RAPPORT
MiljöVis:
Effektiv representation av miljödata i digitala modeller
Trafikverket
Postadress: 405 33 Göteborg
E-post: trafikverket@trafikverket.se
Telefon: 0771-921 921

Dokumenttitel: MiljöVis: Effektiv representation av miljödata i digitala modeller
Författare: Beata Stahre Wästberg, Monica Billger, Liane Thuvander, Fabio Latino, Sanjay Somanath, Susanne van Raalte
Dokumentdatum: 2021-09-30
Ärendenummer: 7084
Version: 1.0
Kontaktperson: Susanne van Raalte
Innehåll

Sammanfattning ... 6

Förord .. 8

Medverkande i projektet ... 9

Förkortningar ... 10

Introduktion .. 11
 Bakgrund och utmaningar ... 11
 Syfte, mål och frågeställningar ... 12
 Målgrupp .. 13
 Projektets genomförande och avgränsningar ... 13
 Begrepp ... 14

Metod och material .. 16
 Inventering .. 17
 Prototyper för visualiseringsplattformar ... 18
 Sandlådemodell ... 18
 Storskalig modell ... 20
 Designkoncept .. 21
 Färgskalor ... 21
 Formspråk .. 23
 Detaljeringsnivå ... 28
 Informationsnivåer (informationsrutor) .. 28
 Dimension .. 30
 Rörelse och perspektiv ... 30
 Symboler .. 31
 Arbetsflöde för utveckling av designkoncept ... 34
 Användartester .. 35
 Uppvärmning: Rollspel och visualiseringskompetenser 37
 Färgseende och färgförståelse ... 38
 Olika sätt att representera miljödata ... 40
 Analys av material ... 42
 Återkoppling .. 45
Sammanfattning

En av de stora utmaningarna för infrastrukturplanering idag handlar om hur man samlar, hanterar och kommunicerar stora mängder data. Olika typer av miljöparametrar, såsom luftkvalitet och buller, samt sociala aspekter, påverkas vid nybyggnation av infrastruktur och bebyggelse, och bör beakta som viktiga aspekter i utformningen av nya miljöer. Samtidigt är dessa parametrar svåra att visa på ett begripligt sätt och dess konsekvenser kan vara svåra att greppa för olika målgrupper. Effektiv visualisering gör att man inkluderar och skapar samsyn bland intressenterna i planeringsprocessen och på så sätt bidrar till en helhetssyn och därmed hållbarare lösningar. Trafikverket hanterar olika miljöparametrar i så kallade samordningsmodeller vilka visar ett stort landskapsområde i en översiktlig skala, där man samlar all data kopplat till ett projekt. Idag saknas det dock riktlinjer för hur data ska koordineras och standardiseras i dessa modeller.

Den här slutrapporten beskriver projektet MiljöVis - Effektiv representation av miljöinformation i infrastrukturmodeller vars syfte har varit att utveckla ny kunskap om hur Trafikverkets samordningsmodeller kan bli ett effektivare och tydligare kommunikationsmedel och kvalitetsverktyg, genom utveckling av olika konceptuella lösningar för integrering av miljödata. Ett mer specifikt syfte har varit att, i dessa modeller, enklare kunna förutse effekter av olika åtgärder och kunna integrera olika typer av effekter, till exempel bullersimuleringar och sociala aspekter, i en och samma modell. Projektet vänder sig främst till Trafikverkets specialister och samhällsplanerare, samt forskare inom visualiseringsområdet.

Följande frågeställningar har varit i fokus:

- Hur kan man representera osynliga parametrar som olika typer av miljödata i samordningsmodeller på ett begripligt sätt?
- Hur påverkar utformningen av olika visualiseringskomponenter uppfattningen av miljödata i en 3D-modell, och hur kan dessa ge förståelse för hur platsen kommer att upplevas?
- Vad krävs av en 3D-visualisering för att fungera för olika syften och målgrupper?

Projektet har bestått av 3 delar:

- **En inventering** har gjorts av representation av miljödata i digitala modeller, där vi sammanställt relevanta projekt inom miljöområdena buller, luftkvalitet, sociala konsekvenser, samt hur man arbetar med visualiseringskomponenter inom miljöområdena och i utvecklingen av digitala tvillingar för städer.
- **Modellutveckling** har skett i form av en storskalig prototyp och en skissmodell som ”sandlåda”, båda implementerade i spelmotorn i Unreal Engine.
- **Konceptutveckling** av olika visualiseringslösningar har genomförts med fokus på färgval, formspråk, objekt- och symboler, samt detaljerings- och informationsnivåer. Dessa har prövats i en serie användartester med ca 200 studenter på Chalmers och i fokusgruppsdiskussioner med Trafikverkets specialister.
Inventeringen visade att färgskalor och heatmaps är det vanligaste sättet att visualisera miljödata. Vi valde därför att utgå från detta när olika lösningar testades. Dessutom la vi till punktmoln då denna typ av visualisering visar information i både x,y och z-led.

Resultat från projektet visade att rörlighet och möjlighet till interaktion gör visualiseringen tydligare och lättare att förstå. Det visades i den positiva responsen för de exempel i studien där det fanns en dynamik inbyggd, antingen för en ljudkälla som förflyttade sig genom landskapet, eller för interaktion med datan via en informationsruta. Att kunna visa scenarier är en av de stora fördelarna med att kunna visa information i 3D-modeller. Diskussionen angående scenarier lyfte fram behovet av och problematiken kring att kunna kombinera flera miljöområden, samt behovet att kunna visualisera olika scenarier och konsekvenser.

Användarstudierna visade tydligt att olika lösningar är bra för olika syften och målgrupper. En effektiv visualisering gör att man kan inkludera och skapa samsyn bland intressenterna i planeringsprocessen och på så sätt bidra till en helhetssyn och därmed hållbara lösningar. Rapporten avslutas med rekommendationer för Trafikverket som avser:

- anpassning av visualiseringen utifrån syfte och målgruppens behov av information
- utveckling av samordningsmodeller med hög grad av interaktivitet för effektiv och pedagogisk kommunikation
- utveckling av metoder för att visa flera parametrar samtidigt
- utveckling av standarder för representation av data när det gäller visualiseringsskomponenter.
Förord

I rapporten ingår en stor mängd bildmaterial från användarstudiernas, som här används främst som illustrationer. Skulle någon vilja ta del av detta material, var vänlig kontakta rapportförfattarna.
Medverkande i projektet

Trafikverket:
Susanne van Raalte, verksamhetsområde Stora projekt, Avd. Teknik, Miljö & Fastighet

Chalmers/Digital Twin Cities Centre (DTCC):
Beata Stahre Wästberg (projektledare), Inst. för Data- och Informationsteknik/ DTCC
Monica Billger, Inst. för Arkitektur och Samhällsbyggnadsteknik / DTCC
Liane Thuvander, Inst. för Arkitektur och Samhällsbyggnadsteknik / DTCC
Vasilis Naserentin, Inst. för Matematiska vetenskaper / DTCC
Orfeas Eleftheriou, DTCC
Fabio Latino, Chalmers Industriteknik / DTCC
Sanjay Somanath, Inst. för Arkitektur och Samhällsbyggnadsteknik / DTCC

Referensgrupp:
Trafikverket:
Frida Angelöw, verksamhetsområde Planering, Avd. Transportkvalitet och enhet Hälsa
Maria-Luisa Botella-Botella, verksamhetsområde Stora projekt, Avd.Teknik, Miljö & Fastighet
Karin Blidberg, Nationell samordnare buller och vibrationer

Chalmers/Digital Twin Cities Centre (DTCC):
Mattias Roupé, Inst. för Arkitektur och Samhällsbyggnadsteknik / DTCC
Bernd Ketzler, koordinator DTCC
Jens Forssén, Inst. för Arkitektur och Samhällsbyggnadsteknik, Teknisk Akustik / DTCC
<table>
<thead>
<tr>
<th>Förkortningar</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Tvådimensionell</td>
</tr>
<tr>
<td>3D</td>
<td>Tredimensionell</td>
</tr>
<tr>
<td>AR</td>
<td>Augmented Reality</td>
</tr>
<tr>
<td>BIM</td>
<td>Byggnadsinformationsmodellering (Building Information Modelling)</td>
</tr>
<tr>
<td>DTCC</td>
<td>Digital Twin Cities Centre</td>
</tr>
<tr>
<td>DTM</td>
<td>Digital terrängmodell (Digital Terrain Model)</td>
</tr>
<tr>
<td>FME</td>
<td>Feature Manipulation Engine (programvara)</td>
</tr>
<tr>
<td>GIS</td>
<td>Geografiska Informationssystem (Geographical Information System)</td>
</tr>
<tr>
<td>MKB</td>
<td>Miljökonsekvensbeskrivning</td>
</tr>
<tr>
<td>SKA</td>
<td>Social konsekvensanalys</td>
</tr>
<tr>
<td>UI</td>
<td>User Interface (användargränssnitt)</td>
</tr>
<tr>
<td>VR</td>
<td>Virtual Reality</td>
</tr>
</tbody>
</table>
Introduktion

Trafikverket hanterar miljöparametrar i så kallade samordningsmodeller, vilka visar stora landskapsområden. I samordningsmodellerna samlar Trafikverket en stor del av all data kopplat till ett projekt. Det saknas idag riktlinjer för hur miljödata ska visas och standardiseras i dessa modeller. Den här slutrapporten sammanfattar resultat från projektet MiljöVis - Effektiv representation av miljöinformation i infrastrukturmodeller vars syfte har varit att utveckla ny kunskap om hur Trafikverkets samordningsmodeller kan bli ett effektivare och tydligare kommunikationsmedel och kvalitetsverktyg.

Bakgrund och utmaningar

När man använder olika visuella stilar, som symboliska objekt eller bilder i en annars visuell fotorealistisk miljö, är det viktigt att arbeta med ett designspråk som skiljer mellan visuell realism och visuell icke-realism, till exempel genom en genomtäckt användning av färger (Stahre Wästberg et al, 2017; Stahre et al, 2008). Traditionellt spela färg en viktig roll i kartografisk visualisering (Bláha & Štěrba, 2014; Borland & Taylor, 2007). Beroende på målgrupp är kulturella eller naturliga associeringar av specifika färger också viktiga att ta hänsyn till (Grainger et al, 2016), inklusive avvikande färgseende1, vilket drabbar ca 8% av den manliga och ca 0,4% av den kvinnliga befolkningen i världen (Rigden, 1999).

Syfte, mål och frågeställningar

Projektet MiljöVis - Effektiv representation av miljöinformation i infrastrukturmodeller har syftat till att utveckla ny kunskap om hur komplexa objektorienterade informationsmodeller, här benämnda samordningsmodeller, kan bli ett effektivare kommunikationsmedel och kvalitetsverktyg. Projektet har också syftat till att utveckla nya visualiseringslösningar för integrering av miljödata. Ett mer specifikt syfte har varit att, i dessa modeller, enklare kunna förutse effekter av olika åtgärder och kunna integrera olika typer av osynliga effekter, till exempel bullersimuleringar och hälsoeffekter, i en och samma modell.

Sammanfattningsvis har MiljöVis syftat till att:

- utveckla metoder för att representera miljödata i Trafikverkets samordningsmodeller
- utveckla olika konceptuella lösningar som utvärderats i användartester
- testa lösningar i ett av Trafikverkets investeringsprojekt samt utveckla specifikationer för implementering

Effektiv visualisering gör att man inkluderar och skapar samsyn bland intressenterna i planeringsprocessen och på så sätt bidrar till en större helhetssyn och därmed hållbarare lösningar. Det övergripande målet med projektet har varit att förbättra och tydliggöra representationen av information i samordningsmodellerna och därigenom skapa effektivare

1 Personer med avvikande färgseende uppfattar färgerna på ett annat än personer med normalt färgseende. De flesta personer med avvikande färgseende har defekter i det röd-gröna seendet. (Rigden, 1999)
beslutsunderlag och bidra till enklare kvalitetssäkering under planerings- och byggprocessen. Slutmålet har varit en tydligare kravställning, förslag på användning av objekt- och symboler, färgschema och detaljerings- och informationsnivåer för miljödata.

Följande frågeställningar har varit i fokus:

- Hur kan man representera osynliga parametrar som miljödata i samordningsmodeller på ett begripligt sätt?

- Hur påverkar utformningen av olika visualiseringskomponenter uppfattningen av miljödata i en 3D-modell, och hur kan dessa ge förståelse för hur platsen kommer att påverkas av föreslagna förändringar?

- Vad krävs av en 3D-visualisering för att fungera för olika syften och målgrupper?

Projektet har bidragit till Trafikverkets målområden En effektivare planeringsprocess och Stärkt samverkan i samhällsutvecklarrollen. Projektresultat förväntas bidra till att förbättra förståelse för hur platsen kommer att påverkas av föreslagna förändringar, samt leda till ökad produktivitet genom enklare kvalitetssäkring och bättre beslutsunderlag.

Målgrupp

Målgruppen för rapporten är främst Trafikverkets specialister och samhällsplanerare, samt forskare inom visualiseringsområdet. Resultatet av projektet avses i slutändan att gagna kommunikation med en berörd allmänhet.

Projektets genomförande och avgränsningar

Trafikverkets planerings- och designprocess består av flera olika skeden (se Stahre Wästberg et al, 2021 s.11). Det här projektet fokuserade på det tidiga planeringsskedet Lokaliseringstabletredning, vilket samordningsmodellen etableras och miljöaspekter har som störst påverkan.

