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Wigner negativity in the steady-state output of a Kerr parametric oscillator
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The output field from a continuously driven linear parametric oscillator may exhibit considerably more
squeezing than the intracavity field. Inspired by this fact, we explore the nonclassical features of the steady-state
output field of a driven nonlinear Kerr parametric oscillator using a temporal wave packet mode description.
Utilizing a new numerical method, we have access to the density matrix of arbitrary wave packet modes.
Remarkably, we find that even though the steady-state cavity field is always characterized by a positive Wigner
function, the output may exhibit Wigner negativity, depending on the properties of the selected mode.
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I. INTRODUCTION

As opposed to a quantum field confined in a cavity, a field
propagating in free space is characterized by a continuum
of modes. In order to give a Schrödinger picture descrip-
tion of the propagating output state, wave packet modes are
introduced. In quantum optics experiments, it is possible to
infer information about a state stabilized inside a cavity by
looking at the output field in a wave packet mode with a
bandwidth matching the inverse cavity decay time. The only
requirement imposed on this wave packet function is that it is
square-integrable and normalized to unity, which guarantees
that the filtered signal corresponds to a single bosonic mode.
Whereas for a linear nondriven system, there exists a unique
wave packet mode which maps the cavity state into the output
field [1], this is not the case in the presence of a continuous
drive. In this case, nothing restricts us from going beyond the
cavity natural bandwidth with arbitrary function profiles.

Depending on the selected wave packet, properties of the
cavity field and its corresponding output field can be quite
different. An old and well-known example of this difference
is given by the degenerate parametric oscillator (PO). This is
commonly employed to generate squeezed states, i.e., states
exhibiting quadrature fluctuations below the vacuum level. In
the steady state, the maximum attainable squeezing inside the
PO cavity is equal to 50% of the vacuum noise. Nonetheless,
the output field squeezing can largely surpass that, and ideally
achieve 100% squeezing in a narrow frequency bandwidth
around the cavity frequency [2].

Squeezed states are a prominent example of nonclassical
states of light [3–5]. A signature of the nonclassical behav-
ior of a squeezed state is oscillations in the photon-number
distribution [6–8]. Such oscillations are not by themselves
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a signature of a nonclassical state, since classical states can
also display population oscillations. A useful nonclassical-
ity criterion which studies the departure of a photon-number
distribution from a classical probability distribution was in-
troduced by Klyshko [9]. More commonly, the nonclassical
nature of a quantum state is defined in terms of so-called
quasiprobability distributions [10]. Examples of these are the
Husimi Q function, the Wigner function, and the Glauber-
Sudarshan P function. A generally accepted definition of
nonclassicality is given in terms of the P function: if it is
negative or more singular than a Dirac δ function the state is
considered nonclassical [11,12]. However, the singular nature
of a nonclassical P function makes it difficult to access ex-
perimentally. Another widely used nonclassicality criterion is
negativity of the Wigner function [13,14], which in contrast
can be directly measured in experiments [15]. In addition,
negativity of the Wigner function plays an essential role in
quantum computation with continuous variables, as it is a
distinguishing feature of states that are resourceful for a com-
putational advantage [16,17]. In this work we will focus on
the Wigner function as an indicator of nonclassical behavior.

The process that generates squeezing in a PO is (degen-
erate) parametric down-conversion, in which a pump photon
of frequency 2ω splits into two photons each with frequency
ω. This process occurs in a medium with a second-order
nonlinear susceptibility [18]. Real-life nonlinear materials
are however not restricted to second order, and higher-order
nonlinearities may also need to be taken into account. A
higher-order nonlinearity is also a requirement for the genera-
tion of Wigner-negative states. Including a third-order (Kerr)
nonlinearity results in the Kerr parametric oscillator (KPO)
which has recently found applications in microwave quan-
tum optics for the dissipative stabilization [19–21] and the
adiabatic preparation [22–24] of quantum states of light (cat
states), which are useful for quantum computing [25,26]. Ad-
ditionally, by utilizing superconducting circuits it is possible
to explore the so-called Kerr single-photon regime in which
the strength of the nonlinearity surpasses the inverse cavity
decay time by an order of magnitude, enabling the observation
of previously undetected quantum effects [23,27–29].
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In this work we study the steady-state output from the
KPO cavity with respect to temporal wave packet modes. We
find that the KPO cavity and output fields can have markedly
different nonclassicality properties, mainly in terms of the
Wigner function. For comparison, we also review the PO
output field in terms of temporal wave packet modes. While
the squeezing spectrum of the output is previously known, we
analytically solve for the full output field density matrix, shed-
ding new light on this well-studied system by investigating
how its features depend on the properties of the temporal wave
packet. Since an analytical solution is not straightforward for
the KPO output field, we use numerical simulations using the
“input-output with quantum pulses” formalism introduced by
Kiilerich and Mølmer [30,31]. We establish the nonclassical
character of the KPO output field through its photon-number
distribution using the Klyshko nonclassicality criterion. We
find that the presence of the Kerr nonlinearity leads to larger
population oscillations than for the PO. We also find that
under circumstances that render the steady-state KPO cavity
field Wigner-positive, the leaked output field may nonetheless
exhibit Wigner negativity, and the magnitude of a Klyshko
coefficient directly correlates with the amount of Wigner
negativity. Moreover, by numerical optimization we find the
temporal wave packet that maximizes the Wigner negativity.

The paper is structured as follows: In Sec. II we describe
our system model. In order to make a comparison with the
KPO, we review the PO output field in Sec. III before proceed-
ing with the KPO output in Sec. IV. There, we compare the
population statistics between the cavity steady state and the
output state in order to understand how Wigner negativity can
appear in the output despite the cavity being Wigner-positive.
In Sec. V we take a closer look at the nonclassical properties
of the KPO output field for different nonlinearity strengths.
Finally, Sec. VI summarizes our results.

