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Superconductivity owes its properties to the phase of the electron pair condensate that breaks the U(1)
symmetry. In the most traditional ground state, the phase is uniform and rigid. The normal state can be unstable
towards special inhomogeneous superconducting states: the Abrikosov vortex state and the Fulde-Ferrell-Larkin-
Ovchinnikov state. Here we show that the phase-uniform superconducting state can go into a fundamentally
different and more ordered nonuniform ground state, which we refer to as a phase crystal. This state breaks
translational invariance through formation of a spatially periodic modulation of the phase, manifested by unusual
superflow patterns and circulating currents, that also break time-reversal symmetry. We list the general conditions
needed for realization of phase crystals. Using microscopic theory, we then derive an analytic expression for
the superfluid density tensor for the case of a nonuniform environment in a semi-infinite superconductor. We
demonstrate how the surface quasiparticle states enter the superfluid density and identify phase crystallization
as the main player in several previous numerical observations in unconventional superconductors, and predict
the existence of a similar phenomenon in superconductor-ferromagnetic structures. This analytic approach
provides a unifying aspect for the exploration of boundary-induced quasiparticles and collective excitations
in superconductors. More generally, we trace the origin of phase crystallization to nonlocal properties of the
gradient energy, which implies the existence of similar pattern-forming instabilities in many other contexts.

DOI: 10.1103/PhysRevResearch.2.013104

I. INTRODUCTION

The defining characteristic of superfluidity and supercon-
ductivity is spontaneous symmetry breaking of the global
U(1) phase χ , associated with the order parameter � =
|�| exp(iχ ). The phase and its spatial variations give rise
to phenomena of importance for technological applications,
such as type-II superconductivity where Abrikosov vortices
are formed in an external magnetic field and in Josephson
junctions [1]. Within the BCS paradigm [2], a uniform fixed
value of the phase is directly tied to the finite amplitude
|�| of the macroscopic Cooper-pair wave function. If the
phase is nonuniform, by Galilean invariance it results in
superflow with superfluid velocity and momentum mvs =
ps(R) = (h̄/2)∇χ (R), where m is the electron mass and h̄
is the reduced Planck constant. Such phase variations and the
associated condensate currents cost gradient energy

Fsf = 1

2

∫
dR k|�|2|∇χ (R)|2, (1)
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where the gradient energy coefficient k > 0 should be com-
puted from microscopic theory. A physical picture emerges
where the phase is rigid and coherent over macroscopic dis-
tances and the superconducting state is stable. Thus, it would
be surprising if there existed a more ordered state with a softer
phase and spontaneous superflow with energy gain Fsf < 0.

Here we propose that under certain conditions there exists a
low-temperature superconducting state where the rigid phase
acquires structure by breaking translational invariance. In this
state, which we refer to as a phase crystalline state, a periodic
pattern with wave vector q is formed

χ (R) = CqAq(R⊥) cos(q · R), (2)

where Aq(R⊥) is a function of coordinates orthogonal to
q. The additional order parameter in the phase crystal is
the finite Fourier amplitude Cq. The superconducting ground
state with spatially oscillating phase also breaks time-reversal
symmetry and sustains a nontrivial periodic superflow pat-
tern and circulating currents j(R), as illustrated in Fig. 1(a).
Similar current patterns have been found in numerical work
on mesoscopic grains of d-wave superconductors [3], and the
unusual superflow field ps(R) was recently analyzed [4]. Here
we establish that the physical origin of this surface state is
phase crystallization.

Breaking of continuous translational symmetry is partic-
ularly striking. Its reduction to discrete translations gives a
multitude of crystals [5] and ultimately quasicrystals where
translational symmetry is absent [6–8]. Crystal analogs in the
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FIG. 1. (a) The phase crystal has a periodic modulation of the superconducting phase χ (R) and a superflow ps(R) that forms a special
vector field with a lattice of sources and sinks (filled circle), while the particle-conserving current j(R) forms a checkerboard pattern with
opposite circulation flow. (b) This phase modulation is a result of four degenerate instability vectors {±q0, ±q

0
} with nonzero currents

orthogonal to them [see Eq. (6)].

time dimension [9,10] have been observed recently [11,12].
Emergent multiparticle crystalline structures are predicted to
appear in frustrated magnetic materials [13] and have been
engineered in ultracold atoms interacting with light [14].
Superconducting states with periodically modulated ampli-
tude �(R) ∝ �q cos(q · R) were first proposed to exist in
ferromagnetic metals [15] and are currently investigated in a
variety of systems ranging from cold Fermi gases with spin
imbalance [16,17] to color superconductivity [18].

Several features make the phase crystal a distinctly dif-
ferent ground state from other nonuniform superconducting
states. The amplitude-modulated state and its single-mode
[19] counterpart �(R) ∝ �qeiq·R are both amplitude insta-
bilities of the normal metal occurring at finite q and they do
not carry currents. The phase crystal, on the other hand, is
associated with a modification of the symmetry variable χ

describing the degeneracy manifold of the superconducting
state and can occur even when the order parameter ampli-
tude |�| is large, i.e., deep inside the superconducting state
far from the normal to superconductor transition; the phase
crystal does maintain nontrivial particle currents. Moreover, it
is also different from the textures appearing in systems with
multicomponent order parameters and a more complex degen-
eracy space, such as 3He and liquid crystals [20–22]. In those
systems the long-wavelength textures are a result of a com-
petition between condensation and gradient terms involving
different combinations of the order parameter components.
The phase crystal is a result of a highly nonlocal superfluid
response when sample surfaces, geometry, or other external
influences impose a certain structure on the superfluid kernel
itself. The patterns are formed on the much shorter coherence
length scale ξ0 = h̄vF/2πkBTc, where vF is the Fermi velocity,
Tc is the superconducting transition temperature, and kB is
the Boltzmann constant (h̄ = kB = 1 in the following). To
describe this physics we ignore the amplitude gradient terms
in the free energy and generalize the kinetic superflow energy
in the limit of small ps as

Fsf[∇χ ] = 1

2

∫∫
dR dR′∇iχ (R)Ki j (R, R′)∇ jχ (R′), (3)

where we introduce a nonlocal superfluid density kernel
Ki j (R, R′) = Kji(R′, R). Summation over repeating spatial
indices is assumed. Higher-order gradient terms in Fsf would
determine the magnitude of spontaneous currents at tempera-
tures below the transition temperature. Here we neglect those
and focus on the instability analysis.1 The energy change due
to a small Galilean boost u, Fsf[vs − u] = Fsf[vs] − mj · u,
defines the particle current

ji(R) = δFsf[vs]

δps,i(R)
=

∫
dR′Ki j (R, R′)∇ jχ (R′). (4)

The physical χ and j are obtained by variational minimization
of the free energy with respect to the phase. It gives the
continuity equation −δFsf[∇χ ]/δχ (R) = ∇ · j(R) = 0.

