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Systems biology of protein synthesis and secretion in yeast 

Qi Qi 

Department of Biology and Biological Engineering 

Chalmers University of Technology 

 

Abstract 

Protein synthesis and secretion is a vital process to maintain cell function. As it demands 

numerous building blocks, cofactors and chaperones generated from metabolism and 

translation, the process is intertwined with metabolic and regulatory networks. To obtain an 

overall understanding of the protein synthesis and secretory system, multi-omics data are 

coupled with mathematical modeling to systematically quantify cellular resource reallocation 

in response to recombinant protein production and/or nutrient starvation. 

In this thesis, we mainly use two recombinant proteins, α-amylase and insulin precursor, as 

model proteins to study the protein synthesis and secretion process in a model organism 

Saccharomyces cerevisiae. We find that the central metabolism is reprogrammed at a large 

scale to relieve the oxidative stress caused by recombinant protein production, and the 

activation of Gcn2p-mediated signaling pathway plays a crucial role in reshaping metabolism. 

As protein folding is often considered the flux controlling step in protein synthesis and 

secretion, we further identify two routes of the protein folding pathway to improve protein 

production, namely through improved folding capacity and increased folding precision, 

respectively. Additionally, protein translation is the initial step of protein synthesis. We find 

that cells maintain large and unequally distributed reserves in translational capacity by 

stepwise reducing nitrogen availability. Moreover, we also construct a proteome-constrained 

genome-scale protein secretory model for S. cerevisiae (pcSecYeast) to perform secretory 

simulations and provide genomic targets for cell engineering. Our findings elucidate the 

global responses to various perturbations on protein synthesis and secretion and provide 

valuable novel insights that can be leveraged for improving recombinant protein production.  

 

Key words: protein synthesis, protein secretion, multi-omics analysis, genome-scale 

modeling, recombinant protein production 
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1. Introduction 

1.1 Saccharomyces cerevisiae 

The budding yeast Saccharomyces cerevisiae, which has been used for alcoholic 

fermentation for thousands of years (1, 2), is one of the most popular eukaryal organisms for 

studies of cell systems and production of various chemicals and recombinant proteins (3–8). 

The popularity benefits by many properties S. cerevisiae possesses, including i) its complex 

cellular structure contributes to studies of eukaryal molecular mechanisms; ii) high growth 

rate compared to other eukaryal organisms; iii) much information available about this 

organism through high-throughput studies, databases, sequenced genomes and extensive 

toolbox for molecular modification.  

1.2 Protein synthesis and secretion 

The central dogma of molecular biology states the flow of genetic information within a 

biological system. The transcription and translation processes initiate the protein synthesis 

process in cells. mRNA guides the assembly of free amino acids to synthesize polypeptide in 

ribosome with the assistance from tRNA. Next, the nascent polypeptide needs to be processed 

in the endoplasmic reticulum (ER) and the Golgi to form native protein structure, with help 

of the protein secretory pathway.  

Protein secretion is defined as the process of maturation of proteins destined for secretion, 

for the plasma membrane, the organelles or the extracellular space. In the 1960s, along with 

the development of electron microscopy, George Palade established the protein secretory 

pathway and its connection to the biogenesis of organelles (9). The protein secretory pathway 

in eukaryal cells is an elaborate machinery that consists of a number of independent 

organelles that work together efficiently to secret proteins to different destinations (10–13). 

Each organelle provides a specialized environment that facilitates the various stages in 

protein biogenesis, modification, folding and sorting. In yeast this pathway involves more 

than 160 proteins that are responsible for different post-translation processes (14). Most of 

these proteins are located in the ER, which is an important compartment in the secretory 

pathway.  
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Protein translocation 

The secretory pathway initiates from translocation of newly synthesized polypeptide through 

ER membrane. The translocation process can occur either co-translationally where translation 

and translocation are directly coupled, or post-translationally depending on the 

hydrophobicity and amino acid composition of the already fully translated signal peptide (15, 

16). In this process, the Sec61 complex is a commonly used channel for protein import into 

the ER.  

Protein glycosylation 

Since the majority of all secreted proteins are glycoproteins, the N-glycosylation is one of the 

most prevalent post-translational modifications in the ER. The N-linked oligosaccharides 

play an essential role in the protein folding quality control system. In the beginning, an 

oligosaccharide precursor Glc3Man9GlcNAc2 is assembled on the asparagine residue of the 

N-glycosylation recognition sequence of the nascent polypeptide during translocation (17), 

assisted by the ER-resident oligosaccharyltransferase. Additionally, at the hydroxyl groups 

of serine and threonine there will be O-glycosylation modification (18), which is catalyzed 

by protein O-mannosyltransferase. 

The protein folding quality control system 

The term ‘quality control’ describes the process of conformation-dependent molecular 

sorting of newly synthesized proteins in the ER (19). During the protein folding process, 

besides correctly folded proteins, there is also a fraction of misfolded and incompletely 

assembled proteins. 

In yeast, the secretory pathway is responsible for the modification and maturation of more 

than 550 proteins which are vital to maintain cell function. High-fidelity protein folding is a 

crucial step in the secretory pathway. Misfolded proteins, which can be caused by protein 

overproduction, externally applied stresses such as heat or oxidative stress, or genetic factors 

such as genetic mutations, transcription errors, or translation errors, are handled by the quality 

control system to be either refolded or delivered to the proteasome for degradation through 

ER-associated degradation (ERAD) pathway (20–22). Without proper handling by this 

quality control system, accumulation of misfolded proteins can be toxic to the cell. In humans, 

such accumulation can cause a number of severe diseases, such as Alzheimer’s disease, 

Parkinson’s disease, and type II diabetes (23). As a model eukaryal organism, the yeast S. 
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cerevisiae is a good model to study the secretory pathway and unravel the mechanisms related 

to these diseases (24). 

Unfolded protein response 

The accumulation of misfolded proteins results in ER stress that is handled by the unfolded 

protein response (UPR). Activation of the UPR results in transcriptional change of a large 

number of genes, which relates to around 400 genes in yeast (25). A result of this regulation 

is upregulation of chaperones and foldases as well as ERAD (26–28). Based on studies of the 

UPR many targets for improving protein secretion have been identified and implemented (7), 

and it is generally believed that any factor that reduces ER stress and its downstream damage 

caused by recombinant protein production results in improved secretion of the produced 

protein, and it is therefore important to engineer the secretory pathway to have the right 

capacity to process the protein of interest. 

Post ER processing 

The correctly folded proteins are transported into the Golgi for further processing. The coat 

protein complex II (COPII)-coated vesicles mediate the trafficking from the ER to the Golgi 

(29). In the Golgi, proteins are further maturated, e.g. hyper-mannosylation. After processing, 

proteins are sorted to different destinations, such as endosome, vacuole, plasma membrane 

or extracellular space, depending on their properties. Noteworthy, retrograde transport to the 

ER is also occurred to return cargo adaptor proteins, membrane components and escaped ER 

resident proteins, which is mediated by the coat protein complex I (COPI) (30, 31). 

1.3 The approaches in systems biology 

With the development of genomics, omics analysis and detailed mathematical models in the 

field of systems biology, it has become possible to perform very detailed phenotypic 

characterization of cells and use these for guiding metabolic engineering (4, 32). There are 

two different approaches to systems biology: in top-down systems biology, different types of 

high-throughput generated data, often referred to as omics data, are analyzed in an integrative 

approach, and in bottom-up systems biology, detailed models for specific processes, for 

example, enzymatic reactions, are assembled into a model describing the system being 

studied. The two approaches are complementary; top-down systems biology is useful for 

mapping cellular functions at the genome scale, whereas bottom-up systems biology enables 

detailed timescale resolution of the impact of individual components on overall system 

properties.  
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Integrative analysis of omics data 

The availability of high-throughput experimental techniques, often referred to as omics 

techniques, has allowed a more in-depth study of cell systems. In particular, it has become 

possible to begin to address the general question of how cellular resources are allocated 

through integrative analysis of transcriptome, proteome, phosphoproteome, metabolome and 

fluxome. Integrative analysis of omics data usually uses biological networks to make it 

possible to identify parts of large networks that are coregulated (33). In this context, 

metabolic networks are therefore well suited because they are reconstructed using detailed 

biochemical information (34). Other biological networks, including gene ontology (GO) 

annotations that also reveal connections between genes, can also be used to identify gene-

enrichment groups or reporter features (34, 35), for example, reporter metabolites or reporter 

transcription factors. 

In this thesis, we study the cell systems through integrative study of transcriptome, proteome, 

phosphoproteome and exo-metabolome, and the analysis of GO bioprocess enrichment 

provides much useful information. 

Mathematical modeling 

For describing metabolism, mathematical models can be divided into two groups: kinetic 

models and stoichiometric models. In kinetic models, reaction rates are modeled as a function 

of metabolite concentrations and metabolite concentrations are modeled as a function of time 

(36). The model construction needs input of plenty of parameters, making the typical size of 

the model in a small scale (<100 metabolites). In stoichiometric models, a pseudo-steady 

state is assumed, and therefore, metabolite concentrations are not modeled and reaction rates 

are inferred by imposing steady-state mass balances on each metabolite (37), which makes 

stoichiometric models easier to be constructed in a large scale, even in the genome scale. 