II. THE MODEL

Our system is a parametrically driven nonlinear cavity,
and we are interested in its steady-state emission. In a frame
rotating at the cavity resonance frequency ω, the Hamiltonian
of the driven cavity is (h̄ = 1)

Ĥ = 1
2 (β ĉ†2 + β∗ĉ2) + Kĉ†2ĉ2, (1)

where β is the complex two-photon drive (parametric pump)
amplitude, K is the Kerr nonlinearity, and ĉ (ĉ†) is the anni-
hilation (creation) operator for the photons inside the cavity.
This is a ubiquitous quantum optics model which describes
squeezing and parametric amplification [18,32]. The two-
photon drive results from the nonlinear interaction of two
modes, typically denoted as the signal and the pump. Using
the the so-called parametric approximation in which the pump
field is assumed to be classical, the pump mode operator can
be substituted by a c-number. As an alternative to having a
second-order nonlinear crystal in an optical cavity, this Hamil-
tonian can also be obtained via a time-dependent boundary
condition such as a movable mirror [33] or a tunable Joseph-
son inductance in a microwave circuit [34–36].

The nonunitary dynamics of the cavity state � is well
described by the Lindblad quantum master equation. This
equation follows from the interaction of a system (in our

case, the cavity) and its environment under the weak-coupling
approximation and assuming that the environment is memo-
ryless. These approximations are often collectively referred
to as the Born-Markov approximation [37]. Considering the
environment to be in a thermal state at zero temperature, the
master equation is

∂t� = −i[Ĥ, �] + γ
(
ĉ � ĉ† − 1

2 {ĉ†ĉ, �}), (2)

where {·, ·} denotes the anticommutator and γ is the single-
photon loss rate of the cavity. In typical quantum optics
applications, single-photon loss is the main decay channel
of cavity photons into the the continuum of electromagnetic
modes which comprise the cavity environment. Here, we con-
sider photon emission into a one-dimensional transmission
line. The state of the field âout that leaks out of the cavity can
be inferred from the input-output boundary condition [38],
which relates âout with the drive field and the cavity field
operator ĉ. Considering the two-photon drive as a weakly
coupled input channel, the cavity output field depends solely
on the cavity state as

âout (t ) = √
γ ĉ(t ). (3)

Wave packet modes

The cavity output field provides information of the cavity
state through the input-output relation (3). However, the cavity
field corresponds to a single bosonic mode, while the output
is comprised by a continuum of frequencies. Therefore, in
order to do a faithful comparison of the cavity and output
states, it is necessary to define a bosonic mode out of this
continuum. This is done in terms of wave packet modes. For
convenience, we are going to restrict to a temporal description
in the remainder of this work, but the corresponding frequency
representation is simply related by a Fourier transform.

We are going to characterize the emission from the cavity
in the Fock space defined by the wave packet creation operator

Â†
f =

∫ ∞

0
dt f (t )â†

out (t ), (4)

with f (t ) satisfying the normalization condition∫ ∞
0 dt | f (t )|2 = 1 in order for Â f to fulfill the bosonic

commutation relation [Â f , Â†
f ] = 1. For simplicity, we restrict

f (t ) to be a real-valued function. This creation operator
defines a symmetric wave packet in frequency space around
the cavity resonance frequency.

Experimentally, detection in a given temporal profile is im-
plemented by means of a pulsed local oscillator in homodyne
detection or by processing the measurement signal by means
of a digital filter corresponding to the function f . For this
reason, we sometimes refer to the wave packet profile as a
filter function.

III. PARAMETRIC OSCILLATOR

Before moving to the Kerr parametric oscillator, we start
by studying the linear, or Gaussian, degenerate parametric
oscillator (PO) with K = 0 in Eq. (1). It is known that the
steady state of the field inside the resonator exhibits quadra-
ture squeezing. This means that the minimum value of the
variance of the generalized quadrature operator X̂θ = (b̂e−iθ +
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b̂†eiθ )/
√

2 is smaller than the standard quantum limit set by
vacuum noise. Here b̂ is a generic bosonic field operator
[b̂, b̂†] = 1; i.e., it can equally refer to the cavity operator ĉ
or the filtered output Â f . For our chosen normalization of the
generalized quadratures, the vacuum noise variance is 1/2. We
label the minimum value of the variance as

s = min
θ

〈(	X̂θ )2〉 , (5)

and consequently, squeezing is indicated by s < 1/2. The
variance is defined as

〈(	X̂θ )2〉 = 〈
X̂ 2

θ

〉 − 〈X̂θ 〉2
, (6)

and it attains its minimum value for a particular value of θ .
For our setup, it is dependent on the phase of the drive β

in Eq. (1). But for simplicity, from now on we are going to
restrict ourselves to a real-valued two-photon drive amplitude
β ∈ R without loss of generality.

In our particular system we have for the PO steady state
〈ĉ〉ss = 0. Consequently, first moments of the quadrature field
also vanish. In general, it is always possible to displace the
field in order to meet this condition, so from now on we will
ignore first-order moments. Then, the variance can be rewrit-
ten as 〈(	X̂θ )2〉 = 〈b̂†b̂〉 + 〈b̂2〉e−2iθ /2 + 〈b̂†2〉 e2iθ /2 + 1/2.
Taking into account that 〈b̂†2〉 = 〈b̂2〉∗ and noting that b̂†b̂ is a
positive-semidefinite operator, we see that there is squeezing
if and only if Re[〈b̂2〉 e−2iθ ] < −〈b̂†b̂〉. We see that squeezing
can only appear if the expectation value 〈b̂2〉 has a large
enough magnitude. This expectation value is associated with
off-diagonal terms in the density matrix: coherences between
number states |n〉 and |n − 2〉.

The amount of squeezing of the cavity field increases as we
approach the so-called pump threshold βth = γ /2, where the
system becomes unstable, i.e., the mean number of photons
diverge. However, the maximum attainable squeezing never
surpasses 50% of the vacuum noise, i.e., s = 1/4. On the
other hand, the field leaking out of the cavity can achieve
perfect squeezing s → 0 near threshold in a very small band-
width around the cavity frequency [2]. Below we will throw
light on this phenomenon in a new way by looking at the
filtered output in the Schrödinger picture, demonstrate that the
squeezing increases with increased filter time, and provide an
intuitive explanation for this. Since an infinite filtering time
corresponds to a zero-bandwidth frequency filter at the cavity
frequency, our results are consistent with the previous results.

