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Breaking time-reversal and translational symmetry at edges of d-wave superconductors:
Microscopic theory and comparison with quasiclassical theory
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Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

(Received 29 May 2020; revised 14 September 2020; accepted 14 October 2020; published 6 November 2020)

We report results of a microscopic calculation of a second-order phase transition into a state-breaking time-
reversal and translational invariance along pair-breaking edges of d-wave superconductors. By solving a tight-
binding model through exact diagonalization with the Bogoliubov–de Gennes method, we find that such a state
with current loops having a diameter of a few coherence lengths is energetically favorable below T ∗ between
10%–20% of Tc of bulk superconductivity, depending on model parameters. This extends our previous studies
of such a phase crystal within the quasiclassical theory of superconductivity, and shows that the instability is
not qualitatively different when including a more realistic band structure and the fast oscillations on the scale of
the Fermi wavelength. Effects of size quantization and Friedel oscillations are not detrimental. We also report
on a comparison with quasiclassical theory with the Fermi surfaces extracted from the tight-binding models
used in the microscopic calculation. There are quantitative differences in for instance the value of T ∗ between
the different models, but we can explain the predicted transition temperature within each model as due to the
different spectral weights of zero-energy Andreev bound states and the resulting gain in free energy by breaking
time-reversal and translational invariance below T ∗.

DOI: 10.1103/PhysRevResearch.2.043198

I. INTRODUCTION

Superconductors and superfluids are ideal to study the
effects of topological states and their protection [1,2]. The
superconducting condensate provides a spectroscopic gap for
the quasiparticles and one can engineer devices to host topo-
logically protected low-energy states. This can be achieved
either by placing arrays of impurities on their surface [3] or by
carefully shaping the properties of their external surfaces [4].
Unconventional superconductors, such as, e.g., the cuprates
with an order parameter of d-wave symmetry [5,6], are of
particular interest as the orbital form of the condensate wave
function itself can support topological surface states. For a
d-wave superconductor, surface scattering may induce zero-
energy Andreev bound states [7]. These zero-energy states
form a nondispersive band that can be related to bulk topol-
ogy [8].

While these states are protected in a noninteracting sys-
tem, interactions may lead to instabilities where additional
symmetries are broken [9]. Early on it was suggested that
time-reversal symmetry may be broken by forming a sub-
dominant component of the order parameter [10–13], thereby
shifting the Andreev states and splitting the zero-bias peak as
sometimes seen experimentally [14,15]. Another suggestion is

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

magnetic ordering at the surface causing a spin split [16,17].
Experimentally, breaking of time-reversal symmetry remains
controversial [4,6,18–21]. The zero-bias conductance peak
does not always split at low temperature, and the associated
currents and magnetic fields are so far unobserved or small.
In addition, there are remaining interesting, and somewhat
controversial, questions on the properties of the d-wave su-
perconducting phase, in particular in devices where surfaces
and interfaces play an important role [21,22]. Surfaces and
interfaces with a normal, not exactly aligned with a crystal-
lographic axis, are pair breaking, with associated formation
of zero-energy Andreev bound states [7]. These states play an
important role in determining device physics. They show up
in tunneling experiments as zero-bias conductance peaks [23]
and influence the current-phase relation of Josephson junc-
tions [24,25]. These works may also become relevant to
the ongoing research into Sr2RuO4, where recent experi-
ments [26,27] point towards a singlet superconductor with
unconventional orbital symmetry [28,29].

Recently, we reported on a different scenario of shifting
the Andreev bound states and lowering the free energy in
a more complicated manner, where both time-reversal and
translational invariance along the surface are broken [30–34].
In a second-order phase transition, spontaneous current loops
become energetically favorable at a temperature T ∗ up to
20% of Tc of bulk superconductivity. The inhomogeneous
broadening along the surface may explain that the zero-bias
conductance peak is not necessarily split in a tunneling exper-
iment, but instead acquires a temperature-independent width
for T < T ∗. In addition, since neighboring current loops have
opposite circulation, the magnetic fields tend to cancel when
averaged over one period of the current pattern, which is about
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10ξ0, where ξ0 is the superconducting coherence length [30].
This unexpected symmetry-broken state does not involve any
subdominant pairing channel or any other mean-field order
than the superconducting order parameter with pure d-wave
symmetry. The free energy is lowered through Doppler shifts
of Andreev states. The superflow causing the Doppler shift
is associated with the order-parameter phase having an oscil-
latory behavior along the edge, resembling a crystal pattern
that may be called a phase crystal [34]. The phase crystal
has a higher T ∗ than the state with translational invariant
superflow [35–39].

The previous work [30–34] and predictions were carried
out using the quasiclassical theory of superconductivity [40].
The quasiclassical approximation involves integrating out
effects relevant at the atomic scale. This requires a good
separation between the atomic scale and the relevant super-
conducting scale, i.e., the superconducting coherence length.
Typical high-temperature superconductors have very short
coherence lengths, and the validity of the quasiclassical ap-
proximation can be questioned. A first comparison of results
from a tight-binding Bogoliubov–de Gennes theory with those
of quasiclassical theory [41] were made analyzing the uncon-
ventional charging effects in small superconducting Yttrium
barium copper oxide (YBCO) single-electron tunneling de-
vices [21]. In this paper we explore the phase crystal at edges
of d-wave superconductors within a tight-binding model. We
are interested in the effects of including the atomic scale
oscillations, as well as the effects of the more realistic band
structure and Fermi surface taken into account in the tight-
binding model. So far [30–34] only a circular Fermi surface
was used in the quasiclassical calculations. We will in this
paper also extract the relevant Fermi surfaces predicted by the
tight-binding models and compare with quasiclassical theory.

The paper is structured as follows. In Sec. II we introduce
the real-space tight-binding model and how it is solved us-
ing the Bogoliubov–de Gennes exact diagonalization method.
This section also includes a reciprocal space calculation to
characterize the parameter spaces, set key model parame-
ters, and extract the relevant Fermi surfaces. In Sec. III we
present results obtained within the tight-binding model for
the transition into the phase crystal. In Sec. IV we intro-
duce a comparison between the tight-binding model and the
quasiclassical formulation with the extracted Fermi surfaces,
thereby highlighting the qualitative similarities but quanti-
tative differences between the two approaches. Finally in
Sec. V we summarize. A few calculations are collected in the
Appendix.

