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We present an AI-based decoding agent for quantum error correction of depolarizing noise on the toric code.
The agent is trained using deep reinforcement learning (DRL), where an artificial neural network encodes the
state-action Q values of error-correcting X , Y , and Z Pauli operations, occurring with probabilities px , py,
and pz, respectively. By learning to take advantage of the correlations between bit-flip and phase-flip errors,
the decoder outperforms the minimum-weight-perfect-matching algorithm, achieving higher success rate and
higher error threshold for depolarizing noise (pz = px = py), for code distances d � 9. The decoder trained
on depolarizing noise also has close to optimal performance for uncorrelated noise and provides functional but
suboptimal decoding for biased noise (pz �= px = py). We argue that the DRL-type decoder provides a promising
framework for future practical error correction of topological codes, striking a balance between on-the-fly
calculations, in the form of forward evaluation of a deep Q network, and pretraining and information storage.
The complete code, as well as ready-to-use decoders (pretrained networks), can be found in the repository
github.com/mats-granath/toric-RL-decoder.

DOI: 10.1103/PhysRevResearch.2.023230

I. INTRODUCTION

The basic building block of a quantum computer is the
quantum bit (qubit), the quantum entity that corresponds to
the bit in a classical computer, but which can store a super-
position of 0 and 1 [1]. The main challenge in building a
quantum computer is that the qubit states are very fragile and
susceptible to noise. Surface codes [2–5] are two-dimensional
structures of qubits located on a regular grid which provide
fault tolerance by entangling the qubits. In the surface code,
logical qubits are topologically protected, which means that
only strings of bit flips that stretch from one side to the
other of the code cause logical bit flips, whereas topologically
trivial loops (contractible to a point) do not. In recent years,
experiments have taken first steps in quantum error correction
in several promising quantum-computing architectures, e.g.,
superconducting circuits [6–15], trapped ions [16–20], and
photonics [21,22], and work continues toward large-scale
implementation of surface codes.

Even though the surface-code architecture provides extra
protection to logical qubits, the physical qubits are still sus-
ceptible to noise causing bit-flip or phase-flip errors. Such
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errors need to be monitored and corrected before they pro-
liferate and create nontrivial strings that cause logical failure.
The challenge with correcting quantum-mechanical errors is
that the errors themselves cannot be detected (because such
measurements would destroy the quantum superposition of
states), but only the syndrome, corresponding in the surface
codes to local 4-qubit parity measurements, can. An algorithm
that provides a set of recovery operations for correction of the
error given a syndrome is called a decoder. As the syndrome
does not uniquely determine the errors, the decoder needs to
incorporate the statistics of errors corresponding to any given
syndrome. Optimal decoders, which give the highest theo-
retically possible error-correction success rate, are generally
hard to find, except for the simplest hypothetical types of
noise.

Many types of decoder algorithms exist that deal in dif-
ferent ways with the lack of uniqueness in the mapping from
syndrome to error configuration. Methods range from Markov
chain Monte Carlo based decoders [23,24], cellular automata
[25,26], renormalization group [27], as well as various types
of neural-network-based decoders [28–40], which is also
the tool used in this paper. The benchmark algorithm for
the decoding problem is minimum-weight-perfect-matching
(MWPM) [41–44], which is a graph algorithm for shortest
pairwise matching of syndrome defects. In the standard for-
mulation, MWPM is set up as two separate graph problems
for the two types of syndrome defects, ignoring possible
correlations between these or that error channels may have
different probabilities.

For a decoder to be used for actual operation in a quantum
computer, not only correction success rate, but also speed, is
a crucial factor. A long delay for calculating error-correcting
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operations will not only slow down the calculations, but also
make the code susceptible to additional errors. For this reason,
decoders based on algorithms that do extensive sampling of
the configuration space on the fly, such as Monte Carlo based
decoders [23,24], may not be viable as practical decoders.
Instead, using some level of pretraining to generate and store
information for fast retrieval will likely be necessary. Tabulat-
ing the information of syndrome versus most likely logical
error is expected to be prohibitively expensive in terms of
both storage and training, and slow to access, for anything
but very small codes. Given these constraints, the need for
pretraining, the massive state space and corresponding amount
of data, it is natural to consider machine-learning (ML) so-
lutions, especially given the recent deep-learning revolution
[45,46] and its applications within quantum physics [47–50].
In particular, reinforcement learning and (DRL) [51,52] has
recently emerged as a promising tool for various quantum
control tasks [53,54].

In this paper, we use DRL, expanding on the framework
for error correction for the toric code (i.e., surface code with
periodic boundary conditions) introduced by Andreasson et al.
[36]. In Ref. [36], only uncorrelated noise (with indepen-
dent bit- and phase-flip errors) was considered. It was found
that the DRL decoder could achieve success rates of error
correction on par with MWPM. In this work, we consider
depolarizing noise (px = py = pz) and find that a similar
decoder can outperform MWPM for moderate code size d �
9. The performance is instead similar to augmented versions
of MWPM, optimal in the limit p → 0, where correlations be-
tween phase- and bit-flip errors are taken into account [24,42].
The decoder trained on depolarizing noise is also found to be
quite versatile, having MWPM success rates on uncorrelated
noise, as well as giving intermediate performance on biased
noise. Similarly to the previous work we do not consider syn-
drome measurement errors, but focus on mastering the more
elementary but nevertheless challenging task of efficiently
decoding a perfect syndrome with depolarizing noise.

A decoder based on DRL has the potential to offer an
ideal balance between calculations on the fly and pretraining.
The information about the proper error correction string for
a given syndrome is stored in a very efficient way, using two
principles:

(1) The step-by-step decoding using the pretrained neural
network generates an effective tree structure where many
different syndromes will reduce to the same syndrome after
one operation, such that subsequent correction steps will use
the same information, iteratively reducing the complexity.