A. PO output state

With K = 0, the system is Gaussian since the equation of
motion (2) is only quadratic in ĉ and ĉ†. Hence the output field
is completely characterized by its first- and second-order mo-
ments for which it is possible to find a closed set of equations.
This means we can analytically solve for the state of the output
field. For the selection of a wave packet mode, we choose
a constant filter within a time interval T , a so-called boxcar
filter [39–41]. This simplifies the analytical calculations.

As already mentioned, we will consider the steady-state
emission from the resonator. Using the quantum regres-
sion theorem [42–44] we calculate the steady-state two-time
correlations 〈ĉ†(τ )ĉ(0)〉ss and 〈ĉ(τ )ĉ(0)〉ss by assuming the

FIG. 1. Filtered output field populations of the first 6 number
states |n〉 excluding the vacuum. Even-number states in solid lines
and odd-number states in dashed lines [(a), (b)]. Squeezing for both
the output filtered field in solid lines and the cavity field in dashed
lines [(c), (d)]. Determinant of the covariance matrix in solid lines.
The dashed lines signal the minimum uncertainty condition [(e), (f)].
Everything for β = 0.2 and β = 0.4, and as a function of the boxcar
field width T in units where γ = 1. Note the logarithmic scale on the
horizontal axis.

steady-state condition ∂t�ss = 0 in Eq. (2). Correlations for
the filtered output state Â f follow from integration:

〈Â†
f Â f 〉 = (γ /T )

∫ T

0
dt ′

∫ T

0
dt 〈ĉ†(τ )ĉ(0)〉ss (7)

and

〈
Â2

f

〉 = (γ /T )
∫ T

0
dt ′

∫ T

0
dt 〈ĉ(τ )ĉ(0)〉ss. (8)

From these correlators we can calculate the covariance matrix
elements Vk� = 〈R̂kR̂� + R̂�R̂k〉/2, for k, � = 1, 2 with R̂1 =
(Â†

f + Â f )/
√

2 and R̂2 = (Â†
f − Â f )/i

√
2, which completely

determine the state of a Gaussian system. With these matrix
elements, the Wigner function can be calculated as

W (x, p) = 1

2π
√

det V
exp[−(x, p)
V −1(x, p)], (9)

and the Fock space representation of the state is determined
following Refs. [45,46] (more details in Appendix A).

The behavior of the filtered output field of the parametric
oscillator as a function of the filtering time T for two different
drive strengths β = 0.2 and β = 0.4 is shown in Fig. 1. Both
T and β are given in units where the decay rate is set to γ = 1.
In Figs. 1(a) and 1(b) we plot the first six Fock state popula-
tions ρn. For both drive strengths, the single-photon state is
the first state to be populated and is the dominant nonvacuum
constituent of the complete state for T � 1. Progressively,
two-, three-, and higher photon number states become
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populated. At around T � 2, the two-photon population over-
comes the single-photon population. Increasing the filtering
time, we observe the same dynamics for the other even pho-
ton number states (the four-photon population overcomes the
three-photon one, and so on). As we go toward T → ∞ we
see that the odd Fock state populations are suppressed and
the state becomes a superposition of even Fock states. From
the analytical solution (not shown), we can see that as we
approach βth in the limit T → ∞ the populations of all the
even states become identical. This tendency can be seen by
comparing the asymptotic populations in Figs. 1(a) and1(b):
the differences between the populations are smaller for the
stronger drive.

In Figs. 1(c) and 1(d) we plot the squeezing defined by
Eq. (5) as a function of T . Starting as vacuum noise for
T � 1, the output field becomes squeezed as soon as we start
to generate photon pairs. It reaches the squeezing level of the
intracavity field for T � 1, i.e., around the natural bandwidth
defined by the cavity decay rate, and then surpasses it for
larger T . The maximum squeezing is attained when the state
becomes a superposition of even Fock states.

A squeezed state which satisfies the minimum uncertainty
allowed by the Heisenberg uncertainty principle is sometimes
referred to as an ideal squeezed state [47]. To show that the
PO output field becomes an ideal squeezed state in the limit
T → ∞ we plot the determinant of the covariance matrix in
Figs. 1(e) and 1(f). Because it is a real symmetric matrix, the
covariance matrix can always be diagonalized. This diagonal
matrix V contains the variances of the squeezed quadrature
and the orthogonal one. Their product, i.e., the determinant of
V , is the uncertainty product. The minimum uncertainty con-
dition in our quadrature normalization corresponds to det V =
0.25. For values of T much smaller than the cavity characteris-
tic decay time 1/γ , the minimum uncertainty condition is met
because the probability of emission is very small, and thus, we
are witnessing the minimum uncertainty of the vacuum state.
As the squeezed states approach the minimum uncertainty
condition for large T the populations of the odd Fock states go
asymptotically to zero. In Appendix B we show analytically
that the odd photon numbers vanish only for a squeezed state
which is also a minimum uncertainty state.

Finally, in Fig. 2 we show the first 20 populations of the
output field for two different widths of the boxcar filter, T = 4
and T = 500, for β = 0.2 as well as β = 0.4. We note that
vacuum is always the leading contribution to the state. For
T = 4 we can appreciate an enhanced two-photon population
for both drive strengths [Figs. 2(a) and 2(b)], although for
the stronger drive in Fig. 2(b) many higher number states are
already also populated. For both drive strengths, as T becomes
very large, in Figs. 2(c) and 2(d) we only observe even Fock
states in agreement with Fig. 1. This distinct even-odd oscil-
lation in the populations is a sign of nonclassicality, which
will be elaborated further on in Sec. III B. The insets in Fig. 2
show the Wigner functions of the corresponding states, which
become more and more squeezed for larger β and T .