II. TIGHT-BINDING DESCRIPTION OF A d-WAVE
SUPERCONDUCTOR

A. Real-space formulation

The normal state of the material is described by a single
band, where the band structure is determined by a few hopping
integrals ti j . The single-particle Hamiltonian reads

Ĥ(e) =
∑
i, j,σ

ĉ†
iσH

(e)
i j ĉ jσ =

∑
i, j,σ

ĉ†
iσ (ti j − μδi j )ĉ jσ , (1)

FIG. 1. Illustration of the tight-binding model. The lattice sites
are indicated by filled black circles and have coordinates R j . The
hopping integrals included are nearest t , next-nearest t ′, and next-
next-nearest t ′′ neighbors. The lattice constant is a and we assume
that it is equal along both crystallographic directions â and b̂. The
link order parameter �i j is defined along links such as δ = Ri − R j

and we assign their values to the midpoints between sites as indicated
by green crosses. The dashed line indicates a pair-breaking [110]-
edge, where zero-energy states are formed and where the circulating
currents appear below T < T ∗.

where ti j includes nearest (t), next-nearest (t ′), and next-next-
nearest neighbor (t ′′) hopping parameters, see Fig. 1. The
indices i and j enumerate the lattice sites, σ labels spin, and δi j

is the Kronecker delta function. The operator ĉ jσ annihilates
an electron with spin σ on site j. The chemical potential μ

is not expected to vary for temperatures below the critical
temperature Tc for our grain sizes [42] and should be set by
the doping level. We are not interested in grain size effects or
detailed doping level dependence in this work. Therefore we
treat μ as a parameter of the model. The hopping parameters
were taken from the literature [43,44] where they were ex-
tracted either from relevant experimental data or from density
functional theory.

The Hamiltonian describing weak coupling d-wave super-
conductivity on a lattice is

Ĥd =
∑
〈i, j〉

�i j ĉ
†
i↑ĉ†

j↓ + H.c., (2)

where the mean-field order parameter lives on nearest-
neighbor links

�i j = V

2
〈ĉi↑ĉ j↓ − ĉi↓ĉ j↑〉, (3)

where V is the coupling constant. In the bulk, �i j are pos-
itive for links along the crystallographic â-axis, Ri − R j =
±aâ, and negative for links along the b̂-axis, Ri − R j = ±ab̂,
where a is the lattice constant. We note that depending on the
parameters of the model (see next subsection), an extended
s-wave order may be stable instead of the d-wave, in which
case the link order parameter �i j is positive in both crystallo-
graphic directions. In this paper, we will focus on the part of
parameter space where d-wave order is stable in the bulk.
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After performing a Bogoliubov rotation, the Bogoliubov–
de Gennes (BdG) equation for a superconductor is obtained

(
H(e)

i j �i j

�∗
i j −H(e)∗

i j

)(
u(n)

j

v
(n)
j

)
= En

(
u(n)

i

v
(n)
i

)
, (4)

where En is the eigenvalue and (u(n)
i , v

(n)
i )

T
is the corre-

sponding eigenfunction. Since we are considering a singlet
superconductor, we are here suppressing the spin indices
but consider both positive and negative energy eigenval-
ues, thereby avoiding double counting. Note that if the
u-amplitudes are spin up, then the v-amplitudes are spin
down, see, e.g., Ref. [45]. The most straightforward strategy
is to resort to direct diagonalization and obtain all eigenvalues
and eigenvectors. The only complication is that the link order
parameter must be computed self-consistently through the gap
equation

�i j = V

4

∑
n

(
u(n)

i v
(n)∗
j + v

(n)∗
i u(n)

j

)
tanh

(
En

2T

)
, (5)

where T is the temperature. Note that in this paper we set the
reduced Planck constant h̄, the Boltzmann constant kB, and
the electron charge e, all to unity.

Once self-consistency of �i j has been achieved we may
compute observables, such as currents and local density of
states. The local current density is in the tight-binding model
defined on links coupling nodes through the hopping integrals
ti j in Eq. (1). The current from site j to site i is computed
through the formula

Ji j = −4
∑

n

Im
[
ti ju

(n)∗
i u(n)

j f (En) − t∗
i jv

(n)∗
i v

(n)
j [1 − f (En)]

]
,

(6)
where f (En) is the Fermi-Dirac distribution function. We
use as an extra convergence test that the currents flowing
into and out of all nodes in the grain are conserved. When
showing results for the currents we will sum currents flowing
into and out of each node in the form of a vector plot, as
described in detail in Appendix A. We note in passing that the
spontaneous currents will give rise to small magnetic fields.
They will be very similar as in the quasiclassical treatments in
Refs. [30–34] and we will not analyze them here.

The local density of states at position R j is computed as

N j (E ) = − 1

π
�

∑
n

[ ∣∣〈u(n)
j

∣∣u(n)
j

〉∣∣2

E − En + iη
+

∣∣〈v(n)
j

∣∣v(n)
j

〉∣∣2

E + En + iη

]
, (7)

where η > 0 is a small imaginary part of the energy. The total
density of states of the grain is obtained by summation over
sites.

Once we have the full eigenvalue spectrum we can also
study the thermodynamic properties. The free energy is given
as [46]

� = Eg − TS

= −T
∑

n

ln

[
2 cosh

(
En

2T

)]
+

∑
i, j

|�i j |2
2V

, (8)

TABLE I. Normal state characteristics of the two tight-binding
models. All energies are measured in units of t > 0.

# t ′ t ′′ μ
〈|vkF

|〉FS

ta
1

a〈|kF |〉FS

1 −0.25 0.0 0.0 2.53562 0.381869
2 −0.495 0.156 −1.267 2.39512 0.480474

while the entropy has the well-known form

S = −2
∑

n

[ f (En) ln f (En) + [1 − f (En)] ln[1 − f (En)]].