In this thesis, we only focus on stoichiometric models. The genome-scale metabolic model 

(GEM) in yeast (Yeast8) (38) is used to simulate most flux distribution and enzyme usage in 

cells. In addition, we also construct a proteome-constrained secretory model (pcSecYeast) 

based on Yeast8, to show the particular molecular mechanisms in the secretory pathway. 

1.4 Recombinant protein production 

The production of recombinant proteins by microorganisms or cell cultures, including 

biopharmaceuticals and industrial enzymes, is a growing multibillion-dollar industry (39). 

Among these recombinant proteins, about 20% are being produced by S. cerevisiae (40, 41). 
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The advantages of using the yeast S. cerevisiae as a cell factory for the production of 

recombinant proteins are that the proteins can be secreted to the extracellular medium and 

this facilitates subsequent purification, and in many cases yeast can perform proper post-

translational modifications of the proteins, including proteolytic processing of signal peptides, 

disulfide bond formation, subunit assembly, acylation and glycosylation.  

In this thesis, we study the synthesis and secretion of two model recombinant proteins, insulin 

precursor (IP) and α-amylase. IP is a single chain peptide, containing 53 amino acid residues. 

There are three disulfide bonds and no N-glycosylation site in its native structure. α-Amylase 

contains 478 amino acid residues. There are three domains, four disulfide bonds and one N-

glycosylation site in its native structure. Investigation of these two proteins, with distinct 

molecular size, post-translational modifications and three-dimensional structures, makes it 

possible to obtain a universal understanding of the protein synthesis and secretion process. 

1.5 Chemostat culture 

Chemostat culture is one kind of typical modes of continuous cultivation. In chemostat, the 

medium is designed to ensure that there is a single limiting substrate, which allows for 

controlled variation in the specific growth rate of the biomass (42). For S. cerevisiae 

fermentation on minimal mineral medium, glucose is usually the limiting substrate in carbon-

limited chemostat culture and (NH4)2SO4 is usually the limiting substrate in nitrogen-limited 

chemostat culture. Since in a steady-state continuous bioreactor, the specific growth rate 

equals the dilution rate, the cells can be cultivated at different specific growth rates through 

control of dilution rate (or feed flow rate), which allows for precise experimental 

determination of the specific rates and is attractive for physiological studies.  

However, there is an upper threshold of dilution rate. Based on the Monod model, the mass 

balance of the biomass gives: 

𝐷 = 𝜇𝑚𝑎𝑥

𝑐𝑠

𝑐𝑠 + 𝐾𝑠
 

Here 𝐷 is referred to as the dilution rate, 𝜇𝑚𝑎𝑥 as the maximum specific growth rate of the 

cell, 𝑐𝑠 as the concentration of the limited substrate, and 𝐾𝑠 as a specific substrate-related 

parameter. The value of 𝐾𝑠 equals the substrate concentration at which the specific growth 

rate is 0.5 𝜇𝑚𝑎𝑥. Since for a specific cell, the 𝜇𝑚𝑎𝑥 and 𝐾𝑠 are constant, it is easier to know 

that 𝐷 and 𝑐𝑠 keep positive correlation, and when 𝑐𝑠 increase to the substrate concentration 
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in the feed 𝑐𝑠
𝑓
, the dilution rate attains its maximum value, which is called the critical dilution 

rate: 

𝐷𝑐𝑟𝑖𝑡 =  𝜇𝑚𝑎𝑥

𝑐𝑠
𝑓

𝑐𝑠
𝑓

+ 𝐾𝑠

 

When the dilution rate becomes equal to or larger than 𝐷𝑐𝑟𝑖𝑡, the biomass is washed out of 

the bioreactor. A commonly used empirical value of 𝐷𝑐𝑟𝑖𝑡 for S. cerevisiae is 0.8-fold 𝜇𝑚𝑎𝑥. 

In addition to the advantages of precise control of specific growth rate and collection of 

physiological data at the steady state, chemostat can also be used to study dynamic conditions. 

For example, the substrate concentration can be suddenly changed by adding a pulse of the 

limiting substrate to the bioreactor or the temperature can be changed by adjustment of the 

heating system, and the cellular responses to the environmental changes can be studied.  

As mentioned above, chemostat culture can be used to avoid bias caused by differences in 

the growth rates of different strains and delays in protein synthesis, this mode is generally 

performed to study the physiological differences between different strains. In addition, for 

industrial application, although the product concentration in chemostat is often lower than 

the titer in fed-batch culture, the productivity could be high because of the high efficiency of 

continuous fermentation. It is reported that chemostat culture has been used for recombinant 

protein production in an industrial setting (43). 

In this thesis, all omics data are collected from cells grown in steady-state chemostat cultures.  

1.6 Aims and significance 

In this thesis, we study the protein synthesis and secretion process in S. cerevisiae through 

combination of integrative analysis of multi-omics data and mathematical modeling.  

Systematic characterization of yeast strains with recombinant protein production is a feasible 

approach to comprehensively understand the protein synthesis and secretion process. Firstly, 

we performed orthogonal experiments to evaluate strains producing proteins of different 

complexities, and at different yields, compared with the reference strain (from zero to one) 

(Paper I). We found that recombinant protein production remodeled the central carbon 

metabolism at a large scale, including decreased fermentation and respiration, enhanced 

glycolysis and tricarboxylic acid cycle (TCA cycle) to supply more cytosolic nicotinamide 

adenine dinucleotidephosphate (NADPH) and precursors for amino acids biosynthesis, and 
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increased glycerol production to maintain cellular redox potential. Finally, by analyzing 

phosphoproteomic abundance, we demonstrated a key role of Gcn2p-mediated signaling 

pathway on reshaping metabolism. Next, we investigated the rate-limiting steps in the 

secretory pathway for improving recombinant protein production, through characterization 

of evolved strains with high recombinant protein productivity, compared with the original 

strain (from one to hundreds) (Paper II). We identified different routes of the protein folding 

pathway to improve protein production, namely through improved folding capacity and 

increased folding precision, respectively. We further found that the regulation of N-glycans 

played an important role in the folding precision control, and overexpression of the 

glucosidase Cwh41p can significantly improve the protein production. 

Protein translation is the initial step of protein synthesis and secretion. As nitrogen is an 

important component of nucleotide and amino acid, herein we investigated the translation 

propensity through examining transcriptome, proteome and ribosomal protein abundance of 

yeast strains with different nitrogen accessibility (Paper III). We found that yeast growing 

in typical laboratory conditions maintains an overall 50% reserve proteome, 75% reserve 

transcriptome, and 50% reserve translational capacity, and ribosome reserves contained up 

to 30% sub-stoichiometric ribosomal proteins, with activation of reserve translational 

capacity associated with selective upregulation of 17 ribosomal proteins. We also identified 

that a major part of the translation capacity reserves is preferentially maintained for metabolic 

processes, highlighting the importance of a robust metabolism for cell growth and survival.  

Development of a secretory pathway-contained metabolic model contributes to 

comprehensive understanding of the process. In the final part of the thesis, I introduce our 

work on the construction of pcSecYeast (Paper IV). We added detailed reactions related to 

the secretory pathway, including translocation, glycosylation, folding and degradation, into 

Yeast8 to construct the model. We simulated the effects of protein misfolding on cell growth 

and the recombinant protein production process. We further predicted genomic targets for 

cell engineering to improve recombinant protein production with high accuracy. 

The studies in this thesis also demonstrate that how integrative analysis of omics data and 

mathematical modeling can be leveraged to provide valuable novel insights for systems 

biology and metabolic engineering. 
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2. The protein secretory pathway 

2.1 The link between protein secretory pathway and cellular central metabolism 

As mentioned previously, in this section, the original strain Qc, which carries an empty 

plasmid, was used as the reference strain, and four strains AIP, AIC, AAP and AAC, which 

carry a plasmid with recombinant protein production cassette but with different promoters 

(TEF1p or TPI1p) or producing different proteins (IP or α-amylase) were studied. Therefore, 

the genomes of all strains used in this section only are different on the promoters controlling 

the expression of recombinant protein production (Fig. 2-1), which helps eliminate the 

differences between strains caused by genome mutation or strain engineering. The strains 

were grown under chemostat culture with a specific growth rate of 0.2/h to further eliminate 

the differences on growth rate. We examined physiological parameters, proteome, 

phosphoproteome, transcriptome and intracellular amino acid concentrations of these five 

strains to elucidate the global cellular responses to recombinant protein production. 

 

Figure 2-1. Strains used in Paper I. IP, insulin precursor; Amylase, α-amylase. 