Vi studerade miljödata utifrån Trafikverkets definierade miljöområden och miljösäkringsområden, där vi valde att fokusera på miljöområdena buller, luftkvalitet och social hållbarhet. Alla tre områden behandlades initialt i projektet men fördjupade studier med prototyputveckling har fokuserat på buller.

Definierade utvärderingskriterier, från två pågående lokaliseringstabletredningar i Trafikverket (Nya stambanor; Göteborg-Borås och Hässleholm-Lund), har legat till grund för att påvisa prioritering och behov av indata vad gäller miljödata i planeringsskedet. För att ytterligare tydliggöra behovet av visualisering av miljödata hänvisas till Trafikverkets rapport Visualisering av inspektionshandlingar i 3D (Ek, 2018). Den behandlas skedet drift och underhåll men är relevant även för tidiga skeden. Rapporten från förstudien ingick därför i
MiljöVis som referensmaterial, liksom Vägverkets och Riksantikvarieämbetets projekt Visualisering av kulturmiljö i vägplanering (Frisk et al, 2006).

MiljöVis har länkats till pågående forskning på Chalmers och till kompetenscentret Digital Twin Cities Center2. MiljöVis har också samverkat med och delvis finansierats av projektet SCENDA - Scenario visualization of environmental data in compact cities, som var ett parallellt pågående sättprojekt (pilotprojekt för nya forskningsområden) inom styrkeområdet Informations- och kommunikationsteknik på Chalmers. SCENDA hade som syfte att pröva olika designkoncept för visualisering av buller och luftdata.

Begrepp

Nyckelbegrepp i rapporten är visualisering, miljödata, volymetrisk visualisering, punktmoln, sfärer, färg och kulörtion och ljushet.3

Vi använder termen visualisering i vid bemärkelse. Termen omfattar här exempelvis digita verktyg och tillvägagångssätt som baseras på exempelvis 2D-/3D-visualiseringar, olika former av geovisualisering (dvs georefererade rumsliga data), samt informationsvisualisering som kan implementeras i Virtual Reality (VR)- och Augmented Reality (AR)-miljöer.

Miljödata definieras i Strategi för miljödatahantering, version 1.03 (Naturvårdsverket, Havs- och vattenmyndigheten och länsstyrelserna, 2019) som “sådan miljöinformation som har en strukturerad form lämpad för överföring, tolkning och bearbetning av maskiner. Miljödata kan sedan utgöra underlag för att skapa miljöinformation såsom diagram, rapporter, kartpresentationer, indikatorer, informationsfilmer mm., dvs information om:

1. miljön och faktorer som kan påverka miljön, och
2. hur människors hälsa, säkerhet och livsvillkor samt kulturmiljöer och byggnadsverk kan påverkas av miljön eller av sådana faktorer som kan påverka miljön.”
(Naturvårdsverket, Havs- och vattenmyndigheten och länsstyrelserna, 2019)

2 https://dtcc.chalmers.se/
3 Beskrivning av begreppen visualisering, miljödata och volymetrisk visualisering är hämtade från s 7 och s 20 i vår inventeringsrapport Att synliggöra det osynliga - Kartläggning av representation av miljödata i digitala modeller (Stahre Wästberg et al, 2021), en delrapport i projektet.
information visas som färgvärdet för att tydliggöra förhållanden och samband (Prado, 2019).

En **textur** är en grundläggande visuell egenskap hos en form och kan beskrivas som dess ytstruktur. Texturer är viktiga för vår förståelse av objektets form, position och innebörd.

Avseende **färg** använder vi i projektet begreppen i färgsystemet NCS (Natural Colour System) som är svenska standard för färgbeteckningar. NCS bygger på visuell upplevelse och ger möjlighet att definiera varje tänkbar färg på en yta. Systemet utgår från de 6 elementarfärgerna röd, gul, grön, blå, vit och svart. Utifrån dessa kan man beskriva alla färger. (Fridell Anter, 2014, s. 103–108)

Begreppet **kulörton** visas i NCS färgcirkel (figur 1). Kulörtonen definieras som den specifika färgens relativa likhet med två av elementarfärgerna. Begreppet **nyans** visas i NCS färgrummet och används i NCS för att ange färgens grad av likhet med svart, vitt och en kulört maximalfärg.

Begreppet **ljushet** står för en egenskap som kan bestämmas genom att jämföra färgen med en gräskala eller genom instrumentell mätning. Ljushetskontraster är en avgörande faktor för hur visuellt uppfattar mönster eller former. (ibid)

Figur 1. NCS (Natural Color System), illustrerad i en tredimensionell färgrymd, kan delas upp i en färgcirkel (kulör) och en färgrum (nyans). Inom denna tredimensionella modell kan all tänkbar ytfärg ges en NCS-kod. (https://ncscolour.com/ncs/)

4 https://ncscolour.com/ncs/
Metod och material

Projektet genomfördes i tre faser: 1) inventering av befintliga modeller där miljödata visas och olika sätt att representera miljödata, 2a) framtagning av designkoncept och prototyper för representation av abstrakta objekt, osynliga värden och konsekvenser och 2b) användartester och analyser samt 3) utveckling av en storskalig modell för demonstration av de utvecklade visualiseringsskopenhet, se figur 2.

<table>
<thead>
<tr>
<th>Fas</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inventering</td>
<td>Här undersöks hur Trafikverkets samordningsmodeller ser ut idag.</td>
</tr>
<tr>
<td>2a. Designkoncept och prototyper</td>
<td>Utveckling av designkoncept för hur färger, form och symboler kan användas i samordningsmodeller för att ge optimal förståelse för olika målgrupper. Utveckling av interaktiva modeller, prototyper, i olika skalor med olika designlösningar.</td>
</tr>
<tr>
<td>3. Demonstration i storskalig modell</td>
<td>Demonstration av olika visualiseringsskopenhet implementerade i ett av Trafikverkets aktuella investeringsprojekt.</td>
</tr>
</tbody>
</table>

Figur 2. Projektets faser och relaterade aktiviteter.

Vi har tillämpat designbaserad forskning (Anderson & Shattucki, 2012) och har arbetat i en iterativ process (figur 3) hela vägen från analogt skissande till digital implementering. Designkoncepten har utvecklats och utvärderats i workshoppar med slutanvändare, liksom i interna utvärderingar med forskningsgruppen, och därefter analyserats i en cyklisk process där forskare, designers och utvecklare har samarbetat.

Figur 3. Schematisk uppställning av den iterativa arbetsprocessen.
Inventering

I början av MiljöVis-projektet genomfördes en kartläggning i form av en inventering av projekt med fokus på visualisering av miljöparametrar i digitala modeller (figur 2, fas 1). Syftet var att dra lärdom av dessa projekt som stöd och inspiration för att kunna utveckla designkoncept för standardiserad visualisering av osynliga parametrar.

Figur 4. Inventeringsrapporten Att synliggöra det osynliga - Kartläggning av representation av miljödata i digitala modeller (vänster). Exempel på ifylld matris för miljöområdet Luftkvalitet (höger).
Prototyper för visualiseringsplattformar

I utvecklingen av plattformen har flera programvaror använts:

- **Unreal Engine** (öppen källkod för 3D-modellering och spelutveckling)
- **Rhinoceros** (industriell programvara för 3D-modellering och CAD)
- **FEniCS Project** (öppen källkod för vetenskapliga simuleringar)
- **Gmsh** (öppen källkod för nätgenerering)
- **IPS IBOFlow** (industriell programvara för komplexa strömningssimuleringar utvecklat av Chalmers-Fraunhofer Centrum för industrimatematik)

För laborationer i sandlådemodellen användes enbart fiktiva data. Den stora modellen baserades på olika sorters data från Lantmäteriet och Trafikverket.

Sandlådemodell

Figur 5 visar utgångsskissen för den övergripande situationsplanen för området och figur 6 visar en mer detaljerad planskiss för tätorten. Figur 7 visar valda utsnitt ur den faktiska sandlådemodellen, som skapades i Rhino (Rhinoceros 3D). Olika designkoncept skissades sedan först i Rhino och visualiseringsarna gjordes sedan med hjälp av Unreal Engine.

![Figur 5. Tidig skiss på en mer övergripande situationsplan för området/ landskapet, framtagen i PowerPoint.](image-url)

Figur 7. Skärmvyer från sandlådemodellen, framtagen i Rhino.
Storskalig modell

För att kunna demonstrera olika visualiseringslösningar i Trafikverkets samordningsmodeller ingick utveckling av en storskalig modell som täcker området Göteborg - Borås (figur 8).

För denna storskaliga modell utvecklades ett arbetsflöde för att generera digitala tvilling-modeller och visualisera storskaliga data med hjälp av Unreal Engine för reallidsvisuallisering och FME (Feature Manipulation Engine, en plattform för dataintegration och stöd för geografiska data) för att förbehandla data (figur 9). Metoden bestod av två delar, a) modellskapande (world creation) och b) datavisualisering. Modellskapandet handlade om att använda tillgänglig GIS-data för att generera en virtuell 3D stadsmodell. Datavisualiseringen handlade främst om att visualisera storskaliga analysdata, i det här fallet bullerdatal.

Beskrivning av arbetsflödet som kopplar till prototypen av den storskaliga modellen samt programvaror och metoder för att visualisera storskaliga data på en visualiseringsplattform beskrivs i avsnitt Utveckling av prototyp för storskalig modell (s 70).

Figur 8. Skärmvyer från den storskaliga modellen.

Designkoncept

I sandlådemodellen utvecklades designkoncept för hur färgskalar, formspråk, detaljeringsnivåer, rörelse och perspektiv kan användas i samordningsmodeller. Utöver detta har även symboler och informationsrutor utvecklats och integrerats i modellen. Huvudfokus kom att ligga på miljöområdet buller där visualiseringar inkluderade arbete med framförallt draperade heatmaps och volymetrisk visualisering.

Färgskalar

Figur 10. Exempel på användning av regnbågsskala för att visualisera buller i 2D. (Stahre Wästberg et al, 2020)

Figur 11. Exempel på användning av regnbågsskala för att visualisera buller draperad på en 3D-modell. (Stahre Wästberg et al, 2020)

Figur 12. Anvisningar för kartläggning av buller. (Jonasson & Gustafson, 2010)

Figur 13. Skala för ekvivalent (vänster) och maximal (höger) ljudnivå, vilken används av Trafikverket. (Novak et al, 2016)

Vi utvecklade olika färgskalor för representation av buller baserade på olika principer, till exempel ljust till mörkt eller transparent till opak. Dessa testades och utvärderades sedan i sandlådemodellen och implementerades i den stora modellen. Vissa av skalorna utvecklades inom projektet eller baserades på skalor vi använt i tidigare forskningsprojekt. Andra baserades och anpassades utifrån redan existerande färgskalor. Skalorna spänner över olika delar av färgcirkeln och inkluderar olika många steg för att kunna undersöka hur många steg som fungerar i visualisering av framför allt punktmoln.

Vi har också inkluderat och simulerat färgskalor med hänsyn till olika färgseende. För detta har vi använd Coblis — Color Blindness Simulator, i vilken bilder kan visas utifrån hur de uppfattas av en person med till exempel röd-, grönt- och blå-svagt seende/blindhet. Detta utvärderades dock inte med användare, men är något vi skulle vilja arbeta vidare med.

De utvärderade färgskalorna inkluderar divergerande skalor, sekventiella skalor, transparenta skalor, ett förslag till standardskala för buller inom EU, samt “Trafikverket-skalan” (tabell 1).

<table>
<thead>
<tr>
<th>Skala</th>
<th>Steg</th>
<th>Källa</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>Anpassad från Alberts & Alférez (2012)</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>Baserad på (Novak et al, 2016)</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>Anpassad från https://colorbrewer2.org</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>Anpassad från Ware (2004)</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>Anpassad från Ware (2004)</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>Egen framtagning</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>Anpassad från https://colorbrewer2.org</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>Anpassad från https://colorbrewer2.org</td>
</tr>
</tbody>
</table>

Formspråk

Det finns olika sätt att visa buller i 3D. I MiljöVis-projektet valde vi att fokusera på att utforska följande visuella koncept:

- Heatmaps draperade över modellen för lägesbeskrivning (figur 14, 15).
- Volymetrisk visualisering (sfärer) för att kunna visa värden för en specifik punkt (figur 16)
Figur 14. Exempel på draperade heatmaps i en stadsmodell.

Figur 15. Olika placering och utbredning på heatmaps som undersöktes:

1. Draperad heatmap utelämmande gata och trottoar.
2. Draperad heatmap utelämmande all mark.
3. Draperad heatmap på enbart fasader.
4. Draperad heatmap på enbart fasader, visar endast nivåer över gränsvärde.
5. Draperad heatmap utelämmande gata och trottoar, visar endast nivåer över gränsvärde.
6. Draperad heatmap på alla ytor, visar endast nivåer över gränsvärde.
Att kunna visa fler parametrar parallellt är en utmaning när det handlar om visualisering av miljödata. I början av projektet undersöktes hur man visuellt kan kombinera heatmaps och volymetrisk visualisering i samma modell (figur 17), för att exempelvis kunna kombinera olika egenskaper hos samma miljöparameter (platsbundet ljud och ljud från rörlig ljudkälla).