II. PHASE INSTABILITY IN THE BULK

By using the nonlocal Ginzburg-Landau expression in
Eq. (3) one can specify the general criteria when a nontrivial
pattern of currents can emerge from the state with homo-
geneous phase χ0 = 0. In a translationally invariant infinite
system the superfluid free energy with kernel K̂ (R − R′) has
the following form in Fourier space:

Fsf = 1

2

∫
d2q

(2π )2
χ (−q)

[
qT K̂ (q)q

]
χ (q). (5)

For the two-dimensional case, the kernel is a 2 × 2 Hermitian
matrix K̂ (q) = K̂†(q) with real eigenvalues κ1,2 and corre-
sponding eigenvectors e1,2. Their values depend on temper-
ature and q. The instability at a particular wave vector q0 can
happen when qT

0 K̂ (q0)q0 = κ1[e1 · q0]2 + κ2[e2 · q0]2 = 0.
This equality can be satisfied if the eigenvalues have opposite
signs and are tunable by temperature, or more generally by

1We also drop corrections to the superflow due to the vector poten-
tial A(R) of the self-induced field ∇χ → ∇χ − 2π

�0
A. These correc-

tions result in energy terms that are smaller than the phase-gradient
terms by a factor (ξ0/λ)2, which is small in type-II superconductors
(see, e.g., Refs. [4,23]).
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some other parameter. To linear order in χ (q), the Fourier
component of the current is j = j0iχ (q0), where i = √−1 and
j0 = K̂ (q0)q0 = e1κ1[e1 · q0] + e2κ2[e2 · q0]. For a nonzero
current to appear at the q0 �= 0 transition, it must also sat-
isfy the conservation law ∇ · j ∝ q0 · j = 0. This implies an
orthogonality constraint q0 ⊥ j0, which is possible to fulfill if
the eigenvectors e1,2 are not collinear with q0 [see Fig. 1(b)].
In this case we can write j0 = x̂ j0x + ŷ j0y, with j0x/ j0y =
−q0y/q0x. Since the phase χ (R) is real, the same conditions
must be satisfied for −q0, which requires inversion symmetry.
With two instability vectors q0 and −q0 we get an emerging
phase χ (R) = C cos(q0 · R) with stripes of current j(R) =
Cj0 sin(q0 · R) running perpendicular to q0. Additional sym-
metries allow for other instability vectors. For example, reflec-
tion symmetry x → −x guarantees another pair of instability
vectors q

0
and −q

0
, with q

0x
= −q0x. Diagonalization of the

kernel at q
0

gives the same eigenvalues κ1,2 as those at q0,
while the eigenvectors e1,2 are obtained from e1,2 by flipping
the x components, and the current amplitude is j

0
= e1κ1[e1 ·

q
0
] + e2κ2[e2 · q

0
]. In the four-harmonic state the phase and

current are given by

χ (R) = cos(q0 · R) + cos(q
0
· R)

∝ cos(q0xx) cos(q0yy),

j(R) = j0 sin(q0 · R) + j
0

sin(q
0
· R)

∝
(

jx0 sin(q0xx) cos(q0yy)
j0y cos(q0xx) sin(q0yy)

)
, (6)

as plotted in Fig. 1(a). Higher-order terms O((∇χ )4) must
be included to determine the energetics between two- and
four-harmonic states. One notices that the loop currents in the
phase crystal appear without phase winding and are not asso-
ciated with topological defects. We conclude that realization
of spontaneous periodic loop currents requires a superfluid
density tensor with (i) spatial anisotropy, (ii) positive and
negative eigenvalues that can be tuned by some parameter,
and (iii) eigenvectors e1,2 ∦ q0. Conditions (i) and (ii) can be
satisfied simultaneously, for example, in an anisotropic-gap
superconductor with an applied Zeeman field. Condition (iii)
requires a mismatch between the momentum (related to q0)
and the velocity (determines the current response tensor) of
the quasiparticles on the Fermi surface. To satisfy this last
geometric condition, one would generally require a system
with a spatial symmetry as low as possible. To formalize
the analysis we can write a general Ginzburg-Landau expan-
sion of the tensor K̂ (q) in the superconducting state with
orthorhombic symmetry C2v (or D2h in three dimensions).
This symmetry is also required by condition (i) to have two
eigenvectors of the kernel of different sign. The general form
of the tensor is

Ki j (qx, qy) = K (0)
i j + K (2)

i jlmqlqm + · · ·

=
(

a0 + a2q2
x + c2q2

y 2c2qxqy

2c2qxqy b0 + b2q2
y + c2q2

x

)
, (7)

where the finite components are a0 = K (0)
xx �= K (0)

yy = b0,
K (2)

xxxx = a2, K (2)
yyyy = b2, and K (2)

xxyy = c2 and all permutation
of indices allowed. The configuration space of these five

coefficients is large enough to allow for a set of instability
wave vectors (qx, qy) that do not lie along the high-symmetry
directions and thus do not coincide with the direction of the
current ( jx, jy). Such a configuration would not be possible in
a state with square symmetry that has only three independent
coefficients a0 = b0, a2 = b2, and c2. The superfluid tensor
will possess the C2v symmetry in orthorhombic crystals, in
nematically ordered systems, or in superconducting states
with gap structure different along two principal axes, such
as polar or planar states. The complete analysis of a crys-
tallization transition with short-wavelength modulations is
quite complex and has to include higher-order q terms. We
leave this for future studies. We note that in typical weak
crystallization theories the instability vectors are only given at
the phenomenological level [7,8]. In the following we present
the microscopic theory for K̂ near pair-breaking surfaces and
show how all these conditions are naturally satisfied and why
a preferred ordering vector emerges.

III. SURFACE PHASE CRYSTAL

Using microscopic quasiclassical theory, we derive the
general expression for the superfluid density kernel. The
technical details of the calculation are given in Appendix A.
We apply it first to the d-wave case and consider the s-wave
case at the end of this section. The d-wave superconduc-
tor has an order parameter �(R, pF) = �0(R)[2 p̂x p̂y] ≡ �p̂,
oriented as shown in Fig. 2(a). The p̂ = pF/|pF| is the unit
vector pointing in the direction of momentum pF on the
Fermi surface. The kernel between two points R and R′
in a semi-infinite system has two contributions K̂ (R, R′) =
K̂ 1©(R, R′) + K̂ 2©(R, R′) that correspond to propagation of
quasiparticles along the direct path or with a reflection at
the surface. We set a uniform amplitude �0(R) = �0, which
allows for analytic expressions (Appendix B). This assump-
tion also demonstrates that the phase crystal is not caused by
the suppression of the order parameter per se, but rather by
the contribution from the symmetry-related surface Andreev
bound states. The coordinate along a quasiparticle trajectory
is denoted by s, with s = 0 at the reflection point. The kernel
components are calculated in Appendix C, and for the direct
path ( p̂′ = p̂) they are

K
1©

i j (R, R′) = [ p̂i p̂ j]v
2
FNF4πT

∑
εm>0

�2
p̂

�2

2

vF

e−κu|�s|

2π |�s|

×
[(

1 − e−κu|s<|)2 − �2

ε2
m

e−2κu|s<|
]
, (8)

where εm = πT (2m + 1) are the Matsubara energies, κu =
2�/vF, and � =

√
ε2

m + �2
p̂; also �s = sR − sR′ is the trajec-

tory distance between the two points and s< = min(y, y′)/| p̂y|
is the trajectory coordinate of the point R or R′ closest to the
surface. For the reflection path [ p̂′ = p̂ = p̂ − 2ŷ(ŷ · p̂)]

K
2©

i j (R, R′) = −[ p̂i p̂ j
]v2

FNF4πT
∑
εm>0

�2
p̂

ε2
m

2

vF

e−κu|�s|

2π |�s| , (9)

where the overall minus sign is due to the fact that at the
integration and observation points the order parameter has
opposite signs �p̂ = −�p̂. This reflection involving the sign
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FIG. 2. (a) Microscopic model of the superfluid density tensor
near a pair-breaking surface of a dxy superconductor. (b) Averaged
local components (11) as a function of distance to the surface y and
the modulation vector qx . The thinner dashed lines show direct path’s
contribution and the dotted lines the reflected path. The superfluid
density far from the surface is determined by correlations between
two points R and R′ through the direct path. This leads to positive su-
perflow energy from diagonal components, favoring a uniform phase
ps ∝ ∇χ0 = 0. Near the surface the superflow energy is lowered by
negative contributions of Kxx and Kyy coming from Andreev bound
states, favoring the nonuniform phase crystal ∇χ �= 0.

change of the order parameter also leads to the zero-energy
Andreev surface states [24]. The characteristic bound-state
term, proportional to �2

p̂/ε
2
m, gives an overall 1/T temperature

dependence of the kernel. The direct kernel in Eq. (8) may also
show this 1/T dependence near the surface when the second
term inside the square brackets dominates.