(2) The deep neural network is a “generalizer” which can
spot and draw conclusions from common features of different
syndromes, including syndromes that have not been seen
during training.

The paper is organized as follows. In Sec. II, we give a
brief introduction to quantum error correction for the toric
code. In Sec. III, we introduce deep reinforcement learning
and Q learning, and discuss how these are implemented in
training and utilizing the decoder. In Sec. IV, the performance
of the DRL decoder is presented and benchmarked against
both MWPM and analytic expression valid for low error rates.
We summarize the main results and give an outlook to further
developments in Sec. V.

YX

Z

FIG. 1. A d = 9 toric code showing the basic operations. Circles
represent physical qubits, with shading showing periodic boundaries.
Bit-flip X (red), phase-flip Z (blue), and Y ∼ XZ (yellow) errors with
corresponding plaquette and vertex “defects” as end points of error
chains. The defects are measured by the plaquette (⊗Z) and vertex
(⊗X ) parity-check operators, respectively. Also shown are logical
bit- and phase-flip operators corresponding to closed loops spanning
the torus.

II. TORIC CODE

The toric code in the form considered here consists of
a two-dimensional quadratic grid of physical qubits with
periodic boundary conditions. In this section, we provide a
high-level summary of the main concepts relevant for our
study and refer the reader to the literature for more details
[2–5]. A d × d grid contains 2d2 qubits corresponding to
a Hilbert space of 22d2

states, out of which four will form
the logical code space. That is, it encodes a fourfold qudit
corresponding to two qubits, which we will nevertheless refer
to as the logical qubit. It is a stabilizer code where a large
set of commuting local parity-check operators (the stabilizers)
split the state space into distinct sectors.

The stabilizers for the toric code are divided into two types,
here represented as plaquette and vertex operators, consisting
of products of Pauli Z or X operators on the four qubits on
a plaquette or vertex (see Fig. 1), respectively. Eigenstates
of the full set of stabilizers, with eigenvalue ±1 on each
plaquette and vertex of the lattice, are globally entangled,
which provides the basic robustness to errors. The logical
qubit corresponds to the sector with eigenvalue +1 on all
stabilizers. We will refer to a stabilizer with eigenvalue −1
as a plaquette or vertex defect. A single bit flip X or phase flip
Z on a state in the qubit sector will produce a pair of defects on
neighboring plaquettes or vertices, with Pauli Y ∼ XZ giving
both pairs of defects, as shown in Fig. 1.

The set of stabilizer defects corresponding to any given
configuration of X , Y , or Z operations on a state in the
logical sector is called the syndrome. Logical operations,
which map between the different states in the logical sector,
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are given by strings of X or Z operators that encircle the torus,
corresponding to logical bit-flip and phase-flip operations,
respectively (see Fig. 1). The shortest loop that can encircle
the torus has length d; correspondingly, the code distance
is d . For simplicity, we consider only odd d , as there is an
odd-even effect in some quantitative aspects of the problem.
The toric code is an example of a topological code, as the
logical operations correspond to “noncontractible” loops on
the torus, whereas products of stabilizers can only generate
“contractible” loops.

Figure 2(a) shows an example of an error configuration
(also referred to as an error chain) on a d = 9 toric code to-
gether with the corresponding syndrome, generated randomly
at an error rate p = 0.22. Visible for the decoder is only the
syndrome [Fig. 2(b)] based upon which the decoder should
suggest a sequence of operations (a correction chain) that
eliminates the syndrome in such a way that it is least likely
to cause a logical bit- and/or phase-flip operation. To evaluate
the success rate of a correction chain for a given syndrome,
it should be complemented by the full distribution of error
chains corresponding to that syndrome, to calculate which
fraction of error + correction chains contain an odd number
of logical operations of any type.

III. DEEP REINFORCEMENT LEARNING ALGORITHM

The DRL-based decoder presented in this paper is an
agent utilizing reinforcement learning together with a deep
convolutional neural network, called the Q network, for ap-
proximation of Q values. The agent suggests, step by step,
a sequence of corrections that eliminates all defects in the
system as illustrated in Fig. 3 (see also Figs. 17 and 18 in
Appendix C).

A. Q learning

The purpose of Q learning [56] is for an agent to learn a
policy, π (s, a), that prescribes what action a to take in state s.
An optimal policy maximizes the future cumulative reward of
actions within a Markov decision process with the rewards
provided by the environment, depending on the initial and
final states and the action ra(s, s′). In this paper, we use a
deterministic reward scheme, as discussed below. To measure
the future cumulative reward, the action value function, or Q
function, is given by

Qπ (st , at ) = Eπ [rt + γ rt+1 + γ 2rt+2 + · · · ], (1)

where action at is taken at time t , and subsequently following
the policy π , with γ � 1 a discounting factor. The Q function
corresponding to the optimal policy satisfies the Bellman
equation

Q(st , at ) = r + γ max
a′

Q(st+1, a′), (2)

such that the optimal policy will self-consistently correspond
to the action maximizing Q. As discussed in more detail in
Sec. III B, we use one-step Q learning, in which the current
measure of Q(s, a) is updated by explicit use of the Bellman
equation with some learning rate α, using ε-greedy explo-
ration.

(a)

(b)

FIG. 2. Example of a random configuration of qubit errors on a
d = 9 toric code. (a) The qubit state and the corresponding syndrome
forming an error chain. (b) Syndrome given by plaquette and vertex
defects. The objective of the DRL decoder is to find a correction
string which is consistent with the syndrome and which takes the
minimal number of qubit operations [55]. The benchmark MWPM
decoder instead treats the plaquette and vertex configurations as sep-
arate graph problems, suggesting the shortest independent correction
chains of X and Z .