In chemostat cultures, the TPI1 promoter was found to be superior over the TEF1 promoter 

for production of both IP and α-amylase (Fig. 2-2a), which is in line with previous results in 

batch cultures (44). The protein production strains exhibited decreased ethanol production 

(Fig. 2-2b) and increased glycerol production (Fig. 2-2c) compared to the reference strain Qc, 

with larger differences in high yield strains (AIC and AAC), while all five strains exhibited 

comparable glucose uptake yields (Fig. 2-2d), biomass (Fig. 2-2e) and acetate production 

yields (Fig. 2-2f). The decreased ethanol yield indicates reduced fermentation and potentially 
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enhanced TCA cycle in the protein production strains. The increased glycerol yield suggests 

the importance of redox capacity for protein production, as the essential role of glycerol 

production in the maintenance of the redox potential (45). Furthermore, of the 14 amino acids 

supplemented in the media, several were taken up at higher rates by the protein production 

strains, including methionine, phenylalanine, tyrosine, tryptophan, leucine and threonine (Fig. 

2-2g). Uptake of methionine contributes to maintenance of redox balancing, as biosynthesis 

of one molecule of methionine in vivo requires three molecules of NADPH (46). In addition, 

the biosynthesis of three aromatic amino acids, phenylalanine, tyrosine and tryptophan, as 

well as leucine, demands more energy than others (47), indicating increased uptake of amino 

acids is driven by an economical strategy. All other amino acids showed same uptake rates 

between the strains. 

 

Figure 2-2. Overview of physiological parameters between strains. a Recombinant protein yield 

for each relevant strain. Insulin precursor for AIP and AIC; α-amylase for AAP and AAC. (b and c) 

Ethanol and glycerol yield for each strain. d Glucose uptake for each strain. e Final biomass for each 

strain. f Acetate yield for each strain. g Changes of uptake yield of glycine, methionine, phenylalanine 

and tyrosine in the protein production strains compared with Qc. Data shown are mean values ± 

standard errors of the means of biological triplicates. Statistical significance was determined by a two-

tailed Student’s t test. *, P < 0.05; **, P < 0.01; ***, P < 0.001.  
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We obtained absolute quantities of 3 944 proteins for each strain by proteome analysis. We 

further calculated the proteome allocation of 99 Yeast GO-Slim bioprocesses based on GO 

Slim Mapper annotations (48), and found that a number of processes were significantly re-

allocated in all protein production strains compared to the Qc strain (P < 0.05) (Fig. 2-3a). 

Several processes related to central carbon metabolism was remodeled, in either direction, in 

response to recombinant protein production: allocation to metabolic energy generation, 

carbohydrate metabolic process and monocarboxylic acid metabolic process were increased, 

but allocation to cellular respiration, mitochondrial translation and mitochondrion 

organization were decreased (Fig. 2-3a). Additionally, proteome allocation to several 

processes relevant to protein secretion were increased, including membrane fusion, organelle 

fusion and vacuole organization, while carbohydrate transport and ion transport were 

decreased. 

 

Figure 2-3. Proteome analysis reveals the changes of protein expression in response to 

recombinant protein production. a The differentially expressed biological processes (P < 0.05) at 

the proteome level in all protein production strains. All proteins were allocated to the 99 Yeast GO-

Slim biological processes. b Differentially expressed proteins (P < 0.05) relevant to ethanol 

production. c Differentially expressed proteins (P < 0.05) relevant to glycerol production. The 

expression levels of processes or proteins in Qc were used as the references.  

Ethanol and glycerol are the two primary by-products of central carbon metabolism in yeast. 

For ethanol metabolism, increased abundance of Ald4p, Ald6p, Acs1p and Acs2p in protein 

production strains suggested that more acetaldehyde was converted to Acetyl-CoA, which 

also induced the enhanced ethanol catabolism (Fig. 2-3b), in accord with the decreased 
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ethanol yield in protein production strains (Fig. 2-2b). Random sampling analysis also 

showed that the pyruvate to Acetyl-CoA reaction carried more flux in the protein production 

strains than Qc, while the pyruvate to acetaldehyde reaction carried less flux (Fig. 2-4). For 

glycerol metabolism, in line with the increased glycerol yield in the protein production strains 

(Fig. 2-2c), enzymes in its anabolic pathway were upregulated and enzymes in its catabolic 

pathway were downregulated (Fig. 2-3c).  

 

Figure 2-4. Carriable flux of the reaction pyruvate to Acyl-CoA or pyruvate to acetaldehyde in 

each strain. 

To further investigate central carbon metabolism, we compared the proteome allocation to 

glycolysis and the pentose phosphate pathway (PPP) between the protein production strains 

and Qc. In Qc, there was 7.9% of the proteome allocated to glycolysis, and to produce 

recombinant proteins, the allocation increased to 8.9% - 12.3% (Fig. 2-5a). On the other hand, 

the PPP allocation remained the same, at 0.6% in Qc, and 0.5% - 0.7% in the protein 

production strains (Fig. 2-5b). 
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Figure 2-5. Proteome reallocation reveals the changes of central carbon metabolism in response 

to recombinant protein production. a Total proteome allocation to all enzymes in glycolysis was 

compared between protein production strains and Qc. b Total proteome allocation to all enzymes in 

the pentose phosphate pathway (PPP) was compared between protein production strains and Qc. c 

Changes of mitochondrial subgroups in the protein production strains compared with Qc at the 

proteome level. Data shown are mean values ± standard errors of the means of biological triplicates. 

Statistical significance was determined by a two-tailed Student’s t test. *, P < 0.05; **, P < 0.01; ***, 

P < 0.001. 

Proteomics analysis identified many downregulated processes present in the mitochondrion 

(Fig. 2-2a). To further unravel the mitochondrial changes in response to recombinant protein 

production, proteins located in the mitochondrion are allocated to different subgroups based 

on mitochondrial gene ontology (49) and significantly changed subgroups are shown in Fig. 

2-5c. Compared with Qc, most mitochondrial components had significantly decreased 

abundance in the protein production strains. In particular, the abundance of ATP synthases is 

significantly decreased in the protein production strains, indicating attenuated respiration. 

Correspondingly, flux balance analysis (FBA) results also showed that the relative ATP yield 

on biomass generated from respiration in these strains decreased compared with Qc (3.2%, 

8.6%, 8.2% and 1.1% decrease for AIP, AIC, AAP and AAC, respectively) (Fig. 2-6a). 

Conversely, the ATP yield from the TCA cycle increased to meet the cellular energy demand 

(43.9%, 88.2%, 47.7% and 20.2% increase for AIP, AIC, AAP and AAC, respectively) (Fig. 

2-6a). Moreover, while the abundance of enzymes in the TCA cycle decreased in the protein 

production strains, FBA results revealed that most enzymes exhibited a greater usage ratio 

and generally carried higher flux than the enzymes in Qc. Similar observations were made 
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for enzymes in amino acid biosynthesis as well. Further comparison of the fluxes showed 

that fluxes in respiration were comparable (Fig. 2-6b), but the fluxes with ATP generation in 

the TCA cycle increased a lot in the protein production strains (Fig. 2-6c). Hence, the total 

ATP yield either did not decrease (in AIP, AAP and AAC) or only slightly decreased (3.9% 

decreased in AIC). 

 

Figure 2-6. Changes in the energy generation pathways. a Relative ATP yield generated from 

respiration, glycolysis and TCA cycle between strains. b Carriable flux of ATP synthase in the 

mitochondrion. c Carriable flux of succinyl-CoA to succinate in the TCA cycle.  

The TCA cycle supplies the reducing agent nicotinamide adenine dinucleotide (NADH) for 

the respiratory chain resulting in ATP generation. Compared with Qc, the enhanced TCA 

cycle flux and decreased respiration in the protein production strains indicated an imbalance 

in NADH formation and consumption. Further investigation, however, showed that the 

enhanced TCA cycle generated more cytosolic NADPH and not mitochondrial NADH 

through oxidation of isocitrate to α-ketoglutarate (AKG). The oxidation of isocitrate to AKG 

in the mitochondrion can be catalyzed by Idh1p, Idh2p, or Idp1p, producing either NADH 

(Idh1p and Idh2p) or NADPH (Idp1p), and in the cytoplasm, this reaction is catalyzed by 

Idp2p only and is NADP-specific (50) (Fig. 2-7a). Proteome analysis revealed that with same 

total amount of these four enzymes, the fraction of Idp2p increased in the protein production 

strains (Fig. 2-7b). In line with this, random sampling analysis showed that the mitochondrial 

NAD-specific isocitrate dehydrogenative reaction carried comparable flux in each strain (Fig. 

2-7c), but the cytosolic NADP-specific reaction in protein production strains was able to 

carry 7.9-fold to 13.1-fold higher flux than in Qc (maximum carriable flux was 1.57, 1.10, 

1.32, 0.95 and 0.12 for AIP, AIC, AAP, AAC and Qc, respectively, with the unit of mmol 

gDCW-1 h-1) (Fig. 2-7d). At the same time, the flux carried by the mitochondrial NADP-

specific reaction was very low in each strain (Fig. 2-7e), indicating a low NADPH demand 

in the mitochondrion. The PPP is also a crucial pathway to generate cytosolic NADPH, but 

in the protein production strains, the two NADPH-generated reactions in the PPP carried low 
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and comparable fluxes, compared with Qc (Fig. 2-7f and g), in agreement with the result that 

a similar fraction of proteome was allocated to the PPP in each strain (Fig. 2-5b).  