Fokus kom att ligga på volymetrisk visualisering av sfärer i ett osynligt rutnät, som undersöktes utifrån olika parametrar. En central utmaning i den här typen av visualisering handlade om att effektivt kunna visa detaljerad information och samtidigt kunna bibehålla förståelsen för den omkringliggande miljön. Vi tittade främst på applicerbara färgskolor, samt vilken storlek, placering och densitet på sfärerna som fungerade bäst. Vi började med att testa olika designkoncept för sfärer kopplade till en rörlig ljudkälla i modellen (figur 18–20) - dels statiskt placerade sfärer som ändrade färg beroende på ljudnivå (figur 19), dels rörliga sfärer som följde med ljudkällan (figur 20). Efter hand visade det sig dock att den här
typen av rutnätsbaserad voxelvisualisering medförde vissa visuella komplikationer i modellen. De symmetriska placeringarna på sfärerna kom optiskt att ta överhanden och olika mönsterbildningar kom därigenom att skapas i olika perspektiv, som störde läsbarheten (figur 19, höger). Därför övergick vi till visuellt slumpmässig punktmolnsvisualisering (figur 21).

Figur 18. Exempel på konceptuell voxelvisualisering i sandlådemodellen.

Figur 19. Exempel på volymetrisk visualisering där statiskt placerade sfärer ändrar färg beroende på ljudnivå för rörlig ljudkälla, i gatuperspektiv (vänster) och i fågelperspektiv (höger).

Figur 20. Exempel på volymetrisk visualisering där sfärerna följer en rörlig ljudkälla i top-down perspektiv (vänster) och i fågelperspektiv (höger).
Figur 21. Exempel på volymetrisk visualisering som punktmoln i sandläademodellen från snedställt perspektiv (vänster) och top-down perspektiv (höger).

Konceptlösningar togs fram för scenarier som illustrerar konsekvenser av olika slag, såsom effekterna av ljudbarriär (förändrad bullersituation med ett bullerskydd) (figur 22) och tunnelknall (figur 23).

Figur 22. Utgångspunkter för laborationer i sandläademodellen med hur en bullersituation förändras med olika höjd på ett bullerskydd: lågt skydd (vänster) och påbyggt skydd (höger).

Figur 23. Tidiga skisser på tunnelknall i fågelperspektiv (vänster) och i sektion (höger), visualiserade under möte mellan forskare, designer och programmerare i zoom.
Detaljeringsnivå

Vi undersökte vilken detaljeringsnivå som behövdes för att tydligt förmedla information om buller i modellen genom att fokusera på dels själva modellen, dels på miljödatan (volymetrisk visualisering). Utvärdering om detaljeringsnivå i modellen gjordes i WS1 (se stycke Användartester, s 35) och efter detta har utvecklingsgruppen diskuterat och provat olika lösningar för olika detaljeringsnivåer i modellen.

För att förstå vilken detaljeringsnivå på objekten i modellen som fungerar bäst när en miljöparameter ska visas undersökte vi olika detaljeringsnivåer:

- Inga färger, inga texturer (figur 24A)
- Inga färger, marktexturer (figur 24B)
- Färger, texturer (figur 24C)

Figur 24A - C. Olika detaljeringsnivå på modellen undersöktes för att kunna definiera den nivå som ger bäst förståelse för själva bullervisualiseringen. Detaljeringsnivåerna som undersöktes var ofärgad (vit) modell utan texturer (A), gråskalig modell med texturer (B), fullfärgad modell med texturer (C).

Informationsnivåer (informationsrutor)

För att kunna gå mellan olika informationsnivåer tog vi fram olika varianter på informationsrutor som visade fördjupad information kring buller (figur 25–27). Detta gav oss möjlighet att visa bullereffekter för olika detaljeringsnivåer och möjlighet att interaktivt få fram siffror och diagram för specifika byggnader.

Figur 25. Skiss på hur en informationsruta kan utformas som en fast panel i gränssnittet.

Figur 27. Detalj av information tänkt att visas med informationsruta.
Dimension
Inledningsvis jämförde vi olika färgskalor i 2D och 3D (figur 28) för att få bättre förståelse för hur samma skala uppträder i 2D respektive 3D. Senare valde vi att fokusera på enbart i 3D för att kunskapsbehoven är större kring visualisering i 3D.

Figur 28. Initiat undersöktes visualisering av buller i 2D (vänster) och 3D (höger). Projektet kom i ett senare skede att enbart att fokusera på 3D.

Rörelse och perspektiv
Att skapa samordningsmodeller som är interaktiva för användaren är ett mål. Eftersom många bullerkällor är knutna till objekt som förflyttar sig, som till exempel bilar och i vårt fall tåg, var det viktigt att ha en rörlighet i visualiseringen. Dock kunde inte interaktivitet testas i våra användartester, då det var viktigt att alla deltagare kunde se och fokusera på samma sak. För att kunna kommunicera rörligheten i visualiseringarna till deltagarna skapades istället animeringar och korta filmer i Unreal Engine, där bullervisualiseringen som länkats till tåget rör sig i takt med att tåget förflyttar sig.

Symboler

Arbetet med symboler omfattade både utformning och hur de skulle visas i modellen. Idag får Trafikverket modeller levererade i olika programvaror, vilket gör att symboler för närvarande måste placeras direkt i modellen. Det finns dock önskemål om att kunna implementera dem även i ett framtida gränssnitt. Utgångspunkter för arbetet var Trafikverkets mall för färgpalett för grafiskt material, deras befintliga symboler (figur 30) samt tillhandahållna skisser (figur 31). Vissa symboler var alltså redan inarbetade av Trafikverket, andra saknades och behövdes ta fram, exempelvis symboler för buller, stomljud och vibrationer. En central utmaning handlade om att symbolerna skulle fungera i en 3D-modell (till skillnad från i 2D-material), dvs måste de kunna synas men inte blandas ihop med modellens övriga färgpalett. Utforskade alternativ kopplade till både användningen av färg och form innefattade:

Färg:
- Färgad symbol med vit bakgrund
- Färgad bakgrund och vit symbol
- Olika färgsättningar, både Trafikverkets egen palett för grafiskt material samt alternativ
- Olika kombinationer av färger
- Antal färger i varje symbol (1 - 3 stycken)

Form:
- Symboler som linjer
- Fyllda symboler
- Symboler som 3D-objekt
- Symboler som billboards (ensidiga objekt, alltid riktade mot användaren)
- Symboler som skivor

Figur 30. Utval av symboler från Trafikverkets illustrationsarkiv, med markering av de som användes som utgångspunkter i projektet. Generellt finns alla dessa i fyra färger: röd, mörkröd, grå och vit, här visas endast symboler i rött och mörkrött.
Figur 31. Tidig skiss på exempel på symboler att ta fram.

Förutom utformning av symbolerna så undersökte vi också placering av symboler i modellen, dvs vilket perspektiv och avstånd de är tänkta att visas och om symbolerna är en del av gränssnittet eller del av själva modellen. Placeringsalternativen som testades var:

- Symboler i fast position som panel i gränssnittet (figur 32)
- Flytande symboler i modellen som del av gränssnittet (figur 33)
- Symboler placerade som objekt i modellen (figur 34)

Figur 32. Symboler placerade i fast position i användargränssnittet (UI) på skärmen, i en instrumentpanel. Genom att klicka på en symbol i panelen visar modellen relevanta områden utifrån vald parameter.

Figur 33. Flytande symboler i modellen. Symbolerna är en del av användargränssnittet och visas alltid i en storlek som är läsbar.

Då symbolerna och dess koppling till modellen utvecklades sent i projektet utvärderades detta inte med användare. Däremot diskuterades designförslagen löpande under den iterativa utvecklingsprocessen mellan designers och forskare i projektet, Trafikverkets handläggare och representanter från referensgruppen.
Arbetsflöde för utveckling av designkoncept

I arbetet med att utveckla designkoncepten arbetade tre forskare, en designer och tre programmerare i projektet i en iterativ process, där schemalagda möten kompletterades med löpande kommunikation framför allt via mail och Slack. Forskarnas kompetensområde var visualisering inom urban utveckling, dialog och planering, designern hade kompetens inom arkitektur och grafisk formgivning, och programmerarnas specialiteter var plattformsutveckling och Unreal Engine. Designern hade rollen som brygga mellan forskarna och programmerarna, och hade ett nära samarbete med båda grupper. Forskarna utvecklade designkoncepten och formulerade hur dessa skulle testas i sandlådmodellen i en “storyboard” i PowerPoint i samarbete med designern (figur 35, 36 se även figur 5, 6). Designern arbetade utifrån forskarnas önskelista och visualiserade koncepten som sedan programmerades och implementerades i Unreal Engine.

Film clip focusing on the effects of a sound barrier.
First birds eye view (for orientation), then zoom in on the housing area (right hand side in the model) showing the railway in one corner from a street view perspective.
The train approaches and passes a stretch of land with
1. No fence
2. Low fence
3. High fence
Sound data changes accordingly.

Figur 35. Exempel på storyboard för att visa scenarier med effekter av olika höjd på av ett bullerskydd.

Figur 36. Storyboard för heatmaputbredning och placering av sfärena i ett punktmoln.
Användartester

I användartesterna utvärderades framförallt designkoncepten i sandlådepromotypen och undersöktes hur olika intressenter tolkar, förstår och upplever de olika prototyperna (beslutsfattare, specialister, allmänheten). Följande metoder användes:

- Egenutvärdering i projektgruppen
- Gruppmöten med referensgrupp
- Intervjuer med specialister
- Workshoppar med fokusgrupper

Egenutvärdering av designkoncept genomfördes kontinuerligt i projektmöten med forskare i olika konstellationer samt med representant från Trafikverket. Möten med referensgruppen fokuserade på vilka bullerparametrar som skulle visas och vilka scenarier som var av intresse. Intervjuer med bullerspecialister genomfördes för att få djupare kunskap om specialisternas behov i planeringsprocesser, viktiga publikationer, hur man jobbar med buller på Trafikverket idag och vilka utmaningar som finns. I workshopparna genomfördes de mest omfattande användartesterna där mer genomarbetade koncept visades och utvärderades systematiskt. Därför beskrivs workshopparna mer i detalj nedan.

På de tre workshopparna deltog sammanlagt 225 personer. Workshopparna hade liknande upplägg men samtidigt var de anpassade till dels målgrupperna och dels det projektskede som de genomfördes i. I workshop 1, som genomfördes tidigt i projektet och var kortast (60 min), testades färgseendet hos deltagarna, men främst presenterades och utvärderades uppfattning av olika färgskalor och vilka generella miljöparametrar som skulle vara intressanta att inkludera vid planering av ett nytt område i form av ett rollspel. I workshop 2 och 3 utvärderades samma designkoncept men med olika målgrupper och olika startuppgifter. För detaljer se tabell 2.

35 (36)
<table>
<thead>
<tr>
<th>WS #</th>
<th>Deltagare</th>
<th>Datum</th>
<th>Syfte</th>
<th>Kommunikation/ dokumentation</th>
<th>Innehåll</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ca 160 masterstudenter, Arkitektur, Chalmers</td>
<td>okt 2020 8.30 - 9.30 (1 timme) engelska</td>
<td>Att diskutera buller-visualisering, behov och konceptutveckling i projektet</td>
<td>- Zoom - 30 breakout rooms - Mentimeter</td>
<td>- Test färgseende (individuellt) - Utvärdering uppfattning av skalar och detaljeringsnivå (individuellt) - Rollspel (grupper)</td>
</tr>
<tr>
<td>2</td>
<td>10 specialister inom buller, luft, och visualisering Trafikverket, + 3 forskare från Chalmers (arrangör/facilitator/utvärderare)</td>
<td>jan 2021 9–12 (3 timmar) svenska</td>
<td>Att diskutera specialisternas behov och utvärdera design-koncept</td>
<td>- Zoom - 2 breakout rooms - Miro - google docs för dokumentation av diskussion - zoomchat</td>
<td>- Mapping personernas bakgrund - Behovsinventering - Utvärdering av designkoncept (grupp)</td>
</tr>
<tr>
<td>3</td>
<td>ca 55 masterstudenter, Interaktionsdesign, Chalmers/ Göteborgs universitet</td>
<td>feb 2021 9–16 (6 timmar) engelska</td>
<td>Att diskutera buller-visualisering och utvärdera designkoncept</td>
<td>- Zoom - 16 breakout rooms - Miro - Zoom chat</td>
<td>- Test färgseende (individuellt) - Utvärdering uppfattning av skalar och detaljeringsnivå (individuellt) - Utvärdering av designkoncept (grupp)</td>
</tr>
</tbody>
</table>
Uppvärmning: Rollspel och visualiseringskompetenser

För att komma igång och bli bekant med Miro så började alla workshoppar med en “uppvärmningsövning”, antingen ett rollspel eller en beskrivning av vilka visualiseringskompetenser man har. I workshop 1 och 3 genomfördes ett rollspel med deltagarna. Uppgiften beskrevs som följande:

Kontext: En ny järnväg planeras att gå genom en liten stad. Information måste kommuniceras mellan olika målgrupper: beslutsfattare, stadsplanerare och bosatta i ett stadsomvandlingsområde. Vilken typ av information tycker du vore relevant att visualisera för respektive målgrupp?

Deltagarna delades slumpvis in i breakoutgrupper med ca 5 personer i varje grupp. Grupperna blev tilldelade en av tre intressenter: beslutsfattare (kommunfullmäktige), stadsplanerare samt boende i ett berört område. Inom gruppen skulle sedan frågan diskuteras (figur 37). Svaren sammanfattades i varje grupp och presenteras inför övriga grupper i slutet av workshoppen (figur 38).

