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Abstract: A data driven structural change detection method is described and evaluated where
the data are acceleration and force measurements from a mechanical structure in the form of a
vehicle. By grouping the measured signals as inputs and outputs an hypothesized MIMO linear
dynamic relation between the inputs and outputs is assumed. It is assumed that baseline data are
available to build statistical models for the estimated frequency function of the baseline system
at selected frequencies. When new data is available, the monitoring algorithm re-estimates the
non-parametric frequency function and uses a test statistic based on the statistical distance to
detect possible change. To generate the frequency function estimates a non-parametric MIMO
frequency function estimator based on the local rational model (LRM) method is developed. A
statistical analysis of the proposed test statistic shows that it has an F-distribution for data
from the baseline case. The method is evaluated on simulated data from a high fidelity full scale
vehicle simulation generating both baseline data and data from a structurally changed vehicle.
In the evaluation, the frequency response functions were estimated by the non-parametric LRM
method, the parametric ARX estimate and the non-parametric ETFE. The results show that
all three methods can detect the structural change while the LRM method is more robust with
respect to the selection of the hyperparameters.

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Keywords: Nonparametric methods, Frequency domain identification, Statistical data analysis,
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1. INTRODUCTION

Autonomous drive functionality for vehicles is currently
being developed at a high pace in the vehicle industry. This
development also has implications on the development
and test processes employed for developing new vehicles.
To ensure a high degree of safety and durability of the
developed products, a significant amount of various ve-
hicle testing is part of the development chain. One such
activity is durability test where the vehicles are driven
on designated test tracks with road surface conditions of
varying character. The high degree of autonomy available
today can be used to replace the test driver in test vehicles
which undergo extensive durability tests on a test track.
This is for example advantageous from a cost perspective
since, for the more severe tests, the test driver can only
be active a limited time due to occupational health re-
striction on acceptable accumulated vibration levels. For
safety reasons for other vehicles on the testing grounds, it
is paramount that the autonomous vehicle automatically
can detect serious structural changes and stop the vehicle
to prevent possible accidents with other test track users. A
human driver can often detect such developments early on

* This work has been performed within FFI project ETAVEP with
support from Vinnova and Volvo Cars.

by sensing changed vibration behavior or changes in the
acoustic profile of the vehicle.

Detection of changes in a system based on signal mea-
surements is a vast topic with many application areas and
solution methods. In principle the problem boils down to
generate some test statistic which discriminate between
the baseline situation and the changed situation. Depend-
ing on the application domain, knowledge in terms of
intermediate models can be useful to find good test statis-
tics. In the book Basseville and Nikiforov (1993) a good
overview of applications can be found and a comprehensive
description of methods and analysis based on a statistical
setting. The old overview paper Doebling et al. (1996)
give a comprehensive list of approaches for structural
monitoring techniques which focus on detecting changes in
frequencies of flexible modes or in mode shapes. Yin et al.
(2014) gives an overview of monitoring methods based on
various statistical tools as PLS and PCA. An approach
to structural damage detection based on estimation of
transmissibility is outline in Johnson and Adams (2002)
which uses a global modeling setting in order to locate
the damaged structure. A global modeling approach for
structural monitoring is given in Basseville et al. (2004)
where a stochastic subspace-based covariance-driven iden-
tification method is used to design a detection algorithm.
In Kopsaftopoulos and Fassois (2010) a set of parametric

2405-8963 Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license.
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time domain ARX model are estimated for different faults
which then are used to provide residuals in a test phase to
discriminate the different faults.

1.1 Problem formulation

The overall problem formulation is to design a system
which, based on measured sensor signals, can deliver a
numerical value which is measure of how different the
present system is as compared to a baseline situation.
The measured data are organized into input signals which
provide excitation to the mechanical structure and output
signals which are measurements of the resulting vibra-
tional response. For sample index ¢ the inputs are denoted
by the vector u(t) € R™ and the outputs are denoted by
the vector y(t) € RP and we hypothesize that they are

related by

y(t) = G(z)u(t) + v(t) (1)
where v(t) € RP represent a noise signal uncorrelated with
the input signal and G(z) is a multi-input-multi-output
(MIMO) linear system operator of size p x m.