 

Figure 2-7. More cytosolic NADPH is provided by oxidation of isocitrate to AKG. a Oxidation 

of isocitrate to AKG is under catalysis of four enzymes. b Proteome allocation to Idp2p and total four 

enzymes catalyzing the oxidation of isocitrate to AKG. c Carriable flux of isocitrate to AKG catalyzed 

by Idh1p and Idh2p. d Carriable flux of isocitrate to AKG catalyzed by Idp2p. e Carrible flux of 

isocitrate to AKG catalyzed by Idp1p in the TCA cycle. f Carriable flux of G6P to 6PGL in the PPP. 

g Carriable flux of D6PGC to Ru5P in the PPP. AKG, α-ketoglutarate. Carriable fluxes of relevant 

reactions with NADH or NADPH generation. G6P, glucose 6-phosphate; 6PGL, 6-

phosphogluconolactonase; D6PGC, 6-phosphogluconate; Ru5P, ribulose-5-phosphate. For panel b, 

data shown are mean values ± standard errors of the means of biological triplicates. Statistical 

significance was determined by a two-tailed Student’s t test. *, P < 0.05; **, P < 0.01.  

In phosphoproteomic analyses, we identified 836-1,533 phosphorylated sites that are 

differentially expressed, in any one of the protein production strains, compared to Qc (P < 

0.05) (Fig. 2-8a). Regarding the overlapped 140 phosphorylated sites which were 

significantly changed, the abundance of 25 sites was upregulated and the abundance of 110 

sites was downregulated in all protein production strains (Fig. 2-8b). The highly conserved 
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regulation of phosphorylation events (135 out of 140 sites) indicated the importance of these 

proteins on protein production.  

 

 

Figure 2-8. Overview of phosphoproteomics changes. a Overlaps of phosphorylation sites with 

significantly changed abundance (P < 0.05) compared with Qc between protein production strains. b 

Changes of phosphorylation abundance regarding the overlapped 140 protein sites.  

GO term enrichment analysis of these proteins revealed several processes relevant to 

translation, including regulation of translational initiation, mature ribosome assembly and 

translational initiation. At the protein level, there were 6 proteins related to translation, i.e. 

Fun12p, Gcd6p, Gcn2p, Gcd1p, Tif5p and Tif6p. The phosphorylated forms of these 6 

proteins were significantly decreased in the protein production strains compared with Qc (Fig. 

2-9a), but the abundance of these proteins did not show any differences (Fig. 2-9b), indicating 

the importance of protein phosphorylation as a regulatory mechanism of translation-related 

processes.  

 

Figure 2-9. Overview of phosphoproteomics and proteomics changes of proteins involved in 

translation process. a Changes of phosphorylation abundance in proteins relevant to translational 

regulation compared with Qc. b Changes of abundance at the protein level compared with Qc.  
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Of these 6 proteins, Gcn2p is an important protein kinase responsible for sensing starvation 

in a dynamic environment (51). Gcn2p is activated via dephosphorylation of Gcn2p-Ser-577 

in amino acids-deprived cells (52), which was observed in all protein production strains (Fig. 

2-9a). The activated Gcn2p is able to phosphorylate the α subunit of eukaryotic initiation 

factor 2 (eIF2α) and further reduce general protein biosynthesis but specifically induce the 

expression of Gcn4p and over 500 genes under its control (Fig. 2-10a), including many amino 

acid biosynthetic genes (53). Since amino acid starvation is known to be a common signal to 

activate the Gcn2p signaling pathway (54), we therefore examined the intracellular 

concentrations of 20 natural amino acids for each strain. Our results showed that, overall 

there were less free amino acids in the protein production strains than Qc, with particularly 

low concentrations of alanine, suggesting that alanine starvation is a likely signal inducing 

the activation of Gcn2p in this context (Fig. 2-10b). Additionally, methionine and aromatic 

amino acids showed very low concentration in all strains (Fig. 2-10b), which was in line with 

their higher biosynthetic costs (47). Amino acid starvation also induces the repression of the 

target of rapamycin complex 1 (TORC1) (55), which in turn leads to decreased 

phosphorylation of a large number of proteins (56). In the two high yield strains, there were 

14.9% (250 out of 1 676) proteins with decreased phosphorylation events, and given the scale 

to TORC1 targets, the fraction was 23.6% (13 out of 55) (Fig. 2-10c), indicating that TORC1 

was repressed in these strains. Furthermore, we found that all Gcn4p regulated genes (both 

upregulation and downregulation) were differentially expressed in all protein production 

strains compared to Qc (Fig. 2-10d), suggesting that Gcn4p was activated in response to 

protein production. 

In addition to Gcn2p-Ser-577, two phosphorylation sites on the complex eukaryotic initiation 

factor 2B (eIF2B), Gcd1p-Ser-296 and Gcd6p-Ser-449, also showed decreased 

phosphorylation. Since eIF2B activity is inhibited by phosphorylation of eIF2α and 

negatively regulates the expression of Gcn4p (Fig. 2-10a), it is likely that the 

dephosphorylation of these two sites were important for inactivation of eIF2B. 
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Figure 2-10. Activation of kinase Gcn2p induced the activation of Gcn4p. a The Gcn2p signaling 

pathway activated by amino acid starvation. b Intracellular abundance of alanine, glutamate and 

methionine in all strains. Data shown are mean values ± standard errors of the means of biological 

triplicates. Statistical significance was determined by a two-tailed Student’s t test. *, P < 0.05; **, P 

< 0.01; ***, P < 0.001. c Fraction of dephosphorylated proteins in the high yield strains (AIC and 

AAC) compared with Qc, and the ratio of the number of these proteins to the number of TORC1-

repression induced dephosphorylated proteins. Binominal cumulative distribution function was used 

to calculate the P value. d Changes of expression level of gene sets regulated (upregulated or 

downregulated) by Gcn4p in the protein production strains. Qc was used as the reference. 

 

 

2.2 The rate-limiting steps inside the secretory pathway 

In section 2.1, I show the global reprogramming of central carbon metabolism in response to 

recombinant protein synthesis and secretion. To further unravel the mechanisms of the 

complicated protein secretory pathway, recombinant protein with more complex structure 

and modifications, and yeast strains with higher production yield, are more valuable to be 

studied. Herein we characterize the strain AAC, the high α-amylase yield strain in section 

2.1, and two evolved strains with higher α-amylase yields (Fig. 2-11), to explore the crucial 

rate-limiting steps for improving recombinant protein production. 
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Figure 2-11. Relationships among the α-Amylase production yeast strains used in Paper II. All 

three strains were grown in chemostat cultures operated at dilution rates of 0.1/h and 0.2/h.  

Previous work showed that a higher specific growth rate was coupled to higher recombinant 

protein production in chemostat cultures (57). In view of the maximum specific growth rates 

of these three strains (0.276/h, 0.329/h and 0.310/h for AAC, MH34 and B184, respectively) 

(58), we cultured the strains at dilution rates of 0.1/h and 0.2/h. Compared with the reference 

strain AAC, we found that the α-amylase productivity of MH34 and B184 was significantly 

improved at both dilution rates (Fig. 2-12a), which is in agreement with the results obtained 

for batch cultures (58). However, in batch culture, B184 produced α-amylase with 1.29-fold 

increase of yield and 47% increase of productivity compared with MH34. In contrast, in 

chemostat cultures, we found that the yield or the productivity of B184 was only 14% greater 

than that of MH34 at 0.2/h, and even 22% lower at 0.1/h, indicating the different mechanisms 

for improved protein production between MH34 and B184. To compare the fraction of 

misfolded α-amylase between three strains, we also measured the intracellular α-amylase 

abundance and activity (Fig. 2-12b and c). Compared with B184, we found that in MH34 the 

abundance was greater but the activity was lower, which means a higher fraction of misfolded 

α-amylase in MH34 than in B184.  

The absolute quantitative proteome for AAC, MH34 and B184 grown in steady-state 

chemostat cultures at dilution rates 0.1/h and 0.2/h were analyzed. Proteins were annotated 

based on the Yeast GO-slim bioprocess mapper (48), analyzed the changes of specific 

bioprocesses in the proteome and listed the processes changing significantly (P < 0.05) in 

MH34 or B184 revealed by proteome analysis (Fig. 2-13). Out of 99 Yeast GO-slim 

bioprocesses, only 18 processes were differentially expressed, with the scale of log2 fold 

change from -0.82 to 1.55. Clearly the proteome changes in a specific manner that precisely 

impacts bioprocesses related to protein production, including amino acid transport, vitamin 

metabolism, protein modification, protein phosphorylation and so on.  
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Figure 2-12. α-Amylase production in steady state of chemostat culture. a α-Amylase 

productivity of strains in steady state of chemostat culture. b Relative intracellular α-amylase 

abundance of strains in chemostat culture. c Intracellular α-amylase yield of strains in chemostat 

culture. Data shown are mean values ± standard errors of the means of biological duplicates. 

 

 

Figure 2-13. The differentially expressed biological processes (P < 0.05) in MH34 and B184 

revealed by proteome allocation. All proteins were allocated to the 99 Yeast GO-slim biological 

processes. The proteome fraction (g/g) for each process was used. The expression levels of processes 

in AAC at 0.1/h and 0.2/h, respectively, were used as the reference. 