Pattern-forming instabilities are notorious for being tech-
nically challenging to analyze even at the level of linearized
equations [25]. In what follows we work directly with the
integral representation of the nonlocal physics. Since the
unperturbed superconducting state is translationally invariant
along the surface, we have K̂ (R, R′) = K̂ (x1 − x2, y1, 0, y2),
and we may write the superflow free energy in terms of
Fourier components of the phase, χ (x, y) = Cqx χ (y)e+iqxx,
assuming the χ (y) profile to be real. We get

Fsf = 1

2

∫
dqx

2π
|Cqx |2

∫ ∞

0
dy1

∫ ∞

0
dy2

× [
q2

x Kxxχ (y1)χ (y2) + Kyyχ
′(y1)χ ′(y2)

− iqxKxyχ (y1)χ ′(y2) + iqxKyxχ
′(y1)χ (y2)

]
, (10)

where the prime denotes a derivative with respect to the y
coordinate. The kernel is a complicated function of several
variables Ki j = Ki j (qx, y1, y2; T ). To describe its most im-
portant features we use a center coordinate representation
y = (y1 + y2)/2 and integrate over the relative coordinate ȳ =
y1 − y2,

Ki j (qx, y; T ) =
∫ 2y

−2y
dȳ Ki j

(
qx, y + 1

2
ȳ, y − 1

2
ȳ; T

)
. (11)

This averaged response is shown in Fig. 2(b) as a function
of distance from the surface y, where we also include the
qx multiplication factors to directly relate the kernel to the
free energy. For y � Ly ≈ 3ξ0–5ξ0, the response is dominated
by the direct path. The off-diagonal components are zero
and Kxx and Kyy are positive. Near the surface the diagonal
components become negative, causing the instability, and
large off-diagonal components appear. All components have
the 1/T low-temperature dependence near the surface. The
sign-changing nature of Ki j and its T dependence lead to
fulfillment of conditions (i) and (ii) for the phase crystal near
the surface. Moreover, exponential decay of the bound states
into the bulk creates an asymmetric environment at the surface
with multiple q0y components contributing to the instability.
Condition (iii) is thereby also satisfied.

We perform a variational analysis of Eq. (10) with an
ansatz for the y dependence of the phase decaying into the
bulk on the scale of y0,

χ (y) =
(

1 + y

y0

)
e−y/y0 , χ ′(y) = − y

y2
0

e−y/y0 . (12)

This choice is guided by considerations that there should be no
currents deep in the sample, and we look for a state with no
superflow in the y direction at the surface. The latter condition
is not a strict requirement, since the physical condition of no
current across the boundary jy(y = 0) = 0 is fulfilled auto-
matically by the form of the total kernel K̂ (R, R′). This guess
gives a good semiquantitative result, but we note that to get the
exact profile of χ (y) one has to perform a more sophisticated
eigenvector analysis of the free energy (10). For each wave
vector qx and temperature T we scan the variational param-
eter y0 and find the minimum free energy. This minimum
corresponds to the physical solution with currents satisfying
∇ · j = 0. The instability into the modulated-phase state with
a nonzero Cqx occurs at a temperature where the minimum
of Fsf crosses into negative values. The transition temperature
T ∗(qx ) and the corresponding y0(qx ) are shown in Fig. 3(a)
for the d-wave case. The highest transition temperature T ∗ ∼
0.3Tc occurs at finite modulation q∗

x ≈ ξ−1
0 . By x → −x re-

flection symmetry there is degeneracy (qx,−qx ) that in the
emerging state gives a real-value phase and superflow

χ (x, y) ∝ −
(

1 + y

y0

)
e−y/y0 cos qxx,

ps(x, y) ∝
[

qx

(
1 + y

y0

)
sin qxx,

y

y2
0

cos qxx

]
e−y/y0 , (13)

with the superflow exhibiting critical points ps = 0 at the
surface, as marked in Figs. 3(b)–3(d) by filled orange circles.
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(a)

b dc

(d)

(c)

(b)

FIG. 3. (a) The U(1) phase of the superconducting order parameter acquires periodic modulation below T ∗(qx ), simultaneously breaking
translational and time-reversal invariance of the d-wave superconducting state. The highest-T ∗ instability occurs at finite qx , marked by the
blue star. The red star denotes the transition observed in a numerical self-consistent calculation [3]: The lower T ∗ is a result of the reduced
spectral weight of zero-energy states due to order parameter suppression. (b)–(d) Geometrical structure of the superflow ps (black vector field)
and current streamlines (green loops) corresponding to physical solutions. The background colors indicate distribution of gradient energy
gain and loss in the system. (c) At the optimal transition the overall energy is close to zero. (b) Increasing the pattern period leads to larger
y0 and deeper extension of currents into the bulk with bigger contributions from costly bulk gradient energies. (d) Making the pattern more
compact increases the energy close to the surface. In the cases in both (b) and (d) the loss in energy can only be compensated by lowering the
temperature and thereby enhancing the negative contribution of the bound states through their 1/T dependence.

In the vicinity of the optimal transition, the instability
temperature behaves as

T ∗(qx ) = T ∗ − β(qx − q∗
x )2. (14)

Such dependence is a characteristic ansatz in theories of
weak crystallization [7], where all the parameters are taken
as phenomenological. We find T ∗ ≈ 0.3Tc, q∗

x ≈ 1.0/ξ0, and
β ≈ 0.15Tcξ

2
0 . Here the appearance of a preferred finite phase

modulation vector q∗
x is the result of an interplay between

terms in the free energy (10) that in general have a different
dependence on the y coordinates, T and qx. This physics
can be crudely visualized by considering the superfluid free-
energy density, as shown in Figs. 3(b)–3(d).2 The key element
is the dependence of the phase decay length y0 on qx [see
Fig. 3(a), where we plot the inverse y−1

0 (qx )]. The superfluid
response amplitudes grow with increasing qx. At the same
time, the peaks in q2

x Kxx and qxKxy,yx move to smaller y [see
Fig. 2(b)]. This requires a smaller y0 to control the current
components to satisfy ∇ · j = 0. Deviation of qx from its
optimal value to smaller qx [compare Fig. 3(b) with Fig. 3(c)]
leads to a longer extent away from the surface of the phase

2The superfluid free-energy density cannot be uniquely de-
fined in nonuniform, and especially nonlocal, systems. How-
ever, the two following definitions gave similar pictures: f1(R) =∫

dr ps(R+)T K̂ (R+, R−)ps(R−), with R± = R ± r/2, and f2(R) =
ps(R) · j(R) = ps(R)T

∫
dR′K̂ (R, R′)ps(R′).

oscillations which increases the bulk energy cost from Kxx

and Kyy. On the other hand, a deviation to larger qx gives
a small y0, which results in a large cost due to off-diagonal
Kxy,yx components [compare Fig. 3(d) with Fig. 3(c)]. The
instability for nonoptimal qx occurs at a lower temperature,
where the Kxx component becomes more negative near the
surface by virtue of its 1/T dependence, which compensates
for the energy increase in the other terms.