(9)
We also use the convergence of the free energy as a check

for our solutions. In principle, Eq. (8) contains an additional
term, ∑

n,i

En
(∣∣u(n)

i

∣∣2 − ∣∣v(n)
i

∣∣2)
, (10)

that stems from the internal energy Eg. This term gives, when
nonzero, the same contribution in both the normal and in the
superconducting states and is omitted since we will present
results for the free energy difference between the supercon-
ducting and normal states.

B. Reciprocal space formulation: Analysis of parameter spaces

Before presenting results of the real-space calculation it
is useful to extract material parameters for an extended sys-
tem both in the normal and in the superconducting states.
In addition, we extract information about the Fermi surfaces
that we will use in Sec. IV to compare the tight-binding and
quasiclassical results.

1. Normal state

The normal state dispersion for a single band is

εk = −2t[cos(kxa) + cos(kya)] − 4t ′ cos(kxa) cos(kya)

− 2t ′′[cos(2kxa) + cos(2kya)], (11)

where t , t ′, and t ′′ are the hopping integrals from Eq. (1). In
the following we use t > 0 as the natural unit of energy in the
tight-binding model. The chemical potential is set by μ, and
we introduce

ξk = εk − μ. (12)

We can then find the Fermi surface, i.e., the set of kF that sat-
isfies ξkF = 0. This has to be done numerically. The velocity
is defined as

vk = ∇kξk. (13)

The expression can straightforwardly be calculated analyti-
cally. The Fermi velocity is then obtained as vkF using the
calculated kF.

We will concentrate on two sets of parameters [43,44], as
summarized in Table I. The normal state characteristics of the
two band structures are shown in Fig. 2. In Figs. 2(a) and
2(b) we show the band structures as density plots, with the
Fermi surfaces indicated by black lines. The Fermi velocities
vary around the Fermi surfaces as indicated by the arrows.
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FIG. 2. Band structure for tight-binding (a) model #1 and
(b) model #2. The Fermi surfaces are marked with black solid lines.
The arrows show how the Fermi velocity varies around the Fermi
surfaces. (c) The resulting density of states. (d) Critical temperature
Tc for bulk superconductivity for both d-wave and extended s-wave
superconductivity. The light blue lines are for model #1 and the dark
red lines are for model #2. The position of the Fermi energy (dotted
lines) favors in both models d-wave symmetry, while the extended
s-wave is stable for more negative values of μ.

Clearly, parameter set #1 leads to an almost circular Fermi
surface, while parameter set #2 gives a more realistic model
of a typical high-temperature superconductor.

The normal state density of states is obtained through

NN(E ) = 1

Nk

∑
k∈1.BZ

δ(E − ξk ), (14)

where Nk is the number of k-points we include in the first
Brillouin zone (1.BZ). The resulting bulk density of states
for the two models are shown in Fig. 2(c). We outline in
Appendix B how these Fermi surface parameters are fed into
the quasiclassical calculations.

2. Superconducting state

Turning to the bulk superconducting state, we focus on
the d-wave, i.e., the B1 link order parameter. The pairing
interaction and order parameter are

Vk,k′ = VYd (k)Yd (k′), (15)

�k = �dYd (k), (16)

TABLE II. Superconducting characteristics of the two tight-
binding models. All energies are measured in units of t . T ∗ is
extracted from calculations of a diamond shaped sample of the stated
number of sites, see Sec. III.

# Vd Tc �d,0 ξ/a T ∗ T ∗/Tc # sites

1 1.4 0.118 0.147 4.84 0.016 0.14 10255
2 1.279 0.114 0.145 5.26 0.013 0.11 10255

where the d-wave orbital basis function is

Yd (k) = cos(kxa) − cos(kya). (17)

The normalization is chosen as

1

Nk

∑
k∈1.BZ

Y2
d (k) = 1. (18)

The temperature-dependent gap equation takes the form

�d = V

Nk

∑
k∈1.BZ

�dY2
d (k)

2Ek
tanh

(
Ek

2T

)
, (19)

where Ek =
√

ξ 2
k + �2

k. The superconducting coherence
length can be defined in different ways, but we will use

ξ/a = 〈|vkF |〉FS

π�d,0
, (20)

where �d,0 = �d (T → 0). The Fermi surface average 〈. . .〉FS

is defined in Appendix B. The parameters describing the su-
perconducting state for the different tight-binding realisations
are listed in Table II. For the model parameters we study in
this paper, the bulk order parameter symmetry is d-wave, see
the variation of Tc with μ for the two tight-binding models in
Fig. 2(d). The A1 extended s-wave channel has a basis function
Ys(k) = cos(kxa) + cos(kya) and is stable for negative values
of μ in Fig. 2(d). If we would consider this order parameter
symmetry as well in the comparison with a quasiclassical cal-
culation, we should feed in the strength of that subdominant
order through its bulk Tc. We see in Fig. 2(d) that it is zero
in model #1 and ∼10−3 in model #2 and can therefore be
neglected. Finally, we utilize the relevant Fermi surface basis
function Yd (kF) in the quasiclassical calculations in Sec. IV.

III. RESULTS: TIGHT-BINDING MODEL

We numerically solved the Bogoliubov–de Gennes equa-
tion, Eq. (4), by direct diagonalization to extract eigenvalues
and eigenvectors for each guess of the link-order parameter
in Eq. (5). The procedure is iterative and continues until
self-consistency between the order parameter and the eigen-
values and eigenvectors has been achieved. We studied a
range of grain sizes and shapes. For larger systems we also
used the corresponding Green’s function formalism with the
same tight-binding Hamiltonians. In this case, we use both
the recursive method and the Chebyshev polynomial expan-
sion method [47]. For the recursive method, we use our own
implementation [48] of the knitting algorithm [49]. All these
methods give the same final results, but all results included
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FIG. 3. The link order parameter �i j (R) for a triangular grain with 12 621 sites. The left and right columns contain results for tight-binding
models #1 and #2, respectively. The amplitude |�i j (R)| across the whole grain is shown in (a) and (b). The insets contain the phase χi j (R)
within the red squares drawn in the main panels. Panels (c) and (d) show the amplitude |�i j (R)| as function of y measured away from the grain
edges, taken at positions x listed in (c). The insets show instead the amplitude as function of x along the edge, taken at positions y listed in (d).
In (e) and (f) we display χi j (R) for the same coordinates, where dash-dotted lines are a fit to Eq. (21). Note that the crystal â- and b̂-axes have
been rotated by 45◦ as compared with Fig. 1.

in the figures below are obtained by exact diagonalization as
described in Sec. II above.