21 

 

Since energy metabolism is important for protein synthesis and secretion (59). We next 

investigated the abundance of proteins involved in carbohydrate transport and 

oligosaccharide metabolism, which were upregulated in the high α-amylase production 

strains (Fig. 2-13). The upregulated proteins mainly participate in glycogen metabolism (Fig. 

2-14), which links carbohydrate metabolism to protein glycosylation and folding via the 

production of uridine diphosphate glucose (UDP-glucose) (60). α-Amylase is a glycoprotein 

which carries one of N-glycans. And UDP-glucose is a critical precursor of N-glycans, the 

changes in composition of which act as a signal that guides the folding process for 

glycoproteins. For example, when the N-glycan changes from G3M9 (Glc3Man9GlcNAc2) to 

G1M9 (Glc1Man9GlcNAc2) the protein is better folded by relevant enzymes and chaperones, 

and when it changes from M8 (Man8GlcNAc2) to M7 (Man7GlcNAc2) there is increased 

targeting of the protein to ERAD for degradation (20). Hereby the upregulation in glycogen 

metabolism is able to offer more available sugars, which could be recruited by N-glycans and 

store more sugars that are trimmed from N-glycans, which could support the increased protein 

production in MH34 and B184. 

 

Figure 2-14. Differentially expressed proteins (P < 0.05) related to glycogen and trehalose 

metabolism. The expression levels in AAC at 0.1/h and 0.2/h were used as the reference accordingly.  



22 

 

Differ from glycogen metabolism, trehalose metabolism showed differences between MH34 

and B184. The proteins in trehalose metabolism were upregulated mainly in MH34, but not 

in B184 (Fig. 2-14). Previous studies had shown that trehalose exerts bidirectional effects on 

protein folding (61, 62). On the one hand, trehalose can help to prevent folded proteins from 

denaturing and misfolded proteins from aggregating. On the other hand, trehalose interferes 

with refolding of denatured proteins by relevant molecular chaperones. Therefore, the 

upregulation of the trehalose cycle in MH34 suggests a dynamic control of the trehalose 

concentration in the cell, which is line with the fact that there are more misfolded proteins in 

MH34 than in B184. To test this hypothesis, we calculated the energy used for protein 

synthesis and secretion based on a genome-scale metabolic model with enzyme constraints 

(Yeast8) (38). Energy used for protein production is a component of the non-growth 

associated maintenance energy (NGAM) in Yeast8, which we found to be always lower in 

B184 than in other strains (Fig. 2-15). Especially compared with MH34, due to their similar 

α-amylase productivity in chemostat, the lower NGAM in B184 indicated that B184 

expended less energy than MH34 to produce the same amount of correctly folded α-amylase, 

which was in line with the finding that the fraction of misfolded α-amylase was greater in 

MH34 than in B184. 

 

Figure 2-15. The non-growth associated maintenance energy (NGAM) in chemostat cultures as 

calculated with assistance of the Yeast8 model.  

The overall proteome allocation analysis revealed significant differences in protein synthesis 

associated processes in addition to energy metabolism (Fig. 2-13 and 2-14). We next focused 

specifically on the protein secretory pathway, which involves more than 160 proteins that are 

responsible for different post-translational processes in yeast. A previous yeast protein 

secretory model divided the secretory machinery into 16 subsystems (14). To reduce the 

complexity, we merged subsystems with similar functions and simplified the secretory 

pathway into 8 subsystems, including translocation, ER glycosylation, folding, ER 
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glycosylphosphatidylinositol (GPI) anchoring, ERAD, trafficking between ER and Golgi, 

Golgi processing and sorting.  

Proteome analysis revealed the differences in protein glycosylation and folding processes 

between strains. As a glycoprotein, the folding pathway is directed by the change of the 

composition of N-glycans (Fig. 2-16). Therefore, we further investigated the involved 

proteins in these strains to elucidate the specific contributors. 

 

 

Figure 2-16. N-glycan directed protein folding pathway. 

 

Within the ER glycosylation process, there were more downregulated proteins in MH34 than 

in B184 (Fig. 2-17). Among them, Alg11p and Ost1p, which regulated the synthesis of N-

glycan (20), are downregulated at both dilution rates in MH34, but not in B184. And 

correspondingly, within the folding process, the glucosidase Cwh41p, which catalyzes the 

first step in N-glycan trimming and initiates the folding process (Fig. 2-16), was upregulated 

at both dilution rates in B184, and only at 0.2/h in MH34. On the other hand, Pdi1p was the 

only protein in the folding pathway to be upregulated at both dilution rates in MH34 (Fig. 2-

17). This is in line with its role in disulfide bond formation during protein folding as well as 

in guiding misfolded proteins to ERAD (20). Previous studies already reported that 

overexpression of PDI1 can increase α-amylase production (8, 63).  
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Figure 2-17. Differentially expressed proteins (P<0.05) related to the ER glycosylation process 

and the folding pathway. The expression levels in AAC at 0.1/h and 0.2/h, respectively, were used 

as the reference. 

To validate if the regulation of synthesis and trimming of N-glycans could increase the protein 

yield and cause the differences between MH34 and B184, we studied the role of Cwh41p on 

protein production. At first, we tested different promoters for overexpression. We 

overexpressed CWH41 under the control of either a strong promoter or the CWH41 native 

protomer carried by a multi-copy plasmid in AAC. We also tested the overexpression of 

Rot2p, which catalyzes the second step in N-glycan trimming (Fig. 2-16). The α-amylase titer 

increased with overexpression of CWH41, particularly when expressed under its native 

promoter, reaching a 40% increase in α-amylase production (Fig. 2-18a). Interestingly, the 

final biomass was significantly increased in this strain as well, which was rarely observed in 

previous engineering studies (8, 58, 64). In general, the final biomass is most of the times 

lower in strains engineered to overproduce recombinant proteins, since increased protein 
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production overloads the folding burden of the cell, leading to accumulation of misfolded 

proteins and increased energy expenditure in response to cell stress (65). One example is the 

overexpression of PDI1, which increased α-amylase yield but decreased final biomass (8). 

Here the increase of both α-amylase production and final biomass suggests that CWH41 

overexpression improves protein production without accumulation of misfolded proteins. In 

other words, CWH41 overexpression might lead to more precise protein folding, consistent 

with the decreased fraction of misfolded α-amylase in B184. 

A previous study reported that the overexpression of PDI1 under the control of the TEF1 

promoter resulted in a higher α-amylase yield than overexpression using its native promoter 

(8). In case of CWH41 and ROT2, the native promoters led to better results (Fig. 2-18a). 

Therefore, here we performed single-copy combinatorial overexpression in AAC with the 

superior promoter for each gene to further evaluate the role of Cwh41p (Fig. 2-18b). The data 

showed that the overexpression of CWH41 itself did not increase the α-amylase yield in AAC, 

but the combinational overexpression of PDI1 and CWH41 did further increase the yield 

compared with the overexpression of PDI1 alone, which could indicate that the increase of 

folding precision is more important for strains with improved protein folding capacity. To 

further validate this, we engineered the strain MH34, which has an improved folding capacity 

compared with AAC. Both of the multi-copy overexpression via plasmid (Fig. 2-18c) and 

single-copy combinatorial overexpression (Fig. 2-18d) showed that CWH41 can increase the 

α-amylase yield. In details, the single-copy combinatorial overexpression revealed that 

CWH41 itself can help to increase the α-amylase yield by 27%, compared with the 43% 

increase in B184 at the same condition (Fig. 2-18d), which is in line with the observation that 

overexpression of CWH41 helped to further increase the yield in an AAC strain already 

overexpressing PDI1. For PDI1, the expression level was already upregulated in MH34 (Fig. 

2-17), and overexpression did therefore not result in a significant difference (Fig. 2-18c and 

d).  

 



26 

 

 

Figure 2-18. Overexpression of CWH41 contributes to α-Amylase production. a Promoters 

evaluation for overexpression of CWH41 or ROT2 from plasmids. The plasmid pSPGM1 was used 

for the gene overexpression. b α-Amylase titer, biomass and α-amylase yield of engineered strains in 

the background of MH34. The plasmid pSPGM1 was used for the gene overexpression. c α-Amylase 

titer, biomass and α-amylase yield of engineered strains in the background of AAC. d α-Amylase titer, 

biomass and α-amylase yield of engineered strains in the background of MH34. Data shown are mean 

values ± standard errors of the means of biological triplicates. Statistical significance was determined 

by a two-tailed Student’s t test. *P < 0.05.  
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Proteome analysis suggested that Cwh41p and Pdi1p are two important proteins in this 

context. Herein we also studied the regulatory mechanisms of these two proteins based on 

their mRNA abundance, protein abundance and translation propensity (protein abundance / 

mRNA abundance, abbreviated to P/T) among three strains (Fig. 2-19). For Cwh41p, 

compared with AAC, at transcriptional level there was limited increase in the evolved strains 

(less than 5% increase in B184 at 0.1/h, and even decrease under other three conditions), and 

at the translational level the abundance significantly increased (over 100% increase in B184 

at both dilution rates). Thus, the increase of Cwh41p mainly depends on post-transcriptional 

regulation. And for Pdi1p, there was already significant increase at transcriptional level in 

the two evolved strains, but the different post-transcriptional regulation led to different 

protein abundance (over 50% increase of P/T value in MH34 at both dilutions, and decreased 

P/T value in B184). Thus, the regulation of Pdi1p needs both transcriptional and post-

transcriptional regulation. 