The reward scheme that we use is given by

rt =
{

100 if episode terminates at step t + 1,

Et − Et+1 otherwise,
(3)

where Et represents the number of defects in the syndrome
at step t , such that X and Z operators can give reward −2,
0, or 2, whereas Y operators can give reward −4, −2, 0, 2,
or 4. The terminal reward, given a discounting factor γ < 1,
incites the agent to correct the full syndrome in the minimal
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Theoretical: 92.15

Q-network: 91.84 

Q-value

Theoretical: 97

Q-network: 96.81 

Q-value

Theoretical: 100

Q-network: 99.76 

Q-value

1.

3.

2.

FIG. 3. Value functions V (s) = maxa Q(s, a) for a sequence of syndromes corresponding to a particular error chain, using the reward
scheme in Eq. (3) with γ = 0.95. For this simple syndrome, the optimal sequence is three steps long and the theoretical state values are
compared to those output by the Q network. The error chain itself is irrelevant to the correction sequence; only the syndrome is important.

number of steps. The explicit reward for eliminating defects
is implemented to speed up convergence, without which the
agent would have to find terminal states by completely ran-
dom exploration. The reward scheme is not expected to give
an optimally performing decoder [36,40]; rather than using the
statistics of error chains in an unbiased fashion, it makes the
assumption that the most likely error chain is the shortest. As
expected (see Sec. IV), for biased noise this gives suboptimal
performance.

Figure 3 shows an example of Q-network estimated
and exact state values V (s) = maxa Q(s, a) for an exam-
ple syndrome, showing that the Q network gives a quan-
titatively accurate representation of Q values. The nu-
merical accuracy in general deteriorates the larger the

syndrome is, i.e., the further it is removed from the terminal
state.

Efficient Q-network representation

To improve the representational capacity of the Q network,
we use an efficient state-action space representation, which
was suggested in Ref. [36] for bit-flip operations and which
we now extend to general X , Y , and Z operations. It is built on
three basic concepts:

(i) By having the Q network only output action values for
one particular qubit, the representational complexity can be
reduced significantly.
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FIG. 4. Input-output structure of the deep Q network. The input
is a perspective P, constructed from the syndrome s, as shown in
Fig. 5. The hidden layers consist primarily of convolutional layers
(see Appendix B for details). The output is the three action Q values,
Q(P, a, θ ), for a ∈ {X,Y, Z} operators on the marked (bold) qubit,
with θ representing the current state of the network.

(ii) Due to the periodic boundary conditions of the toric
code, only the relative positions of syndrome defects are
important, i.e., arbitrary translations and fourfold rotations are
allowed.

(iii) The converged decoder will never operate on a qubit
which is not adjacent to any syndrome defect. Consequently,
we have no need to calculate Q values for such actions.

The Q network takes input in the form of two channels
of d × d matrices, corresponding to the location of vertex
and plaquette defects, respectively. The output is the three Q
values for X , Y , and Z operations on one particular qubit, in a
fixed location �r0 with respect to an external reference frame,
as indicated in Fig. 4. To obtain the full set of action values
for a syndrome, we thus successively translate and rotate the
syndrome to locate each qubit at location �r0. Each such matrix
representation of the syndrome, with a particular qubit at �r0,
is called a “perspective,” and the whole set of perspectives
makes up an “observation,” as exemplified in Fig. 5. In the
observation, we only include perspectives for qubits that are
adjacent to a syndrome defect.

To obtain the full relevant Q function of a syndrome, the
Q function of each individual perspective of an observation
is calculated. In decoding mode, the agent chooses greedily
the action with the highest Q value. After the chosen action
has been performed, a new syndrome is produced and the
process repeats until no defects remain. As discussed in the
Introduction, and exemplified in Fig. 6, the DRL decoding
framework gives a compact structure for information storage
and utilization: using a neural network to generalize informa-
tion between syndromes and using step-by-step decoding to
successively reduce syndromes to a smaller subset.

B. Training the Q network

The neural network is trained using the deep Q-learning
algorithm utilizing prioritized experience replay [52,57]. To
increase stability, two architecturally equivalent neural net-
works are used, the regular Q network, with parameters θ , and

Perspective Perspective

PerspectivePerspective
Observation

Syndrome

FIG. 5. Expanded representation of a syndrome into different
perspectives, based on rotations and translations, used for compact
processing in the Q network (Fig. 4). Only the syndrome, visible
to the network, is shown, not the physical qubits. The two-layer
structure corresponds to separate channels of input for vertex and
plaquette defects. The set of all perspectives form an observation
O = {P1, P2, . . . , PNper }.

the target Q network, with parameters θT . The target network
is synchronized with the Q network on a set interval.

Experience replay saves every transition in a memory
buffer, from which the agent randomly samples a minibatch of
transitions used to update the Q network. Instead of sampling
the minibatch uniformly, as is done with regular experience
replay, prioritized experience replay prioritizes importance
when sampling. This importance is measured with the abso-
lute value of the temporal difference (TD) error

δ j = r j + γ max
a

[Q(s′
j, a; θT )] − Q(s j, a j ; θ ), (4)

where the state (syndrome) s′
j follows from action a j on state

(syndrome) s j , and where the expression Q(s, a; θ ) implies
choosing the appropriate perspective for the Q network that
corresponds to action a in syndrome s.

Following Ref. [57], the probability of sampling a
transition j from the memory buffer is given by Pj =
|δ j |α/

∑
k |δk|α such that values with higher TD error are more

likely to be sampled. Here, α controls the amount of prioriti-
zation used (α = 0 corresponding to uniform sampling) and
k = 1, . . . , M, with M the size of the memory buffer. Using
nonuniform sampling in this way, however, skews the learning
away from the probability distribution used to generate experi-
ences. To partially compensate for this, importance-sampling
weights are introduced according to w j = (MPj )−β , with the
product of the weights and TD error, w jδ j , used as the loss
during stochastic gradient descent training of the network.
Here, β controls the extent of compensation of the prioritized
sampling, with β = 1 corresponding to full compensation.