A subtle detail in the numerics is the initial guess for
the order parameter that is needed to find the minimum
of the free energy. By guessing a purely real order parameter,
the metastable phase without spontaneous currents is always
found. We utilized a few different strategies to stabilize the
regular pattern of circulating currents. One is to use the ansatz
for the phase in Eq. (21) below. Another one is to include
for the first few iterations an on-site s-wave order param-
eter with a phase winding along the edge and then throw
it away. The link order parameter then picks up the phase
oscillations. Yet another possiblity is to have a region near
the edge where the link order parameter is guessed to have
a Larkin-Ovchinnikov-type [50] of amplitude oscillation, but
with equal magnitudes of the real and imaginary parts. These
guesses give different paths to the free energy minimum. In

fact, depending on the period of the guessed oscillations, one
may stabilize different numbers of current loops in the grain.
But there is only one solution that has minimal free energy.
We note that a random seed of a complex part of the order
parameter results in a lot of noise in the system and it is much
harder to find the correct free energy minimum. To summa-
rize, it is important to carefully check for good convergence of
the order parameter such that the free energy is minimized and
the current is conserved. For the results we show here, current
conservation as in Eq. (A2) is upheld to a relative accuracy
∼10−8 at all individual sites.

We show the link order parameter �i j (R) for a triangular
grain with 12 621 sites in Fig. 3. Results for tight-binding
models #1 and #2 are displayed in the left and right columns,
respectively. The grain has a single pair breaking [110] edge
at y = 0. At the [110] edge the well-known zero-energy states
are formed [7,23,24]. In the tight-binding model they show
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FIG. 4. (a), (b) The distribution of eigenvalues close to the Fermi
level (E = 0) for the two tight-binding models. The brown circles
are eigenvalues for the normal state, while the red squares are for
the superconducting state at a temperature above T ∗. The black
diamonds and indigo triangles are for the low-temperature phase
with spontaneous loop currents, either with two or four loops per
[110] edge. For T < T ∗ the flat band of eigenvalues are shifted
away from the Fermi-level which results in a significant decrease
of the free energy in Eq. (8). (c), (d) The total density states in
the superconducting state for the two tight-binding models. The thin
indigo lines are for a bulk superconductor. The two other traces are
computed for a grain at different temperatures; red line is above T ∗

and black line is below T ∗.

up as a large number of eigenvalues at zero energy, see red
squares in Figs. 4(a) and 4(b). The corresponding eigenvectors
have large amplitudes at the pair breaking edge, and the order
parameter is suppressed there. This flat band of zero-energy
states is energetically unfavorable, and as discussed in the
introduction a phase transition can be induced at T ∗ where
spontaneous current loops appear at the edge. Such currents
create phase gradients and superflow that Doppler shifts the
zero-energy states away from zero energy thereby lowering
the free energy, see also Sec. III below. The shifts in the energy
eigenvalues are also clearly seen in Figs. 4(a) and 4(b), black
diamonds and indigo triangles. The resulting total density of
states of the grain are shown for both models in Figs. 4(c)
and 4(d). The large zero energy peak for T > T ∗ due to the
flat band of zero-energy eigenvalues is clearly broadened for
T < T ∗. At the same time, the high-energy spectra, including
the oscillations due to the finite size of the grain, remain

unchanged when lowering the temperature from above to
below T ∗.

For T < T ∗ the order parameter phase χi j acquires os-
cillations along the [110] edge with a period ∼50a ∼ 10ξ ,
i.e., a few superconducting coherence lengths to fit a pair
of counter-flowing loop currents, see Figs. 3(e) and 3(f). We
introduce the wave vector 1/qx ∼ ξ of this oscillation to adapt
to the notation in Ref. [34], where a variational ansatz was
introduced for the phase oscillations near T ∗ within quasiclas-
sical theory. It is

χ (x, y) ∝
(

1 + y

y0

)
e−y/y0 cos(qxx), (21)

and fits to the tight-binding results are plotted as black dash-
dotted lines in Figs. 3(e) and 3(f). Near the edge, the amplitude
of the phase oscillations is rather large, of the order π , but
there is no phase winding and no topological defects in the
order parameter. The phase decays to zero away from the edge
on the scale y0 ∼ ξ .

The amplitude |�i j (R)| also acquires a small oscillation
parallel to the edge on the same scale 1/qx, although this
effect is more pronounced in tight-binding model #1 than in
tight-binding model #2. The additional fast oscillations on
the scale of the lattice constant a are inherent to the tight-
binding model. There are also oscillations of the amplitude
on the scale of the inverse Fermi wave vector 1/kF ∼ 3a to
4a when looking at the amplitude as a function of distance
from the edges. These also appear at the nonpairbreaking
edges [51–59], see indigo dash-dotted lines in Figs. 3(c)
and 3(d). These oscillations are a result of Friedel oscillations
at the edge and are temperature independent.

Thermodynamics

We present in Fig. 5 the low-temperature thermodynamics
of a square d-wave superconducting grain with all four edges
at a 45◦ angle from the ab-axes. This grain has 10 255 sites
and is slightly smaller than the one in Fig. 3. In particular,
each edge is much shorter than in the triangular grain. The free
energy of the metastable phase, which has no currents and a
purely real order parameter [red open squares in Figs. 5(a)
and 5(b)], shows a pronounced upturn at low temperature,
signaling the energy cost of the zero-energy Andreev bound
states. For larger grains, the upturn is less visible since the
weight of the edge is diminished compared with the grain in-
terior. It is interesting that we can stabilize a different number
of current loops along each edge: (i) four current loops, purple
triangles, and (ii) two current loops, black diamonds. The
two configurations have the same T ∗. For lower temperature,
T < T ∗, the configuration with four current loops (purple
triangles) has lower free energy. From the entropy, Figs. 5(c)
and 5(d), one can see from the abrupt change of slope at T ∗
that the phase transition is of second order and has the same
value within our numerical accuracy irrespective of number
of current loops. To enhance the visibility of the knee in the
entropy as function of temperature, we present the difference
in entropy between the phase with currents and the metastable
phase which has no currents, SS − Sms.