From this analysis we may conclude that the nonlocal
multicomponent kernel leads to an intricate energy balance
of the phase-gradient terms in the free energy. Because of the
kernel structure, which fulfills the criteria (i)–(iii), a nontrivial
phase crystallization occurs at a particular q∗

x ∼ 1/ξ0. To this
broad class of phase instabilities belong several previously
described surface states with paramagnetic surface currents
caused by spectral displacement of Andreev states [26,27].
That work assumed translational invariance of the superflow
and currents along the surface, which guaranteed particle
conservation ∇ · j(R) = 0, but as a result required additional
mechanisms of reducing superflow in the bulk. In semi-
infinite systems one relies on the Meissner effect to screen
the bulk superflow on the penetration depth length scale λ,
which leads to T ∗ ∼ (ξ0/λ)Tc [23,28]. In slabs of width D <

λ the bulk contribution is obviously limited, resulting in spon-
taneous superflow below T ∗ ∼ (ξ0/D)Tc [29]. In a similar
fashion, we can interpret the phase crystal as self-screening
of the loop currents over the surface region Ly leading to
T ∗ ∼ (ξ0/Ly)Tc.
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(a) (c)

(b)

FIG. 4. (a) The phase crystallization can happen in conventional s-wave superconductors with magnetically active surfaces that mix singlet
and triplet correlations [33]. The zero-energy bound states are a result of spin-mixing scattering processes with spin-mixing angle ϑ = π .
(b) The general form of the surface superfluid kernel remains the same as in the d-wave case and as a result the phase diagram looks similar.
(c) Fully self-consistent numerical result for the currents. For magnetic scattering the orientation of the surface is not important and spontaneous
currents can appear in any geometry. For the two-dimensional annulus shown here, the transition temperature is T ∗/Tc ≈ 0.13. The reduction
of T ∗ compared with the d-wave case is traced to the angular dependence of the order parameter.

A similar transition can appear in other anisotropic su-
perconductors with reduced point group symmetry of the
order parameter, such as the polar p wave [30], which hosts
a flat band of zero-energy surface fermions, or some of
the noncentrosymmetric three-dimensional superconductors
that have finite areas of zero-energy states and prominent
zero-energy peaks [31]. Interestingly, phase crystallization
can happen in conventional s-wave superconductors, where
orbital pair-breaking scattering is absent. In this case, mag-
netically active interfaces can provide the proper environment
for the phase instability, for example, in superconductor-
ferromagnetic structures. Such systems are being considered
as important building blocks for spintronics applications,
where nonlocality and quantum coherence will play important
roles [32]. As described in Appendix C, a similar form of the
superfluid density tensor appears for the ϑ = π spin-mixing
angle. The phase diagram and the result of a self-consistent
calculation are shown in Fig. 4.

The observable consequence of the spontaneous charge
currents are magnetic fluxes near the surface. The associ-
ated reconstruction of the edge ground state is important
from another perspective, since it can prevent realization of
topological surface channels, as happens in topological insu-
lators [34,35]. Moreover, softening of the surface superfluid
density at some finite wave vector can result in special features
of surface transport, even without a fully developed instability.
This may be particularly relevant to transport in confined
geometries.

Universal features of the pattern-formation phenomena in
very different systems are manifested in the similarity of the
phase diagram and the current patterns in Fig. 3 to those of the
Rayleigh-Bénard convection instability, which is also a result
of geometrical constraints and conservation laws. There the

control parameter, instead of T , is the inverse Rayleigh ratio
of buoyancy force to dissipative forces [36]. We note that the
convection roll currents in that case is due to an instability in
a nonequilibrium driven system, while the phase crystal is a
second-order phase transition into a new ground state.

IV. CONCLUSION

We have described a superconducting state where the
global U(1) phase spontaneously forms a modulation in space,
breaking continuous translational invariance. The phase mod-
ulation results in a pattern of loop currents and breaking
of time-reversal symmetry. We have identified the general
criteria (i)–(iii) that have to be met in order to get a nonlocal
superfluid density tensor that favors phase crystallization.
Using microscopic theory, we showed that the circulating
currents can appear at pair breaking surfaces of d-wave su-
perconductors. In that case, quasiparticle reflections off the
surface play a double role: (a) They lead to a flat band of
zero-energy Andreev bound states controlling signs of the
superfluid components and (b) they connect the y and x
degrees of freedom at the level of the superfluid response
resulting in preferred finite-qx modulation of the superflow.
From previous numerical studies we know that this state
remains stable in external magnetic fields [4] and survives
significant reduction of spectral weight of bound states [37].
Thus, one should expect that similar phenomena will arise
in other condensates with zero-energy surface states. To
demonstrate this, we have stabilized the phase crystal in a
conventional s-wave superconductor in contact with a magnet-
ically active material, as can happen in hybrid superconductor-
ferromagnet devices. One particularly interesting scenario,
for the future, would be to generate this phase in a bulk
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system. The phase crystal presents an alternative vision of
“supersolids” where phase-coherent states also spontaneously
break translational symmetry, only in the amplitude of the
order parameter [38–41]. More generally, our results indicate
that nonlocal effects in broken-symmetry states, especially
with multicomponent order parameters or competing orders,
can lead to new states of matter. Such prospects are supported
by early [42] and more recent [43] investigations of nonlocal
physics in superconductors, as well as research into pattern
formation due to long-range nonlocality in biological systems
[44–46].

ACKNOWLEDGMENTS

The computations were performed on resources at
Chalmers Centre for Computational Science and Engineering
provided by the Swedish National Infrastructure for Com-
puting. We thank the Swedish Research Council (VR) for
financial support. P.H. acknowledges Chalmersska Forskn-
ingsfonden for travel support.

APPENDIX A: SUPERFLUID DENSITY NEAR A SURFACE

To find the superfluid response tensor we use a microscopic
approach based on quasiclassical theory [47]. Our starting
point is the Eilenberger equation for the quasiclassical propa-
gator ĝ,

[(iεm − vF · ps)τ̂3 − �̂(R, pF), ĝ] + ivF · ∇ĝ = 0. (A1)

In this equation a spatially varying phase χ of the order
parameter � = |�|eiχ (R) was eliminated in favor of the su-
perflow field ps = 1

2∇χ . This can always be done, if needed,
by a gauge transformation ĝ → Û ĝÛ † with Û = eiτ̂3χ/2. The
superflow is a function of position ps = ps(R), and we con-
sider a singlet mean-field order parameter � = �(R, pF). The
commutator-based Eilenberger equation is transformed into
the Riccati-type equations for the coherence amplitudes [48]

ivF · ∇γ + 2[iεm − vF · ps]γ + γ �̃γ + � = 0,

ivF · ∇γ̃ − 2[iεm − vF · ps]γ̃ + γ̃ �γ̃ + �̃ = 0. (A2)

These amplitudes conveniently parametrize the quasiclassical
propagator [49] and are functions of position, momentum, and
energy, γ = γ (R, pF; εm). The two coherence amplitudes are
related by symmetry,

γ̃ (R, pF; εm) = γ (R,−pF; εm)∗, (A3)

which also applies to other tilde-related functions. For
the singlet real order parameter �̃(R, pF) ≡ �∗(R,−pF) =
�(R, pF). We look at the current response due to a small but
arbitrary superflow field ps = ps(R), starting from a current-
less background state �0(R, pF) and the corresponding coher-
ence amplitudes γ0(R, pF; εm). The following linear-response
calculation is valid for any spatial profile of γ0(R, pF; εm), and
we specify in the end its particular form. The current at a
point R near the surface is calculated from the correction to
the diagonal propagator δg, with g = −iπ sgn(εm) 1−γ γ̃

1+γ γ̃
as

j(R) = 2T
∑
εm>0

2NFRe〈vF p̂ δg(R, pF; εm)〉p̂, (A4)

1

s
p

p

2

’p

y

x

R

R’

0

s>0 s<0

j

FIG. 5. The current at point R is determined by quasiparticles
carrying information about the superflow field ps in the entire space.
Near the surface, quasiparticles from point R′ can take two routes
to get to point R: directly, 1©, and through a reflection off the
interface, 2©.