 

Figure 2-19. The mRNA abundance, protein abundance and translation propensity (protein 

abundance / mRNA abundance) of CWH41 or PDI1 of strains in chemostat cultures. a and b 

show the properties of CWH41 expression under 0.1/h and 0.2/h, respectively. c and d show the 

properties of PDI1 expression under 0.1/h and 0.2/h, respectively.  
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3. Translation – the initiation of protein synthesis 

The translation process translates mRNA to polypeptide in the organelle ribosome. A 

quantitative measurement of transcriptome, proteome and abundance of ribosomal proteins 

enables a more comprehensive understanding of the protein synthesis process. To further 

characterize the correlation between mRNA and protein, as carbon and nitrogen are two 

important elements in the composition of nucleotide and amino acid, the supplemented C/N 

ratio is changed by stepwise reducing the nitrogen content in the growth medium. 

The typical elemental composition of yeast dry biomass is ~49% carbon and 9% nitrogen by 

weight (66), which represents a C/N ratio of 5.4. In typical carbon-limited chemostat cultures, 

nitrogen is provided in excess with C/N ratio of 3-4 in the growth medium (67, 68). Reducing 

the nitrogen content in the growth medium to a C/N ratio of 50-115 leads to total protein and 

mRNA in the cell declining to 50% and 25% of the amount measured in C-limited cultures, 

respectively (Fig. 3-1). Further reducing nitrogen availability reduced the steady-state 

biomass, but did not further decrease the RNA and protein fraction, suggesting these levels 

to be the minimum required for cell growth at a constant dilution rate of 0.2/h (Fig. 3-1). 

Under these nitrogen-limited conditions therefore, we consider the transcriptome and 

proteome allocation of the cell to be fully economized.  

Cells maintain reserves in translational capacity, including but not limited to excess/inactive 

ribosomes (69–71). In our dataset, since the total protein-to-mRNA ratio was doubled under 

N-limitation (Fig. 3-1), this places the overall translational reserve at approximately 50% 

capacity in C-limited cultures; a conservative estimate, as this approximation neglects protein 

turnover. As both the transcriptome and proteome allocation for different cellular processes 

maintained a similar % of reserves, we next investigated whether this is true for cellular 

reserves in translational capacity as well.  
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Figure 3-1. Total protein and mRNA content of the biomass under each culture condition. Bars 

are mean + standard deviation of biological duplicates. 

 

 

Figure 3-2. Reserves in translational capacity. a Gene-specific translation efficiency was calculated 

in all growth conditions. ***, P < 0.001, Student’s t test. b Genes were grouped based on the step of 

nitrogen reduction at which their translation efficiency was increased by log2 > 1. Data points reflect 

the median translation efficiency of each group, with the # of genes belonging to each group shown 

in parentheses. Horizontal dashed line indicates 2-fold increase from C-limited cultures.  

 

Using protein and mRNA abundances from this dataset, and by mining protein turnover data 

from Lahtvee et al (2017) (68), we calculated protein synthesis efficiency ksP (protein/mRNA 

h) for each protein. With step-wise reduction of nitrogen content in the growth media, ksP was 

globally increased (Fig. 3-2a), indicating that reserve translational capacities were placed into 

usage: a 2-fold increase in the ksP of a gene implicates a 50% reserve translational capacity 

for this gene under typical C-limited growth. To study this response, we further grouped 

genes based on the step of nitrogen reduction at which ksP was increased by >2-fold, which 
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splits a total of 3,361 genes into 4 groups of similar sizes (Fig. 3-2b). The step of ksP 

modulation correlated with the effect size: those genes with an increased ksP at C/N=30 (Fig. 

3-2b, group 1), were also the genes with the largest ksP increase at C/N=115. When nitrogen 

availability is at its lowest, at C/N=115, this group of genes has a median ksP increase of 5.6-

fold (Fig. 3-2b), implicating an 82% reserve translational capacity under typical C-limited 

growth. Remarkably, this group of genes were enriched exclusively in processes related to 

metabolism (Fig. 3-3, group 1). This is consistent with our observation that the abundance of 

enzymes within a given metabolic pathway have a higher propensity to be internally adjusted, 

while proteome and transcriptome allocation to the pathway as a whole remain constant. 

Taken together, these results show that the vast majority of cellular reserves are dedicated to 

metabolism, in line with the growing consensus that yeast have evolved complex regulatory 

mechanisms to control metabolic pathways.  

At the final step of nitrogen reduction in the growth medium, a total of 2,490/3,361 genes 

(74%) exhibited a >2-fold ksP increase, demonstrating >50% reserve in their translational 

capacities when growing in C-limited conditions (Fig. 3-2b). These genes were enriched for 

a variety of cellular processes (Fig. 3-3). The remaining 26% of genes showed little to no 

modulation of ksP and were enriched in translation/protein processing-related GO-slim terms 

(Fig. 3-3). This indicates that components of the translational machinery were themselves 

being translated at maximum capacity in C-limited cultures, and therefore the changes in the 

abundance of protein related to these processes are predominantly regulated at the transcript 

level. Finally, we observed no significant enrichment (pFisher > 0.01) in any of the 4 groups 

herein for essential genes (48), indicating that the unequal distribution of these reserves is not 

a critical feature for survival, but likely arose by conveying a selective advantage and 

increased fitness. 
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Figure 3-3. Reserves of translational capacity are preferentially used to translate metabolic 

proteins. Enrichment of GO-slim terms in each gene group as defined in Fig. 3-2b was analyzed by 

Fisher’s exact test. GO-slim terms with FDR-adjusted pFisher < 0.05 in at least one gene group are 

shown. 

The observation that cells preferentially maintain reserve translational capacities for some 

processes (metabolism) but not others (components of the translational machinery) is 

interesting, considering that functionally distinct sub-pools of mRNA are known to be 

translated by subsets of ribosomes with distinct ribosomal protein (RP) stoichiometry (72–

74). RP stoichiometry has also been shown to depend on the balance between the economics 

of protein production and cell growth (75). To investigate this further, we examined RP 

stoichiometry in our proteomics dataset for C-limited cultures, and found that of the 76/79 

RP subunits detected (from 94/117 non-identical RPs), their abundance spanned >2 orders of 

magnitude, even when their paralogs were summed. This large variation could not be 

accounted for by differences in RP degradation rate (68), molecular weight, order of assembly 

(76); or parameters of the MS such as the number of peptides detected or the coverage of 

each RP’s protein sequence. Interestingly, most deviations from mean RP abundance and 

rRNA abundance were sub-stoichiometric RPs, while few RPs were over-represented (Fig. 
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3-4a). This indicates that a substantial number of ribosomes in the cell likely contain a sub-

stoichiometric composition of RPs that are available.  

To validate this finding, we performed targeted quantitative proteomics for 26 RPs by TMT-

based MS, using 49 proteotypic peptides that were chemically synthesized at known 

quantities as standards. After tryptic digest and labeling with isotopic mass tags, the synthetic 

peptide standards and the pooled reference sample were multiplexed at 8 different ratios to 

ensure that MS intensity ratios cover the dynamic range of TMT (77). This analysis 

confirmed that iBAQ-based quantification is robust to the order of magnitude, for 23 out of 

26 (88%) RPs. We note here that, for a few RPs, the measured abundance of different peptides 

differed by >10-fold, e.g. for RPL30 and RPL37A, which could have arisen from partial 

degradation during sample preparation and handling. In all cases, the average of all peptides 

was taken as the abundance of the RP. This analysis further indicated that any post-

translational modifications on these peptides did not significantly interfere with the absolute 

quantification by MS, since the synthetic peptide standards are not modified. Thus, we 

confirmed that the abundance of RP subunits in a cell is markedly different from the typically 

assumed 1:1 stoichiometry. Out of the 76 RP subunits detected in our dataset, 54 (70%) were 

expressed in the order of 105 molecules/cell (mean = 3 x 105 molecules/cell), in line with 

classic estimates of ribosome content (78); while 22 (30%) RP subunits were sub-

stoichiometric by up to an order of magnitude. 

 

Figure 3-4. Ribosome reserves contain diverse sub-stoichiometric ribosomal proteins (RP). a 

RP:rRNA ratio for each RP was calculated in all growth conditions. **, P < 0.01; ***, P < 0.001, 

Student’s t tests. b Model of ribosome complex diversity and abundance. Each complex ribosome 

contains 54 “core” RP subunits expressed in the order of 105 molecules/cell, and samples a subset of 

22 RP subunits expressed at 104 molecules/cell. c The total number of ribosomes in the cell decreases, 

while diversity of ribosomes varies parabolically, with the number of RP subunits complexed.  
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From this data, a simple model of ribosome complex diversity and abundance emerges (Fig. 