The difference in T ∗ between the two tight-binding mod-
els can be understood as due to the different number of
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FIG. 5. Thermodynamics of a square d-wave superconducting
grain with 10 255 sites with all four edges pair breaking. The left
column shows results for tight-binding model #1, while the right
column shows results for tight-binding model #2. In (a), (b) we
show the free energy difference between the superconducting and
normal states, �S − �N, normalized to the number of sites. The red
open squares are results for a purely real order parameter with no
spontaneous currents, which is a metastable state for T < T ∗. The
black diamonds and indigo triangles are results with spontaneous
currents, where the black (indigo) indicates two (four) current loops
stabilized along each edge. The upturn at low temperatures for the
metastable (ms) state is due to the edge Andreev bound states at
zero energy, which cost free energy. The most stable state is the
one with four current loops (indigo triangles) for both models. In
(c, d) we display the difference in entropies between the states with
and without spontaneous currents, SS − Sms. The arrows indicate T ∗.
Note that we normalized the temperature scale by the two different
critical temperatures Tc of the tight-binding models.

zero-energy eigenvalues. In Fig. 4 we see that there are more
eigenvalues and a higher spectral weight in tight-binding
model #1. The Doppler shifts then become more energetically
favorable, and consequently, T ∗ is higher, see Table II. The
higher energy cost of the zero-energy states in model #1 is also
visible in the larger upturn in the free energy of the metastable
state, see Figs. 5(a) and 5(b).

Thus, we can conclude that the phase crystallization
that was studied in Refs. [30–34] within the quasiclassi-
cal approximation can be found also in the more general
mean-field tight-binding Bogoliubov–de Gennes theory. Early
work [60,61] on this type of tight-binding model also found
structures in the order parameter and spontaneous currents. At
that time only small grains could be studied, probably because
of limited computational resources, and the regular amplitude
and phase oscillations that we find here were not seen. In those
works, the appearance of edge currents was associated with
the development of the A1 site quantity in Eq. (A5). Here,
instead, we associate the spontaneous currents with phase

crystallization and identify the resulting Doppler shifts as the
microscopic mechanism behind the lowering of the free en-
ergy below the phase transition temperature T ∗. We also note
that, at least from quasiclassical theory, a subdominant s-wave
order parameter at the edge would favor a translational invari-
ant current flow along each edge, see Ref. [30]. In addition,
for a subdominant s-wave order parameter we would expect a
spectral gap around zero energy, which is not present in Fig. 4.
To further support these conclusions, we compare in the next
section with results that we obtained with the quasiclassical
theory.

IV. RESULTS: COMPARISON WITH
QUASICLASSICAL THEORY

The quasiclassical theory of superconductivity [40,62] is
used to study triangular grains, following the methods de-
scribed in Refs. [30–34], but with modified Fermi-surface
averages [63] as explained in Appendix B. It is noted
that Fermi-surface effects were studied [64,65] for a sim-
ilar spontaneous time-reversal symmetry-breaking (TRSB)
phase [66,67]. In addition to the Fermi surfaces defined by
tight-binding models #1 and #2, a circular Fermi surface
is also investigated. It shows very similar results to model
#1 due to the similar Fermi surface shape, and is therefore
omitted from some of the figures. We begin by comparing
the self-consistent order-parameter and current obtained with
quasiclassics versus with BdG. This is followed by an anal-
ysis of the thermodynamics and the phase transition, where
numerical and analytical calculations are combined to explain
the results in terms of the Fermi-surface features.

A. Self-consistent observables

As the system enters the symmetry-breaking phase, all
three models follow Eq. (21), with a phase that varies
sinusoidally with wave number qx ∼ 1/ξ0 parallel to the in-
terface, and that decays exponentially over distance y0 ∼ ξ0

away from the interface. Here, we use the definition ξ0 ≡
〈|vF|〉FS/(2πTc). Such a superflow gives rise to smooth and
round currents [30,32,34], very similar to those found with
the BdG approach. As the temperature is lowered far below
the transition temperature, however, the shape of the phase
is significantly modified, from sinusoidal to triangle-wave-
like. This ensures long and constant phase gradients, and
hence constant superflow ps, which leads to the most efficient
Doppler shift of midgap states. This is seen in the deviation
from the fit to Eq. (21) in Fig. 6, where the order-parameter
amplitude and phase are plotted at T = 0.1Tc < T ∗, with
results for models #1 and #2 displayed in the left and right
columns, respectively. The same deviation from Eq. (21)
seems to be somewhat present in the BdG results as well, but is
highly obscured by the atomic-scale oscillations parallel to the
interface (see Fig. 3). The resulting currents are qualitatively
very similar in quasiclassics and BdG, see Fig. 7.

It is noted that the size of the unit cell illustrated in the
BdG results is roughly 50a × 30a, which with a coherence
length of ξ ∼ 5a corresponds to the unit cell of roughly
10ξ0 × 6ξ0 illustrated in the quasiclassical results. Further-
more, the same peculiar pattern of edge-defects (i.e., sources,
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FIG. 6. The quasiclassical order parameter �d (R) = |�d (R)| exp [iχ (R)] at T = 0.1Tc in a triangular grain with a single pair breaking
edge of length 60ξ0 at y = 0. The left and right columns contain results for tight-binding models #1 and #2, respectively. Panels (a) and
(b) show the amplitude |�d (R)| in a unit-cell at the center of the pair-breaking edge, with insets showing the phase χ (R). Panels (c), (d) show
the amplitude as a function of y measured perpendicular to the interface, taken at positions x listed in (c). The insets show instead the amplitude
as function of x measured parallel to the edge, taken at positions y listed in (d). Panels (e), (f) show the phase χ (R) for the same coordinates,
with a fit to Eq. (21). The fit is perfect at T � T ∗, but at lower temperatures, the figures show that there is a clear deviation from the fit due to
higher-order modulations.

sinks, and saddle-points) in the superflow vector field ps as
reported in Ref. [32] are still present in all Fermi surface
models (not shown here).