The training can be divided into two stages: the action
stage and the learning stage. Pseudocode of the algorithm
used for training is shown in Algorithm I. The training starts
with the action stage. Given a syndrome st , the agent suggests
an action at following an ε-greedy policy, such that with
probability (1 − ε) the agent takes the action with the highest
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FIG. 6. Schematic of the operation of the deep reinforcement learning (DRL) decoder for several syndromes that successively reduce to a
smaller subset of syndromes through step-by-step decoding. Top left are two syndromes that after one step of decoding reduces to the same
syndrome, and similarly to the right. Both these branches in turn reduce to the same syndrome after the next decoding step. In this way, the
complexity of the decoding problem is reduced, compared to decoding each high-level syndrome independently.

Q value; otherwise, a random action is followed. The agent
receives a reward rt and the syndrome s′

t = st+1, that follows
from the action at . The transition is stored as a tuple T =

(Pt , at , rt , st+1,	t+1), where 	t+1 is a Boolean containing
the information whether st+1 is a terminal state (there are no
defects left) or not.

Algorithm 1. Training the DRL agent decoder.

1 while defects remain do
2 Get observation Ot corresponding to syndrome st ;
3 With probability ε select random action at and corresponding perspective Pt ;
4 Otherwise select:{Pt , at } = argmaxP,a(Q(P, a; θ )P∈Ot ;
5 Execute action at and observe reward rt and syndrome st+1;
6 Store transition (Pt , at , rt , st+1, 	t+1) in replay memory;
7 Sample random minibatch of transitions {Tj}N

j=1 from replay memory using prioritized sampling;
8 Calculate weights used for weighted importance sampling w j ;
9 If terminal state reached, set y j = r j ; otherwise, set y j = r j + γ maxa Q(s′

j, a; θT );
10 Perform gradient descent step on w j |y j − Q(Pj, aj ; θ )| with respect to the network parameter θ ;
11 Every C steps synchronize the target network with the policy network, θT = θ .
12 end

After the action stage, the agent continues with the
learning stage. For that we use stochastic gradient descent
(SGD) and the tuples stored in the replay memory. A
minibatch of N transitions, {Tj = (Pj, a j, r j, s′

j,	 j )}N
j=1, is

sampled from the replay memory with replacement. The
training target value for the policy Q network is given
by y j = r j if 	 j = 1, and y j = r j + γ maxa Q(s′

j, a; θt )
otherwise.
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FIG. 7. Error-correction success rate Ps for the DRL decoder on
depolarizing noise, as a function of total error probability p, for
system sizes d = 5, 7, 9 (blue circles, orange squares, and green
triangles, respectively), and compared to the corresponding results
using the MWPM algorithm (blue solid curve, orange dotted curve,
and dashed green curve, respectively). The DRL-based algorithm
outperforms the MWPM-based algorithm for all these system sizes
and error rates.

The agents are initially trained with an error rate of 10%
and further during the training with syndromes up to 30% er-
ror rate. Details of network architectures and hyperparameters
are found in Appendix B.

IV. RESULTS

A. Depolarizing noise

The main result of the paper is displayed in Fig. 7,
where the error-correction success rate for depolarizing noise,
px = py = pz = p/3, is shown for decoders trained at three
different code dimensions. This is compared to MWPM,
which treats the plaquette and vertex defects as separate
graph problems. See comment1 for a discussion about the
MWPM decoder for depolarizing noise. We thus find that
the DRL decoder has a significantly higher error-correction
success rate, which is achievable by learning to account for
the correlations between plaquette and vertex defects.

From the crossing of the d = 5 and 7 error-correction
success rates, we can identify a threshold of around 16.5%
(for MWPM, the crossing is close to 15%), below which error
correction can be guaranteed, were we able to increase d
arbitrarily. The deduced threshold is significantly below the
theoretical limit of 18.9% [23,58], but similar to that found
for the Markov-chain Monte Carlo decoder based on shortest

1The MWPM decoder assumes that X and Z errors are uncor-
related, with independent error rates px = pz = 2p/3 and, corre-
spondingly, py = (2p/3)2. The MWPM success rate for that problem
would be PS (p) = (PS,X (2p/3))2, with PS,X (p) corresponding to pure
bit-flip noise (Fig. 8). This expression is a good approximation to
the MWPM success rate for depolarizing noise which is exact in the
low-p limit (see Appendix A).

FIG. 8. Error-correction success rate Ps for the DRL decoder
trained on depolarizing noise, when applied to pure bit-flip noise,
as a function of error probability p. Dashed curves show the corre-
sponding results using the MWPM algorithm.

average correction chain formulated in Ref. [24]. As discussed
in the Introduction, for a practical decoder the threshold may
not be the most important measure. Nevertheless, we antici-
pate that the success rate and threshold can be enhanced by
further developing the reward scheme to be based on success
rate rather than minimum number of operations. (Work along
these lines was recently presented by Colomer et al. [40].)

We also note that even though the d = 9 DRL decoder
gives a significant improvement over MWPM, it has not fully
converged to the optimal performance within the limitations
of the algorithm, as indicated by the earlier crossing with
d = 5 and 7. We do not anticipate that this is a fundamental
limitation of the DRL-type decoder, but could be improved by
a more efficient training scheme.

In Fig. 8, we have employed the same DRL decoders,
pretrained on depolarizing noise, to decode pure bit-flip noise.
Here, we find a performance for d = 5 and 7 which is
very close to MWPM, thus reproducing the results of our
first-generation DRL decoder from Ref. [36]. For d = 9,
the decoder has slightly worse performance, confirming that
this decoder has not yet converged to optimal algorithmic
performance.