where NF is density of states at the Fermi level per spin
projection and 〈· · · 〉p̂ = ∫

d p̂/2π · · · denotes a cylindrical
Fermi-surface average (Fig. 5). In terms of linearized coher-
ence amplitudes γ = γ0 + γ1, the propagator change due to
small superflow is

δg(R, pF; εm) = 2iπ sgn(εm)
γ1γ̃0 + γ0γ̃1

(1 + γ0γ̃0)2
. (A5)

We first neglect the effect of the superflow on the amplitude of
the order parameter, assuming that �(R) = �0(R) even in the
current-carrying state, and linearize Eqs. (A2) to find transport
equations for the function γ1/(1 + γ0γ̃0),

p̂ · ∇ γ1

1 + γ0γ̃0
+ κ

γ1

1 + γ0γ̃0
= −2i p̂ · ps

γ0

1 + γ0γ̃0
. (A6)

We get a similar equation for the tilde analog. The parameter

κ (R, p̂; εm) ≡ 2

vF

[
εm + γ0�̃0 − γ̃0�0

2i

]
= κ̃ (A7)

determines the correlation length of the response. In a uniform
state it reduces to κ = 2v−1

F

√
�2

p̂ + ε2
m ∼ 1/ξ0.

The solution of Eq. (A6) along a quasiclassical trajectory s
is found, for positive εm, by integration forward along the tra-
jectory starting from zero value in the bulk γ1(s = −∞) = 0,
where there is no superflow. We get

γ1

1 + γ0γ̃0
(R, p̂; εm)

= −2i
∫ sR

−∞
ds exp

(
−

∫ sR

s
κ (ρ)dρ

)

× p̂(s) · ps(R′(s))
γ0

1 + γ0γ̃0
(s). (A8)

To write the current at the observation point R we need to in-
tegrate over all trajectories arriving at point R. By introducing
a correlation function connecting two points R1 and R2 via a

013104-7



P. HOLMVALL et al. PHYSICAL REVIEW RESEARCH 2, 013104 (2020)

dp
F

R

dAF.S.

R’

ds=dR’

|R−R’|= |s  − s  |R R’

FIG. 6. Connection between spatial integral and the trajectory–
Fermi-surface integral. A volume element d2R′ in space can be writ-
ten in cylindrical coordinates as d2R′ = dAds = |sR − sR′ |dpFds,
where |sR − sR′ | is the distance between points R and R′ along a
trajectory and dpF is the angular integration over the Fermi surface.

quasiclassical trajectory ρ̂ = (R2 − R1)/|R2 − R1|,

C(R2, R1) = 1

2π |R2 − R1|
2εm

vF
exp

(
−

∫ R2

R1

κ (ρ, ρ̂ )dρ

)
,

(A9)

one can combine the Fermi-surface average at the observation
point and integration along trajectories into integration over
all space R′ (see Fig. 6) and write the current response as

ji(R) =
∫

d2R′Ki j (R, R′)ps, j (R′). (A10)

Inserting (A8) into (A5) and using the definition (A9), the
superfluid kernel is then given by

Ki j (R, R′)

= v2
FNF8πT

∑
εm>0

∑
1©, 2©

1

4π2εm

× Re[ p̂i f̃0(R, p̂)C(R, R′) f0(R′, p̂′) p̂′
j

+ p̂′
j f̃0(R′,−p̂′)C(R′, R) f0(R,−p̂) p̂i], (A11)

where f0 and f̃0 are off-diagonal propagators in the un-
perturbed state. In terms of coherence amplitudes f0 =
−2iπ sgn(εm) γ0

1+γ0 γ̃0
. This kernel connects the observation

point R to the integration point R′. For each pair of points
there are two paths, one direct 1© and one involving reflection
at the surface 2©, where we assumed mirrorlike reflection (see
Fig. 5). The momentum direction p̂ at the observation point
is given by the trajectory direction R′ → R, and similarly
for momentum at the integration point p̂′ (Fig. 5). These
directions are different for the direct and reflected paths.

APPENDIX B: COHERENCE AMPLITUDES AND
PROPAGATORS WITH A STEPLIKE ORDER PARAMETER

Neglecting the suppression of the order parameter at the
surface allows us to proceed further analytically. The bulk

k_

γf

γf
~

γf (s)
boundary
conditions

γi Γf

s<0

s>0

k

FIG. 7. The coherence amplitudes can be found analytically if
we ignore suppression of the order parameter at the interface. For
each trajectory the order parameter sharply changes between �i and
� f at s = 0. In this case, γi on the incoming trajectory is a constant;
then a boundary condition γi → � f gives an initial value that evolves
to γ f on the outgoing part of the trajectory. For typical nonmagnetic
specular scattering � f = γi.

uniform coherence amplitude is

γ = i
�

|εm| + √
�2 + ε2

m

sgn(εm),

εm − iγ� = sgn(εm)
√

ε2
m + �2. (B1)

Now consider (Fig. 7) a (straightened) trajectory that for s < 0
is in a region with the order parameter �k = �i and for s > 0
is in the region with �k = � f , e.g., for the most pair-breaking
surface �i = −� f . Define

�i =
√

�2
i + ε2

m, κu,i = 2

v f

√
�2

i + ε2
m,

� f =
√

�2
f + ε2

m, κu, f = 2

v f

√
�2

f + ε2
m. (B2)

Far away from the interface, the coherence amplitudes have
their uniform bulk values [we assume εm > 0 and otherwise
understand εm = |εm| and add sgn(εm) in front]

γi = i
�i

εm + �i
, γ f = i

� f

εm + � f
,

γ̃i = −i
�̃i

εm + �i
, γ̃ f = −i

�̃ f

εm + � f
(B3)

For a sudden-step order parameter the amplitudes γ0

and γ̃0(s) can be found analytically, integrating the Ric-
cati equations (A2) in the forward or backward direction,
correspondingly. Including the sudden jump of the ampli-
tudes at the surface according to the boundary condition,
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s1

k_

s2 −s2

−s1

_−k

k’_

s’2

−s’1

−s’2

s’1

_−k’

(a) s>0
s<0

(b)

−k

k k’ −k’

FIG. 8. Correlation functions that connect the integration point and the observation point along trajectories of (a) type 1© and (b) type 2©.

we get

γ0(s < 0) = γi → γ0(s = +0) = � f → γ0(s > 0) = γ f + (1 + γ f γ̃ f )(� f − γ f )e−κu, f s

1 + γ f γ̃ f + (� f − γ f )γ̃ f (1 − e−κu, f s)
(B4)

and for tilde function integrating backward,

γ̃0(s > 0) = γ̃ f → γ̃0(s = −0) = �̃i → γ̃0(s < 0) = γ̃i + (1 + γiγ̃i )(�̃i − γ̃i )eκu,is

1 + γiγ̃i + γi(�̃i − γ̃i )(1 − eκu,is)
. (B5)

The propagators on the trajectory are (e.g., for s > 0)

g0(s > 0) = −iπ
1 − γ f (s)γ̃ f

1 + γ f (s)γ̃ f
= −iπ

[
1 − γ f γ̃ f

1 + γ f γ̃ f
(1 − e−κu, f s) + 1 − � f γ̃ f

1 + � f γ̃ f
e−κu, f s

]
(B6)

and the off-diagonal component that enters the expression for the current response is

f0(s > 0)

−2iπ
= γ f (s)

1 + γ f (s)γ̃ f
= γ f

1 + γ f γ̃ f
(1 − e−κu, f s) + � f

1 + � f γ̃ f
e−κu, f s,

f̃0(s > 0)

2iπ
= γ̃ f

1 + γ f (s)γ̃ f
= γ̃ f

1 + γ f γ̃ f
(1 − e−κu, f s) + γ̃ f

1 + � f γ̃ f
e−κu, f s = γ̃ f [1 + � f γ̃ f − (� f − γ f )γ̃ f e−κu, f s]

