curve of PP fiber-reinforced LC3 as a cement base at a 28 d

curing age. For the curves of 1 d, 3 d and 7 d, the curves will

have different changes due to incomplete hydration. If you

need to use it, you need to make further corrections.

3.3.4. Comparison of test curves and theoretical curves
Before the equations have been completed, the relationship

between the coefficients has been calculated. Therefore, we

only need to address the values of the Ec, sm, εm, su, sD and εu

parameters. These parameters are dimensionless, sm ¼
1,εm ¼ 1. The processed parameters are presented in Table

3. Then, through the equation described in Section 3.3.3,

the values of each coefficient are calculated and shown in

Table 4.

By continuing to substitute the processed coefficients into

the following expressions, the ascending phase equation is

the same as Equation (1), and the downward phase equation is

the same as Equation (2).
y¼axþ bx2 þ cx3 x � 1 (1b)

y¼Ae�Bðx�1ÞC þ D x>1 (2b)

The deduced theoretical curves and the actually measured

test curves are compared and analyzed in Fig. 13(a)e(f),

showing the curves of LC3-PP-1 to LC3-PP-6 at 28 d. The red

solid line and the blue short dotted line represent the theo-

retical curves simulated by the equations and parameters and

the actual measured curves, respectively.

The rising stage is represented by the linear function,

which is relatively close to the test curves shown in Fig. 13.

The upward development part will be separated from it,

forming a gap. Especially when compared to the groups with a

small amount of fibers, the damage occurs more quickly

without the bonding effect of the fibers or a small amount of

fibers. The slope at the peak changes very fast, so the fitting is

not good enough. However, the groups with more PP fiber

contents have better ductility, the change at the peak is rela-

tively gentle and the slope at the peak is obviously 0. This is

closer to the assumption made when deriving the theoretical

curves, so the curves fit more closely.

The equation used for the descending phasey ¼
Ae�Bðx�1ÞC þ D. The advantage of this equation is that it can

characterize all of the Feature points and there is an inflection

point in the descending stage. In addition, the function rea-

ches a constant value that goes on toward infinity, which is

also consistent with the law of curve development. Through

observation, it can be found that the declining stages of LC3-

PP-1, LC3-PP-2 and LC3-PP-3 deviate slightly from the theo-

retical curves. The main reason is that the characteristics of
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Fig. 15 e Evaluation of the fit of the compressive constitutive model of different fiber contents in other studies.
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Table 5 e The parameters of the compressive constitutive equation.

Parameter a b c A B C D

m 1.03 0.93 �0.97 0.78 7.89 1.11 0.22

n 3.09 �6.18 3.09 �13.54 �714.6 �1.37 13.64

l 0 0 0 0 19183.72 0 0

j o u r n a l o f ma t e r i a l s r e s e a r c h a nd t e c hno l o g y 2 0 2 1 ; 1 5 : 2 1 1 7e2 1 4 42134
the inflection point are considered in the calculation and the

lower the fiber content is, the closer the inflection point is to

the peak point and the greater the error in the calculation.

Therefore, the theoretical curves of LC3-PP-1, LC3-PP-2 and

LC3-PP-3 deviate slightly from the experimental curves.

Observing LC3-PP-4, LC3-PP-5 and LC3-PP-6, we found that the

curves fit very well. This is because, when the amount of PP

fiber is increased, the problems that may occur when the

amount of PP fiber is small are avoided and the values be-

tween the peak point and the inflection point are larger, so the

equation can better reflect the development of the curves.

3.3.5. Data regression analysis
The compressive constitutive equation of the LC3-PP-ECCs at

a 28 d curing age was obtained. At the same time, a, b, and c

andA, B, C, and Dwere used as parameters to characterize the

compressive curves. To further explore the influence of the PP

fiber contents on the compressive constitutive model, the PP

fiber volumeVf is used to characterize the parameters a, b, c,A,

B, C andD, and thenVf is used to directly express the change in

the curves. First, we assume that the expressions of a, b, c,A, B,

C and D are as follows:

i¼mi þ ni,Vf þ li,V
2
f ; i ¼ a;b; c;A;B;C;D

Through function fitting, the fitting diagrams are shown in

Fig. 14. Since a, b, c, A, B, C and Dmeet the requirements of the

feature points, m, n and r also meet the requirement of the

feature points.
�
aþ bþ c ¼ 1
aþ 2bþ 3c ¼ 0

0

�
m1 þm2 þm3 þ n1,Vf þ n2,Vf þ n3,Vf ¼ 1
m1 þ 2m2 þ 3m3 þ n1,Vf þ 2n2,Vf þ 3n3,Vf ¼ 0
Based on experience, we adjusted m3 to �0.96 to meet the

requirements. Thus, the values of a, b, c, A, B, C and D were

obtained. The calculated results are shown in Table 5.