B. Asymptotic fail rates

In addition to the MWPM benchmark, we also benchmark
the DRL decoders for small error rates p −→ 0, by deriving
analytical expressions (see Appendix A) for the fail rate for
depolarizing noise to lowest nonvanishing order in p. We can
derive such fail rates for both the MWPM algorithm and the
algorithm based on finding the shortest correction strings. The
latter is similar to, but not exactly equivalent with, what we
expect for the DRL decoder based on our reward scheme.
These algorithms both have a fail rate that scales as PL ∼ p	 d

2 
,
but with different prefactors.

In Fig. 9, we confirm that the DRL decoder indeed per-
forms ideally for d = 5 and 7 for short error chains, following
very closely the algorithm based on minimal X,Y, Z chains.
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FIG. 9. Error-correction fail rate PL of the DRL decoder for
depolarizing noise ranging from small to large error rates. (The
p � 0.05 data are the same as in Fig. 7.) The dashed and dotted
lines correspond to analytic expressions [Eqs. (A4) and (A8) in
Appendix A], valid to lowest order in p, for a decoder that oper-
ates based on the minimal correction chain (MCC) or the MWPM
algorithm. The MCC decoder is optimal for p → 0.

Because of the excessive time consumption to generate good
statistics for d = 9, we have only compared the performance
in the true asymptotic limit, i.e., the rate for only the shortest
fallible error chains, as shown in Table I, again confirming
the suboptimal performance for d = 9. In this limit, data are
generated by only considering the subgroup of error chains
that are in a single row or column, in contrast to generating
completely random error chains that will very rarely fail.

C. Biased noise

For the prospect of an operational decoder on a physical
quantum computer, the noise is expected to be biased, such
that phase-flip errors are relatively less or more likely [59–64].
To identify the exact error distribution is a challenging prob-
lem in itself (see, e.g., Ref. [65]), and the degree of bias can
fluctuate in time [62–64], so a decoder that can adequately de-
code biased noise without retraining might be an alternative.
To quantify the performance of the DRL decoder for biased
noise, we consider the probability of an error of any type p,
probability of phase-flip error pz = prel p, and consequently
px = py = (1 − prel )p/2. Thus, for prel = 1 the syndromes
contain only Z errors, which corresponds to uncorrelated
noise, whereas prel = 1

3 corresponds to depolarizing noise.
In Fig. 10, we show the success rate for the decoder on

biased noise. We find that the highest success rate is attained
for depolarizing noise, which also is what the decoder is

TABLE I. Comparison of asymptotic logical fail rates PL .

Analytic DRL decoder

d = 5 1.51 × 10−3 1.45 × 10−3

d = 7 2.12 × 10−5 2.07 × 10−5

d = 9 2.50 × 10−7 4.30 × 10−7

FIG. 10. Error-correction success rate for biased noise (d =
5)pz = prel p, px = py = (1 − prel )p/2, using a decoder trained on
depolarizing noise (prel = 1

3 ). For pure phase-flip noise (prel = 1),
the decoder is compared to MWPM. The line MWPM (p/2)2

indicates expected performance for an MWPM decoder designed
explicitly for pz = 0 noise.

trained for. We can understand this as a consequence of
the superlinear decline (for low p) in success rate with the
number of defects, such that the majority species dominates
the outcome. At prel = 1

3 there is an equal mean number of
vertex and plaquette defects, while away from this limit, the
number of either one or the other grows. That the operation of
the trained DRL decoder is suboptimal is clear from the limit
prel = 0, corresponding to only X and Y errors, which should,
in principle, be a simpler decoding problem, similar to uncor-
related noise with independent error rates p/2.2 Nevertheless,
the decoder gives fair performance for the full range of biased
noise, which may be an advantage over having a decoder
which is specialized to a particular, potentially unknown, bias.

V. CONCLUSION AND OUTLOOK

We have shown how deep reinforcement learning can be
used for quantum error correction of depolarizing noise (px =
py = pz) in the toric code, with significantly improved per-
formance compared to the standard MWPM algorithm. The
advantage is gained by learning to account for the correlations
between the vertex and plaquette defects. The super-MWPM
performance for depolarizing noise was achieved for system
sizes up to d = 9, corresponding to 162 qubits. However, by

2Even though the limit pz = 0 corresponds to a surplus of plaquette
defects versus vertex defects, the decoding problem is, in principle,
equivalent to the problem of noncoinciding X and Z errors with
error rates px = pz = p/2: the decoder could first decode the vertex
defects using Y operators, and subsequently decode the remaining
plaquette defects using X . The corresponding uncorrelated problem
[with nonzero coincidence probability (p/2)2] would have MWPM
success rate PS = (PS,X (p/2))2, which we expect is still a good
approximation (for small p) and also close to optimal for this weakly
correlated noise.
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applying the trained decoder to decode pure bit-flip noise,
it was found that ideal performance was only achieved for
d < 9. For biased noise (pz �= px = py), the decoder gives
fair, but suboptimal, success rates.

A crucial question that needs to be explored in subsequent
work is how to scale up the DRL decoder to larger codes, and
how this will effect the decoder speed. One limitation that we
encounter is an increasingly slow training convergence with
the increasing network size used for larger d . In contrast to
supervised learning using preannotated data, allowing for very
high throughput training of the deep neural network, a chal-
lenge with DRL is that the training data are generated using
the network itself which limits the pace of data generation.
To improve this, we are currently implementing distributed
reinforcement learning [66], where a large set of agents inde-
pendently explore the environment to fill a common memory
buffer, allowing for better hardware utilization and decreased
training times.

The type and depth of network best suited for the task
also needs to be explored in a systematic way. For d = 9, we
are currently using a deep residual neural network, for which
skip connections are known to improve convergence [67], and
which is the workhorse for DRL [68]. Nevertheless, going
to significantly larger networks also increases the hardware
requirements, and even if it is possible to train a very large
network, the time required for forward propagation through
the network will limit the decoding speed. As a primer for a
more systematic study of the DRL decoder execution time,
we show in Table V in Appendix B the time per step of error
correction. As expected, this time grows with code distance,
reflecting the time consumption for the policy generation
using an increasingly deep neural network.