(1 + γ f γ̃ f )(1 + � f γ̃ f )
,

f0(s < 0)

−2iπ
= γi

1 + γiγ̃i
(1 − e−κu,i|s|) + γi

1 + γi�̃i
e−κu,i|s| = γi[1 + γi�̃i − γi(�̃i − γ̃i )e−κu,i|s|]

(1 + γiγ̃i )(1 + γi�̃i )
,

f̃0(s < 0)

2iπ
= γ̃i

1 + γiγ̃i
(1 − e−κu,i|s|) + �̃i

1 + γi�̃i
e−κu,i|s|, (B7)

where we write the functions in several different ways to cancel some terms later on.
Notice the physical interpretation of the propagator form. For example, for f0(s > 0) we have the same γ̃ f in both terms since

it is coming from s = +∞, but the γ amplitude can be either γ f far from the reflection point or � f ← γi close to reflection
points and they give rise to the two different terms in f0. All other expressions for f functions follow the same pattern. The
second term, which mixes � f and γ̃ f in the denominator, is the one that mainly determines bound-state effects. In both diagonal
and off-diagonal items the continuum and the bound-state contribution are nicely separated.

APPENDIX C: CURRENT KERNEL WITHOUT THE ORDER PARAMETER SUPPRESSION

We use the results of Appendix B to calculate the current response kernel. First, we find κ , which determines the correlations
extent in the current response,

κ (s) = 2

v f

[
εm + γ0�̃0 − γ̃0�0

2i

]
= κu ×

⎧⎨
⎩

1 + (� f −γ f )γ̃ f e−κus

1+� f γ̃ f −(� f −γ f )γ̃ f e−κus , s > 0

1 + γi (�̃i−γ̃i )eκus

1+γi�̃i−γi (�̃i−γ̃i )eκus , s < 0.
(C1)

Here we consider an order parameter orientation such that the amplitudes on the incoming and reflected parts of the trajectory
are the same, so κu,i = κu, f = κu. The generalization for different amplitudes can be easily carried out retaining indices �i, f ,
κu;i, f , etc. This expression for κ (s) is quite general and easy to integrate along trajectories, as required for correlation functions
C(R, R′) and C(R′, R). In both these functions integration goes from the initial to the final point as determined by the momentum
direction and is shown in Fig. 8.
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For the case in Fig. 8(a) both s1 and s2 are on the same side of the interface and s2 is farther away from the interface than s1;
thus we have, for s out,

C 1©
(

1

2π |s2 − s1|
2εm

v f

)−1

= exp

[
−

∫ s2

s1

κ (ρ)dρ

]
= 1 + � f γ̃ f − (� f − γ f )γ̃ f e−κus1

1 + � f γ̃ f − (� f − γ f )γ̃ f e−κus2
e−κu|s2−s1|. (C2)

If we reverse the trajectory the signs of s change (so that s1 and s2 determine absolute distance to the surface); thus we have, for
s in,

C 1©
(

1

2π |s2 − s1|
2εm

v f

)−1

= exp

[
−

∫ −s1

−s2

κ (ρ)dρ

]
= 1 + γi�̃i − γi(�̃i − γ̃i)e−κus1

1 + γi�̃i − γi(�̃i − γ̃i )e−κus2
e−κu|s2−s1|. (C3)

For the Fig. 8(c) case we break the integral into two parts for s in and out:

C 2©
(

1

2π |s′
2 + s′

1|
2εm

v f

)−1

= exp

[
−

∫ s′
2

−s′
1

κ (ρ)dρ

]
= 1 + γ f γ̃ f

1 + � f γ̃ f − (� f − γ f )γ̃ f e−κus′
2

1 + γiγ̃i

1 + γi�̃i − γi(�̃i − γ̃i )e−κus′
1
e−κu (s′

2+s′
1 ).

(C4)

The denominators in Eqs. (C2)–(C4) will cancel numerators in some of the f functions (B7) when combined in the kernel
expression (A11). The numerators in Eqs. (C2) and (C3) can be written as

1 + � f γ̃ f − (� f − γ f )γ̃ f e−κus = (1 + � f γ̃ f )(1 − e−κus) + (1 + γ f γ̃ f )e−κus,

1 + γi�̃i − γi(�̃i − γ̃i )e
−κu|s| = (1 + γi�̃i )(1 − e−κu|s|) + (1 + γiγ̃i )e

−κu|s|. (C5)

For any given points R and R′ we define two paths, direct and reflected, and each will have R → R′ and R′ → R contributions
f̃ ( p̂, R)C(R, R′) f ( p̂, R′) + f̃ (−p̂, R)C(R′, R) f (−p̂, R). Let us denote by k̂ momentum away from the surface, and in this case
we identify indices f = k̂ and i = k̂. The trajectory integrating the γ function goes from s1 = s< (point closest to the interface)
to s2 = s> (point farthest from interface). For the reverse trajectory we have f = −k̂ and i = −k̂ and integration happens from
−s2 to −s1.

The two terms give, after the mentioned cancellations, for the direct path,
γ̃0

1 + γ0γ̃0
C(R ← R′)

γ0

1 + γ0γ̃0
+ γ̃0

1 + γ0γ̃0
C(R′ ← R)

γ0

1 + γ0γ̃0

= 1

2π |s> − s<|
2εm

v f

{[
γ̃k̂

1 + γk̂ γ̃k̂

(1 − e−κus< ) + γ̃k̂

1 + �k̂ γ̃k̂

e−κus<

]
e−κu|s>−s<|

[
γk̂

1 + γk̂ γ̃k̂

(1 − e−κus< ) + �k̂

1 + �k̂ γ̃k̂

e−κus<

]

+
[

γ̃−k̂

1 + γ−k̂ γ̃−k̂

(1 − e−κus< ) + �̃−k̂

1 + γ−k̂�̃−k̂

e−κus<

]
e−κu|s>−s<|

[
γ−k̂

1 + γ−k̂ γ̃−k̂

(1 − e−κus< ) + γ−k̂

1 + γ−k̂�̃−k̂

e−κus<

]}
. (C6)

For the reflected path this sum has a more compact form that directly reflects the bound states factors
γ̃0

1 + γ0γ̃0
C(R ← R′)

γ0

1 + γ0γ̃0
+ γ̃0

1 + γ0γ̃0
C(R′ ← R)

γ0

1 + γ0γ̃0

= 1

2π |s′
> + s′

<|
2εm

v f

{
γ̃k̂′γk̂

′

(1 + �k̂′ γ̃k̂′ )(1 + γk̂
′ �̃k̂

′ )
e−κu|s′

>+s′
<| +

γ̃−k̂
′γ−k̂′

(1 + γ−k̂′ �̃−k̂′ )(1 + �−k̂
′ γ̃−k̂

′ )
e−κu|s′

>+s′
<|

}
. (C7)

Note that to generalize for the inequivalent gap size on in-out trajectories we need to use the appropriate κu along given
the directions, e.g., κu|s′

> + s′
<| → κu,k̂′s′

> + κu,k̂
′s′

< for the trajectory k̂
′ → k̂′ with reflection. These are completely general

expressions for the one-component order parameters, where we neglect suppression of the order parameter amplitude near the
surface and assume specular scattering. We apply the developed formalism and approximations to a d-wave superconductor
with a maximally pair-breaking surface. In this case we have �k̂ = −�k̂ for all incident trajectories, and γ−k̂ = γk̂ = −γk̂ ,
γ̃−k̂ = γ̃k̂ = γ̃k̂ , and �k̂ = γk̂ = −γk̂; two important combinations of the coherence amplitudes are

1

1 + γk̂ γ̃k̂

= εm + �

2�
,

1

1 + �k̂ γ̃k̂

= εm + �

2εm
. (C8)

The correlation coefficient (C1) along a trajectory s is

κ (s) = κu

[
(1 − e−κu|s|) + �

εm
e−κu|s|

]−1

, (C9)

where κu = 2�/vF and � =
√

ε2
m + �2

k̂
. The distance along a trajectory, measured from the surface, is s = y/k̂y. One uses these

relations for coherence amplitudes in combination with (C6) and (C7) to find the kernel (A11) components, as given in the main
text, for the direct path (8) and the reflection path (9), correspondingly.
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Similar expressions for the superfluid density are valid for an s-wave superconductor with scattering at a specular magnetically
active surface. We use the boundary conditions for coherence amplitudes [50]

�k̂ iσ2 = Mγkiσ2M̃,

with M = eiϑm̂·σ/2 and M̃ = M∗. Magnetic spin mixing leads to the bound states εb = ±� cos(ϑ/2), which result in zero-
energy states for ϑ = π and the boundary condition for coherence amplitudes �k̂ = −γk̂ .