Therefore, the relationship equation between s and Vf is as

follows:
8<
:

s ¼ �
1:03þ 3:09Vf

�
,xþ �

0:93� 6:18Vf

�
,x2 þ �� 0:97þ 3:09Vf

�
,x3 x � 1

s ¼ �
0:78� 13:54Vf

�
,e

�
�
7:89�714:6Vfþ19183:72V2

f

�
,ðx�1Þð1:11�1:37Vf Þ

þ 0:22þ 13:54Vf x>1
The constitutive equation for the range of PP fiber contents

between 0% and 2.5% is shown in Fig. 14 (h) and Fig. 13. By
observing the green line in Fig. 13, it can be found that the

improved theoretical model is more consistent with the

experimental curve of this study. This also shows that the

improved theoretical curve has some validity and scientific

value.

3.3.6. Comparative verification of theoretical models
The theoretical equation can effectively express the LC3-PP-

ECC compressive constitutive model in this study. We next

determinewhether it is suitable for different types of PP-ECCs,

with reference to other studies [80e83], the s-ε curves of some

test pieces are selected. Comparing the constitutive equation

of Vf that has been calculated, the verified results are shown in

Fig. 15. It can be observed that, in the rising phase, the

experimental curve is very similar to the theoretical curve.

However, in the descending stage, the theoretical curve is

relatively flat, while the experimental curve will drop sharply.

This may be caused by the size and shape of the different ECC

specimens. It can be observed that the degree of fitting be-

tween the experimental curves and the theoretical curves is

relatively good, indicating that the applicability of the sug-

gested constitutive equation is better.

3.4. XRD analysis

PP fiber is considered not to chemically react with LC3.

Therefore, only LC3-PP-1 was evaluated in the XRD tests. In

Fig. 16, the black line, red line, blue line and green line are the

XRD test results at curing ages of 1 d, 3 d, 7 d and 28 d,
respectively. The peaks in the XRD patterns indicate the

crystals present in LC3 at the corresponding curing ages,

mainly include calcite (C), calcium hydroxide (CH), ettringite

(E), silica (S), hemicarbonate (Hc) and monocarbon aluminate

(Mc).

Calcite corresponds to 2q ¼ 29�, and its content increases

from 1 d to 3 d and then slowly decreases from 3 d to 28 d. The
other types of crystals have lower quantities and no obvious

changes. There is basically no change in E because the

excessive C in the LC3 system prevents the conversion of E to

https://doi.org/10.1016/j.jmrt.2021.09.023
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Fig. 16 e XRD patterns of the LC3-PP-ECCs at different

curing ages (E: ettringite, C: calcite, S: SiO2, CH: Ca(OH)2, Mc:

monocarboaluminate, Hc: hemicarboaluminate).
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Ms [50]. At the same time, the reaction of limestone with

additional alumina also prevents E from dissolving to form

amorphous Ms [84,85]. The Hc and Mc in the picture can be

formed by the reaction of limestone with the activated

alumina in C3A and calcined clay [85]. In addition, the CO3
2�
Fig. 17 e Microstructures of LC3-PP
present in the limestone can be substituted for SO4
2� in E and

Ms [86]. The resulting carbonate aluminate can improve the

mechanical properties of LC3 materials [84]. Previous studies

[87] explored the phenomenon of a 3 d curing age, indicating

that Mc and Hc phases are formed during the early curing

stage. By observing Mc and Hc in Fig. 16, it is found that they

have been generated in large quantities at 1 d. This is

consistent with the conclusions of the literature [55]. In

addition, 2q ¼ 18� corresponds to CH, which obviously de-

creases from 3 d to 28 d. Because CH will undergo secondary

hydration [48], the activated alumina and silica in the calcined

clay can react with the CH in the cement, consuming CH and

S. It can be seen from the figure that the content of S from 3 d

to 28 d decreased slightly and the C-A-S-H gel produced at the

same time can increase the mechanical strength of the slurry

[88].