A promising path to improving the performance of the de-
coder is to go beyond the conceptually simple but inefficient Q
learning. The action-value function contains more information
than is actually needed for the decoding task; instead, a policy
(best action) for each syndrome is sufficient. (Although, the
advantage of a Q network for our implementation is that the Q

values allow for independent evaluation for each qubit action.)
We are currently working on implementing the ALPHAZERO

algorithm that combines a trained policy (and value) network
with an on-the-fly Monte Carlo tree search [68,69], and which
has recently been applied to quantum control problems [70].
A drawback of this approach is the additional computational
demand during operation of the decoder. A simpler approach
would be to use a policy-based algorithm, such as the RE-
INFORCE algorithm [71]. This algorithm directly optimizes a
policy without calculating action values or performing any
kind of tree search. A natural extension is the class of actor-
critic methods [72]. These combine concepts from value-
and policy-based methods and are more robust and stable
during the training. Moreover, it could be worth investigating
the possibility of transferring the domain-specific knowledge
(transfer learning) obtained from small grid instances to com-
parably larger grid sizes [73].

Another important limiting component to the DRL decoder
performance is the reward scheme. In this work, we use the
heuristic to minimize the length of correction chains, which is
only optimal for p → 0 [24,42]. To improve performance for
larger error rates and for biased noise, with greater or smaller
probability of phase-flip errors, we are currently exploring a
reward scheme based on a Monte Carlo generated distribution
of error chains for each syndrome [23,24].

In addition to improving the prowess of the DRL decoder
for the problem discussed in this paper, further developments
should include addressing syndrome measurement errors and
nontoric topological codes [35]. Even though the DRL-type
decoder presented in this paper and in Refs. [36,40] is still
limited in scope, we have shown that it can flexibly address
various types of noise, and in some regimes give super-
MWPM performance. In addition, the information gathered
from exploration is stored and used in an efficient and gen-
eralizable way using a deep neural network and step-by-step
error correction, limiting both the complexity of concurrent
calculations and the need for massive information storage,
which may be instrumental for future operational decoders.

(a) (b) (c)

FIG. 11. (a) The initial syndrome corresponding to one Y error and three X errors. (b) MWPM will always introduce a nontrivial loop
and therefore fail. The “minimum correction chain” decoder has a 50% probability each for failure and success [correction chains (b) or (c),
respectively].
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(a) (b) (c)

FIG. 12. (a)–(c) For each of these syndromes, the shortest correction chains are of the same length (four steps in all cases). This is also
true for other constellations of errors. The length of the error correction chain does not depend on the relative position of the syndrome defects
in a row or a column.
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APPENDIX A: SMALL ERROR RATE

It is possible to derive a theoretical expression for the
logical fail rate, that becomes exact in the limit of low error
probabilities, by considering only the shortest possible error
strings that may lead to an error given the decoding scheme.
Here, we derive such expressions for depolarizing noise px =
py = pz = p

3 for an algorithm which is based on correction
using the minimum number of correction steps, and for an
algorithm which is based on using MWPM separately on
the graphs given by plaquette and vertex errors. The former
algorithm, which we refer to as “minimal correction chain”
(MCC), is similar to, but not exactly equivalent to, our trained
decoder since our reward scheme, in addition to penalizing
steps, also gives reward for annihilating syndrome defects.
The latter will give a slight priority to using Y operators
(which can annihilate two pairs of defects) at an early stage
of the decoding sequence. Nevertheless, we expect that this
algorithm serves as a good benchmark for how well our
DRL implementation of the algorithm works. In particular, we
would like to see that our decoder outperforms the MWPM
decoder also for low error rates.

The shortest error strings that can give an error with either
of the algorithms are 	 d

2 
 long, aligned along one row or
column [24,36,42]. This means that the fail rate for both types
of decoders will scale as PL ∼ (p/3)	

d
2 
 for small p, but with

different prefactors. We will only consider odd d; the scaling
is true for even d , but prefactors are different. Figure 11
gives a demonstrative example of an error string, for d = 7,
where the outcome differs between the two algorithms. Here,
MWPM will fail, solving the vertex defects with one Z and

the plaquette defects with two X to generate a logical bit flip
consisting of a vertical X loop. In contrast, the MCC algorithm
will only fail 50% of the time (we assume draws are settled by
a coin flip), either using the MWPM-prescribed sequence or
using the actual error string (Y XXX ) as the correction string.
Interestingly, our specific decoder implementation should suc-
ceed 100% of the time for this particular error string since it
will prefer to use the Y , but it is not clear that this advantage
is general.

To derive the general expressions for the asymptotic fail
rates, we go through several examples of error chains. First,
one has to keep in mind that we are interested in the minimum
amount of steps to annihilate all excitations. The order in
which the errors are placed in the chain does not matter (see
Fig. 12). Also, the errors do not have to be connected; it is a
sufficient criterion that they all are in one column or row.

Now, we can investigate the different combinations that can
make the decoder fail. Length 	 d

2 
 error chains containing
either only X or Z errors will always generate a nontrivial
loop (see Fig. 13). Moreover, combinations of X and Y errors
can lead to a failure. Figures 11 and 14 show that we have
to consider syndromes with exactly one Y error and the rest
uniformly X or Z errors. For two or more Y errors, the decoder
will always succeed with the error correction. Finally, we
have to find out how X and Z errors in combination behave.
Figures 15 and 16 show that for exactly one Z error and the
rest being X errors, the decoder succeeds with a 50% chance.
Here again, the reward scheme of the actual DRL decoder
would disfavor using a Y if the Z is isolated, giving a slight
discrepancy between this and the MCC algorithm.