[1] M. Tinkham, Introduction to Superconductivity (Krieger,
Malabar, 1985).

[2] J. Bardeen, L. Cooper, and R. Schrieffer, Phys. Rev. 108, 1175
(1957).

[3] M. Håkansson, T. Löfwander, and M. Fogelström, Nat. Phys.
11, 755 (2015).

[4] P. Holmvall, A. B. Vorontsov, M. Fogelström, and T.
Löfwander, Nat. Commun. 9, 2190 (2018).

[5] R. C. Powell, Symmetry, Group Theory, and the Physical Prop-
erties of Crystals, Lecture Notes in Physics Vol. 824 (Springer,
New York, 2010).

[6] M. Senechal, Quasicrystals and Geometry (Cambridge Univer-
sity Press, Cambridge, 1995); R. Lifshitz, Isr. J. Chem. 51, 1156
(2011).

[7] E. Kats, V. Lebedev, and A. Muratov, Phys. Rep. 228, 1 (1993).
[8] I. Martin, S. Gopalakrishnan, and E. A. Demler, Phys. Rev. B

93, 235140 (2016).
[9] F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012).

[10] N. Y. Yao, A. C. Potter, I.-D. Potirniche, and A. Vishwanath,
Phys. Rev. Lett. 118, 030401 (2017).

[11] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J.
Smith, G. Pagano, I. D. Potirniche, A. C. Potter, A. Vishwanath,
N. Y. Yao, and C. Monroe, Nature (London) 543, 217 (2017).

[12] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F.
Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk,
N. Y. Yao, E. Demler, and M. D. Lukin, Nature (London) 543,
221 (2017).

[13] Y. Kamiya and C. D. Batista, Phys. Rev. X 4, 011023 (2014).
[14] S. Ostermann, F. Piazza, and H. Ritsch, Phys. Rev. X 6, 021026

(2016).
[15] A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47,

1136 (1964) [Sov. Phys. JETP 20, 762 (1965)].
[16] J. J. Kinnunen, J. E. Baarsma, J.-P. Martikainen, and P. Törmä,

Rep. Prog. Phys. 81, 046401 (2018).
[17] S. Dutta and E. J. Mueller, Phys. Rev. A 96, 023612 (2017).
[18] R. Casalbuoni and G. Nardulli, Rev. Mod. Phys. 76, 263 (2004).
[19] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[20] D.Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3

(Taylor & Francis, London, 1990).
[21] P. M. Chaikin and T. C. Lubensky, Principles of Condensed

Matter (Cambridge University Press, Cambridge, 1995).
[22] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,

2nd ed. (Oxford University Press, Oxford, 1995).
[23] Y. S. Barash, M. S. Kalenkov, and J. Kurkijärvi, Phys. Rev. B

62, 6665 (2000).
[24] C. R. Hu, Phys. Rev. Lett. 72, 1526 (1994).
[25] W. Pesch and L. Kramer, in Pattern Formation in Liquid

Crystals, edited by A. Buka and L. Kramer (Springer, Berlin,
1996), Chap. 3, pp. 69–90.

[26] M. Fogelström, D. Rainer, and J. A. Sauls, Phys. Rev. Lett. 79,
281 (1997).

[27] S. Higashitani, J. Phys. Soc. Jpn. 66, 2556 (1997).
[28] T. Löfwander, V. S. Shumeiko, and G. Wendin, Phys. Rev. B

62, R14653 (2000).
[29] A. B. Vorontsov, Phys. Rev. Lett. 102, 177001 (2009).
[30] P. Holmvall et al. (unpublished).
[31] A. P. Schnyder and P. M. R. Brydon, J. Phys.: Condens. Matter

27, 243201 (2015); A. P. Schnyder, P. M. R. Brydon, and C.
Timm, Phys. Rev. B 85, 024522 (2012).

[32] M. Eschrig, Phys. Today 64(1), 43 (2011).
[33] M. Eschrig, Philos. Trans. R. Soc. A 376, 20150149

(2018).
[34] P. Novelli, F. Taddei, A. K. Geim, and M. Polini, Phys. Rev.

Lett. 122, 016601 (2019).
[35] J. Wang, Y. Meir, and Y. Gefen, Phys. Rev. Lett. 118, 046801

(2017).
[36] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851

(1993).
[37] P. Holmvall, A. B. Vorontsov, M. Fogelström, and T.

Löfwander, Phys. Rev. B 99, 184511 (2019).
[38] M. Boninsegni and N. V. Prokof’ev, Rev. Mod. Phys. 84, 759

(2012).
[39] J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and T.

Donner, Nature (London) 543, 87 (2017).
[40] F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T.

Langen, and T. Pfau, Phys. Rev. X 9, 011051 (2019).
[41] L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C.

Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider, M.
Sohmen, M. J. Mark, and F. Ferlaino, Phys. Rev. X 9, 021012
(2019).

[42] A. B. Pippard and W. L. Bragg, Proc. R. Soc. London Ser. A
216, 547 (1953).

[43] T. Koyama and M. Machida, in Proceedings of the 24th Interna-
tional Symposium on Superconductivity (ISS2011), edited by
K. Enpuku and T. Izumi, special issue of Physica C 484, 100
(2013).

[44] D. Tanaka and Y. Kuramoto, Phys. Rev. E 68, 026219
(2003).

[45] P. C. Bressloff and Z. P. Kilpatrick, Phys. Rev. E 78, 041916
(2008).

[46] V. García-Morales and K. Krischer, Phys. Rev. Lett. 100,
054101 (2008).

[47] J. W. Serene and D. Rainer, Phys. Rep. 101, 221
(1983).