3.5. SEM-EDS analysis

The SEM images of the damaged surface of the ECCs at

approximately 200�magnification are shown in Fig. 17. Fig. 17

(a)-(d) shows the SEM images of the LC3-PP-4, LC3-PP-5, LC3-

PP-2 and LC3-PP-5 specimens at curing ages of 1 d, 3 d, 7 d

and 28 d, respectively. PP fibers, fiber slip marks, bubbles and

pores can be observed in Fig. 17.

PP fibers are randomly distributed in the LC3-PP-ECC ma-

trix and the fiber main ability to withstand external loads is

reflected in the drawing slip between the PP fibers and the
-ECCs at different curing ages.
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Fig. 18 eMicrostructures of LC3-PP-ECCs at different curing

ages.
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matrix and the longitudinal tension of the fibers. When the

degree of hydration in the ECCs is low, the bond strength be-

tween the PP fibers and thematrix is low. If a load is applied at

this time, the PP fibers will be pulled out of the matrix. The

yellow lines in Fig. 17 mark the traces of PP fibers left on the

substrates. However, if the PP fiber is pulled out of the matrix,

not only will it leave the pull channels but also flaws or holes

will be left, which is obviously detrimental to the compressive

performance of the ECCs. When the ECCs have a high degree

of hydration, the bonding strength between the PP fibers and

the matrix is large enough, which can cause the PP fibers to

rupture or fail to provide tensile strength. For example, the red

circle in Fig. 17 (d) is the phenomenon in which the PP fiber is

broken. The broken end of the PP fibers is obviously not flat.

This feature can be used to distinguish whether the PP fiber is

pulled out or fractures. By comparison, it can be found that

there are obviouslymore slippage traces than broken PP fibers,

which indicates that the failure mode of the PP fibers is more

pulled out, which is also mentioned in the literature [65]. A

sufficiently high PP fiber content is prone to this phenomenon.

For example, the volume content of PP fibers in the ECCs in

Fig. 17 (a) reaches 1.5% and there is PP fiber entanglement at

the red line mark. At this time, the bridging effect of the PP

fiber is no longer a simple interaction with the matrix but also

includes the mutual constraint between the PP fibers. In this

case, the PP fiber is more likely to break and fail instead of

slipping. Therefore, it affects the compressive properties of

the ECCs.

There are also a large number of circular bubbles and pores

extending to the inside of the ECCs, which are not beneficial

for to themechanical properties of the specimens. Comparing

the SEM images in Fig. 17, it can be found that LC-PP-2 with

less fiber content has relatively fewer bubbles. This shows

that air will be introduced when the PP fiber is added to the

pastes and the volume of the gas pores is positively correlated

with the volume of the fiber content. This can also be used as a

reason to explain the increase in fiber content and the relative

decrease in the compressive resistance of the ECCs.

The pictures of the ECC failure surface are shown in Fig. 18,

where Fig. 18 (a), (b) and (c) are the images under curing ages of

1 d, 3 d and 7 d, respectively, when the magnification of the

SEM is approximately 1500 times. ECCs can significantly

change the interaction and cementation between the fiber and

the matrix through the fiber/matrix interface, thereby

improving the mechanical properties of composite materials

[89]. The PP fibers can be mainly observed in Fig. 18 and there

are cementitious materials attached to the PP fibers. It not

only fills the gaps between the PP fibers and the LC3matrix but

also facilitates the adhesion between the PP fibers and the LC3

matrix. When the materials are destroyed, they will never be

completely separated.

Figs. 19e22 show the SEM-EDS chemical element analysis

of the ECC damage surface and the SEM-EDS chemical

element analysis of the designated substances. The products

produced by the LC3 hydration reaction mainly include cal-

cium silicate hydrate (CeSeH), portlandite (CH), ettringite

(AFt), monosulfate (AFm), CeS-A-H, and limestone particles

[87]. These substances can be found in Figs. 19e22. In addition,

pores and cracks can be observed, which cause the micro-

structures of LC3 to look looser [88].
In Fig. 19, it can be observed that there are fibrous CeSeH

gels, spherical particles and prismatic solids after curing for

1 d, and there are pores and cracks in the matrix. The sub-

stances identified in Spot 1 are spherical granular solids. The
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Fig. 19 e SEM-EDS images of LC3-PP-ECCs after curing for

1 d.