B. Thermodynamics of the phase transition

The pair-breaking interface leads to zero-energy midgap
states (MGS) with an associated energy cost, in the form lost
condensation energy, that scales as 1/T . In the presence of
a superflow ps, the zero-energy states are Doppler shifted to
finite energies δε ∝ vF · ps, consequently reducing the energy
cost. However, the superflow also shifts the continuum states
in the bulk, where it instead costs kinetic energy. The optimal
form of the superflow is therefore an exponential decay away
from the pair-breaking interface [68], as in Eq. (21). Due to the

1/T -dependence of the MGS energy cost, the energy gain of
spontaneous superflow at the interface eventually outweighs
the cost of its tail in the bulk, below a transition temperature
T ∗. This transition temperature is extracted from the self-
consistent numerics via the quasiclassical free energy [69],
by comparing the free energy of systems with and without
spontaneous superflow. This last is referred to as metastable
(ms) as it exhibits a higher free energy below T ∗. Table III
presents the numerically obtained T ∗ and average spectral
weight (A) for all three Fermi-surface models, together with
evaluated low-temperature analytic expressions of the gap and
free-energy terms (explained further in Appendix C). Model
#1 (#2) shows a lower (higher) T ∗ than that of a circular Fermi
surface, which correlates with a lower (higher) cost of the
MGS, and a lower (higher) energy gain of Doppler-shifting
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FIG. 7. Circulating currents near the [110] edge, using (a), (b) BdG at temperature T = 0.005t ≈ 0.04Tc < T ∗, and (c), (d) quasiclassics
at temperature T = 0.1Tc < T ∗. The left and right columns are for tight-binding models #1 and #2, respectively. Here the depairing current is
defined as jd ≡ 4πTc|e|NFv̄F.

them. The density of states also follows this trend, with a
lower (higher) spectral weight for model #1 (#2) above T ∗.
This is because there are less (more) zero-energy states at
the interface, that extend over a shorter (longer) distance into
the bulk due to a smaller (larger) suppression of the order-
parameter amplitude |�|, see Fig. 8(a). The spectral weight is
obtained by integrating the local density of states, N (R; ε), in
a small window around zero energy, and spatially averaging
over one unit cell (u.c.) of the periodic phase (i.e., the region
shown in Fig. 6), according to

A = 1

Au.c.

∫
u.c.

dR
∫ εc

−εc

N (R; ε) dε, (22)

where Au.c. = ∫
u.c. dR. Figure 8 shows that in the presence of

superflow below T ∗, the Doppler shift is lower (higher) for
tight-binding model #1 (#2) compared to the circular Fermi
surface, leading to a higher (lower) spectral weight close to
zero energy. To summarize, model #2 has the highest spectral
weight of zero-energy states, and the most efficient Doppler
shift, yielding the highest T ∗. Note that this is in contrast to the
BdG results, where model #1 has the highest spectral weight
and T ∗.

The quasiclassical results are further understood by an-
alyzing the dependence on the Fermi velocity, vF(kF), in
the angular averages entering the observables (explained in
Appendix B). The Fermi velocity is constant across the circu-
lar Fermi surface, while it varies for models #1 and #2, with
maxima and minima which either align with the nodes or the
antinodes (lobes) of the dx2−y2 -wave basis function, as is seen
in Figs. 2(a) and 2(b). Model #1 has its Fermi velocity maxima
along the nodes, and its minima along the antinodes, while it is
the opposite [70] for model #2. The full analysis is nontrivial,
but in short, this behavior ensures that model #2 and #1 weighs
the MGS contribution higher and lower, respectively (see
Appendix C for further details). This trend was verified by
also investigating the cost of the midgap states for a dxy-wave
basis function with a pair-breaking [100] interface (not shown
here). Here, the Fermi-surface shows the opposite features,
such that the opposite trend is expected for T ∗. Indeed, in this
case, model #1 and #2 have instead a larger and smaller transi-
tion temperature than the circular Fermi surface, respectively.

To conclude, the quasiclassical results thus highlight that
the zero-energy states and the transition temperature can
change quite significantly with the Fermi surface parame-
ters, and that it is possible to pinpoint the dependence on
these parameters for various observables and quantities. In the
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TABLE III. Quasiclassical results obtained with full self-
consistent numerics (T ∗ and A), and obtained by evaluating analytic
low-temperature expressions (� and δ�, see Appendix C), for the
three different Fermi surface models. Here, A and Ams are the
spectral weights with superflow and in a metastable (ms) system
without superflow, respectively, integrated over one superflow period
(∼10ξ0 × 6ξ0) at the interface following Eq. (22), and evaluated at
temperature T = 0.1Tc < T ∗. The spectral energy range is ε/Tc ∈
[−5η, 5η], where η = 0.05 is the smearing [i.e., magnitude of the
small imaginary part added to the energy when computing the local
density of states (LDOS)], and A0 = TcNF. For the analytic results,
�bulk

0 denotes the bulk gap, δ�BCS the Bardeen—Cooper—Schrieffer
(BCS) free energy (i.e., without any pair-breaking interface), δ�MGS

the energy-cost of the midgap states, and δ�DS the energy-gain of
Doppler shifting the midgap states to finite energies. Finally, the
energies and superflow are given in units �A ≡ ANFT 2

c , �L ≡
Lξ0NFT 2

c , and p0 ≡ Tc/v̄F, with A ≡ ∫
dxdy, L = ∫

dx, and v̄F ≡
〈|vF|〉FS.