3-4b and c). Each complexed ribosome likely contains the 54 “core” RP subunits that are 

expressed in the order of 105 molecules/cell, and a subset of the 22 RP subunits, expressed in 

the order of 104 molecules/cell (Fig. 3-4b). Thus, the total number of ribosomes that can be 

complexed with n RP subunits decreases with increasing n when n > 54 (Fig. 3-4c). The 

diversity of ribosome subunit composition varies parabolically with n, with peak diversity 

occurring with complexes of n = 64-65 RP subunits, where >106 combinations are 

theoretically possible (Fig. 3-4c). Notably, for complexes of n = 58 to n = 71, the number of 

possible RP subunit combinations exceeds the actual number of ribosomes that can be built 

with n RP subunits (Fig. 3-4c). This means that it is possible for these ribosomes to re-

assemble into completely new RP subunit compositions if needed, pointing to a dynamic pool 

of ribosome reserves that can quickly respond to changing growth environments by adjusting 

their RP subunit stoichiometries.  

 

 

Figure 3-5. Relative abundance of RP subunits in N-limited chemostats compared to C-limited 

chemostat. RP paralogs were summed and labeled with standard gene name.  

As nitrogen is reduced in the growth media, less RPs are detected at sub-stoichiometric levels 

to rRNA (Fig. 3-4a), with 17 RP subunits (22 RPs) being selectively upregulated by >2-fold 

(Fig. 3-5). This upregulated RP pool includes 3 RP subunits where one paralog of the paralog-

pair (RPL21B, RPL6A, and RPS7A) was upregulated, while the other (RPL21A, RPL6B, 

RPS7B) was not, indicative of a paralog-specific response to nitrogen reduction. Interestingly, 

not all RPs upregulated in the N-limited cultures were sub-stoichiometric in the control C-

limited culture, and vice versa, implicating multiple levels of control for RP subunit 

incorporation and ribosomal translation efficiency. Benchmarking the quality of this gene set 

is the inclusion of Asc1 (Fig. 3-5), a peripheral RP in the small subunit that is known to 

promote ribosomal activity. In particular, such activity is targeted towards highly translated 

mRNAs containing short ORFs (79), with Asc1p interacting with the pre-initiation complex 



35 

 

(80), the closed-loop complex (79), and RNA-binding proteins (RBPs), to tether mRNAs to 

the translational machinery (81, 82). These adjustments in ribosome composition (Fig. 3-5) 

may therefore be responsible, at least in part, for the global increase in ksp under nitrogen 

limitation (Fig. 3-2a), by helping sub-stoichiometric ribosome reserves engage with and 

translate mRNA, with a preference for those encoding metabolic enzymes (Fig. 3-3). Taken 

together, these observations suggest the intriguing possibility that RP stoichiometry can be 

optimized to improve translation efficiency for synthetic biology and metabolic engineering 

applications. 
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4. Proteome-constrained secretory modeling 

The latest yeast genome-scale metabolic model (GEM) Yeast8 (38) represents a 

comprehensive computational resource for performing simulations of the metabolism in yeast, 

the applications of which has been shown in Chapters 2 and 3. To further elucidate the 

secretory mechanisms and predict genomic targets for improving recombinant protein 

production, herein I introduce the construction of a proteome-constrained genome-scale 

secretory model (pcSecYeast). In pcSecYeast, the protein secretory pathway was elaborated 

by adding a series of relevant metabolic reactions, including reactions for the generation of 

precursors from the central carbon metabolism, e.g. GPI and glycans, and the central 

reactions within the secretory pathway, e.g. protein translocation, glycosylation, folding, 

ERAD and sorting (Fig. 4-1), conceptually similar with the earlier published metabolic 

models for E. coli (83) and S. cerevisiae (84). Therefore, the model can simulate the whole 

process, including nascent polypeptide formation, protein maturation and protein transport to 

various destinations. To our knowledge, it is the first genome-scale metabolic model to 

comprehensively describe the protein synthesis and secretion process in yeast. Overall, 

pcSecYeast accounts for 1, 639 protein-coding genes and approximately 70% of the total 

proteome mass according to paxDb. 

As ribosome and protein synthesis demands substrates and energy from cellular metabolism, 

and the synthesized enzyme complexes are crucial for the catalysis of metabolic reactions, 

herein we introduced coupled constraints to correlate protein synthesis and cellular 

metabolism. Additionally, the synthesis of enzyme complexes also constrains the protein 

synthesis and secretion process, including ribosome synthesis and the synthesis of 

components involved in the secretory pathway. Moreover, in pcSecYeast, the flux of 

enzymatic reaction is constrained by the turnover number and the concentration of the 

enzyme, allowing the simulation of the minimum protein demand that maintains the 

metabolic status, i.e., the proteome-constrained metabolic status. 
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Figure 4-1. Simplified schematic processes involved in the secretory pathway. The pathway 

includes protein translation, translocation, glycosylation, GPI transfer, ERAD and sorting processes. 

NG: N-glycosylation, OG: O-glycosylation, DSB: disulfide bond formation, GPI: 

glycosylphosphatidylinositol, ERAD: ER-associated degradation, LDSV: low-density secretory 

vesicles, HDSV: high-density secretory vesicles, ALP: alkaline phosphatase pathway, CPY: 

carboxypeptidase Y pathway. 

As mentioned previously, high-fidelity protein folding is a crucial pathway in the secretory 

machinery. Misfolded proteins, which can be caused by many internal or external factors, 

need to be refolded or delivered to the proteasome for degradation through ERAD pathway 

(20). Without proper handling, the accumulation of misfolded proteins can trigger cell 

disorder (85–87). Here, we simulated the process of vacuolar carboxypeptidase Y (CPY) 

production (88) to characterize the ER tolerance to the accumulation of misfolded proteins. 

In the model, the misfolding level of CPY is simulated by modifying the misfolding ratio. A 

misfolding ratio of 1 means that all CPY molecules are fully misfolded and cannot be targeted 

to the Golgi for further processing, as reported by Haynes et al. (89). The maximum growth 

reduction was used to characterize the cellular fitness cost when expressing CPY with 

different misfolding ratio. We found that there was ~1.9% maximum growth reduction when 

expressing 0.46 mg native CPY without misfolding (representing 0.1% of the total proteome, 

Fig. 4-2), which is comparable to a previous study that simulates the expression of the yellow 
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fluorescent protein (YFP) (90). The simulation showed that a higher misfolding ratio or a 

longer ER retention time led to a higher maximum growth reduction, i.e., a higher fitness 

cost. 

 

Figure 4-2. Reduction of simulated maximum specific growth rate (1/h) due to expression at 

certain level of CPY following different routes.  

Furthermore, we also investigated the correlations between CPY expression, misfolding and 

cell growth (Fig. 4-3). It is shown that when CPY was expressed at high levels, the high 

misfolding ratio would cause a steep decrease of cell growth (Fig. 4-3a). In addition, the 

misfolded proteins were prior to be degraded rather than accumulated (Fig. 4-3b and c). 

However, when the amount of misfolded proteins exceeded the degradation capacity, a steep 

increase of accumulation rate was observed (Fig. 4-3c). 

 

 

Figure 4-3. Simulation of physiological rates with varying CPY expression level and misfolding 

ratio. 

In addition to the characterization of the protein synthesis and secretion process, the model 

also can be used to identify the rate-limiting steps for improving recombinant protein 

production. Here, genomic target prediction was performed through flux scanning based on 

enforced objective function (FSEOF) (91), where the model was constrained with a stepwise 

decrease in the specific growth rate, and recombinant protein production was maximized (Fig. 

4-4a).  
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Figure 4-4. Prediction of overexpression targets for improving α-amylase production. a Adapted 

FSEOF method used for target identification. FSEOF: Flux Scanning based on Enforced Objective 

Function. b Protein localization of the predicted overexpression targets. Yeast compartmentalized 

figure source: SwissBioPics.  

We used α-amylase as model recombinant protein and performed the target prediction. The 

predicted targets were divided into different groups based on their functions relevant to 

protein synthesis and secretion, and in each group the most promising targets were chosen 

based on their predicted values. In total, 17 targets were selected, including 14 secretory 

targets and 3 metabolic targets. The 14 secretory targets are involved in protein translocation, 

protein folding and sorting, and the 3 metabolic targets are related to N-glycan synthesis and 

amino acid synthesis (Fig. 4-4b). Next, we performed single-gene overexpression to validate 

if these targets are important for improving α-amylase production. Among these targets, 

overexpression of CWH41 (92), ERV29 (8), SEC16 (64) and PDI1 (8, 93) has already been 

reported to be useful for improving α-amylase production. The effects of remaining 13 targets 

were shown in Fig. 4-5. 



41 

 

 

Figure 4-5. Validation of overexpression targets for improving α-amylase production. Data 

shown are mean values ± standard errors of the means of biological triplicates. Statistical significance 

was determined by a two-tailed Student’s t test. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

It was indicated that the overexpression of MNS1, SEC65, ERV2, ERO1, SWA2 and CYS4 

significantly increased the α-amylase yield, separately. Among them, Mns1p is responsible 

for the removal of one mannose residue from a glycosylated protein. The multiple N-

glycosylation sites of α-amylase suggested the important role of Mns1p on its production. 