We can convince ourselves that the cases presented here
generalize to larger odd d , allowing for the derivation of an
analytic expression for the logical fail rate. For the MCC
algorithm, which we identify as close to the performance of
our DRL decoder, the fail rate is given by

PLMCC = P({XX . . . X }) + P({ZZ . . . Z})

+ P({Y X . . . X }) + P({Y Z . . . Z})

+ P({ZX . . . X }) + P({XZ . . . Z}), (A1)
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(a) (b) (c)

FIG. 13. (a) The initial syndrome with four X errors. (b) The minimum amount of steps, three, to merge the excitations is by introducing
a nontrivial loop around the torus. (c) Revoking the errors introduced would take four steps. Any decoder will fail on such error chains with
100% certainty. Note that X chains of errors on the columns with vertical bonds, or rows with horizontal bonds, will not give quantum error
correction failure (a).

where {. . .} indicates any configuration of errors in one row or
column.

To lowest order in p [i.e., ignoring factors that are powers
of (1 − p)], the probability of 	 d

2 
 errors of the same type is
given by

P({XX . . . X }) = P({ZZ . . . Z}) = 2d

(
d

	 d
2 


)( p

3

)	 d
2 


, (A2)

where the 2d corresponds to the number of rows and columns
(with the appropriate orientation of bonds; see Fig. 13).
The probability of failure from the mixed-type chains is
given by

P({Y X . . . X }) = P({Y Z . . . Z})

= P({ZX . . . X }) = P({XZ . . . Z})

= 1

2
2d

(
d

1

)( p

3

)(
d − 1

	 d
2 
 − 1

)(
p

3

)	 d
2 
−1

= d
⌈

d
2

⌉(
d⌈
d
2

⌉
)( p

3

)	 d
2 


, (A3)

where the 1
2 comes from 50% failure for this type of configura-

tion. Inserting Eqs. (A2) and (A3) in Eq. (A1) and simplifying,
we obtain the following probability of failure in the case of
very low p:

PLMCC = 4d
(
1 + ⌈

d
2

⌉) (
d⌈
d
2

⌉
)( p

3

)	 d
2 


. (A4)

For reference, we mention the corresponding expression for
d even. Here, pure chains of all X or all Z of length d/2
will fail with 50% chance, whereas for all mixed chains error

(a) (b) (c)

FIG. 14. (a) The initial syndrome with two Y operators in the error chain. (b) Five steps are needed if one uses Z operators. (c) There is
only one shortest correction chain with four steps. We can also conclude that with at least two or more Y errors in the chain, the MCC algorithm
(and DRL decoder) always succeeds with the error correction. In contrast, MWPM will fail, using the middle chain (b).
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(a) (b) (c)

FIG. 15. (a) The initial syndrome with one Z and three X errors. There are two possible minimal error-correction chains, one leading to
(b) a failed and one leading to (c) a successful error correction. We assign 50% chance to each outcome. Interestingly, the MWPM algorithm
will always succeed on these kinds of syndromes as Y would count as two operators.

correction will succeed. This gives a fail rate

PLMCC,even = 2d

(
d

d/2

)( p

3

)d/2
. (A5)

This expression can be compared to Eq. (3) of Fowler [42]
for the surface code, where the factor-of-4 difference comes
from us counting both X and Z logical failure and from the
fact that for the toric code these can be both “horizontal” and
“vertical.”

To derive the corresponding asymptotic fail rate for the
MWPM algorithm, we use the fact that it only uses X and
Z for correction. This decoder (similarly to any reasonable
decoder) will always fail for chains of length 	 d

2 
 in a row
or column containing all X or all Z . It will also fail if one or
more of the X or Z in such a chain are replaced by Y . This is
clear from, e.g., correcting a Y with a Z in a chain {Y XX . . .},
which will reduce the chain to a pure {XXX . . .} of the type

that always fails:

PLMWPM = P({XX . . . X }) + P({ZZ . . . Z})

+ P({Y X . . . X }) + P({Y Z . . . Z})

+ · · · + P({YY . . .Y }), (A6)

where the ellipsis indicates chains with increasing numbers of
Y . The general expression for Ny ∈ {0, 1, . . . , 	 d

2 
} Y errors in
a chain with 	 d

2 
 − Ny X (Z) errors reads as

P({YY...XX })

= P({YY...ZZ})

= 2(1 + δNy,	 d
2 
)d

(
d

Ny

)(
d − Ny⌈
d
2

⌉ − Ny

)(
p

3

)	 d
2 


, (A7)

where, compared to Eq. (A3), there is no 1
2 , as these chains

always fail using MWPM, and where the chain consisting
purely of Y is multiplied by a factor of 2 because it will fail on

(a) (b) (c)

FIG. 16. The shortest error-correction chain for the initial syndrome is (a) four steps by simply (c) reversing the changes. (b) Using Y
operators would take five steps and will therefore not be chosen by the decoder. The agent always succeeds on these syndromes.
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TABLE II. List of hyperparameters and their values.