1.2 Overview of the solution

In this contribution we propose a structural integrity mon-
itoring system which, based on acceleration measurements
from sensors on the vehicle structure, monitor the struc-
tural response and give an estimate of a potential deviation
from a baseline response. The baseline response is obtained
during test drives on the track when the vehicle is guar-
anteed to be structurally fully functional. Our solution is
based on monitoring the frequency function response from
forces to accelerations at a discrete set of frequencies. To
estimate the frequency function of the hypothesized linear
operator in (1), we employ a multivariate extension to
the local rational model (LRM) method McKelvey and
Guerin (2012) which provides a non-parametric estimate
of the matrix valued frequency function at arbitrary fre-
quencies. This is in contrast with the majority of methods
which use a parametric finite order model to capture
the full frequency response estimate. The LRM method
has a computational low complexity, is non-parametric
and hence does not require difficult model order choices
and does not suffer from the large variance issue spectral
estimation techniques suffer from when the data window
is relatively short. From the baseline data, we build a
multidimensional statistical model assuming the frequency
function estimates at discrete frequencies have a complex
Gaussian distribution Kay (1993). In the monitoring phase
the frequency functions are continuously re-estimated and
the statistical distance to the baseline model is determined.
This distance metric will hence provide a measure of the
structural integrity of the vehicle and can be used to
provide early warning to degradation or flag for severe
problems which should lead to emergency stop of the
vehicle to prevent further damage.

In Section 2 we derive the MIMO extension to the LRM
method and formulate the statistical model for the change
detection algorithm including the test statistic. In Sec-
tion 3 it is described how the developed method is evalu-
ated on experimental data generated from a high fidelity
vehicle model and the results from the evaluation is pre-

sented and discussed. The distribution of the test statistic
is derived in the Appendix.

2. METHODS

In this section we will describe the MIMO LRM method
to obtain a non-parametric estimate of a MIMO frequency
function based on a window of operational data comprising
input and output samples. Afterwards follows a description
on how the change detection procedure is designed and a
discussion on the properties of the suggested test statistic.

2.1 MIMO local rational model (MIMO-LRM)

The LRM method for scalar valued frequency functions
was introduced by McKelvey and Guerin (2012) and here
we will extend the method for the MIMO frequency
function case. A MIMO version of the original LRM
method has also been described by Voorhoeve et al. (2018)
where a matrix fraction description parametrization is
introduced. The N-point discrete Fourier transform (DFT)
of a signal z(t) is defined as
N-1
X(k) £ w(t)e 2N (2)
t=0
for k = 0,1,...,N — 1. The DFT forms the basic anal-
ysis method to derive non-parametric estimates of the
frequency function based on a finite window of samples
of the input and output signal of the system under study.

Any causal discrete time linear system of finite McMillan
degree n can be described by (see e.g Kailath (1980)) a
state space model of order n

xz(t+ 1) = Ax(t) + Bu(t) 3)

y(t) = Cx(t) + Du(t) + v(¢)

where z(t) € R™ is the state-vector and (A, B,C, D) are
the state-space matrices. The system has the correspond-
ing frequency response function

G(w)=D+C(e“I - A)'B (4)
It was shown in McKelvey (2000) that the N-point DFT
of the input and output signals are related as, for k =
0,...,N—1
Y (k) = G(wp)U(k) + T(wk) + V (k) (5)
where wy, = 27k/N and
Gw)=D+C(e?*1 - A)'B )
T(w) = C(®T — A)~H(2(0) — 2(N))e*
This result shows that the DFT of the output Y (k) is,
beside the noise V(k), the sum of the effect of the input,
G(wr)U(k), and a second term T'(wy,) which depend on the
initial and final state value. We also note that both G(w)

and T'(w) share the same dynamics, since the A matrix is
common for both of them.