Fig. 20 e SEM-EDS images of the LC3-PP-ECCs after curing

for 3 d.
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SEM-EDS analysis results show that the substances contain

more O elements, while other elements are relatively less

abundant. It is speculated that the compositions of the sub-

stances are mainly oxides, combined with the shape of the

substances. Spot 1 was judged to be unhydrated OPC particles.

The substance identified at Spot 2 is a prismatic crystal and

the SEM-EDS analysis shows that it contains a large amount of
O and Ca elements. Therefore, Spot 2 is judged to be CH. In

Fig. 20, it can be observed that, after curing for 3 d, except for

the products under the 1 d curing age, there are also needle-

like prismatic crystals of Aft while needle-like AFt and

CeSeH form an interlocking structure [87]. The substance

identified at Spot 1 is a needle-shaped crystal. The SEM-EDS
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Fig. 21 e SEM-EDS images of the LC3-PP-ECCs after curing

for 7 d.

Fig. 22 e SEM-EDS images of the LC3-PP-ECC after curing

for 28 d.
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analysis results show that the substance mainly contains O,

Al, Si, S and Ca. It is judged to be AFt gels. By SEM-EDS anal-

ysis, the material of Spot 2, was found tomainly contain three

elements, O, Si and Ca, and it was determined that the sub-

stance was CeSeH gels.

Fig. 21 shows a microscopic picture of the LC3 matrix after

curing for 7 days. On the basis of change from the results of

the 3 d curing age, new substances such as C-A-S-H gels and

flaky AFm crystals have appeared and the amounts of CH and

AFt were reduced. With respect to the C-A-S-H gels and CH,

after 3 d, the LC3 reacts with the CH to generatemore C-A-S-H

gels [88,90] and consumes a large amount of CH. This expla-

nation further proves the conclusion that CH in the XRD

analysis decreases with increasing curing age. Analysis of

Spot 1 by SEM-EDS revealed that the substance mainly con-

tains four elements: O, Al, Si and Ca, which can be judged to be

C-A-S-H gels. The active silica and alumina in kaolinite will

react with portlandite to form hydrated calcium silicate

aluminate C-A-S-H gels and calcium aluminate hydrate C-A-H

gels [91], which can fill pores and cracks. Therefore, they

contribute to the development of concrete properties [90,92]

and enhances the mechanical properties of LC3.
Fig. 22 shows the microstructures of the matrix when

cured for 28 d. The types of products are roughly the same as

those found at 7 d, but the ECCs are more fully hydrated. The

SEM-EDS analysis of Spot 1 shows that the main constituent

elements include O, Al, Si, S and Ca. This indicated that the

crystal is AFm. Studies have shown that AFm and AFt are due

to the high ratio of sulfate to silicate at the beginning of hy-

dration. Therefore, AFt is a hydrate that crystallizes first.

When the sulfate is depleted, AFt gels become unstable and

gradually convert to AFm gels. Comparing Figs. 19e22, it is

easy to find that, as the hydration process progresses, there

are crystalline aluminate aggregates and hydrates in the pores

[88]. This results in changes in the pore structures of the

matrix. In turn, it has an impact on the mechanical properties

of LC3-ECCs.
3.6. Pore analysis

In this study, the LC3-PP-1, LC3-PP-3 and LC3-PP-5 groups

were selected for the MIP test. To further explore the influ-

encing factors of pores, the two sets of ECCs (Ref-1 and Ref-2)

in [65] were used as references. Fig. 23 (a) shows the cumula-

tive invasion curve of pores after curing for a 28 d. The cu-

mulative invasion of LC3-PP-1, LC3-PP-3, LC3-PP-5, Ref-1 and
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Fig. 23 e Pore analysis.
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Ref-2 reached 0.19, 0.23, 0.26, 0.10 and 0.15 mL/g, respectively.