These results can be intuitively understood by means of a
very simple time-domain argument as follows: the two-photon
drive places correlated pairs of photons inside the resonator.
However, the photons leave the cavity one by one. This re-
stricts the number of photon pairs inside the resonator and,

FIG. 2. PO output field Fock state populations for two different
drive strengths β and boxcar filter times T (in units where γ = 1).
For the very large filter time T = 500, only even Fock states are
present, and squeezing is enhanced.

therefore, the maximum amount of squeezing that can be
sustained. On the other hand, we can access the photon pairs
by monitoring the output field for a long time compared to
the cavity lifetime 1/γ , as illustrated in Fig. 3. Thus, large
two-photon correlations between states |n〉 and |n − 2〉 can be
obtained, and as described in the beginning of this section,
therefore more squeezing is expected in the output.

B. Nonclassicality from the PO

There exist several indicators and measures of the non-
classical behavior of light, including sub-Poissonian statistics
[48], antibunching [49], as well as the previously men-
tioned photon-number population oscillations and squeezing.
As discussed in the introduction, it is also very common
to define nonclassicality by the behavior of quantum phase
space quasiprobability distributions such as the P function
or Wigner function. Negativity of the Wigner function is a
sufficient but not a necessary condition for nonclassicality. For
instance, the Wigner functions of the PO cavity and output
fields are always positive. This is a consequence of the states
resulting from a linear, or Gaussian, system [50]. Neverthe-
less, quadrature squeezing can be related to a nonclassical
P function [48,51]. Since the squeezed state exhibits popu-

FIG. 3. A drive photon of frequency 2ω is down-converted into
two photons each with frequency ω in the cavity with resonance
frequency ω and single-photon loss rate γ . For a longer observation
or filtering time T , more and more photon pairs are detected.
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FIG. 4. Klyshko coefficients Bn corresponding to the number
state |n〉 with n = 2 (solid line), n = 4 (dashed line), and n = 6
(dot-dashed line) for drive strengths (a) β = 0.2 and (b) β = 0.4,
for a boxcar filter of width T (in units where γ = 1). Note the
logarithmic scale on the horizontal axis.

lation oscillations as the parametric drive creates excitations
in pairs, a perhaps more useful [52] nonclassicality criterion
for squeezed-like states is given by the Klyshko inequality [9]

Bn ≡ (n + 1)ρn−1ρn+1 − nρ2
n < 0. (10)

The coefficient Bn is defined in terms of the populations of
three consecutive number states |n − 1〉, |n〉, and |n + 1〉 (n �
1). The Klyshko inequality sets a bound for the population
ρn in terms of those of its nearest neighbors. If Bn < 0 for
any n, the photon-number distribution of the corresponding
field departs from a classical probability distribution; i.e., its
P function is negative [53].

The nonclassical nature of states produced in parametric
down-conversion has been established via the Klyshko in-
equality in the optical regime through direct use of photon
counters [54]. Similarly, in the microwave regime the nonclas-
sical nature of propagating squeezed states generated through
a Josephson parametric amplifier was established by feeding
the field into a 3D cavity and reading its population content
via a dispersively coupled transmon qubit [55].

The odd Klyshko coefficients are always positive for our
system, so in Fig. 4 we show the first three even Klyshko
coefficients B2, B4, and B6 for the filtered output of the PO as a
function of the width T of the boxcar filter function, using two
different drive strengths β = 0.2 and β = 0.4. It can be seen
that for T > 1 the state is manifestly nonclassical as Eq. (10)
is first satisfied for n = 2. As we have already seen in Figs. 1
and 2, for T � 2, the two-photon state becomes the dominant
nonvacuum contribution to the output field, and the inequality
(10) for n = 2 implies that

ρ2 >

√
3

2
ρ1 ρ3. (11)

Therefore, when the population of the two-photon state over-
comes this bound imposed by the populations of the single-
and three-photon states the output field becomes nonclassical.
The dominance of ρ2 becomes stronger for larger values of T
as the population of the odd-number states start to decrease.
As T is increased, higher even-number states also become
populated, which explains the successively appearing negative
values of B4 and B6.

Furthermore, we observe a qualitative difference between
the behavior of the Klyshko coefficients for the two drive
strengths. While the coefficient B2 exhibits the largest nega-
tivity in both cases, for β = 0.2 it attains its minimum value
in the limit T → ∞, when the odd-number states are fully
suppressed. On the other hand, for β = 0.4, as we increase
T we involve considerably more (even) number states, each
with smaller populations [cf. Figs. 2(c) and 2(d)] as T → ∞.
The Klyshko B2 coefficient peaks along with the peak of
the two-photon population, which is confirmed to occur just
before T = 10 in Fig. 1(b).

IV. KERR PARAMETRIC OSCILLATOR (KPO)

The steady state of the cavity field for the case of a
nonvanishing Kerr nonlinearity has also been exhaustively
studied in the literature. In fact, despite being a nonlinear
system, the steady state admits an analytical solution. It is a
well-established result that the steady state of our system is
characterized by a positive Wigner function. Specifically, with
successively increased drive strength, the cavity steady-state
field transitions from vacuum to a weakly squeezed state and
finally into an incoherent superposition of coherent states,
with quantum coherence washed out by interaction with the
environment [29,56–59].

While there has been comprehensive studies of the cavity
field, to the best of our knowledge, a thorough characterization
of the properties of the filtered output field is still missing in
the literature. In the remainder of this paper we are going to
study the filtered output field of the KPO, with special empha-
sis on its nonclassical properties using the above introduced
Klyshko nonclassicality criterion as well as negativity of the
Wigner function.