The MIMO LRM method forms an estimate at frequency
wr = 27k/N by a locally parametrized model which is
based on the structure in (5). Without loss of generality we
can model the frequency function for each output channel
individually and we parametrize the local models of G(w)
and T'(w) for frequency k and output i as

[ %
7 _ Nk-‘r’!" Tz _ Mk-‘r?" (7)
k+r — .DZ ) k+r — Dl

k+r k+r
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where 7 is an integer representing the distance to the center
frequency k and

) NLRM .
Niy,.= > Ni(k)yr*
s=0
) NLRM )
e =1+ Y di(k)r® (8)
s=1

NLRM
Mli-i—r = Z mé(k‘)rs
s=0
were d'(k) and m’(k) are complex scalars and the row
vector Ni(k) € C1*™ form the parameters of the model
and npry is the local model order. From (5) we can now
express a local model for the output channel ¢ as

Y (k+7)); = g’;“ Uk +7)+ A;:* +[V(E+7)] (9)
+r +r

where the notation []; denote vector element i. Let 6}
denote a vector comprising all the local rational model
parameters {N:(k)}"LPY, {di ()} and {m (k)7L
It is clear from (9) that the model parameters appears
nonlinear in the expression for [Y(k + r)];. However if
both sides of (9) is multiplied by Dy, all parameters will
appear linear in the equation. To estimate the parameters
of the local model, DFT data at indices k + r where
r = —Ny,..., Ny (IVy is the local window size) are used
to form the least-squares problem

= arg mln Z

_Nk+rU(k +7) -

Y (k+7)iDj,
k+ (10)
P2
Mk:+r}
where é,@ is the optimal parameter vector for output
at frequency index k. When forming (10) some indices
k 4+ r might fall outside the set {0,1,..., N — 1}. In this
case we use the N—periodic property of the DFT that
for any integer k, it holds that U(k + N) = U(k) and
Y(k+ N) =Y (k). The MIMO LRM estimate of row ¢ in
G (wy) then follows as

. Nio A
[GLrm(@i)]i: = Giyo = i Niyo (11)
k40
where [];. denote row ¢ in the matrix. The number of

parameters in the local model is (nprpm+1)(m+1)+nLrM
and a necessary conditions for the optimization problem
(10) to have a unique solution is that

2Ny, +1> (nLRM + 1)(m + 1) + NLRM- (12)

2.2 Change detection

To create a statistical baseline model of the system we
assume the availability of Ng windows of measurement
data, each with N samples. For each data window we
estimate the value of the frequency function, i.e. the
frequency function of the linear system G in (1) for a
given set of @ frequencies Q = {wq} The values in
the set can be arbitrary but is norma le a subset of the
DFT frequencies where the frequency function modeling
is a valid approximation. The obtained frequency function
estimate from data window [ of the frequency function
G(w) at frequency w, is denoted by G,; € CP*™. These

samples we assume to be drawn from a complex Gaussian
distribution Kay (1993) with mean value vecG, € CP™
and covariance R, € RP">P™ e,

vec Gy ~ CN(vec Gy, Ry) (13)

where vec is the vectorization operator. The statistical
model will hence capture the variability of the frequency
function estimates when estimated from different data
windows. Besides describing the variability due to noise in
the measurements, the Gaussian model will also capture
the variability of the the frequency function estimate which
is due to the dependence on the input signal caused by
possible nonlinear effects. Such effects which will increase
the variance of the stochastic model.