The incorporation of PP fibers increases the porosity. This is

due to the lack of cohesiveness of the cement matrix and poor

dispersion of the PP fibers, which increases the pore content in

the concrete. Toutanji et al. [93,94] also explained this phe-

nomenon in previous studies and found that the addition of PP

fibers can also increase the permeability of concrete. It was

found [95] that the incorporation of PP fibers makes the pore

structure of concrete thicker and, as the content of poly-

propylene fibers increases, the pore volume and the most

likely pore diameter of the concrete (that is, the pore size with

the highest frequency) increase. It was also found that, with

the increase in PP fibers (LC3-PP-1 to LC3-PP-3 to LC3-PP-5), the

cumulative penetration of the pore size increased. This shows

that the pore volume and pore size are directly proportional to

the fiber content.

The use of auxiliary cementitious materials (SCMs) affects

the reaction process in the early stages of hydration and

changes the kinetics of microstructure development [96].

Compared with Ref-1 and Ref-2, LC3-PP-ECCs show a larger

total porosity (Fig. 23 (a)). The SCM of Ref-1 is FA and the SCMs

of Ref-2 are FA and LC3. In [97], the pores of the FA30 and LC3

systems were studied and it was found that, compared with

the FA30 system, the LC3 binder has a highly refined pore

structure even in the early hydration stage. However, the

development of the pore structure in the early hydration stage

of FA is slower. However, the rate of LC3 in the later hydration

process is slow and the change in pores is relatively small. FA

has a better effect than LC3 in the long-term hydration pro-

cess. Papers [65,98] indicate that mixing fly ash in the LC3

system is also a feasible method.

Fig. 23 (b) shows that themost likely porediameter (thepore

with thehighest frequency) of the three groups of LC3-PP-ECCs

is maintained at approximately 0.025 mm. This shows that PP

fibers donot affect themost likely pore diameter.However, the

most likely pore diameter of Ref-1 is approximately 0.01 mm

and the most likely pore diameter of Ref-2 is approximately

0.04 mm. This shows that the auxiliary cementingmaterial has

an influence on themost likely pore diameter. Ref-2,which is a

mixture of LC3 and FA, exhibits a larger critical pore size than

when the twogellingmaterials are usedalone.Due to the voids

between the fiber surface and thematrix, previous studies [99]

stated that adding a 2% volume of PVA fibers can increase the

porosity of pores larger than 300 nm by more than 3%.

Research [65] believes that, if the fibers can be fully mixed and

dispersed in the slurry, the increase in porosity caused by the

incorporation of fibers can be minimized. In this study, it can

be clearly seen that there are aggregations of poreswith a pore

size of 200 nm (not reaching 300 nm) (Fig. 23 (b)). This may be

the void created between the fiber and the matrix interface.

Comparing the porosities of LC3-PP-1, LC3-PP-3 and LC3-PP-5

at 200 nm, it is found that the porosity between the PP fiber and

the matrix increases with increasing fiber content. It also

shows that full mixing cannot completely offset the existence

of pores in the interface zone.

Pores are generally divided into voids (>100 nm), large

capillary pores (50e100 nm), medium capillary pores

(10e50 nm) and small capillary pores (<10 nm), according to

their functions [100]. According to the influence of the pore

size on the performance of concrete, the pores can be divided
into gel pores (<20 nm), transition pores (20e50 nm), capillary

pores (50e200 nm) and macropores (>200 nm) [101]. Fig. 23 (c)

shows that, with increasing fiber content (LC3-PP-1 to LC3-PP-

3 to LC3-PP-5), the pores and small capillary pores increase.

Both the large and medium capillary pores decrease accord-

ingly. However, in general, macropores (harmful pores) are

increasing. Compared with the LC3-ECCs, Ref-1 and Ref-2

have a higher proportion of macropores. This shows that

LC3 better optimizes the effect on macropores. It is worth

noting that macropores and mesopores will affect the me-

chanical properties and durability of the material. The gel

pores and capillary pores mainly affect the shrinkage of the

material [102]. In combination with the compressive strength,

it can be found that the increase in fiber content leads to an

increase in porosity in turn leads to a decrease in the

compressive strength of the specimen. Therefore, Fig. 23(d)