Figur 37. Skärmvy av när deltagarna jobbade med rollspel i Miro under en av workshopparna med studenter.

Figur 38. Exempel på resultat från rollspel. Wordcloud i Mentimeter i WS 1 (vänster) och brainstorming i Miro i WS 3 (höger) för grupperna som spelade beslutsfattare.

![Diagram över visualiseringsmetoder](image)

Figur 39. Uppgifterns utformning i Miro med frågan ”Vilka visualiseringsmetoder jobbar du med?” (vänster) och svaren från deltagarna (höger).

Färgseende och färgförståelse

För att få en förståelse för workshopdeltagarnas färgseende och färgförståelse genomförde vi en kvantitativ utvärdering om avvikande färgseende med hjälp av ett Ishihara-test (Ishihara, 1972) (figur 40), uppfattning vilka färger representerar högsta och lägsta värdet i en skala (figur 41), och vilken färgskala som förmedlar bullersituationen bäst i 2D med jämförelsebilder (figur 42).

![Ishihara-test](image)

Figur 40. Exempel från Ishihara-testet (Ishihara, 1972) som användes i workshoppen med frågan ”Har du någon form av avvikande färgseende? Vilken siffra ser du?” Testet genomfördes i Mentimeter.

Figur 42. Vilken färgskala förmedlar bäst bullersituationen i 2D? (WS1). Här visar vi exempel med fyra olika färgskalar: en sekventiell skala med ökad färgmättnad (A), en divergerande skala för avvikande färgseende (B), en sekventiell skala från ljus gul till mörkt röd (C) och en föreslagen skala för EU standardisering av buller (D) (se tabell 1). Uppgiften genomfördes i Mentimeter.
Olika sätt att representera miljödata

Representationssätt utvärderades både kvantitativt i workshop 1 (figur 43) och kvalitativt i workshop 2 och 3 (figur 44). Deltagarna fick utvärdera jämförelsebilder och ange det alternativ de tyckte fungerade bäst.

FIGUR 43. Vilken detaljeringsnivå på modellen förmedlar bäst förståelse för bullervisualisering? (WS1)

Kring visualisering i modell diskuterades följande frågor (figur 44):

- Hur kan jag använda bullervisualisering?
- Vilka parametrar är relevanta att visa avseende buller (till exempel konsekvenser, med och utan olika åtgärder, lagkrav t ex överskridna gränsvärden, etc)

I relation till bilderna diskuterades följande:

- Vad tycker du är bra, och varför?
- Vad tror du fungerar sämre, och varför?
- Välj tre favoriter och motivera!

FIGUR 44. Miro-bord: Jämförelsebilder för utvärdering av designkoncept för visualisering i modell.
Färgskalor i modellen

Färgskalor utvärderades både kvantitativt i workshop 1 (figur 45, 46) och kvalitativt i workshop 2 och 3 (figur 47). Deltagarna fick utvärdera jämförelsebilder och ange det alternativ de tyckte fungerade bäst.

Utvärderingen av färgskalor i workshop 2 och 3 baserade på jämförelsebilder/-filmer (figur 46). Följande frågor diskuterades:

- Vad är viktigt vid val av färgskala utifrån ditt perspektiv? T ex igenkänningsfaktorer, avvikande färgseende, tolkningsförståelse.
- Hur vill du kunna använda en färgskala för kommunikation av buller? Enbart visa färger ovanför gränsvärden? Inkludera de lägsta, mer osäkra decibel-talen, 2D, 3D?
- Vad tycker du är bra, och varför?
- Vad tror du fungerar sämre, och varför? Välj två favoriter i 2D och 3D, och motivera!

Figur 45. Vilken färgskala förmedlar bullersituationen bäst? Här visar vi gatuvy med sfärer i kombination med färgad texturerad bakgrund.

Figur 47. Miro-bord: frame med jämförelsebilder för utvärdering av designkoncept för färgskalor.
Analys av material

Dokumentationen från användartesterna, dvs Miro-borden från de olika grupperna och anteckningarna från diskussionen relaterade till det, i en matris och svaren från utvärderingen i Mentimeter och i Zoom-poll sammanställdes (se figur 41) i diagram och wordclouds (se figur 38) Med hjälp av matrisen kunde vi jämföra olika gruppens svar samt identifiera för- och nackdelar för olika visualiseringar och färgskalar. Utvärderingen omfattade deltagarnas diskussion kring visualiseringssprefrenser för alternativ A-J (tabell 3, figur 44), uppfattning av färgskalorna för alternativ A-H (figur 47, tabell 1) samt placering av de färgade prickarna för att markera favoriterna för både visualisings- och färgskalprefenenser. Figur 48 och 49 visar exempel på Miro-bord med anteckningar som gjordes av deltagarna i workshop 3.

Tabell 3. Alternativ för visualisering i modellen.

<table>
<thead>
<tr>
<th>Alternativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Draperade med olika fokus</td>
</tr>
<tr>
<td>B. Draperade över hela modellen</td>
</tr>
<tr>
<td>C. Som sfärer</td>
</tr>
<tr>
<td>D. Som staplar eller skivor</td>
</tr>
<tr>
<td>E. Som partiklar</td>
</tr>
<tr>
<td>F. Linjer</td>
</tr>
<tr>
<td>G. Symboler</td>
</tr>
<tr>
<td>H. Abstraktionsnivå på modellen</td>
</tr>
<tr>
<td>I. Informationsnivåer</td>
</tr>
<tr>
<td>J. Interaktivitet/Animering</td>
</tr>
</tbody>
</table>
Återkoppling

Återkoppling av resultat från projektet genomfördes i form av ett slutseminarium. På ett tre timmars långt seminarium med ca 40 deltagare med olika bakgrund och från olika organisationer (universitet, kommuner, företag och Trafikverket), varav hälften specialister från Trafikverket. På seminariet presenterades projektet i sin helhet, med en introduktion till problemområdet, tillämpade metoder, modellutveckling och relaterade procedurer, samt resultat. Avslutningsvis öppnades upp för en diskussion.

Diskussionen berörde dels den storskaliga modellen och frågor kring data, dataintegration och arbetsflöden för att skapa modellen, dels behovet att visualisera buller i 3D och lämplig detaljeringssnivå, dvs om man räknar grovt så ska resultaten visas grovt. Diskussionen lyfte också fram behovet av att kunna kombinera flera miljöområden, samt behovet att kunna visualisera olika scenarier och konsekvenser.
Resultat

I detta avsnitt sammanfattar vi projekts resultat från inventeringen (kartläggningen av representation av miljödata i digitala modeller), utvecklingsarbetet med prototypen för den storskaliga modellen och utvecklingen av designkoncepten.

Inventering - Kartläggning av representation av miljödata i digitala modeller

Inventeringen resulterade i en sammanställning av befintliga projekt utifrån miljöområdena buller, luftkvalitet, social konsekvensanalys och exempel på digitala tvillingar kopplade till stadsmodeller. I inventeringen identifierades även centrala visualiseringskomponenter för representation av data (figur 50, 51). Vi studerade hur dessa har använts inom de olika miljöområdena för att lägga grunden för utveckling av designkoncept inom MiljöVis-projektet. Fokus har främst legat på grafisk och rumslig representation (visuella former och visuella egenskaper) men vi har även diskuterat betydelsen av perspektiv, skala och detaljeringsnivå, dimension (2D eller 3D), samt interaktivitet.

Visualiseringskomponenter

<table>
<thead>
<tr>
<th>Geometriska former</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Färger, Texturer, Mönster</td>
<td></td>
</tr>
<tr>
<td>Dimension (2D, 3D)</td>
<td></td>
</tr>
<tr>
<td>Perspektiv</td>
<td></td>
</tr>
<tr>
<td>Skala/Detaljeringsnivå</td>
<td></td>
</tr>
<tr>
<td>Statisk eller Dynamisk</td>
<td></td>
</tr>
</tbody>
</table>

Figur 50. Visualiseringskomponenter som definierats i inventeringsrapporten. (Stahre Wästberg et al, 2021)
I inventeringen tog vi fram ett antal rekommendationer för utveckling av representation i samordningsmodeller. Följande punkter är citerade från Stahre Wästberg et al (2021, s. 35–36). Det är viktigt att:

- utveckla metoder för att *visa flera parametrar samtidigt* till exempel för att kunna få en mer heltäckande lägesbild, kunna göra urval och jämförelser, och hitta konflikter mellan olika områden och parametrar.

- utveckla modeller med *hög grad av interaktivitet* för att effektivt och pedagogiskt kunna kommunicera med olika målgrupper och syften.

- definiera vilka *dimensioner och skalor* som bäst kompletterar varandra för att förmedla information på ett tydligt vis i ett visst sammanhang eller för en viss målgrupp. T. ex. hur man visuellt kombinerar en 3D-modell och kartmaterial i 2D, vad 3D-modellen ska fokusera på, och vilken *inzoomningsnivå* den ska visas i för att bäst komplettera kartan.

- utveckla *standarder för representation av data* avseende visualiseringskomponenter, som geometriska former (ytor, linjer, punkter med mera), visuella egenskaper (framför allt färgskalor), och visuella tecken (som symboler och ikoner), anpassade efter visualiseringens detaljeringsnivå.

Figur 51. Exempel på användning av de definierade visualiseringskomponenterna inom de olika miljöområdena Buller, Luftkvalitet och Sociala aspekter. (Stahre Wästberg et al, 2021)
- **kombinera olika typer av modeller** (till exempel taktiva och digitala) och att använda olika typer av gränssnitt för interaktion vid utveckling av samordningsmodeller.

Designkoncept

Resultat avseende designkoncept fokuserar på utvecklingen av färgskalor och formspråk (draperade heatmaps och volymetrisk visualisering), informationsnivåer (i form av informationsrutor), rörelse och perspektiv, symboler, scenarier och detaljeringsnivå.

Styckena Intuitiv tolkning av färgers rangordning i en skala (s 48) till Rörelse och perspektiv (s 63) behandlar resultat som gäller färgskalor, formspråk, informationsnivåer, och rörelse. Resultaten kommer från användartester och framförallt från WS2 och WS3.

Styckena Symboler (s 65) till Detaljeringsnivå (s 69) behandlar aspekterna symboler, scenarier och detaljeringsnivå. Dessa är ett resultat av utvärderingar gjorda under den iterativa utvecklingsprocessen i projektgruppen och referensgruppen.

Intuitiv tolkning av färgers rangordning i en skala

I avsnitt Färgskalor (s 21) beskrevs att tidigare forskning kommit fram till att den så kallade regnbågsskalan inte är lika effektiv som andra färgskalor kommunikation (Borland & Taylor, 2007; Bryant et al, 2014). En anledning till denna ineffektivitet sags vara svårigheten att relatera de enskilda färgerna till en logisk rangordning. I vår användarstudie ingick en utvärdering av vilka färger som bäst representerar det högsta respektive lägsta värdet i en skala. Det utvärderades i WS 1 och 3. Resultaten visas i figur 52. Vi utgick från regnbågsskalan i figur 11. Resultatet från studien visade att den mörkröda (37,5% av samtliga deltagare) och den klarröda färgen (29%) var de färger som flest ansåg bäst representera högsta värdet i en skala (figur 52 överst). När det kom till den färg som bäst ansågs representera lägsta värdet i en skala angavs både i WS 1 och 3 den ljusgröna färgen (43,5%), följt av den gula (18%) (figur 52 nederst). Kring det lägsta värdet råder dock en viss oenighet. Bland arkitektstudenterna ansåg markant färre deltagare att den blå färgen representerade det lägsta värdet jämfört med interaktionsdesignstudenter, där lika många (16%) tyckte att blått respektive gult representerade lägsta värdet. Ljusheten har stor betydelse i det intuitiva skapandet av en värdeskala, och något som många kan ha utgått från då få deltagare valde de mörkare gröna färgerna.

Detta överensstämmer med vad tidigare forskning pekat ut, då regnbågsskalans rangordning var tydligt ologisk för deltagarna. Notera att det handlade om att göra snabba val för deltagarna i försöks situationen.
Utvärdering av använda färgskalar

I projektet har vi testat åtta olika färgskalar för representation av buller. Dels har vi prövat existerande skalar som redan används i olika sammanhang, dels skalar som är framtagna av andra forskare, som vi delvis har anpassat efter våra identifierade behov. Dessutom har vi själva utvecklat transparenta skalar.

I det här avsnittet redovisar vi primärt resultaten från WS2 och WS3. I WS2 deltog specialister från Trafikverket och forskare från Chalmers, och i WS3 deltog interaktionsdesignstudenter. WS1 var en användarstudie i tidig skede av projektet där vi prövade olika designkoncept, såsom färg och formspråk, som ett steg i processen för att välja hur vi skulle gå vidare. Deltagarna fick kommentera vad som var viktigt vid val av färgskala (exempelvis igenkänningsfaktorer, avvikande färgseende och tolkningsförståelse), samt hur
de upplevde att de åtta skalorna motsvarade dessa krav. Notera att förbättringsförslagen för skala A och B, dvs de utvärderade regnbågsskalorna, delvis överlappar varandra. Vid analys av resultaten har vi konstaterat att underlagsmaterialet i vissa fall inte gör skalan rättvisa (se framför allt skala F och B), vilket sannolikt har fått en inverkan på bedömningen av skalorna. Notera också att studien gjordes online, vilket medförde att vi saknade kontroll över färger och ljusinställningarna på deltagarnas skärmar. Vi utgick dock från att relationen mellan färgerna i en skala stämmer oavsett kalibrering (Billger et al, 2004). Utvärderade bilder kan dock skilja sig åt i till exempel färgstyrka, vilket kan påverka bedömningen.