Characterizing the state of the propagating cavity output
field is, in general, a difficult problem since it implies the
calculation of multitime field correlations for different time
orderings. For a Gaussian or linear system like the PO studied
in Sec. III, the output field is completely characterized by its
first- and second-order moments for which it is possible to find
a closed set of equations. In the presence of the nonlinearity,
this is no longer possible. Instead, we would get an infinite
number of equations involving every possible order of the
output field moments. For this reason we do not attempt to
characterize the output field by calculating multitime cor-
relations, but instead follow a different approach. In order
to explore the features of the output field of the KPO we
are going to make use of a technique recently introduced
by Kiilerich and Mølmer [30,31]. We implemented it using
QuTiP [60], and the code can be found in Ref. [61]. The
numerical solutions were validated against the analytical so-
lution for the PO. Alternatively, one could rely on stochastic
methods to mimic a quantum tomography experiment, as done
in Refs. [40,41], or numerically solve the full Schrödinger
equation for the coupled cavity and output fields [24].

Before discussing the nonclassicality of the KPO output in
depth, we will introduce the Poissonian regime of the KPO, in
which both the cavity and the output are classical states with
Poissonian photon-number statistics. We then discuss the two-
photon population of the KPO output, which will be shown to
have a strong connection to its nonclassical features.
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A. KPO cavity Poissonian regime

The nonlinearity prevents the instability at the drive thresh-
old β = βth. This means that the mean number of photons
in the cavity ncav no longer diverges at this point, but grows
steadily with β. When the photon number reaches ncav �
γ /8K , the cavity steady state is an incoherent superposition
of coherent states [22]. Here the photon-number distribution is
Poissonian, ρn = nn

cav exp(−ncav)/n!. Therefore, we will refer
to this type of field configuration as the Poissonian regime.

The maximum of a Poissonian photon-number distribution
is centered around the average number of photons present in
the field. So while the average number of photons in the cavity
grows along with the parametric drive strength β, when the
Poissonian regime is reached, individual number state popula-
tions reach their peak and start decreasing in succession as the
peak of the Poissonian distribution shifts to higher and higher
number states. As such, we expect that the largest achievable
population for the nth number state happens when the cavity
field population has a Poissonian distribution with ncav = n.
Then, it is possible to estimate the largest two-photon popula-
tion in the KPO cavity, which is ρ∗

2 � 0.27.
In the next section we study how the KPO output field

two-photon population depends on the filtering time and the
nonlinearity strength. Similarly to the PO, we can get a
two-photon population that dominates over the one- and three-
photon populations for filtering times comparable to or longer
than the cavity decay time.

B. Filtered KPO output field: Boundary
of the Poissonian regime

Intuitively, the output two-photon population is expected to
grow with β until the system reaches the Poissonian regime,
similarly to the cavity state. Here we are going to show that, in
contrast to the cavity field, for the output field it is possible to
produce states which exhibit the same maximum two-photon
state population ρ∗

2 but with non-Poissonian photon number
statistics. This is significant, because in Appendix C we show
that when the cavity is in the Poissonian regime, so is the
output field. Specifically, the output field is also a classical
mixture of coherent states, with the average number of pho-
tons Nf given by the cavity photon number ncav and a scale
factor depending on the width of the filter function.

For a boxcar filter the mean number of photons in the
output field is given by Nf = γ ncavT . Thus, in the Poissonian
regime, the largest two-photon population is achieved when
Nf = 2. Then, from the photon-number scaling relation, we
can calculate the time T ∗ at which Nf = 2. This corresponds
to T ∗ = 2/(γ ncav) [62]. Therefore, the largest two-photon
population expected in the output of the KPO in the Poisso-
nian regime is ρ∗

2 � 0.27 for a filtering time T ∗.
We need to be outside of the Poissonian regime to observe

nonclassical effects. Below, we show the behavior of the pho-
ton populations in the filtered output field as we depart from
this regime for different values of the nonlinearity strength. As
stated in Sec. IV A, not being in the Poissonian regime implies
a limited drive strength β, which in turn requires an increased
filtering time T in order to collect a significant number of
photon pairs.

FIG. 5. (a) Output two-photon population for K = 0.1 as a func-
tion of β for T = 0.1, 0.5, and 1.0 in units where γ = 1. The dotted
line at ρ2 = 0.27 represents the theoretical maximum two-photon
population in the Poissonian regime. Note that the two-photon pop-
ulation is decreased when moving out of the Poissonian regime.
Photon number distributions at the two-photon peaks for (b) T = 0.1
fitted to a Poissonian distribution with ncav = 1.9 and (c) T = 0.5
fitted to a Poissonian distribution with ncav = 2.2. (d) T = 1.0 does
not fit a Poissonian distribution.

In Fig. 5(a) we show the output two-photon population as
a function of β for a weak nonlinearity K = 0.1 and different
values of T (in units of γ = 1). As expected, we observe that
the two-photon population peaks at weaker drive strengths
for larger values of T , and vice versa. Additionally, we note
that as T is increased, the photon population statistics change.
For the shortest filtering time T = 0.1, the drive strength
β at which the maximum two-photon population is attained
corresponds to the cavity field being in the Poissonian regime,
and subsequently, the output is also Poissonian, as can be seen
from the photon-number distribution in Fig. 5(b). Here the
largest two-photon population observed corresponds to ρ∗

2 �
0.27 (dotted line) and the filtering time at which it is achieved
agrees with T ∗. For a slightly increased T it is possible to
generate output states with a Poissonian-like photon-number
distribution [cf. Fig. 5(c)] but with a smaller two-photon con-
tent than ρ∗

2 , as for T = 0.4. The photon-number distribution
of the output state slowly departs from the Poissonian behav-
ior as we further increase T , as exemplified with T = 1 in
Fig. 5(d). But crucially, the two-photon population is reduced
more and more as T is increased and we move farther out of
the Poissonian regime.