Hyperparameter Value Description

Minibatch size 32 Number of training samples used for stochastic gradient descent update
Training steps 10 000 Total amount of training steps per epoch
Replay memory size, N 10 000 Total amount of stored memory samples
Priority exponent, α 0.6 Prioritized experience replay parameter
Importance weight, β 0.4 Prioritized experience replay parameter
Target network update frequency, C 1000 The frequency with which the target network is updated with the policy network
Discount factor, γ 0.95 Discount factor γ used in the Q-learning update
Learning rate 0.00025 The learning rate used by Adam
Initial exploration 1 Initial value of ε in ε-greedy exploration
Final exploration 0.1 Final value of ε in ε-greedy exploration

A random policy generates training samples to populate the replay memory before the
learning starts

Optimizer Adam Adam is an optimization algorithm used to update network weights
Max steps per episode 75 Number of steps before every episode is terminated

both types (X or Z) of rows and columns. Thus, the complete
expression for the MWPM asymptotic fail rate reads as (after
summation over Ny)

PLMWPM = 4d 2	 d
2 


(
d⌈
d
2

⌉
)(

p

3

)	 d
2 


. (A8)

As expected, we find a higher fail rate for the decoder that uses
MWPM compared to the decoder using the minimum number
of correction steps, with PL/PLMWPM = (1 + 	 d

2 
)/2	 d
2 
 < 1 for

d � 3.
We also note that the asymptotic fail rate for pure bit-flip

(or phase-flip) noise with error rate p is given by Eq. (A2) with
p/3 → p, PL,X (p) = 2d

( d
	 d

2 

)
p	 d

2 
. Thus, under the assump-
tion of uncorrelated X and Z errors with probability 2p/3
(corresponding to the rates for depolarizing noise) we find
exactly that the total fail rate in Eq. (A8) is given by adding
up two independent error channels: PLMWPM = 2PL,X (2p/3).

Another useful representation is to calculate the ratio of
error chains with 	 d

2 
 errors that lead to a failure compared to

TABLE III. Network architecture for d = 5. Every convolutional
layer has a kernel size of 3 and stride 1. Periodic padding is applied
to the first convolutional layer. The other convolutional layers work
with zero padding.

No. Type Size No. parameters

1 Conv2d 128 2432
2 Conv2d 128 147 584
3 Conv2d 120 138 360
4 Conv2d 111 119 991
5 Conv2d 104 104 000
6 Conv2d 103 96 511
7 Conv2d 90 83 520
8 Conv2d 80 64 880
9 Conv2d 73 52 633
10 Conv2d 71 46 718
11 Conv2d 64 40 960
12 Linear 3 1731

899 320

the total number of chains with 	 d
2 
 errors:

fRL =
4d

(
1 + ⌈

d
2

⌉) ( d
	 d

2 

)

(2d2

	 d
2 


)⌈
d
2

⌉3 . (A9)

Accordingly, for the MWPM,

fMWPM =
4d 2	 d

2 
( d
	 d

2 

)

(2d2

	 d
2 


)	 d
2 
3

. (A10)

TABLE IV. Network architecture for d = 7. Every convolutional
layer has a kernel size of 3 and stride 1. Periodic padding is applied
to the first convolutional layer. The other convolutional layers work
with zero padding.

No. Type Size No. parameters

1 Conv2d 256 4864
2 Conv2d 256 590 080
3 Conv2d 251 578 555
4 Conv2d 250 565 000
5 Conv2d 240 540 240
6 Conv2d 240 518 640
7 Conv2d 235 507 835
8 Conv2d 233 493 028
9 Conv2d 233 488 834
10 Conv2d 229 480 442
11 Conv2d 225 463 950
12 Conv2d 223 451 798
13 Conv2d 220 441 760
14 Conv2d 220 435 820
15 Conv2d 220 435 820
16 Conv2d 215 425 915
17 Conv2d 214 414 304
18 Conv2d 205 395 035
19 Conv2d 204 376 584
20 Conv2d 200 367 400
21 Linear 3 15 003

8 990 907
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TABLE V. Operational decoding time per correction step tstep,
i.e., time per Pauli operator of the correction chain, for two different
error rates and the three code distances. The bulk of the time
consumption is in the forward evaluation of the network.

p 0.05 0.1

d = 5 0.0111 s 0.0131 s
d = 7 0.0268 s 0.0303 s
d = 9 0.0818 s 0.1148 s

APPENDIX B: MODEL DEFINITION,
HYPERPARAMETERS, AND RUNNING TIME

In this Appendix, we list relevant parameters for our neural
networks. Table II shows the different hyperparameters used

FIG. 17. A selected correction sequence from the fully trained
decoder. The sequence goes from left to right and top to bottom. The
circles indicate on which qubit an action was performed. In this case,
the error correction fails, with the last state corresponding to a logical
Y operator, i.e., both bit and and phase flip.

FIG. 18. A selected correction chain from the fully trained de-
coder. The sequence goes from left to right and top to bottom. The
circles indicate on which qubit an action was performed. Here, the
error correction is successful, with only trivial loops remaining.

in training along with short descriptions of each. The structure
of the deep neural network used for most of the training can
be seen in Tables III and IV. The network consists of mostly
convolutional two-dimensional layers of decreasing size. All
layers except the first used zero padding. The first layer used
padding with periodic boundary conditions. For grid size d =
9, we used the built-in ResNet34 definition provided in the
PYTORCHframework. It has 21 277 955 tunable parameters.

The hardware used for the training was one GPU unit
(NVIDIA Tesla V100 SMX2 GPU). The training time de-
pends on the grid size. The bigger the grid, the more training
is necessary. With the implementation found on github, d = 5
converged after 5 h of training. The network for d = 7 needs
approximately 4 days (96 h) for convergence.

Table V shows execution time tstep per correction step
for two different error rates of depolarizing noise. This is
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calculated by taking the average time to correct 10 000 ran-
domly generated syndromes divided by the average number
of errors 2pd2. As expected, time per step depends only
weakly on p, but much more strongly on d . The increase with
code length is mainly due to the corresponding growing com-
plexity of the networks, which increases the computational
time required for the policy generating forward propagation
through the network. To estimate how tstep scales with d is
left for future work as it would require a careful study of
the minimal network size and structure, more (even integer)

and larger d , as well as optimizing the full computational
structure.

APPENDIX C: SELECTED EPISODES

In this Appendix, we present two selected episodes of error
correction using the fully trained decoder for d = 5. Figure 17
shows an example where the error correction fails and Fig. 18
shows an example of successful error correction.
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