Furthermore, we assume the estimates of the individual
channels of the frequency function are uncorrelated and
hence R, is a positive definite diagonal matrix and we
also assume estimates for different frequencies are also
uncorrelated. Based on samples from the Np analyzed
data windows, the parameters of a baseline model is
estimated by forming the standard sample estimates of
the mean value and the variance of the complex Gaussian
distribution viz

Np
vecGq = Zvec G,
B4
T (14)
[Rylii = o1 Z [vec G g1 — vec G il*

=1
where [];; denote diagonal element 4 in the matrix and
1=1,...,pm.
For a new window of data we can form the frequency
function estimate Gy and generate the test statistic

Q

T=c Z(vec G,

q=1

— vec C;*q)*]%;l (vec Gy — vecGy)  (15)
where ¢ is a scalar constant and (-)* denote the complex
conjugation and transpose. In Appendix A it is shown that
T has an F-distribution under the baseline conditions and
the required value of ¢ for this to be true. The value of
the test statistic 7" can be used to take a decision whether
a change has occurred or not. We can formalize this as
hypothesis testing where we decide no change if T' < i and
change if T > 7. The detector will give a false-alarm if T' >
n although the system has not changed. For a given value
of the threshold 7, the probability of a false alarm is given
by 1 — CDF(n) where CDF is the cumulative distribution
function of the F-distribution. The probability to correctly
detect a true change is highly dependent on how much the
frequency function changes, i.e. how much the mean value
of the complex Gaussian distribution is shifted due to the
change. If we assume AG, represent the shift of the mean
value from the baseline case then the test statistic 1" has
a mean value shift

chec (AG)

Under the change scenario the test statistic will, if Ng —
00, converge to a random variable which is proportional to
a random variable with a non-central chi-square distribu-
tion.

. vec(AGy) (16)
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Fig. 1. Image from the simulation. The red arrow indicates

the direction of movement.

Fig. 2. Output points on sub-frame marked by A-D. Loose
knuckle joint at point E.

3. EXPERIMENTAL EVALUATION

To evaluate the properties of the described methodology
we generate data from a simulation model with high
fidelity and evaluate the results.

8.1 Description of experiment

The vehicle simulation model used in the experiments
was developed by Volvo Cars and is a state-of-the-art
multi-body system, with 2000 degrees of freedom and
generates signals with a sampling rate of 1kHz. The
simulation used a model of the Volvo XC90, complete with
bushings, springs, dampers, etc. The road surface used in
the simulations is a 3D-scan of a section of Belgian pavé
at the Hallered proving ground in Sweden. See Figure 1
for a image of the model and the road surface.

Six symmetrically placed points are chosen in the front of
the vehicle. For each point, accelerations in the vehicle’s
longitudinal and lateral direction are extracted from the
model. The location of the four points on the front sub-
frame is indicated by the arrows A-D in Figure 2. They
represent points where accelerometers can be mounted.
The two front wheel centers are taken as input points, since
the road surface conditions are impractical to measure and
use. Therefore we have m = 4 input signals and p = 8
output signals that represent a possible instrumentation
of a real test vehicle.

The changed model has a loose ball-joint on the front-
left suspension knuckle indicated by arrow E in Figure 2.

The loosened joint is modeled as a bushing element with a
bi-linear translational stiffness and without any rotational
stiffness. The first linear translational rate is set very low
to model the free stroke with a smooth transition to the
normal ball joint stiffness

Four data sets, each with a length of 42 s and moving over
the Belgian pavé surface were generated. For the baseline
scenario, three data sets are established: when the vehicle
is traveling at 36 km/h, 40 km/h and 44 km /h respectively.
In addition, one data set is established for the changed
model in which the vehicle has a speed of 40 km/h. We use
the data sets from the 36 km/h and 44 km/h as training
data to established the statistical model for the baseline.
The baseline data set at 40 km/h and the 40 km/h data set
for the changed model are used as test sets to validate the
detection performance. The training data is split into non-
overlapping data windows of size N = 1024 (~1s). This
results in 41 data windows in each training set. This choice
of data window size is motivated by a trade off between the
delay to detection and and an acceptable false alarm level.
The two test sets are split into windows of the same size
as above, but are overlapping with an overlap of 503 data
points, which results in 82 test windows. See Table 1 for an
overview. The detection performance is measured by the
AUC measure calculated from the test data. AUC is the
area under the receiver operating characteristics (ROC)
curve where AUC = 100% corresponds to a detector with
no missed detections and no false alarms, see e.g. Hastie
et al. (2009).