Fermi surface #1 #2 Circular

T ∗/Tc 0.15 0.25 0.18
Ams/A0 0.75 0.85 0.78
A/A0 0.60 0.39 0.56
�bulk

0 /Tc 1.53 1.46 1.51
δ�BCS/�A −1.64 −1.07 −1.14
δ�MGS/�L 4.31 4.89 4.48
δ�DS(ps )/�L −2.76|ps|/p0 −4.48|ps|/p0 −π |ps|/p0

FIG. 8. The average density of states N (R; ε) at the pair-breaking
interface and temperature T = 0.1Tc < T ∗ (a) in the meta-stable
phase without spontaneous currents and (b) in the symmetry-broken
phase. The average is taken within one superflow period (∼10ξ0 ×
6ξ0) at the interface, as shown in Figs. 6(a) and 6(b). The gray lines
mark the integration interval of the spectral weight, Eq. (22). The
inset of (a) shows the zero-energy peak within this interval.

tight-binding results, there are additional microscopic effects
complicating the situation, but the end result is the same in the
sense that the transition is governed by the spectral weight of
zero-energy states.

V. SUMMARY

In summary, we studied two tight-binding models of d-
wave superconducting grains with pair-breaking [110] edges.
At a phase-transition temperature T ∗, the order parameter
develops phase gradients, and circulating currents appear near
the edges. This extends our earlier results [30–34] within the
quasiclassical approximation to a more general theory with
a realistic Fermi surface and where fast oscillations on the
scale of the Fermi wavelength are taken into account. We
find that the phase transition and the qualitative characteristics
of the symmetry-broken phase are universal, independent of
including the microscopic details or not. On the other hand,
some quantitative details, such as the predicted T ∗, depend
on the model. For instance, T ∗ of tight-binding model #2
is lower than #1 within BdG, while it is higher within the
quasiclassical calculation. This deviation can be due to several
things: e.g., electron-hole asymmetry not included in quasi-
classics, or details of the eigenfunctions in the inhomogeneous
system causing Friedel oscillations at the surface which is
included in BdG. But as we showed we can still understand
the variation of T ∗ in all cases (two models within both BdG
and quasiclassics) in terms of the spectral weight of zero-
energy Andreev bound states. Higher spectral weight leads to
a higher T ∗ since the gain in free energy due to the Doppler
shifts then increases. Within quasiclassics, the variation of the
Fermi velocity around the Fermi surface is also important.
The universality can be understood since the scale of varia-
tions of the current patterns and the phase variations is a few
coherence lengths, which is much larger than the fast 1/kF

oscillations. When fast oscillations, and the high-energy parts,
are integrated out when making the quasiclassical approxi-
mation, the physics behind the second-order phase transition
at T ∗ is kept. Since the tight-binding model is more general
than quasiclassical theory, we may assume that the predictions
would be more reliable. On the other hand, the tight-binding
model we studied also has its approximations, including the
weak-coupling mean-field approximation. As an outlook, it
would therefore be of interest to go beyond mean-field and
include effects of electron correlations [71,72].
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APPENDIX A: NOTES ON SITE VERSUS LINK
QUANTITIES

In the tight-binding model it is important to keep in
mind that some quantities are defined on lattice sites, while
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others are defined on the links. For instance, when plotting
the current it is sometimes convenient to define a vector field
with arrows residing on the lattice sites. Let us introduce the
following notation for the link current from site R j to site
Ri = R j + δ:

Ji j = Jj (δ), δ = Ri − R j, (A1)

which is illustrated in Fig. 1 for a nearest-neighbor link δ =
aâ. When we in this way single out site R j , we see that current
will flow along links to neighbors Ri for which the hopping
integrals ti j in Eq. (1) are nonzero. Positive and negative
values means that current flows out of or into site j. Current
conservation requires∑

δ

Jj (δ) = 0, ∀ j. (A2)

Consider now the following vector field

J(R j ) =
∑

δ

Jj (δ)δ̂, (A3)

where δ̂ = δ/|δ| are unit vectors. This vector field gives a nice
overview of current flow patterns. However, it is not fulfilling
current conservation [73] and is in a strict sense an unphysical
quantity. Nevertheless, for convenience we present this vector
field in Fig. 7.

In the same way, in many works [60,61,74–76] the d-wave
order parameter is presented as a site quantity

�d (R j ) =
∑

δ

sd (δ)� j (δ), (A4)

where the signature function sd (δ) is equal to +1 for links
along the â-axis and −1 for links along the b̂-axis, and � j (δ)
is defined in analogy with Eq. (A1). A caveat is that since the
coupling constant V for superconductivity resides on the links,
it may favor an extended s-wave order instead. That would
correspond to summing with plus signs in both directions

�s(R j ) =
∑

δ

� j (δ). (A5)

In the bulk with translational invariance, these two signatures
reflect the two representations B1 and A1 of the crystal lat-
tice. In a finite-size system, however, both necessarily coexist
which simply reflects that there is no translational invariance
and the system is inhomogeneous across the grain, for in-
stance at the corners. Although the nodal quantity �s(R j )
necessarily is nonzero at all temperatures below Tc, it is al-
ways small for the parameter space studied here. We do not
consider this a subdominant order parameter component in the
sense used in continuum models [12], where there is a second
coupling constant.

In Sec. III we find spontaneous currents and a complex
valued link order parameter, �i j = |�i j | exp [iχi j], with the
superconducting phase χi j oscillating along the edge. It would
then be natural to apply a gauge transform to make the order
parameter real and extract the superfluid momentum, given by
the gradient of the phase [32]. However, the gauge transform
is not well defined on a finite-size lattice because the number
of link phases χi j is not enough to uniquely compute the node
phases needed [77–79] to define the gauge transform. This

problem does not appear for an infinite lattice [77–79] and
is peculiar to lattices with edges. See Ref. [80] for a similar
problem appearing when attempting to convert between the
link order parameter and the quantities in Eqs. (A4) and (A5).
In conclusion, in this paper we focus on the self-consistently
calculated link order parameter only. When showing results,
the order parameter �i j is assigned to the midpoint R =
(Ri + R j )/2 between nodes, as indicated in Fig. 1.