[48] M. Eschrig, Phys. Rev. B 61, 9061 (2000).
[49] N. Schopohl and K. Maki, Phys. Rev. B 52, 490 (1995);

A. Shelankov and M. Ozana, ibid. 61, 7077 (2000).
[50] M. Eschrig, Phys. Rev. B 80, 134511 (2009).

013104-11

https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1038/nphys3383
https://doi.org/10.1038/nphys3383
https://doi.org/10.1038/nphys3383
https://doi.org/10.1038/nphys3383
https://doi.org/10.1038/s41467-018-04531-y
https://doi.org/10.1038/s41467-018-04531-y
https://doi.org/10.1038/s41467-018-04531-y
https://doi.org/10.1038/s41467-018-04531-y
https://doi.org/10.1002/ijch.201100156
https://doi.org/10.1002/ijch.201100156
https://doi.org/10.1002/ijch.201100156
https://doi.org/10.1002/ijch.201100156
https://doi.org/10.1016/0370-1573(93)90119-X
https://doi.org/10.1016/0370-1573(93)90119-X
https://doi.org/10.1016/0370-1573(93)90119-X
https://doi.org/10.1016/0370-1573(93)90119-X
https://doi.org/10.1103/PhysRevB.93.235140
https://doi.org/10.1103/PhysRevB.93.235140
https://doi.org/10.1103/PhysRevB.93.235140
https://doi.org/10.1103/PhysRevB.93.235140
https://doi.org/10.1103/PhysRevLett.109.160401
https://doi.org/10.1103/PhysRevLett.109.160401
https://doi.org/10.1103/PhysRevLett.109.160401
https://doi.org/10.1103/PhysRevLett.109.160401
https://doi.org/10.1103/PhysRevLett.118.030401
https://doi.org/10.1103/PhysRevLett.118.030401
https://doi.org/10.1103/PhysRevLett.118.030401
https://doi.org/10.1103/PhysRevLett.118.030401
https://doi.org/10.1038/nature21413
https://doi.org/10.1038/nature21413
https://doi.org/10.1038/nature21413
https://doi.org/10.1038/nature21413
https://doi.org/10.1038/nature21426
https://doi.org/10.1038/nature21426
https://doi.org/10.1038/nature21426
https://doi.org/10.1038/nature21426
https://doi.org/10.1103/PhysRevX.4.011023
https://doi.org/10.1103/PhysRevX.4.011023
https://doi.org/10.1103/PhysRevX.4.011023
https://doi.org/10.1103/PhysRevX.4.011023
https://doi.org/10.1103/PhysRevX.6.021026
https://doi.org/10.1103/PhysRevX.6.021026
https://doi.org/10.1103/PhysRevX.6.021026
https://doi.org/10.1103/PhysRevX.6.021026
https://doi.org/10.1088/1361-6633/aaa4ad
https://doi.org/10.1088/1361-6633/aaa4ad
https://doi.org/10.1088/1361-6633/aaa4ad
https://doi.org/10.1088/1361-6633/aaa4ad
https://doi.org/10.1103/PhysRevA.96.023612
https://doi.org/10.1103/PhysRevA.96.023612
https://doi.org/10.1103/PhysRevA.96.023612
https://doi.org/10.1103/PhysRevA.96.023612
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRevB.62.6665
https://doi.org/10.1103/PhysRevB.62.6665
https://doi.org/10.1103/PhysRevB.62.6665
https://doi.org/10.1103/PhysRevB.62.6665
https://doi.org/10.1103/PhysRevLett.72.1526
https://doi.org/10.1103/PhysRevLett.72.1526
https://doi.org/10.1103/PhysRevLett.72.1526
https://doi.org/10.1103/PhysRevLett.72.1526
https://doi.org/10.1103/PhysRevLett.79.281
https://doi.org/10.1103/PhysRevLett.79.281
https://doi.org/10.1103/PhysRevLett.79.281
https://doi.org/10.1103/PhysRevLett.79.281
https://doi.org/10.1143/JPSJ.66.2556
https://doi.org/10.1143/JPSJ.66.2556
https://doi.org/10.1143/JPSJ.66.2556
https://doi.org/10.1143/JPSJ.66.2556
https://doi.org/10.1103/PhysRevB.62.R14653
https://doi.org/10.1103/PhysRevB.62.R14653
https://doi.org/10.1103/PhysRevB.62.R14653
https://doi.org/10.1103/PhysRevB.62.R14653
https://doi.org/10.1103/PhysRevLett.102.177001
https://doi.org/10.1103/PhysRevLett.102.177001
https://doi.org/10.1103/PhysRevLett.102.177001
https://doi.org/10.1103/PhysRevLett.102.177001
https://doi.org/10.1088/0953-8984/27/24/243201
https://doi.org/10.1088/0953-8984/27/24/243201
https://doi.org/10.1088/0953-8984/27/24/243201
https://doi.org/10.1088/0953-8984/27/24/243201
https://doi.org/10.1103/PhysRevB.85.024522
https://doi.org/10.1103/PhysRevB.85.024522
https://doi.org/10.1103/PhysRevB.85.024522
https://doi.org/10.1103/PhysRevB.85.024522
https://doi.org/10.1063/1.3541944
https://doi.org/10.1063/1.3541944
https://doi.org/10.1063/1.3541944
https://doi.org/10.1063/1.3541944
https://doi.org/10.1063/1.3541944
https://doi.org/10.1098/rsta.2015.0149
https://doi.org/10.1098/rsta.2015.0149
https://doi.org/10.1098/rsta.2015.0149
https://doi.org/10.1098/rsta.2015.0149
https://doi.org/10.1103/PhysRevLett.122.016601
https://doi.org/10.1103/PhysRevLett.122.016601
https://doi.org/10.1103/PhysRevLett.122.016601
https://doi.org/10.1103/PhysRevLett.122.016601
https://doi.org/10.1103/PhysRevLett.118.046801
https://doi.org/10.1103/PhysRevLett.118.046801
https://doi.org/10.1103/PhysRevLett.118.046801
https://doi.org/10.1103/PhysRevLett.118.046801
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/PhysRevB.99.184511
https://doi.org/10.1103/PhysRevB.99.184511
https://doi.org/10.1103/PhysRevB.99.184511
https://doi.org/10.1103/PhysRevB.99.184511
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1038/nature21067
https://doi.org/10.1038/nature21067
https://doi.org/10.1038/nature21067
https://doi.org/10.1038/nature21067
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/10.1103/PhysRevX.9.021012
https://doi.org/10.1103/PhysRevX.9.021012
https://doi.org/10.1103/PhysRevX.9.021012
https://doi.org/10.1103/PhysRevX.9.021012
https://doi.org/10.1098/rspa.1953.0040
https://doi.org/10.1098/rspa.1953.0040
https://doi.org/10.1098/rspa.1953.0040
https://doi.org/10.1098/rspa.1953.0040
https://doi.org/10.1016/j.physc.2012.02.019
https://doi.org/10.1016/j.physc.2012.02.019
https://doi.org/10.1016/j.physc.2012.02.019
https://doi.org/10.1016/j.physc.2012.02.019
https://doi.org/10.1103/PhysRevE.68.026219
https://doi.org/10.1103/PhysRevE.68.026219
https://doi.org/10.1103/PhysRevE.68.026219
https://doi.org/10.1103/PhysRevE.68.026219
https://doi.org/10.1103/PhysRevE.78.041916
https://doi.org/10.1103/PhysRevE.78.041916
https://doi.org/10.1103/PhysRevE.78.041916
https://doi.org/10.1103/PhysRevE.78.041916
https://doi.org/10.1103/PhysRevLett.100.054101
https://doi.org/10.1103/PhysRevLett.100.054101
https://doi.org/10.1103/PhysRevLett.100.054101
https://doi.org/10.1103/PhysRevLett.100.054101
https://doi.org/10.1016/0370-1573(83)90051-0
https://doi.org/10.1016/0370-1573(83)90051-0
https://doi.org/10.1016/0370-1573(83)90051-0
https://doi.org/10.1016/0370-1573(83)90051-0
https://doi.org/10.1103/PhysRevB.61.9061
https://doi.org/10.1103/PhysRevB.61.9061
https://doi.org/10.1103/PhysRevB.61.9061
https://doi.org/10.1103/PhysRevB.61.9061
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.61.7077
https://doi.org/10.1103/PhysRevB.61.7077
https://doi.org/10.1103/PhysRevB.61.7077
https://doi.org/10.1103/PhysRevB.61.7077
https://doi.org/10.1103/PhysRevB.80.134511
https://doi.org/10.1103/PhysRevB.80.134511
https://doi.org/10.1103/PhysRevB.80.134511
https://doi.org/10.1103/PhysRevB.80.134511