Sec65p is one out of six subunits of the signal recognition particle (SRP), which is involved 

in protein targeting to the ER (94). Overexpression of Sec65p is anticipated to increase the 

SRP dependent co-translational translocation, which would benefit α-amylase translocation 

from cytosol to the ER. Erv2p and Ero1p are involved in the protein folding process in the 

ER (65). Additionally, overexpression of Ero1p is proved to enhance disulfide-bonded human 

serum albumin (HSA) secretion in Kluyveromyces lactis (95) and single-chain T-cell 

receptors (scTCR) and single-chain antibodies (scFv) secretion in S. cerevisiae (96), 

suggesting it as a generic target for secretory protein production. Swa2p is involved in 

vesicular sorting, which is an important step for protein secretion. Cys4p is involved in 

cysteine synthesis. In the amino acid composition of α-amylase, the fraction of cysteine is 9-

fold higher than the average cysteine demand of yeast proteome (58), which demonstrates 

the importance of cysteine synthesis in α-amylase production. In total, for the identified 

targets in the secretory pathway, the accuracy was 9/14, while for the 3 metabolic targets, the 

accuracy was 1/3. The higher proportion and higher accuracy of the secretory targets probably 

indicates that the rate-limiting steps for recombinant protein production are more related to 

the secretory pathway rather than other metabolic pathways. 
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5. Conclusion 

Protein synthesis and secretion is a vital process to maintain cell function. Here, we 

systematically characterize the protein synthesis and secretion process in Saccharomyces 

cerevisiae through integrative analysis of multi-omics data and genome-scale metabolic 

modeling. In Paper I and Paper II, through characterization of the recombinant protein 

production strains, we quantified the cellular resource reallocation in response to recombinant 

protein production and identified the underlying mechanisms in the protein secretory pathway 

for improving recombinant protein production, respectively. Surrounding the protein 

synthesis process, we also quantified the reserves in translational capacity and found that a 

major part of the translation capacity reserves is preferentially maintained for metabolic 

processes (Paper III). Moreover, we integrated the protein translation, protein post-

translational modifications, ERAD and sorting processes into a genome-scale metabolic 

model of yeast (Yeast8) to construct the pcSecYeast model, enabling simulation of the protein 

synthesis and secretion process and prediction of high-accuracy genomic targets for 

improving recombinant protein production (Paper IV). Our study also demonstrates the 

combination of multi-omics data analyses and metabolic modeling to dissect complex cellular 

responses and intertwined regulatory systems. 
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6. Future perspectives 

6.1 Cofactor supply in protein synthesis and secretion 

The yeast S. cerevisiae is a popular cell factory that has been engineered to produce many 

kinds of chemicals and recombinant proteins. The central carbon metabolism is usually 

reshaped to meet the production demand of various chemicals (5, 97), herein we found that 

in response to improving recombinant protein production, cell metabolism was 

reprogrammed to provide more cytosolic NADPH and amino acids (Paper I). Energy and 

redox status, which are typically represented by relative levels of cofactor pairs such as 

ATP/ADP, NADPH/NADP+ and NADH/NAD+, are two key elements leading to the 

remodeling of metabolism (4). In energy metabolism, there is a trade-off between respiration 

and fermentation to balance the ATP yield and protein cost in response to dynamic 

environments (98). In this study, the decreased fermentation and the uncoupling between 

TCA cycle and oxidative phosphorylation indicated that the supply of cytosolic redox 

capacity prior to energy was critical for the metabolic reprogramming for protein production, 

which is in line with the severe oxidative stress caused by recombinant protein production 

(65). Therefore, the accumulation of glycerol in the protein production strains mainly 

contributed to the maintenance of redox potential, which is also found in previous studies (64, 

99). Interestingly, we did not observe any increase in the fraction of proteome allocated to 

the PPP, which is typically considered to be a crucial pathway for cytosolic NADPH supply. 

The overall decreased abundance of mitochondrial components potentially indicates a 

presumable decrease in the mitochondrial volume, which is also observed in a previous study 

(64). The oxidative phosphorylation process consumes redox power to generate energy and 

increases cellular oxidative stress, and this could lead to decreased mitochondrial components, 

considering the high oxidative stress in protein production strains (7, 65). Meanwhile, the 

increased enzyme usage on TCA cycle and amino acid biosynthesis showed metabolic 

homeostasis and revealed the reserved capacities maintained by metabolic pathways. 
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6.2 The regulatory network 

Cells have evolved global regulatory network to ensure that metabolic homeostasis is 

maintained. Learning how the regulation works enables a deep understanding of the cell 

systems and provides us novel insights which can be leveraged in synthetic biology and 

metabolic engineering studies. Phosphorylation is an important post-translational 

modification that is widely involved in signal transduction and regulation (100). In eukaryal 

cells, the two most important regulators of metabolism are AMP-activated kinase (AMPK) 

and target of rapamycin complex 1 (TORC1) (101), which regulate metabolism through 

phosphorylation of enzymes. In Paper I, by examining the phosphoproteomic abundance, 

we found that processes related to translation were highly regulated by phosphorylation in 

response to increased protein production. Further investigation showed that the amino acid 

starvation-induced Gcn2p-mediated signaling pathway is a central link between protein 

production and central carbon metabolism, which demonstrates the importance of 

phosphoproteome analysis since the abundance of the proteins involved in this pathway kept 

constant. Additionally, many other types of post-translational modifications, e.g. acylation 

and sumoylation, can alter protein function as well. Therefore, the combination of protein 

post-translational modification information with traditional omics data, e.g. proteome and 

transcriptome, can provide a more comprehensive understanding of cell status, which also 

calls for the development of high-throughput techniques for quantitative measurement of 

protein post-translational modifications. 

6.3 Novel insights into the secretory pathway 

Characterization of cell factories for recombinant protein production is a feasible approach 

for unraveling of the underlying mechanisms in the secretory pathway. Through modulating 

the recombinant protein yield (from zero to one and from one to hundreds), we successfully 

identified the metabolic reprogramming on the central carbon metabolism in response to 

recombinant protein production (Paper I) and the important role of post-translational 

modifications on protein production, especially the folding quality control system (Paper II). 

The combined results show that it is necessary to consider both the central metabolism, i.e. 

the supply of redox power, amino acids and energy, and the post-translational modifications, 

for improving recombinant protein production. In fact, there is also a link between these two 

strategies, namely balancing of redox power. As the oxidative stress caused by recombinant 

protein production is mainly due to the protein folding process and the degradation of 

misfolded proteins (65), the increased cytosolic NADPH supplied by TCA cycle also 
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highlights the impact of post-translational modifications on metabolic reprogramming. To 

date, efforts for improving protein production have primarily targeted the components of the 

secretory pathway, i.e. proteins involved in the folding pathway or the trafficking process (8, 

102–104). Our studies showed that the specific cofactor generation pathway and the specific 

signaling pathway are also promising alternatives for improving protein production. 

Protein folding process is often regarded as the rate-limiting step in the secretory pathway. 

Paper II indicates that, in addition to protein folding capacity, protein folding precision also 

can be modulated by cell engineering, and its improvement can lead to higher recombinant 

protein yield. As there are many human diseases caused by protein misfolding (23), including 

Alzheimer’s disease, Parkinson’s disease and type II diabetes. Further improving the protein 

folding precision may benefit the development of new drugs that are used for treatment of 

these protein misfolding diseases. 

In addition, the model pcSecYeast provides a novel platform for the elucidation of underlying 

mechanisms related to the secretory pathway (Paper IV). The simulation of the cellular 

response to protein misfolding revealed the causation of ER stress. At present, the model 

incorporates most fundamental processes in the secretory pathway, including protein 

translocation, N-glycosylation, protein folding and ER-associated degradation, further 

extension of the model to incorporate the unfolded protein response (UPS) and the Golgi 

processing could potentially increase the simulation accuracy. 

6.4 Protein translational reserves 

There is growing evidence in both E. coli (69, 105) and yeast (71) that cells maintain reserve 

capacities in protein translation process, trading off maximum exponential growth rate for 

the ability to respond quickly to changes in their growth environment. In Paper III we 

quantified for the first time the sizes of reserves of the transcriptome, proteome, translational 

capacity, without the confounding factor of a changing growth rate. Exposing cells to limited 

nitrogen resources revealed that yeast growing in typical laboratory conditions maintain an 

overall 50% reserve proteome, 75% reserve transcriptome, and 50% reserve translational 

capacity. Our analysis showed that a major part of these reserves is preferentially maintained 

for metabolic processes, highlighting the importance of a robust metabolism for cell growth 

and survival. Additionally, our data revealed that a global change in ksP is accommodated by 

adjusting the ribosomal protein stoichiometry, supporting the idea that a large diversity of 

ribosomes could be present in the cell and be responsible for large differences in gene-specific 
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ksP (82, 106). Indeed, several landmark studies have shown that ribosomes with or without a 

specific RP can translate functionally distinct sub-pools of mRNA (72–74), collectively 

known as the ribosome code (107, 108). We show here with high confidence that 17 RP 

subunits (22 RPs) are selectively upregulated under nitrogen-limited conditions and are 

associated with preferential translation for metabolic genes, expanding the ribosome code as 

well as our understanding of the protein translation process. 
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