Table 1. Structure of the training and two
testing sets.

Simulation Train Test
Baseline at 36 km/h 0-42s —
Baseline at 44 km/h 0-42s —
Baseline at 40 km/h - 0-42 s
Loose-joint E at 40 km/h - 0-42 s
Number of windows per simulation 41 82

3.2 Frequency function estimators

For a given data window of size IV the frequency function is
estimated at the selected frequencies in the set Q. Here we
use N = 1024 and Q = {w, = %}Qzl with @ = 25. This
corresponds to 25 frequencies equalfy spaced between 3.9
and 97.6 Hz. In the selected frequency range the simulation
model is judged to have high fidelity.

For the LRM method outlined in Section 2.1 we evaluate
the method for different choices of the local window size
N, and the local model order n.

To compare the performance of the proposed LRM fre-
quency function estimation as part of the detector, two
other frequency function estimation methods where also
evaluated, a smoothed empirical frequency function es-
timate (ETFE) and the parametric auto-regressive with
exogenous inputs (ARX) technique, see , Ljung (1999). In
the ETFE method the single input single output (SISO)
frequency function for each pair of input and output sig-
nals is estimated by spectral analysis

(byi,uj (Wq)

< 17
Do 0 (wg) 1

[Gerre(wy)]i; =
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where éy,u(wq) is the estimated cross-spectral density of

between signals y and u and ®, ,(w,) is the estimated
spectral density of the signal u. Here we use Welsh method
and use local window sizes of 256 and 512 with no overlap
and different window functions. For N = 1024 this setting
gives average over 2 or 4 spectral estimates. In the second
method, parametric ARX modeling, a set of parametric
multiple-input single output (MISO) ARX models

MARX
=S - ) +
=1

fort=1,2,...p

MARX

Z BiJ’U/(t - l)
=0

(18)

are employed where narx is the ARX model order. In
the tests we evaluate the performance for all values of
narx from 1 to 30. The parameters are estimated from
the N = 1024 time domain samples in the data window
by solving a least-squares problem, see e.g. Ljung (1999).
The frequency function estimate is given by

ZHARX B' le—jwa
— 1+ZlARX -~ le ]wa
where Bi’l and @;,; are the estimates of the ARX model pa-

rameters. The LRM, ARX and ETFE frequency function
estimates are evaluated at the same set Q of frequencies.

[Garx(@g)li; = (19)

The relative time elapsed to calculate the frequency func-
tion estimates is about five times slower for LRM and
ARX as compared to the ETFE method. All methods are
implemented in the Python language.

3.8 Results: vehicle model simulation data

The three different methods, with varying hyperparame-
ters, are evaluated on the data described in Section 3.1. For
each method and hyperparameter setting the performance
measured by AUC is established. The results are presented
in Table 3, Table 2 and Table 4. For the LRM results in
Table 3 we use the notation LRM:nyrm: N, to denote the
specific choice of the hyperparameters local window size
N, and local model order nrrm. For the ARX results we
denote by ARX:nagrx the results for the ARX model order
narx. In each of the three tables the largest AUC value is
in bold-face. We notice that LRM has the overasll largest
value (98.0%) followed by ARX 97.2% and ETFE with
95.0%. We also notice that LRM seems to more robust
with respect to the choice of hyperparameters compared to
the other methods as the AUC is consistently larger than
94% except for the LRM:7:88 hyper-parameter setting.