Vi hade samma upplägg och frågeställningar för WS2 och 3, men eftersom diskussionerna formades utifrån deltagarnas expertis och intressen blev det olika tonvikt på vad som diskuterades i grupperna. I WS2 blev det exempelvis ett tydligt fokus på behov av visualisering från specialisternas olika perspektiv, medan i WS3 så blev det ett starkare fokus på visualiseringslösningar och informationshantering.

A. Föreslagen standardskala buller inom EU

Den föreslagna standardskalan visade sig vara en av de mest uppskattade i vår utvärdering, förutsatt att man inte har ett avvikande färgseende (figur 53). Skalan fick positiva omdömen både bland specialisterna i WS2 och bland interaktionsdesignstudenterna i WS3, med kommentarer som berörde hur lätt det var att intuitivt associera grönt med lägre nivåer och rött med högre nivåer, och att den var den “bästa färgskalan (ur bullerhänseende)”.

Förbättringsförslag för skala A: Det kom flera förslag på hur skalan skulle kunna förbättras. Bland förslagen nämndes en ”starkare” gul, kombination av det gröna med ett mer transparent läge, och en djupare tonfärg som kan vara användbar vid urskiljning av området eller detaljerna. Om det finns många bullerkällor föreslogs tydligt separerade färger. Det vore fördelaktigt att exempelvis använda mörkare färg för mer ljud och ljusare färg för mindre ljud. Ett annat förslag handlade om att bara visa värden över gränsvärden med färger, och att ni avviker som ligger på eller understiger ett gränsvärde värde lämnas ofärgade eller i en ljusare grön färg.

B. Skala som Trafikverket ska använda enligt direktiv ("Trafikverket-skalan")

"Trafikverket-skalan" (figur 54) liknar regnbågsskalan. Den har nästan lika starka färger för alla steg och mycket starkare färger för de höga värdena. Skalan är populärt bland specialisterna och har hög igenkänningsfaktor. För specialisterna är det viktigt att kunna se stegen tydligt.

![Skala som Trafikverket ska använda enligt direktiv (buller)](image)

Positivt med skala B:

Det som upplevdes som positivt med skala B var att kontrasten mellan stegen var bra, att det fanns en tydlig skillnad mellan olika steg, dvs att färgerna inte kunde misstolkas, och att den tydligt kunde visa gränsvärden (enligt specialist i WS2). Orsaken till den tydliga skillnaden upplevdes vara att antalet färger inte var lika många jämfört med regnbågsskalan, och att mindre information skapar bättre tydlighet. Det ansågs vara en tydlig skala för att fästa användarens uppmärksamhet både på områden med högt och lågt ljud.

Negativt med skala B:

Negativa aspekter som lyftes fram handlade bland annat om otydlighet och oklar intuitiv ordning mellan färgerna. I skalan ingick för många färger med hög mättnadsgrad, och det upplevdes även vara för stor uppdelning mellan lägsta och högsta värdena. Deltagare kommenterade att skalan var ett dåligt alternativ för personer med avvikande färgseende, bland annat pga. den likartade mättnadsgraden på de olika färgerna. Färgerna upplevdes som "urkopplade" och skalan kallades "icke-intuitiv", "kändes slumpmässig" och var ett "ögonsår". Flera deltagare kommenterade på svårigheten att förstå betydelsen av färgerna och att färgordningen upplevdes som godtycklig. Den lila (magenta) färgen upplevdes av många som slumpmässig, och att områluten den representerade stod ut och drog blicken till sig. En mörkare röd föreslogs som ersättare. En deltagare kommenterade att brunt inte finns i regnbågen, vilket gör att regnbågsskalan inte kändes...
“vettig” och att den blå färgen borde tas bort helt och hållet. Den skarpa kontrasten mellan skalans olika steg upplevdes som olämplig för denna typ av visualiseringsverktyg.

Förbättringsförslag för skala B: Förbättringsförslag som kom upp i diskussionen var att det är bra att begränsa antal färger men också att använda inarbetade färgassociationer, till exempel för att uttrycka om gräns har passerats (rött utstrålar stopp eller förbud, gult drar mot det ena eller det andra, grönt är ok). Att använda grönt som färg för att representera gränsvärden eller underliggande värden ansågs bra. Ett annat förslag handlade om att bara beskriva värden som översteg gränsvärden. ”Visualiseringen behöver bara visa var buller finns, inte var det inte finns.”

Kommentarer rörande skillnader skala B i heatmap och punktmoln: Det ansågs fördelaktigt att använda en färgskala med flera olika starka kulörtoner för volymetrisk visualisering, eftersom det upplevdes som enklare att se skillnad en mellan de olika nivåerna särskilt för punktmolnet.

C. Sekventiell skala från ljus till mörk

Denna skala (figur 55) är anpassad för avvikande färgseende, eftersom skillnaderna mellan stegen fortfarande framgår även om man inte kan se rött på samma sätt som personer med normalt färgseende. Skalan förordrades av många av de som utvärderade, eftersom visualiseringarna ansågs lätt att tolka då skalan innehöll färre kulörtoner. Den förordrades dock inte av specialisterna i lika hög grad som av studenterna. Specialisterna ansåg skalan mindre bra för analys eftersom skillnaden mellan varje steg i skalan inte ansågs vara tillräckligt stor och därigenom gjorde det svårt att identifiera varje steg separat.

![Ljus till mörk (sekventiell skala)](https://colorbrewer2.org)

Figur 55. Sekventiell skala, från ljus gul till en mörkare och mer mättad röd kulörton, anpassad från https://colorbrewer2.org.

Den röda färgen i skalan ansågs fungera bra. En deltagare uttryckte det som att rött med fördel kan associeras med starka värden: ”även om man inte associerar rött som en farlig färg, skulle det fortfarande vara tydligt eftersom den röda är starkare än de andra”.

Skala C ansågs vara en bättre version av skala F med större skillnader.

Negativt med skala C: Viss information upplevdes kunna gå förlorad på grund av många liknande färger, dvs för små skillnader i gradienten, vilket kunde medföra att man lått kan blanda ihop vilken nyans som korrelerar med vilket sifferspann. Konsekvensen av detta gör att skalan kan vara sämre lämpad för analys. Däremot kan skalan fungera bättre om det för diskussionen/dialogen inte är så viktigt att relatera till ett visst sifferspann (kommentar från specialist i WS2).

Kommentarer rörande skillnader skala C i heatmap och punktmoln: Även om den volymetriska visualiseringen i sig av flera ansågs vara sämre än den draperade heatmappen för att visa detaljerade skillnader, ansågs skala C bättre fungera bättre för urskiljning av punktmolnssdata än de andra skalorna.
D. Divergerande skala för avvikande färgseende

Denna skala (figur 56) är anpassad för avvikande färgseende. Den innehåller gula och blå färger som de flesta människor kan se väl. Skalan uppfattades som tydlig genom sina starka kontraster och väl urskiljbara steg. Färgvalet uppfattades som ovanligt och mindre intuitivt än att tex använda rött och grönt. Specialisterna ansåg skalan mindre bra på grund av framför allt det ovanliga färgvalet, där färgen blå associerades med vatten.

Anpassad för avvikande färgseende (divergerande skala)

![Divergerande skala för avvikande färgseende](image)

Figur 56. Divergerande skala anpassad för avvikande färgseende, från mättad blå till gul kulörton, anpassad från Ware (2004).

Aspekter som upplevdes som positiva för skala D: Skillnaden mellan färgerna (gradienten) i skala D upplevdes som tydlig med stora steg, vilket gjorde det lätt att åtskilja dem, och därmed lätt att se de olika bullernivåerna. Skalan upplevdes som positiv då den både är tydligt urskiljbar och samtidigt är anpassad för avvikande färgseende. Dessutom är det stor kontrast mellan gult och blått, både i ljushet och kulör, vilket ökar tydligheten.

Aspekter som upplevdes som negativa för skala D: Skalan uppfattades som att den hade ett ovanligt färgval. Färgerna blått och gult upplevdes som mer neutrala (mindre associativa) än rött och grönt, vilket kan anses som både bra och dåligt för en färgskala. En av deltagarna i WS3 liknande skalan vid en ljuskägla, där det gula i centrum angav att det mörkaste blå befann sig på andra sidan spektrumet. Den mörkare blå tonen uppfattades som en fin skugga som indikerade låg ljudnivå. Andra omdömen om färgerna var att det var “lätta för ögonen” (“easy on the eyes”) och “mysiga”.

Färgerna i skala D upplevdes inte vara intuitiva. En gulflicka skala är ett oväntat färgval som kan försvåra tolkningen, eftersom det inte kopplar till användarens tidigare erfarenheter av färgskalor. Färgvalet med blått och gult var inte så bra för begripligheten eftersom vare sig gult eller blått representerar negativitet. Härligen kan det vara svårt att avgöra vilken värdering en viss nivå har. Grå som bakgrundsfärg ansågs inte fungera så bra tillsammans

Förbättringsförslag för skala D: Det föreslogs att skala D skulle fungera bättre på en mörkare bakgrund. Den divergerande skalan skulle kunna hjälpa att visualisera en baslinje, beroende på vad mittpunkten ska representera. Andra förslag på förbättringar var att vända på ordningen på färgerna, samt att utveckla en variation där man går från ljusare gul till mörkare blått.

Kommentarer rörande skillnader skala D i heatmap och punktmoln: Både den volymetriska visualiseringen och heatmapen i skala D upplevdes som lätt att urskilja med skalan, både i 2D och 3D, eftersom färgkontrasten gav tydlig skillnad mellan färgerna. Dock angavs även att skalan kan vara problematisk för punktmolnsvisualiseringen.

E. Sekventiell skala med ökad färgmättnad

![Ökad färgmättnad](image)

Figur 57. Sekventiell skala med ökad färgmättnad från grått till klart röd kulörton, anpassad från Ware (2004).

Att bara ha en färg upplevs som bra och tillräckligt. Det gör visualiseringen tydlig, mindre rörig och det är enklare att se mitten (centrum). Samtidigt kan den visa ett brett spektrum av ljudnivåer med en relevant färg. En annan positiv aspekt av att ha olika nyanser av en och samma färg är att användaren inte behöver reflektera över färger som inte verkar passa passa visualiseringen.

Den röda färgen fungerar bra. Rött associeras ofta med “allvar” eller att ”någonting är fel” och symboliserar att ”här att det höga nivåer” vilket passar bra med kontexten och ger användaren en snabb förståelse för där bullernivån är för hög. Representationen visar tydligt att bullret minskar där det gråa representerar ”inte bullrigt”, vilket fungerar bra i denna situation.

Skalan filtrerar relevant information, dvs visar området med hög bullernivå, vilket underlättar att förstå innehållet. Skalan är bra på att visa buller-falloff där hög färgmättnad innebär kraftigt buller.

Förbättringsförslag för skala E: Den röda färgen skulle kunna vara ännu mörkare.

Kommentarer rörande skillnader skala E i heatmap och punktmoln: Skalan fungerade bättre för heatmap än för den volymetriska visualiseringen (punktmolnet).

F. Sekventiell skala från transparent till opak

Figur 58. Sekventiell monokromatisk skala från full transparens till full opacitet, med en mättad röd kulörton, utvecklad inom projektet.

Kommentarer rörande skillnader skala F i heatmap och punktmoln: Sfärerna i punktmolnet var svårlästa.
G. och H. Förkorta skalar (över och under gränsvärde)
Dessa två skalar togs fram för att tillgodose det uttalade behovet bland både specialister och
studenter av att ibland kunna skapa en effektiv visualisering med förenklad information och
möjlighet att välja antal steg (figur 59). Den ena skalan är en förkortad skala C som går från
gult till rött, medan i den andra skalan är den gula färgen utbytt mot en vit. De tre färgstegen
i skala motsvarar under, på och över gränsvärden.

Figur 59. Två exempel på förkorta skalar. Gul-orange-röd (vänster), vit-orange-röd (höger), för att

Positivt med skalorna G och H: Skalorna uppfattades som tydliga eftersom de använde ett
fåtal färger, hade en minimalism med hög kontrast. Att bara ha 3 steg förenklar och det
upplevdes enklare att förstå 3-stegsskalor jämfört med 8-stegsskalor. Det var enkelt att
förstå vad som är hög och lågt och var fokuset är, och tillräckligt enkelt för att förstå
“poängen” med informationen, dvs skalorna ger en enkel översikt dock med begränsad
mängd av information. Att använda få steg kan vara ett bra sätt att visualisera om syftet är
till att demonstrera gränsvärden eller bara ett fåtal bullervärden är i fokus. Färgskalan
upplevdes som bra, med röd i mitten och ”mjuka” färger för lägre bullernivåer och ”starka”
färger för höga bullervärden. Skala G och H är praktiskt taget samma, men skala H har en
mindre räckvidd eftersom det första steget inte är färgat, vilket definitivt kan ha en positiv
effekt på visualiseringen. Skala G är enklare att se än skala H eftersom den har ett mer
naturligt flöde. Skalorna lämpar sig väl för avvikande färgseende.