Interestingly, we do not need a strong nonlinearity to get
dramatically different behavior. In Fig. 6 we show results for a
moderate nonlinearity K = 0.5. Here, as we decrease the drive
strength β and increase the filtering time T , we depart from
the Poissonian regime similarly as with the weak nonlinearity.
But in contrast, even when not in the Poissonian regime, the
largest two-photon populations for K = 0.5 still correspond
approximately to ρ∗

2 . In fact, from our numerical simulations
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FIG. 6. (a) Output two-photon population for K = 0.5 as a func-
tion of β for T = 0.5, 2.0, and 5.0 in units where γ = 1. The dotted
line at ρ2 = 0.27 represents the theoretical maximum two-photon
population in the Poissonian regime. The two-photon populations
are close to the maximum both within and outside of the Poissonian
regime (in stark contrast to the behavior in Fig. 5) with a maximum of
ρ2 = 0.28 obtained for the most non-Poissonian state corresponding
to T = 5.0. Photon number distributions at the two-photon peaks
for (b) T = 0.5 fitted to a Poissonian distribution with ncav = 2.0.
(c) T = 2.0 does not quite fit a Poissonian distribution. (d) T = 5.0
shows clearly non-Poissonian statistics with population oscillations.

the largest two-photon output can even slightly exceed this
value, as can be seen in Fig. 6(a).

For the longer filtering time in Fig. 6(d), population oscilla-
tions start to become evident. But it can be noted that opposed
to the PO, for which we know that the odd-number states can
be completely suppressed for a long filtering time as shown in
Sec. III B, it is not possible with a nonzero Kerr nonlinearity
(cf. Appendix B).

In the next section we are going to study the nonclassical
features of the filtered output field of the KPO. As described
in Sec. III B, nonclassicality is not only a consequence of the
enhanced two-photon population, but by how large it is com-
pared to its nearest neighbors, i.e., single- and three-photon
states. For example, the photon distributions in Figs. 6(b),
6(c), and 6(d) have roughly the same two-photon populations,
yet only Fig. 6(b) corresponds to a Poissonian distribution.
In Fig. 6(c), the state begins to depart from the Poissonian
regime and the two-photon population overcomes that of its
nearest neighbors. Further away from the Poissonian regime
this asymmetry is even larger, as in Fig. 6(d). We are going to
quantify this using the Klyshko coefficient B2.

V. NONCLASSICALITY IN THE KPO OUTPUT

In this section, we will evaluate the nonclassicality of the
KPO output field in terms of the Klyshko B2 coefficient and
Wigner negativity. Starting with the Klyshko criterion, we dis-
play the minimum B2 for different nonlinearities K in Fig. 7.
The Klyshko inequality B2 < 0 is satisfied which establishes

0 1 2 3 4 5 6
K

−0.12

−0.10

−0.08

−0.06

M
in

B
2

FIG. 7. When the nonlinearity K is increased from zero, the
Klyshko B2 coefficient rapidly drops to its minimum for K = 0.7,
corresponding to the “most nonclassical” state as determined by the
Klyshko criterion. As K is further increased, the value of B2 increases
slightly before saturating. The minimum values were obtained by
sweeping over a grid of β and T for each K .

the nonclassical nature of the KPO output field. Specifi-
cally, when K grows toward 0.5 and larger, the enhanced
two-photon contribution leads to a very sharp population os-
cillation [an example of this is Fig. 6(d)] and, consequently, to
a very large magnitude of the Klyshko coefficient. The largest
magnitude is obtained for K = 0.7. A stronger nonlinearity
does not increase the nonclassicality; in fact, it decreases
slightly before it saturates for K � 2. Further increasing K
does not lead to fundamentally different behavior, since the
cavity steady-state field is entirely determined by the ratio
β/K in the strong nonlinearity regime [29,56,57,59]. For a
weak, or even vanishing, nonlinearity the value of B2 can re-
main <0, but the magnitude is severely diminished compared
to what is attainable with a moderate or large K .

The rather large two-photon populations in the KPO output
field may also result in more quantum coherence, namely, in
larger density matrix elements ρ02 and ρ20. This is because the
magnitude of these matrix elements is bounded by the popu-
lations of the vacuum and two-photon states: |ρ02| � √

ρ0ρ2

(the equality is only achieved for a pure state). Quantum
coherence typically translates into negative regions in the
Wigner function. Unfortunately there is no simple relation
between the ρ02 coherence and Wigner negativity, as higher-
order Fock states heavily influence the negativity.

In Fig. 8 we show the Wigner function and density matrix
for the K = 0.5, β = 0.65 steady-state cavity field, and com-
pare this with the output field for T = 2.5 and T = 5.0 boxcar
filters. Surprisingly, even though the cavity steady-state field
is always Wigner-positive [57,63], the KPO output field can
obtain a negative Wigner function for certain values of the
filter width T . Negativity in the output increases as a function
of T until T = 5.0 where it peaks, and goes back down if T is
further increased. Interestingly, the peak occurs at T = 5 not
only for β = 0.65, but for all β � 0.3. The ρ02 coherences
are similar for the two output fields, and they are only slightly
larger than for the cavity field. But the main contribution to the
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FIG. 8. Wigner functions and density matrices for β = 0.65.
(a) Wigner function and (b) density matrix for the steady-state
cavity field. It is clearly Wigner-positive. (c) Wigner function and
(d) density matrix for the output state with a T = 2.5 boxcar filter.
Negativity appears in the Wigner function, and in the density matrix,
the vacuum population is reduced and the two-photon population is
increased compared to the cavity field. (e) Wigner function and (f)
density matrix for the output field with a T = 5 boxcar filter, which
gives the largest WLN (0.05). Here, the vacuum population is further
reduced and the two-photon population is even more prominent. For
clarity in the figure we truncate the density matrices at n = 3, but the
full states occupy a larger Fock space.

cavity-state coherence is from the vacuum population, which
inhibits Wigner negativity.

As the source of quantum coherence is the two-photon
drive and the output state is favored toward even-number
states, it is no surprise that the KPO output Wigner function
resembles a two-component kitten or cat state. Neverthe-
less, the resulting nonclassical states have a very low purity,
roughly 0.617 for the most Wigner-negative state observed.

A possible measure of the negativity of the Wigner func-
tion is the integrated Wigner negativity [14], or alternatively
the more recently introduced Wigner logarithmic negativity
(WLN) [64]:

W = log

(∫
|W (x, p)|dx d p

)
. (12)

It has the property W > 0 when the Wigner function W (x, p)
has a negative part, and has the benefit of being an additive re-
source monotone [65]. The resource monotone can be defined
using any logarithm base, but for our numerical calculations
we use the natural logarithm. In Fig. 9(a) we show a map of
the WLN as a function of both the two-photon drive strength

FIG. 9. (a) Contour map of the WLN as a function of β and T
for K = 0.5. The dashed line indicates T = 5. (b) shows the WLN
and Klyshko B2 coefficient as a function of β for a fixed T = 5. The
WLN and B2 are clearly related.