shows that, with increasing fiber content (LC3-PP-1 to LC3-PP-

6), the porosity values reached 36%, 42%, 39%, 46%, 47% and

52%, respectively. Generally, there was an increasing trend,

and only LC3-PP-2 was abnormal. This proves that the intro-

duction of fibers increases the porosity. With increasing fiber

content (LC3-PP-1 to LC3-PP-6), the compressive strength

values reached 58 MPa, 47 MPa, 52 MPa, 51 MPa, 48 MPa and

42 MPa, respectively. In general, there was a weakness trend,

and only LC3-PP-2 was abnormal. This proves that the intro-

duction of fibers will increase the porosity, thereby reducing

the compressive strength of the material. For LC3-PP-2, both

the compressive strength and porosity are abnormal, indi-

cating that the effect of the fiber content is poor. At a curing

age of 28 d, the porosity of increases approximately 6.5% for

every 1% increase in the volume of PP fibers and the

compressive strength is reduced about 6.5 MPa.
4. Conclusions

In this study, LC3 was combined with PP fibers to improve the

performance of LC3-PP-ECCs. Four different curing ages of 1 d,

3 d, 7 d, 28 d and six different PP fiber volume dosages of 0%,

0.5%, 1%, 1.5%, 2% and 2.5% were tested. The conclusions are

as follows:

(1) With increasing curing age, the compressive strength

and peak strain of LC3-PP-ECCs will also increase and

the compressive strength of the combination and

bridging effect with less PP fiber content will rise faster.

With increasing PP fiber content, the compressive

strength values of LC3-PP-4, LC3-PP-5 and LC3-PP-6 are

better at an early curing age. Until 28 d of curing, the

compressive strength of theLC3-PP-ECCs basically

maintained a downward trend with increasing PP fiber

volume. The combined effect of PP fibers and hydration

products caused the compressive strength of LC3-PP-2

to drop sharply. Themaximum compressive strength of

LC3-PP-1 at 28 d can reach 58.3 MPa. Moreover, the

specimens with more PP fibers exhibit better toughness

and ductility, and the failure energy values of LC3-PP-1

and LC3-PP-2d are relatively low. Among the combina-

tions containing PP fibers, LC3-PP-3 showed better

strength, strain and failure energy values. Considering
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this comprehensively, it can be considered that it is

appropriate to blend PP fibers with a volume content of

approximately 1.5% in LC3 cementitious material.

(2) A compressive constitutive model of LC3-PP-ECCs was

obtained, it has a good degree of fitting. The equation is

also applicable to the compressive constitutivemodel of

other types of ECCs.

(3) XRD analysis results of the surface hydration process

show that it will consume a large amount of calcium

hydroxide, silica, monocarbon aluminate and semi-

carbon aluminate. The resulting C-A-S-H gels can

greatly improve the mechanical properties of the ECCs.

(4) In the microstructure, the PP fiber will cause some

bubbles or defects in the ECC matrix and the speci-

mens with larger amounts of PP fiber contain relatively

more initial cracks or macropores, resulting in a

decrease in their compressive strength values. The

interaction and bridging effect between the PP fibers

and the ECC matrix can also improve its own me-

chanical properties. The bond effect between the PP

fiber and the ECC matrix increases with increasing

curing age. In addition, there may be unhydrated

cement powders or limestone particles and CH in the

early curing stage of LC3-ECCs.

(5) In the late stage of hydration (after 28 days), the total

porosity values of the LC3-PP-ECCs are higher than

those of ECCs containing fly ash. However, the harmful

pores are lower in size than those of ECCs containing fly

ash. Cementitious materials have a greater impact on

the critical pore size and total porosity. The PP fiber

volume has very little effect on the critical pore size but

is directly proportional to the total porosity. The main

pore size affected are those that are approximately

200 nm. The curing age and fiber content are related to

the pore size and compressive strength. The long curing

age improves the compressive strength by reducing the

macropores. The PP fiber content increases the porosity

of the ECCs. At the same time, the total porosity and

compressive strength values are almost inversely pro-

portional with a ratio of 1.0.

This study shows that the addition of LC3 is a very effective

solution for improving the hydration products of ECCs.

Compared with OPC, the mixed cement with 45% LC3 has

sufficient compressive strength and lower environmental

impact and makes a great contribution to the climate crisis

caused by OPC production. Against these background points,

these findings can help reduce the carbon footprint of the

construction industry. Further research is recommended to

reveal the comprehensive performance (uniaxial tensile,

durability, fresh properties) of the LC3-ECCs under different

w/c ratios or curing conditions, as well as suggestions for

using LC3 in actual RC structures.
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