Negativt med skalorna G och H: Bland de negativa aspekterna angavs att skalan innehöll
färger, dvs för få steg och brist på detaljer, vilket gjorde informationen oprecis (”det
känns som att mycket information går vilse”), och att skalan inte upplevdes som dynamisk.
(vilket också berodde på behov),

Skalan som går från vitt till rött uppfattades som att den bara hade två steg. Det vita som
skulle representera områden med lägre ljud (under gränsvärden) var svårt att urskilja.

Kommentarer rörande skillnader skala i heatmap och punktmoln: Skalan upplevdes av
flera som den fungerade bra, både för den volymetriska visualiseringen och för den
draperade heatmapen, medan andra upplevde att den fungerade sämre för den volymetriska
visualiseringen. Den stora kontrasten mellan varje färg bidrog till tydigheten.
Jämförelse av olika heatmaps för avvikande färgseende

Resultaten från simuleringarna av skalorna med online-verktyget Coblis - Color Blindness Simulator (figur 60) visar att röda färger blir brunaktiga och de gröna färgerna får en svagare grön färg (lite mer gråaktiga) för både rödsvagt och grönsvagt seende och det är svårt att se större skillnader dem mellan. Skillnaderna mellan blått och gul är liksom ljus och mörkt blir väldigt tydliga. Det visar hur svårt det är för någon med färgdefekt seende att kunna läsa av en rödgrön skala.

Figur 60. Hur några av de utvalda färgskalorna i projektet fungerade för någon med avvikande färgseende visades med hjälp av Coblis - Color Blindness Simulator.

Formspråk: Heatmaps och punktmoln

Här sammanfattar vi resultaten från användartesterna med draperade heatmaps och volymetrisk visualisering i sandlådemodellen (figur 61).

Figur 61. Exempel på draperad heatmap (vänster) och volymetrisk visualisering som punktmoln (höger) för rörlig ljudkälla i sandlådemodellen, här representerad med ”Trafikverket-skalan”.

60 (61)
Tester gjordes med heatmaps draperade dels över hela modellen, dels endast på markplan. Under utvecklingsarbetets gång förkastades det sistnämnda alternativet och utvärdering gjordes endast med konceptet heatmap draperad över hela modellen. En kombination av heatmap och volymetrisk visualisering diskuteras men fördjupades ej i.

Positiva aspekter avseende konceptet draperade heatmaps ansågs vara att de skapar överblick snabbt, ger möjlighet att visa avgränsningar/filtreringar/specifika steg, och tillåter fler steg i skalan än den volymetriska visualiseringen. Negativa aspekter handlade främst om tappad bakgrundsinformation på grund av att den färgar in modellen, samt att den bara anger information kopplad till ytor, dvs ej inkluderar luftrommet.

Volymetrisk visualisering (punktmoln) ansågs ge bra förståelse, och vara intressant för att visa utbredningen av ljudet även i höjdled, dvs information i hela 3D-rummet kan visas. Negativa aspekter handlade främst om att den visuellt ser mer ut att vara lämpad för luft än för buller, ser rörig ut och kan misstolkas som att visa densitet.

Informationsnivåer (informationsrutor)

Här sammanfattar vi resultaten från utvärderingen av olika informationsnivåer i modellen i form av informationsrutor (figur 62, 63). Tester gjordes där information om bullereffekt på specifika byggnader visades via en informationsruta med fördjupad information.

Figur 62. Konceptvisualisering för hur man kan visa fördjupad information om bullersituationen på en specifik plats.

Figur 63. Konceptvisualisering för hur man kan klicka på en viss byggnad i modellen och framhäva denna tillsammans med fördjupad information för just den platsen, både utan omgivande bullersituation (vänster) och med omgivande bullersituation (höger).
Deltagare i användarstudierna var mycket positiva till möjligheten att gå från mer översiktlig till mer detaljerad information i modellen. Flera kommenterade hur bra det var att kunna fokusera på specifika objekt (exempelvis en viss byggnad) och få fram detaljerad information. Det upplevdes som att informationsrutorna gav en mer nyanserad bild av förhållanden som varierar inom grannskapet, minskade tvetydigheten, men även att de skulle kunna användas för att avslöja möjliga trender, och vara gnistan för olika idéer. Det upplevdes som bra att man kan filtrera datan och denna lösning skapar interaktivitet och möjlighet till eget utforskande. Detta kan hjälpa till vid identifierandet av problemområden och jämförelser mellan olika platser. Informationsrutan uppfattades som att komplettera heatmapen väl genom att informera om bullernivåer, byggnadsmaterial mm.

Förslag på förbättringar handlade mest om innehållet i informationsrutan, exempelvis att lägga till ytterligare förklarande information i diagrammet, som att förklara ljudnivåerna ytterligare. Ett förslag till förbättring gällde placering av rutan. Frågan var om det skulle vara möjligt att placera den vid sidan av modellen. Ett annat förslag gällde att stryka dubbleringen av skalar (se figur 63, bilden till vänster) och det framfördes att den undre skalan borde vara tillräcklig. Andra förslag på förbättringar handlade om att förfinna områdena att undersöka med den fördjupade informationen, exempelvis att kunna fokusera på olika sidor eller delar av en byggnad och visa olika ljudnivåer där, eller lägga till ett interiörspektiv med ett fönster på en viss sida av huset särskilt mottagligt för buller. Även klargöra ljudkällan ännu mer. Deltagarna skissade på egna idéer för förbättringar direkt i Miro (figur 64, 65).

![An attempt to combine our ideas into a visualization:](image)

Figur 64. Idéskiss för bullervisualisering från en av studentgrupperna i WS3.
Rörelse och perspektiv

Figur 66. Skärmvy över filmklipp med rörlig ljudkälla representerad som heatmap (vänster) och punktmoln (höger).

Det ansågs bra att använda både punktmoln och heatmaps för att illustrera bullrets räckvidd och stryka men heatmaps uppskattades mer. Heatmaps ger en bra överblick, är mycket tydliga och lätta att förstå, bland annat är det lätt att skilja mellan olika nivåer och följa dessa och att identifiera variationer i bullernivåer. Färger fungerade bra i heatmaps. Punktmoln ansågs ge en bra upplevelse av buller, men det var svårt att se skillnad mellan enskilda sfärer, att åtskilja färger och att förstå varje sfärs placering i höjdled. De blåfärgade sfärerna upplevdes lite förvirrande - man undrade vad de egentligen betyde, samt vad det innebar när det inte syntes några sfärer alls. Några av deltagarna tyckte initialt att punktmolnsvisualiseringen var förvirrande och att det var svårt att se vad som visades. SFärerna var vackra men de täckte landskapet lite för mycket, vilket gjorde det svårt att urskilja färgnyanser och svårt att se förändringar. Det sågs också som en risk för att sfärerna blev plottriga, samtidigt som det fanns möjlighet att skapa en enhetlig översikt.

Flera utvecklingsförslag som framfördes. Exempelvis att använda ljud för att visualisera buller skulle kunna ge en ännu bättre förståelse för dynamiken och bullerspridning i ett visst område.

Symboler

Här sammanfattar vi resultatet från utvecklingsarbetet med att ta fram anpassade symboler för användning i en 3D-modell, något som Trafikverket idag saknar. Idag levereras modeller till Trafikverket i olika programvaror, vilket medför att symboler måste placeras direkt i modellen, men önskemål finns om att även kunna implementera dem i ett framtida gränssnitt.

Symbolerna kopplade till buller som tagits fram visas i figur 67. Deras slutliga färgskala kom att baseras på färger hämtade från Trafikverkets grafiska profil (figur 68). Koncept för att visa symboler i modell undersöks och visualiserades i sandläademodellen (figur 69 - 71). Aspekter som utforskades handlade både om utformning av symbolerna, sätt att implementera dem, och placering i modellen. En utvärdering av hur de implementerade symbolerna skulle se ut i modellen för en person med avvikande färgseende undersökes även, med hjälp av verktyget Coblis - Color Blindness Simulator (figur 72).

Andra utmaningar i framtagandet av symboler handlade om olika sätt att integrera dem i modellen, samt dess placering. Fördelar sågs med både gränssnitssbundna symboler i en panel (figur 68, 69) och symboler som en del av själva modellen (figur 70). En huvudtanke var dock att symbolen bör ligga i ett eget lager och kunna aktiveras av användaren vid behov, dvs slås av och på. Den ska sedan generera en vy där information ges om vald aspekt, i det område som symbolen hänvisar till. Att visuellt förstärka valt område kan göras på olika sätt, exempelvis med konturer (figur 68), med ökad kontrastverkan på valt område gentemot bakgrunden (användning av färg och ljus), eller med en draperad heatmap eller ett punktmoln för att beskriva en situation.
Figur 69. Symboler placerade i en fast position på skärmen, på en panel i gränssnittet. Genom att klicka på en symbol lyfter modellen fram relevanta områden som blir påverkade utifrån vald parameter, exempelvis stomljud.

Figur 70. Flytande symboler som visas när du klickar på motsvarande symbol i gränssnittet. De tillhör inte 3D-modellen utan är en del av användargränssnittet och syns alltid i storlek som är läsbar.

Kommentarer från Trafikverkets specialister och representanter från referensgruppen avseende förslaget med att placera symboler som objekt direkt i modellen handlade både om synlighet i modellen och om interaktion. Önskemål avseende synlighet inkluderade bland annat att alltid ha samma storlek på symbolerna oberoende på avstånd och att använda möjligheterna med 3D och realtid. Att visa symboler som volymer ansågs bra, exempelvis som kuber för ökad synlighet från olika håll, eller som billboards (ensidiga skylltar alltid med framsidan vänd mot användaren). Avseende interaktion ansågs det positivt med möjligheten att göra dem klickbara, och visande / utlösende påverkansområdet för vald aspekt. En kommentar om syfte handlade om att symbolerna bör visa analysen av området utifrån vald parameter.

Förutom utformning diskuterades placering i modellen. Placeringen skulle i så hög grad som möjligt vara intuitiv, dvs placeras på relevanta och representativa områden för vald aspekt. Exempelvis skulle symbolen för fenomenet tunnelknall placeras utanför tunnelmynningen, i området där fenomenet blir märkbart för omgivningen.

Avseende hur de symbolerna kan te sig för någon med avvikande färgseende gjordes en bildanalys i Coblis - Color Blindness Simulator (figur 72). Symbolernas grafiska utseende verkar fungera tydligt för olika typer av avvikande färgseende. Vid framtagandet av skärmbilder från modellen innehållandes symboler kan det vara viktigt att tänka på placering och vinkel, då bakomliggande information ibland kan ligga nära i färg med symbolens ytterkanter.

Figur 72. Utvärdering av hur de utvecklade symbolerna kan te sig för någon med avvikande färgseende.
Scenarier

När man ska kommunicera ett förslag är viktigt att kunna visa olika åtgärders syften och effekter på omgivningen. Att kunna visa scenarier är en av de stora fördelarna med att kunna visa information i 3D-modeller. Scenarier som utforskades berörde förändrad bullersituation med ett bullerskydd (figur 73), tunnelknall (figur 74, 75) och elektromagnetiska fält (EMF) (figur 76).

Figur 73. Olika konceptuella scenarier för hur bullersituationen kan se ut utan bullerskydd (vänster), med ett lågt bullerskydd (mitten), och med ett högt bullerskydd (höger). Scenarierna representeras med "Trafikverket-skalan" som draperad heatmap i sandlådemodellen.

Figur 74. Konceptuell visualisering av tunnelknall i fågelperspektiv (vänster) och top-downperspektiv (höger), representerad som en draperad heatmap med den föreslagna standardskalan för buller inom EU (se figur 60).

Figur 75. Konceptuell visualisering av tunnelknall i sektion, representerad som volymetrisk visualisering med den föreslagna standardskalan för buller inom EU (figur 60).
Figur 76. Konceptuell visualisering i sandlådemodellen av elektromagnetiska fält, representerad som tredimensionell heatmap, med ”Trafikverket-skalan”.

Detaljeringsnivå

Här sammanfattar vi resultaten från utvärderingarna avseende detaljeringsnivå (färg och textur), både för själva modellen (figur 77) och för miljödata, visad som volymetrisk visualisering (figur 78).

Detaljeringsnivå på modellen

Avseende detaljeringsnivåer på själva modellen jämfördes olika alternativ första gången i WS1. Efter detta tittade vi vidare på frågan om detaljeringsnivåer under utvecklingen av visualiseringslösningarna. Detaljeringsnivåerna som undersökt var ofärgad (vit) modell utan texturer (figur 77, vänster), gråskalig modell med texturer (figur 77, mitten) och fullfärgad modell med texturer (figur 77, höger). Frågan som ställdes var vilken nivå som fungerar bäst när man ska visa en miljöparameter, som exempelvis buller.

Figur 77. Olika detaljeringsnivå på modellen för att kunna definiera vilken nivå som ger bäst förståelse för själva bullervisualiseringen: ofärgad (vit) modell utan texturer (vänster), gråskalig modell med texturer (mitten), fullfärgad modell med texturer (höger).

Detaljeringsnivå på miljödata (volymetrisk visualisering)

För volymetrisk visualisering gjordes tester med både färg, storlek och densitet på sfärerna (figur 78). Avsikten var att undersöka hur stor och tät den volymetriska visualiseringen behöver vara för att skapa bäst förståelse både för data som visas tillsammans med omgivningen.