β and the boxcar width T for K = 0.5. As can be seen, the
maximum value of the negativity is achieved near T = 5.
This holds for K � 0.3. In the strong nonlinearity regime the
maximum negativity occurs for β/K � 1.

It is interesting to compare the behavior of the Klyshko
coefficient B2 and the WLN. This is shown in Fig. 9(b). As it
can be seen, the nonclassical population oscillations around
the two-photon state which result in negative values of B2

directly translate into nonclassicality of the Wigner function.
We show this correspondence for T = 5, but it holds for every
value of T .

These results establish that whereas the cavity decay rate
imposes a detection bandwidth for which the cavity state can
be output with high fidelity, detection with a wave packet
beyond this natural limit may reveal a completely different
nature of the output field. In addition, while single-photon
losses may destroy quantum coherence inside the cavity, it
does not represent a loss mechanism for the output field. In the
next section, we will briefly study the effects of the temporal
profile of the wave packet.

Impact of the filter function on the Wigner negativity

So far, we have for convenience selected a temporal mode
of the cavity output field with a boxcar filter, but any square-
integrable function can define a bosonic mode in accordance
with Eq. (4). Since the filter response can significantly change
the nature of the detected state [66], it is reasonable to suspect
that the choice of filter function can have an impact on the
observed Wigner negativity. In this section, we are going to
target the temporal mode profile which gives the maximum
WLN by means of numerical optimization.

Since there is literally an infinite number of possible tem-
poral modes, the best filter could easily be left out if a
selection of filter functions were tested manually. To ensure
that the best filter function was found, even if it was not a
well-behaved, smooth function, we performed an optimiza-
tion of the numerical array that represents the filter using
the “scipy.optimize” package [67]. The part of the filter that
is zero until steady state has been reached was fixed and
not included in the optimization. Besides the first and final
points being zero, the initial filter was random (but properly
normalized, i.e.,

∑
i f 2

i = 1). These constraints on the first and
final points as well as normalization were enforced during the
optimization. Due to the randomness of the initial filter, the
results of different optimization runs were not identical. But
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FIG. 10. Numerical optimization of the filter function at discrete
time points ti. The initial filter function array was constructed by
generating random numbers in the interval [0,1] and then normal-
izing. The filter array was then optimized for maximum WLN. A
Gaussian curve can be well fitted to the optimized filter array, here
giving σ = 2.2 and μ = 17.0. In this example with system parame-
ters β = 0.65 and K = 0.5, the filter array consists of 18 points and
the obtained WLN is 0.1.

in general, the optimized filter obtained a Gaussian shape. A
representative example is displayed in Fig. 10. In fact, the
maximum WLN obtained with a Gaussian filter is twice the
maximum of the boxcar. A comparison between the two is
shown in Fig. 11 for T = 5 which gives the maximum WLN
for the boxcar filter, and σ = 2.3 which gives the maximum
WLN for the Gaussian filter.

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied the nonclassicality of the
output field of the steady-state Kerr parametric oscillator, in
terms of the Wigner function and Klyshko coefficients. Our
main result is that whereas the KPO cavity is Wigner-positive

0.0 0.3 0.6 0.9 1.2 1.5
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W
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FIG. 11. A comparison of the maximum WLN for the boxcar and
Gaussian filters, as a function of β with the filter widths fixed to the
values that give the largest possible WLN: T = 5 for the boxcar and
σ = 2.3 for the Gaussian filter. With the Gaussian filter the maximum
WLN is doubled compared to the boxcar.

in the steady state, the output field can be Wigner-negative,
depending on the properties of the selected field mode. In
order to obtain the state of the output field we have defined
bosonic modes in terms of wave packet functions, utilizing
the new “input-output with quantum pulses” formalism in-
troduced by Kiilerich and Mølmer [30], which allows us to
obtain the density matrix of the output field.

We also revisited the well-studied linear parametric os-
cillator. The linear PO is instrumental for the generation of
quadrature-squeezed states of light. It is also a paradigmatic
example of the different properties exhibited by the cavity and
output fields of a continuously driven setup. While the results
for the KPO were obtained by numerical simulations, for this
linear system we could study the properties of the filtered
output field by reconstructing its density matrix analytically
from two-time output field correlations. Here we also explored
the so-called even-odd population oscillations as a function of
the temporal width of the wave packet function. To the best of
our knowledge, these oscillations have previously only been
studied by direct photon detection, which is insensitive to the
mode structure of the field.

We could then contrast the output of the PO to that of
the KPO. The nonlinear Kerr parametric oscillator is also
ubiquitous in quantum optics literature. But even though
its cavity steady state has been analytically solved, to the
best of our knowledge the output field has not been stud-
ied beyond its squeezing properties. We found that the
presence of the nonlinearity leads to stronger population
oscillations, which is expressed by the larger magnitude
of the Klyshko coefficient. This is what gives rise to the
Wigner negativity in the KPO output, as the magnitude of
the Klyshko coefficient directly correlates to the integrated
Wigner logarithmic negativity (WLN). Furthermore, by nu-
merical optimization we have verified that the nonclassical
properties of the output field are dependent on the cho-
sen wave packet function, and that a Gaussian wave packet
maximizes the WLN.

Typically, the important parameter responsible for driven
nonlinear oscillators to reach quantum regimes is the ratio be-
tween the Kerr parameter and cavity decay rate; i.e., efficiency
of quantum nonlinear effects requires a high nonlinearity with
respect to dissipation [68]. In contrast, there is no need for
a strong nonlinearity to observe Wigner negativity in the
KPO steady-state output, as K/γ = 0.7 is sufficient to ob-
serve the largest Klyshko negativity and the largest Wigner
negativity.