APPENDIX B: FERMI SURFACE AVERAGE

Within the quasiclassical theory of superconductiv-
ity [40,62], the calculation of an observable or a self-energy
involves a Fermi surface average. In our case of a two-
dimensional system the average is over the Fermi lines in
Fig. 2. Each of them defines a contour C. The average of an
arbitrary function f (kF) then takes the form of a line integral

〈 f (kF)〉FS = 1

NF

∮
C

ds

(2π )2|vF(s)| f [kF(s)]. (B1)

The total density of states at the Fermi energy is

NF =
∮

C

ds

(2π )2|vF(s)| . (B2)

Let us extend the band structures in Fig. 2 to a repeated
zone scheme, choose origo at k = (π, π ), and use polar co-
ordinates. For the parameters of our tight-binding models,
the contour then becomes a closed noncircular loop that can
simply be parameterized by the azimuth ϕ ∈ (−π, π ]. The
elementary arc length is

ds =
√(

dkFx

dϕ

)2

+
(

dkFy

dϕ

)2

dϕ = |k′
F(ϕ)|dϕ, (B3)

and the line integral takes the form

〈 f (kF)〉FS = 1

NF

∫ π

−π

dϕ

2π

|k′
F(ϕ)|

2π |vF(ϕ)| f [kF(ϕ)]. (B4)

Thus, we extract kF(ϕ) numerically from the band structure of
the chosen tight-binding model. The Fermi velocity vF(ϕ) and
the derivative k′

F(ϕ) can be computed from analytic formulas
with kF as input [63]. We may then compute the total density
of states at the Fermi energy NF. Note that when viewing the
Fermi surface in the first Brillouin zone, as in Fig. 2, we must
translate the extracted Fermi momenta kF back from higher
Brillouin zones.

To compute observables and self-energies, we need to com-
pute the quasiclassical Green’s function ĝ, see the Methods
section in Ref. [33]. That involves solving first-order differ-
ential equations along trajectories defined by the extracted
Fermi velocities vF(ϕ), see Eqs. (13) and (14) in Ref. [33].
It is then important to note that the Fermi momentum kF(ϕ)
and the Fermi velocity vF(ϕ) are not parallel. At the starting
points and end points of the trajectories, i.e., at the edges,
trajectories couple through a boundary condition. We use a
specular boundary condition, and limit ourselves to grains
with high-symmetry edges, either along crystal axes or 45◦
rotated, like the [110]-edge in Fig. 1. This means that a trajec-
tory parameterized by ϕ couples to the same trajectories ϕ′ as
for a circular Fermi surface.
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APPENDIX C: ANALYTIC QUASICLASSICAL
EXPRESSIONS AT LOW TEMPERATURES

To get an analytic handle on the energetics of the midgap
Andreev states, analytic expressions are presented for a
bulk d-wave superconductor at low temperatures (derived in
Ref. [81]). These expressions are used to obtain the gap and
the energies in Table III. We use a gauge transformation that
eliminates the phase of the order parameter in favor of explicit
dependence on superflow field ps [32,34], hence rendering
the order parameter real. In the absence of superflow, the
bulk order parameter at zero temperature can be expressed as
�(kF) = �0Y (kF) with

�0 = πe−γE e−〈|Y|2 ln |Y|〉FS Tc, (C1)

where γE is the Euler-Mascheroni constant. For a dx2−y2 order
parameter with circular Fermi surface (FS), the FS integral is
taken analytically and reduces to the familiar result �0/Tc =√

2π exp(−γE − 1/2) ≈ 1.51. For general tight-binding pa-
rameters, the FS average takes the form of Eq. (B1), and is
evaluated numerically for, e.g., tight-binding models #1 and
#2, again, see Table III. Having calculated the gap, the BCS
free energy is

δ�BCS

ANF
= −〈|�(kF)|2〉FS

2
, (C2)

where A = ∫
dxdy. Assuming an infinite and maximally

pair-breaking interface with negligible order-parameter sup-
pression, the cost of the midgap states is given by

δ�MGS

Lξ0NFTc
= π2

2v̄F
〈|vF · n̂||�(kF)|〉FS � 0, (C3)

where L = ∫
dx, v̄F ≡ 〈|vF|〉FS, and n̂ = ŷ is the surface

normal. For the circular Fermi surface, this reduces to
δ�MGS/(Lξ0NFTc) = π (

√
8/3)�0. Introducing a small and

homogeneous superflow ps = psx̂ parallel to the interface, the
midgap states are Doppler shifted by an energy δε ∝ vF · ps,
leading to an over-all energy gain

δ�DS

Lξ0NFTc
= −π2

v̄F
〈|vF · n̂||vF · ps|〉FS � 0. (C4)

Again, this can be taken analytically for the circu-
lar Fermi surface, yielding the dimensionless expression

FIG. 9. The dependence on the Fermi-surface angle ϕ of the inte-
grands of (a) the BCS free energy from Eq. (C2), (b) the midgap-state
energy cost from Eq. (C3), (c) the energy gain of Doppler-shifting
the midgap states from Eq. (C4), as well as (d) the Fermi veloc-
ity, vF(ϕ) with v̄F ≡ 〈|vF|〉FS. The integrands are defined such that
�X = ∫ 2π

0 IX dϕ, and the quantities �A and �L are the same as in
Table III. In this choice of coordinate system the basis-function antin-
odes (lobes) are situated along ϕ = (n + 1/2)π/2, and the nodes
along ϕ = nπ/2, with n ∈ Z. The interface normal is parallel to
ϕ = 0.

δ�DS/(Lξ0NFT 2
c ) = −π |ps|/p0, where p0 ≡ Tc/v̄F is a nat-

ural scale for the superflow. Note that the energy gain in
Eq. (C4) is linear in |ps|, while the energy cost of bulk su-
perflow scales as |ps|2, with the pair-breaking (pb) superflow
of the order |ppb

s | = �0/v̄F, see, e.g., Refs. [81,82]. Finally,
the angular dependence of the integrands in Eqs. (C2) to (C4)
are shown together with the Fermi velocity, vF, in Fig. 9.
The figure shows that having a large Fermi velocity along the
antinodes is conducive to large midgap-state energy costs, as
well as large energy gains of Doppler-shifting those states,
within the quasiclassical theory of superconductivity.
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