Figur 78. Tester med olika densitet på den volymetriska visualiseringen med tre alternativ som sträcker sig från få punkter (vänster) till ökande antal (mitten, höger) med olika färgskalar.
Utveckling av prototyp för storskalig modell

World creation

Vi har använt GIS-data från Lantmäteriet och från andra nationella dataleverantörer för att procedurellt skapa terräng, vegetation och byggd miljö (byggnader och vägar) i det valda området (Göteborg - Borås). Figur 79 visar olika vyer i den storskaliga modellen av ett 30 x 6 km stort område med dubbelspårig järnväg. Tabell 4 sammanfattar tidsåtgång för de olika processerna. De primära komponenterna som valts ut för den naturliga miljön är terräng och vegetation, medan den byggda miljön huvudsakligen består av byggnader och vägar. Det framtagna arbetsflödet kan vid behov utvidgas till att kompletteras med fler detaljer, till exempel vägmarkeringar, trafikskyltar och gatumöblering.

I detta skede syftade projektet till att producera ett skalbart arbetsflöde och utforska mjukvaran och metoderna för att visualisera storskaliga data. Nedan beskrivs arbetsflöden för att skapa den storskaliga modellen.

Figur 79. Skärmvyer från den storskaliga modellen.

5 https://www.lantmateriet.se/
Tabell 4. Tidsåtgång för att generera och ladda element (assets) i den stora modellen. * Manuell input

<table>
<thead>
<tr>
<th>Process</th>
<th>Time (min)</th>
<th>Process</th>
<th>Time (s)</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate assets</td>
<td>23.43</td>
<td>Writing</td>
<td>513.1</td>
<td>FME</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing Mask</td>
<td>42.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>264.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>113.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>151.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>165.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>132.8</td>
<td></td>
</tr>
<tr>
<td>Load assets</td>
<td>6.11</td>
<td>Unreal import config</td>
<td>*</td>
<td>Unreal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>World Composition</td>
<td>205.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Import Building Mesh</td>
<td>152.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Align meshes</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Foliage</td>
<td>8.42</td>
<td>Unreal</td>
</tr>
</tbody>
</table>

Terräng

Vegetation

Vägar

Landskapsintegrering

Det sista steget i förberedelsen av landskapsrutorna var att se till att de olika lagren införlivades i en enda sömlös komposition. Två problemställningar togs upp i detta steg:

2. Processen för rastrering av vektordata resulterade i en kraftig nedgång i cellvärdena; detta medförde att man får visuella pixelgränser vid kanterna av vektordatan.

Först minskade vi rasterdatan för markanvändningslagret för vägnätet för att undvika överlappning. Sedan applicerades ett konvolutionsfilter över lagren med hjälp av en gaussisk funktion, vilket säkerställde en gradvis nedgång i värden vid gränserna för lagren (figur 82). För att slutföra integrationsprocessen importerade vi sedan terrängmasken till Unreal Engine med hjälp av funktionen World Composition, gav skalningsfaktorer i x-, y- och z-led, och tilldelade efterföljande landskapsmasker ett procedurellt landskapsmaterial (figur 83).

Figur 82. Datan som innehåller gränser för varje markanvändningskategori inkluderar typer av markanvändning som vägar, vatten, skog, jordbruksmark, tätort och öppen mark. Eftersom Lantmäteriets data är tillgänglig som vektordata måste den först konverteras till rasterdata innan Unreal Engine kan använda den. Unreal Engine använder dessa svartvita masker som rasterbilder för att identifiera var de olika materialen måste appliceras inom 3D-modellen (svart representerar frånvaron av en kategori och vitt representerar förekomsten av den). Ett av problemen vi stöter på i denna process är gränserna mellan de olika markanvändningstyperna. Kanterna är skarpa och smälter inte in i varandra naturligt (figur A1, 2). För att lösa detta använde vi en gaussisk funktion för att släta ut kanterna på ett naturligt sätt (figur B1, 2). Slutligen korrigeras kontrasen i rastret (figur C1, 2). Figur 6 (höger) - d och e visar resultaten av lagerblandningen när de bearbetade maskerna har laddats in i Unreal Engine.

Figur 83. Flygfoto över terrängmodell med landskapsmasker applicerade i Unreal Engine.
Byggnader

Figur 84. Byggnader i form av extruderade polygoner i Unreal Engine.

Procedureellt landskapsmaterial

Unreal Engine erbjuder en "Landscape Layer Blend"-nod i Noden gjorde det möjligt för oss att blanda flera texturer och material kopplade till landskapsmaskerna. Ett lager adderades för varje klass av landskapsmaterialet och tilldelades en struktur (figur 85, 86).

Applicering av färgskalar i storskalig modell

Här redovisar vi en sammanfattning av arbetet med att representera några av designkoncepten i den storskaliga modellen.

Figur 86. Flygvy över modellen före materialfärgkorrigerings (överst). Flygvy över modellen efter färgkorrigerings (nederst).

Figur 88. Resultat - Visualisering av bullerdata som färgade ytor (isoytor) i Unreal Engine.

Figur 89. Flygvy över den slutliga 3D-modellen i Unreal Engine.

Figur 90. Exempel på olika färgskalor i modellen.
Diskussion och slutsatser

Det övergripande syftet med projektet har varit att kunna bidra med metoder för att representera miljödata i Trafikverkets samordningsmodeller. I studien har vi genomfört en inventering av befintliga visualisering av miljöparametrar, utvecklat designkoncept som vi utvärderat i användartester. I projektet har även en arbetsprocess för att kunna ta fram storskaliga samordningsmodeller tagits fram. I detta avsnitt diskuterar vi resultaten av studierna och redovisar våra slutsatser.

I projektet har främst tre frågor har varit i fokus:

1. **Hur kan man representera osynliga parametrar som viss miljödata i samordningsmodeller på ett begripligt sätt?**

2. **Hur påverkar utformningen av olika visualiseringskomponenter uppfattningen av miljödata i en 3D-modell och hur kan dessa ge förståelse för hur platsen kommer att upplevas?**

3. **Vad krävs av en 3D-visualisering för att fungera för olika syften och målgrupper?**

Fråga 1 har behandlats framförallt i inventeringen (Stahre Wästberg et al, 2021) och då på ett mer övergripande plan. Frågorna 2 - 3 går mer in i detaljerna och diskuteras i styckena Utformning av visualiseringskomponenter (s 79), och Olika syften och olika målgrupper (s 82).

Representation av miljödata

Inventeringsrapporten *Att synliggöra det osynliga – Kartläggning av representation av miljödata i digitala modeller* är en delrapport i projektet. Vi har valt att ta med vissa delar från delrapporten i sin helhet i den här slutrapporten. Texten i detta avsnitt är kopierad från sidorna 33–35 i delrapporten:

Att visa flera parametrar samtidigt är viktigt för att kunna få en mer heltäckande lägesbild, kunna göra jämförelser och hitta konflikter mellan olika parametrar. Vi ser även här att det finns ganska stora likheter i val av representationsteknik mellan de olika miljöområdena. Ofta väljer man att särskilja informationen visuellt genom att visa den ena parametern
horisontellt (som exempelvis en heatmap draperad på underliggande geometri) och vertikalt
(som exempelvis staplar eller andra volymetriska objekt). Visuella tecken, och speciellt
glypher är spännande då de kan visualisera komplexa fenomen eller situationer och visa
olika nivåer av information.

Även kombinationen av olika medier för interaktion och presentation kan underlätta
visualisering av olika parametrar och samspelet mellan olika områden, samt användas för
att studera platser simultant i varierande skalar. Att lägga ihop olika typer av modeller
(exempelvis taktiska och digitala) och att använda olika typer av gränssnitt för interaktion kan
vara ett intressant spår att utforska när Trafikverket utvecklar stora samordningsmodeller.
Detta gäller framför allt när olika användare adresseras, som både specialister och
medborgare i samråd.

Kombinationen av olika medier för interaktion kan både underlätta visualisering av olika
parametrar och områden tillsammans, och för att studera platsen simultant i varierande
skalar. När det kommer till visuellt uttryck verkar AR tillåta en större frihet i sättet att
åskådliggöra och kombinera data, samt möjlighet att visa data och resultat på plats, till
exempel i mobilens. Här är datatillgången den största utmaningen om det handlar om
realtid.

När det gäller olika dimensioner är det vanligt att man kombinerar 2D och 3D. Inom de
studerade miljöområdena är 2D fortfarande vanligt förekommande, men 3D används allt
mer, framförallt i presentationssammanhang. Vi kan se att skalan på det visualiserade
området spelar en roll här: i sammanhang där man visar projekt i en mindre, mer
övergripande skala visas ofta projektet i 2D, detta särskilt om det kopplas till visualisering av
endast en parameter. Om man vill visa ett område i en större, mer detaljerad skala, och
kunna visa mer än en parameter simultant kan 3D ge större möjligheter.

Att navigera mellan 2D (exempelvis vanligt kartmaterial) och 3D (till exempel VR, AR) har
sina svårigheter avseende både teknik och design. Designspecifika utmaningar kan handla
exempelvis om vilka media som bäst kompletterar varandra för att förmedla information på
ett tydligt vis i ett visst sammanhang eller för en viss målgrupp, hur man visuellt kombinerar
en 3D modell och kartmaterial i 2D, vad 3D-modellen ska fokusera på, och i vilken
inzoomningsnivå den ska visas i för att bäst komplettera kartan.

Resultaten från vår inventering visar att det finns många olika sätt att visualisera och
representera miljödata. Avsaknaden på allmänna riktlinjer och standarder avseende själva
representationen av data gör att samma information visualiseras olika beroende på
exempelvis vilka trender som finns inom visualisering och områden, programmens
visualiseringsmöjligheter, personliga preferenser, osv. Denna avsaknad medför problem när
det kommer till att skapa gemensam förståelse, samsyn kring ett projekt, men inte minst
också för att få konsistenta indata i modeller (upphandlingskrav till exempelvis konsulter).
För bättre förståelse borde man ha en likriktning för exempelvis användning av färger och
symboler i form av standarder. När ett program används i stor omfattning kan dess
standardsatta färskolor och övriga representationsmöjligheter fungera som en inofficiell
standard inom området. För bullervisualisering har till exempel det dominerande
programmet Soundplans förinställda regnbågsskala blivit som en inofficiell standard. För
representation av buller, liksom för luftkvalitet och sociala aspekter saknas dock
standardiserade färskolor. Även inom forskningslitteraturen saknas en större diskussion
kring standarder av datavisualisering inom samhällsplanering.

Miljöområdena Luft och Buller innehåller vissa markanta likheter. Båda områdena baseras
på kvantitativa, mätbara värden som visualiseras på ett ganska likartat sätt. Traditionen har
varit att visa denna typ av data i 2D, i ett och samma lager, men det blir allt vanligare att visa denna typ av information i 3D-modeller, ofta i en kombination av 2D-visualiseringar (heatmaps) för de osynliga parametrarna.

Sociala konsekvensanalyser (SKA) innefattar ett mycket bredare och mer mångfacetterat område och baseras både kvalitativa och kvantitativa data. SKA kan markera olika kategorier av platser, såsom känsliga kulturmiljöer, skolor eller kan mäta upplevelsen av platser, till exempel trygghetsvandringar. Vanligt är områdesmarkeringar med linjer, punkter, ytor och volymetriska objekt. Heatmaps kan visa densiteten av exempelvis socioekonomiska data, liksom användning och upplevelse av platser.

Utformning av visualiseringskomponenter

Frågan som vi vill besvara i detta stycke är: *Hur påverkar utformningen av olika visualiseringskomponenter uppfattningen av miljödata i en 3D-modell, och hur kan dessa ge förståelse för hur platsen kommer att upplevas?*

Färgskalor

Den här sammanfattande diskussionen utgår från resultaten som redovisats i styckena Intuitiv tolkning av färgers rangordning i en skala (s 48) - Utvärdering av använda färgskalor (s 49) under Designkoncept (s 48).

När vi prövade vilket värde deltagarna associerade som högsta och lägsta värde i en typisk regnbågskala för buller, så visade resultaten hög samstämmighet mellan de olika grupperna i studien (figur 52). Aspekter som upplevdes som problematiska med regnbågsskalorna var de mörka färgerna (mörkgrön, blå, mörkröd), särskilt den mörkgröna färgen. Problemet med att använda blå färger som högsta värde och mörkgrönt som lägsta värde kunde vi också se i utvärderingen av skalorna vi använt i projektet.

En av skalorna kombinerade principerna att använda en regnbågskala med en inbyggd ljushetsgradient (skala A) pekades ut som en fördel vid behov av att snabbt kunna identifiera respektive bullernivå och läsa av området för gränsvärdet som var ljusare.

röd-gröna färgdefekter väl kan urskilja, vilket också gav en positiv respons av de fåtal
personerna identifierade med avvikande färgseende i studien.

En annan aspekt som kom fram i studien var att färger är informationsbärare med inbyggda
konnotationer, exempelvis att grönt är lugnt och rött betyder värme och fara, och att blått
kan hänvisa till kyla, luft och vatten. Den blå-gula skalan pekades i utvärderingen ut som
mer neutral, men också problematisk eftersom den inte hade tydliga associationer, och
därmed blev icke-intuitiv.

För att en skala ska fungera både för personer med normalt färgseende och personer med
avvikande färgseende skulle en ytterligare lösning kunna vara att utveckla en speciell skala
som skiljer på nivåerna med olika mönster eller linjer mellan stegen istället för färger. Detta
är intressant att titta närmare på i en fortsättning av projektet.