Our results could realistically be verified experimentally.
Notably, in superconducting circuit experiments the nonlin-
earity strength can be tuned [69]. Quantum-state tomography
of propagating microwave fields has been established using
both phase-insensitive [1,70] and phase-sensitive amplifica-
tion [71], and more recently via parity detection [72]. In
addition, the Klyshko nonclassicality criterion is amenable to
be tested for propagating fields following a recent proposal
for a microwave number-resolved photon counter [73]. Fi-
nally, our approach could be extended to study the output
field properties of recent higher-order squeezing realizations
[74,75]. Also, it would be interesting to study the role of
filtering in the output entanglement properties of multimode
setups.
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APPENDIX A: DENSITY MATRIX FROM THE
COVARIANCE MATRIX FOR A GAUSSIAN STATE

A Gaussian state is defined by its covariance matrix V with
matrix elements

V11 = 〈x̂2〉, (A1)

V22 = 〈p̂2〉, (A2)

V12 = V21 = 1
2 〈x̂ p̂ + p̂x̂〉, (A3)

with x̂ and p̂ the position and momentum quadratures, respec-
tively,

x̂ = 1√
2

(b̂† + b̂), (A4)

p̂ = i√
2

(b̂† − b̂), (A5)

with b̂ (b̂†) the bosonic annihilation (creation) operation which
might refer to a cavity or filtered propagating mode. Here we
are assuming that 〈x̂〉 = 〈p̂〉 = 0 which is true for the models
studied in the main text. Recall that in the steady state of (2)
with Hamiltonian (1) we have 〈ĉ〉ss = 0 and, consequently,
〈Â f 〉 = 0 for the filtered output field.

The density matrix elements in the Fock or number basis
can be recovered from the covariance matrix V by means of
the relation

〈m|ρ|n〉 =
(

d + t

2
+ 1

4

)−1/2 1√
m! n!

H {R}
mn (0, 0), (A6)

with d = det V and t = tr V the determinant and the trace of
the covariance matrix, respectively [45]. The so-called multi-
dimensional Hermite polynomials HR

mn(x1, x2) are defined in
terms of a 2 × 2 matrix R with elements [46]

R11 =
(

2d + t + 1

2

)−1

(V11 − V22 − 2iV12), (A7)

R22 =
(

2d + t + 1

2

)−1

(V11 − V22 + 2iV12), (A8)

R12 = R21 =
(

2d + t + 1

2

)−1(1

2
− 2d

)
. (A9)

The arguments x1 and x2 are related to the first moments of
the field, which in our case are always zero. We get

H {R}
mn (0, 0) = m!n!

√
Rm

11Rn
22

2m+n

min(m,n)∑
k=0

( −2R12√
R11R22

)k

× 1

k!(m − k)!(n − k)!
Hm−k (0)Hn−k (0), (A10)

with Hn(x) being the nth-order Hermite polynomial.

APPENDIX B: SUPPRESSION OF ODD FOCK
STATE POPULATIONS

The Heisenberg uncertainty principle puts a lower bound
on the minimum value of d = det V , where V is the covari-
ance matrix of a quantum state, defined by Eqs. (A7)–(A9).
Under the quadrature normalization used here we have d �
1/4. A minimum uncertainty state is by definition a state for
which d = 1/4. Examples of these are coherent states and
the so-called ideal squeezed states [47]. In a squeezed state,
noise (the variance) in one quadrature is reduced below the
vacuum level at the expense of increased noise in the orthogo-
nal quadrature. For an ideal squeezed state, the product of the
quadrature variances equals the lower bound.

A quintessential example of an ideal squeezed state is the
squeezed vacuum state, that is, the state that results from the
action of the unitary squeezing operator

Ŝ(ξ ) = e(ξ∗b̂2−ξ b̂†2 )/2, (B1)

with ξ = r exp(iθ ) (r, θ ∈ R) on the photon vacuum state |0〉.
For θ = 0, the variances satisfy

V11 = 〈x̂2〉 = 1
2 exp(−2r) (B2)

and

V22 = 〈p̂2〉 = 1
2 exp(+2r), (B3)

and, thus, d = 1/4 [47].
The suppression of the odd Fock state populations is a

consequence of ideal squeezing. Indeed, the condition d =
1/4 results in R12 = 0 in Eq. (A9). If this is the case,
only the term k = 0 will contribute to the summation in
Eq. (A10). For m = n the latter reduces to [Hm(0)/m!]2. All
of the odd-order Hermite polynomials are identical to zero
at the origin (x = 0). Consequently, 〈n|ρ|n〉 = 0 in Eq. (A6)
for odd n.

APPENDIX C: TIME FILTERING OF A COHERENT STATE

Let us assume that the steady state of the cavity field is
a coherent state. A coherent state is completely defined by
the first moment of the bosonic field operator, i.e., 〈ĉ〉ss with
higher-order moments factorizing in terms of it. Following
the input-output relation, we have for the filtered output field
moments

〈Â f 〉 = √
γ

∫ ∞

0
dt f (t )〈ĉ(t )〉ss, (C1)

〈Â†
f Â f 〉 = γ

∫ ∞

0
dt dt ′ f (t ) f (t ′)〈ĉ(t )†ĉ(t ′)〉ss, (C2)

where for simplicity we are assuming the filter function f to
be real. Using the coherent field property that higher-order
moments factorize, we get

〈Â f 〉 = √
γ 〈ĉ〉ss

∫ ∞

0
dt f (t ), (C3)

〈Â†
f Â f 〉 = γ |〈ĉ〉ss|2

[∫ ∞

0
dt f (t )

]2

, (C4)

with similar relations holding for third- and higher-order cor-
relations. For a boxcar and Gaussian wave packets, the above
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time integral depends on the width and the variance (T and
σ ) of these functions, respectively. That is, the effect of the
filter is just to rescale the cavity moments proportionally to

the temporal width of the filter. Finally, for an incoherent
superposition of coherent states the above arguments hold for
every coherent state in the mixture.
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