Visualiseringen borde alltid erbjuda möjligheten att välja mellan olika färgskalor utifrån
behov. Figur 91 ger exempel på 3 skalor med olika fingradighet som kan vara möjliga att
använda, avseende hur detaljerad information man vill förmedla. Skalorna är utvecklade
utifrån de skalor vi testat i projektet, baserat på resultat från användartesterna.

Figur 91. Exempel på tre färgskalor med två olika fingradighet: den översta skalan utgår från skala A,
där vi har ökat antalet steg, samt ändrat ändfärgerna. Den mittersta skalan är en förkortad version av
skala C, där vi har ökat kontrasten mellan stegen. Dessa båda skalor är anpassade för röd-gröna
färgdefekter på så sätt att de har ökad färgmättnad och minskad ljushet. Den understa skalan visar ett
alternativ som undviker röda och gröna färger. Skalan bygger på användarresultat för skala D, där den
blå färgen uppskattades av personer med färgdefekt seende. Här har vi istället valt färgen lila som inte
associerar lika tydligt till vatten för normalseende.

Formspråk: Heatmaps och punktmoln
Texten i detta avsnitt är kopierad från Stahre Wästberg et al (2021, sidan 33), samt från
användarstudien presenterad i styckena Formspråk: Heatmaps och punktmoln och (s 60)
och Rörelse och perspektiv (s 63).

I inventeringen har vi sett att färgskalor, framför allt presenterade som heatmaps, är de
visuella egenskaper som används mest för att förmedla information. Heatmaps används i
långt större utsträckning än mönster och andra typer av texturer, liksom symboler, ikoner
och glypher. Däremot är texturer, liksom symboler, ikoner och glypher intressanta för bland
annat sin associationskapacitet, dvs förmåga att förmedla mer detaljerad information om
egenskaper. Vi har därför valt att utveckla och utvärdera designkoncept för både heatmaps
och punktmoln samt även tagit fram förslag på symboler kopplade till buller.

Användarstudien visade att deltagare upplevde heatmaps och punktmoln olika men båda
fungerade bra för att visa bullrets räckvidd och intensitet. Fördelen med draperade
heatmaps var att de lättrade kunde visa detaljerade färgskalor, vilket möjliggjorde fler steg i
e en skala än i en volymetrisk visualisering. I heatmaps gick det också att se tydligare skillnad
mellan olika värdeintervaller. Detta kan vara fördelaktigt när man vill filtrera vissa värden

Sammanfattningsvis fungerade draperade heatmaps bättre för lägesbeskrivning och för att initialt ge förståelse för den övergripande bullersituationen på en plats, medan den mer detaljerade volymetriska visualiseringen bättre lämpar sig för att kunna visa värden på en specifik punkt i rummet.

Informationsnivåer (informationsrutor)
Att utveckla ett användargränssnitt som innehåller olika informationsnivåer är viktigt beroende på olika användares olika behov av information. Det kan ge möjlighet till ökad interaktivitet för att kunna detaljerat studera exempelvis påverkan på enskilda byggnader. Informationsrutor kan innehålla olika sorters grundläggande information om platsen och vilken sorts data som visas.

Rörlighet och möjlighet till interaktivitet

Användarstudien visade att rörlighet och möjlighet till interaktion gör visualiseringen tydligare och lättare att förstå. Det var tydligt med den positiva responsen för de exempel i studien där det fanns en dynamik inbyggt, antingen för att ljudkällan rörde sig genom landskapet eller för att användaren kunde interagera med datan via en informationsruta.

Detaljeringsnivå
Förhållandet mellan bakgrund och visualiserad information behöver studeras ytterligare så att man hittar bra lösningar där tillräcklig information på bakgrunden (miljön) kan urskiljas samtidigt som datavisualiseringen är tydlig. Det är viktigt att tänka på att färger inte visuellt smälter in i bakgrunden. För volymetrisk visualisering kan man laborera med storlek, densitet och placering på sfärerna. En väg att utforska är att utforma dem så att de visuellt anpassar sig efter bakgrund och ljushet i modellen. En annan metod kan vara att
laborera med ljushetsnivån i själva modellen för att nå den nivå som bäst framhåver datan med bibehåller orienteringsförmågan i modellen.

Symboler och scenarier
Laborationerna med symboler i projektet fokuserade på utseende, färgsättning och placering antingen i modell eller i gränssnitt. Symbolerna utvärderades inte med användare, något som behöver göras för att kunna utveckla idéerna.

Att kunna visa scenarier är en av de stora fördelarna med att kunna visa information i 3D-modeller. Diskussionen angående scenarier lyfte fram behovet av att kunna kombinera flera miljöområden, samt behovet att kunna visualisera scenarier och konsekvenser.

Olika syften och olika målgrupper
Frågan som vi vill besvara i detta stycke är: Vad krävs av en 3D-visualisering för att fungera för olika syften och målgrupper?

En effektiv visualisering gör att man inkluderar och skapar samsyn bland intressenterna i planeringsprocessen och på så sätt bidrar till en helhetssyn och därmed hållbarare lösningar. Det har varit tydligt i användarstudierna att olika lösningar bra för olika syften / målgrupper (analys/kommunikation, specialistanvändare/lekmän).

Sammanfattningsvis kan man säga att i bullersammanhang är det intressant för specialister att visa om ett riktvärde överskrids eller inte. Buller under ett gränsvärde kan beskrivas med till exempel olika nyanser av grönt eftersom det inte är så intressant att veta hur långt ifrån gränsvärdet man är som att man underskrider gränsvärdet.

Rekommensioner

I detta projekt har vi undersökt olika aspekter av vad som krävs för att effektivt visualisera miljödata i samordningsmodeller. Baserat på inventeringen (Stahre Wästberg et al, 2021, s 35–36) och utvecklingsarbetet med designkoncept som gjordes i projektet rekommenderar vi nedanstående punkter för Trafikverkets framtida utveckling av representation av information i samordningsmodeller:

- **Att anpassa visualiseringen utifrån syfte och målgruppens behov av information.**

 - Målgruppsutvärdera. Dvs pröva olika lösningar för olika syften (intern analys och kommunikation mellan specialister inom Trafikverket, extern konsultation, samråd, etc) och för olika målgrupper (specialister inom Trafikverket, externa konsulter, medborgare, med flera)

 - Demonstrera scenarier (nuläge och påverkan av olika lösningar) för ökad förståelse av olika åtgärders konsekvenser i tidiga skeden.

- **Att utveckla samordningsmodeller med högre grad av interaktivitet för effektiv och pedagogisk kommunikation.**

 - Filtrera/avgränsa information utifrån behov (filtrering på t ex gränsvärde, fingradighet).

 - Möjliggör val av visuell detaljerings- och informationsnivå efter behov.

 - Möjliggör kombination av platsbundna grunddata (medelvärden) och variationen av tillfälliga värden (när ett tåg passerar) för exempelvis buller, både med visualisering och med auralisering.

 - Använd animeringar/filmer för att visa komplexa och rörliga data (till exempel passerande tåg) för att ge en bättre helhetsbild och effektivare kommunikation.

- **Att utveckla metoder för hur man kan visa flera parametrar samtidigt.**

 Detta för att kunna få en mer heltäckande lägesbild, kunna göra jämförelser och hitta konflikter mellan olika områden och parametrar.

 - Kombinera olika datalager (till exempel luft och buller och längre fram även kombination av olika miljöområden kopplade till sociala aspekter) för en tydligare helhetsbild och kunna se kopplingar mellan olika effekter, till exempel på miljö och hälsa.

- **Att utveckla underlag till standarder för representation av data när det gäller visualiseringsskomponenter.** Detta inkluderar exempelvis geometriska former (ytor, linjer, punkter, volymetriska objekt, 3D-rutnät och heatmaps) anpassade efter visualiseringens detaljeringsnivå, visuella egenskaper (framförallt färgskalor), samt visuella tecken (såsom symboler och ikoner).

 - Använda färgskalor som stödjer effektiv kommunikation i samordningsmodeller så att det finns skalar för olika målgruppens behov tillgängliga, där minst en skala är anpassad för avvikande färgseende (se förslag figur 91).
- Utvärdera ytterligare den anpassade föreslagna EU-standardskala för buller (regnbågsskala) behövs, framförallt för att visa allt under gränsvärde som antingen ljusgrönt eller ofärgat, samt ta bort den blå färgen som maxvärde.

- Utvärdera monokroma färgskalar i olika kulörtoner (från vitt/transparent till kulörstarkt) för att kunna visa flera parametrar samtidigt. En sekventiell skala från ljus till mörkt fungerar bra för att ge en snabb och tydlig överblick.

- Utvärdera ytterligare relationen mellan modellens färger och detaljnivå och skalan för informationsvisualisering. Pröva att anpassa samordningsmodellens färgskala (mörka ner t.ex) för att tydligare visa informationsvisualiseringen. Skalans relation till bakgrund är viktig för förståelse av information och tolkning av modellen.

- Definiera vilka dimensioner och skalor som bäst kompletterar varandra för att förmedla information på ett tydligt vis i ett visst sammanhang eller för en viss målgrupp. Det kan gälla hur man visuellt kombinerar en 3D-modell och kartmaterial i 2D, vad 3D-modellen ska fokusera på, och vilken inzoomningsnivå den ska visas i för att bäst komplettera kartan.

- Vidareutveckla formspråket, alltså användningen av heatmaps och volymetriska visualiseringar - heatmaps för överblick och filtrering, volymetrisk för bättre 3D-förståelse).

- Utvärdera symboler med användargrupper. Vidareutveckla dessa för att kombineras med övriga datavisualiseringar. Identifiera lämplig teknik för att integrera symbolerna i samordningsmodellen.
Utblick framåt

Utifrån studiernas resultat och våra rekommendationer har vi kommit fram till att det finns ett behov av mer tvärvetenskaplig forskning om olika visualiseringslösningar och metoder för att kommunicera miljö- och hälsofaktorer. De lösningar som tagits fram inom detta projekt behöver vidareutvecklas så att de kan implementeras och användas i Trafikverkets objektorienterade informationsmodeller (samordningsmodeller).

Vår vision är mer utvecklade och tydliga riktlinjer och standardisering, för representation och visualisering av miljödata i 3D-modeller, som därmed kan förbättra kommunikation, tydliggöra beslutsunderlag och förenkla och effektivisera kvalitetssäkringen under planerings- och byggprocessen. En sådan utveckling skulle även kunna bidra till att enklare förutse hälso-och hållbarhetseffekter av olika förslag till åtgärder, samt att bättre tydliggöra synergie och konflikter mellan olika målbilder.

För att kunna utveckla ett representationsspråk för visualisering av komplexa data i samordningsmodeller är det viktigt att, i ett fortsatt arbete, fokusera på följande delar:

• **utveckla metoder för att visa flera parametrar samtidigt** i en 3D-modell för att kunna få en mer heltäckande lägesbild, kunna göra jämförelser och hitta konflikter mellan olika områden och parametrar.

• **utveckla specifikationer för representation av komplexa data** för att ge optimal förståelse för olika målgrupper (beslutstagare, specialister, allmänhet) genom att ta fram designlösningar för hur färg, form och symboler bör användas i samordningsmodeller.

• **definiera vilka visualiseringsmetoder som lämpar sig bäst för olika detaljnivåer** för att förmedla information på ett tydligt vis i ett visst sammanhang eller för en viss målgrupp.

• **definiera vilka detaljnivåer och vilka perspektiv (fågel- och markperspektiv)** som bäst fungerar för att förmedla information på ett tydligt vis i ett visst sammanhang eller för en viss målgrupp.

• **utveckla metoder för valmöjligheter/anpassning till dialogsituationer i Trafikverkets samordningsmodeller** för att effektivt och pedagogiskt kunna kommunicera med olika målgrupper.

• **bidra till Trafikverkets kravställning för samordningsmodeller** för att effektivt och pedagogiskt kunna kommunicera med olika målgrupper.
Referenser

Naturvårdsverket, Havs- och vattenmyndigheten och länsstyrelserna (2019), Strategi för miljödatahantering, version 1.03, godkänd av MIT-gruppen (tidigare strategiskt
samverkansråd för objektfamiljen Miljö och Natur) och förvaltad av Miljöinformationsrådet.

Webbreferenser:

Projektrapport:

Blogg-inlägg, inklusive film:

Pågående artikel som planeras skickas till tidskrift:

BILAGA 2

Lista på aktiviteter

Arbetet inom projektet har koordinerats och genomförts utifrån inplanerade gemensamma aktiviteter. På grund av den rådande pandemin har samtliga gemensamma aktiviteter som tagit plats efter vecka 11, 2020, ägt rum digitalt, via Zoom och Skype.

Aktiviteter inom projektet har bestått av:

- Kick-off möte med projektteamb och ledningen för DTCC, 16 januari 2020.
- Gemensamma månadsmöten med projektteamet (15 möten, ett möte per månad).
- Referensgruppsmöten (30 april 2020, 3 december 2020).
- Möten med specialister och utvecklingsledare (Frida Angelöw och Magnus Palm, Trafikverket).
- Möten mellan projektledningen och Susanne van Raalte, Trafikverket.
- Utvecklingsarbete (inventering, design, planering, ansökningskrivande).
- Slutpresentation och diskussion, 7 maj 2021.
- En sammanfattande projektpresentation med Trafikverket och forskare från Chalmers den 7 maj 2021.