3.4 Discussion

The numerical results indicate that for the scenario an-
alyzed all methods give some reasonable performance at
least for some of the choices of the hyperparameters. For
applications where the baseline model is unknown and
must be estimated from data requires a non-trivial choice
of model structure and hyperparameters. Methods which
are robust to such choices can then be seen as a good
method. The numerical results hence point to that LRM
can be good choice for this type of application.

Table 2. AUC values for the ARX method.
ARX:narx denote denote results for ARX
with model order nagrx

ARX:2 83.8 | ARX:12 94.2 | ARX:22 91.6
ARX:3 819 | ARX:13 93.6 | ARX:23 91.8
ARX:4 919 | ARX:14 93.6 | ARX:24 91.2
ARX:5 859 | ARX:15 93.7 | ARX:25 91.9
ARX:6 949 | ARX:16 93.6 | ARX:26 91.7
ARX:7 949 | ARX:17 93.3 | ARX:27 91.7
ARX:8 96.0 | ARX:18 929 | ARX:28 91.2
ARX:9 97.2 | ARX:19 92,5 | ARX:29 91.1
ARX:10 93.8 | ARX:20 92.1 | ARX:30 90.8

Table 3. AUC values for the LRM method.
LRM:nrrm: NV, denote denote results for LRM
with local model order nyrm and local window

size Ny,
LRM:2:14 94.5 | LRM:4:26 96.1 | LRM:6:38 96.5
LRM:2:28 96.9 | LRM:4:52 96.0 | LRM:6:76 96.9
LRM:3:20 95.7 | LRM:5:32 96.5 | LRM:7:44 98.0
LRM:3:40 96.9 | LRM:5:50 97.2 | LRM:7:88 82.8

Table 4. AUC for the ETFE method for vary-
ing local window size and window functions

Local window size ‘ 256 512

Rectangular 94.7  88.1
Hann 95.0 89.6
flattop 91.9 858

Kaiser (8 = 14) 94.2  87.8

Appendix A. DISTRIBUTION OF THE TEST
STATISTIC

Lemma 1. Assume the variables z/,z1,...,zy are ii.d.

from CN (p1, 0%) and let
1 & 1 &
. ~9 <12
pm g la oy kil (A
Then the test statistic
Nlz' — jf?
t= ——7--— A2
(N +1)62 (A-2)

has a F(2,2N — 2) distribution.

Proof: First we note that if 2 ~ CN(0,02) then the real
and imaginary part of z are i.i.d. N'(0,0%/2), a normal
Gaussian distribution, Kay (1993). Clearly (z' — i) ~

CN (0, ¥ 6?) and hence
2N 2" — juf? 2
th=—F—"+ ~ A3
TNt TN (A-3)

has chi-squared distribution with 2 degrees of freedom
(since the magnitude squared is the sum of the squared
real and imaginary parts). From (A.1) we see that 62 can
be interpreted as the sum of the sample variance estimate
of the real and imaginary parts respectively. Since the
sample covariance based on N samples from a Gaussian
distribution has N — 1 degrees of freedom, the sample
covariance based on N samples from a complex Gaussian
distribution will have 2N — 2 degrees of freedom and we
conclude that the statistic
2N -2,
lo = s ~ XaN—2

(A4)

i.e. a chi-squared distribution of 2NV —2 degrees of freedom.
Since sample mean and sample covariance are independent
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for the Gaussian case this property is carried over to the
complex Gaussian case and hence it follows that t; and ¢,
are independent since (z' — i) is independent of 62. The

result now follows since t = tz/(g% See e.g. Grimmett

and Stirzaker (2001) for details of the F-distribution. M

Lemma 2. Assume the variables 1, ..
F(2a,2b), a,b > 0. Then

T:%i}i
i=1

is distributed according to the Beta prime distribution
denoted by 5'(y,0) and

g,

i3
is distributed according to F(2v,20) with parameters
_an(a(b—2)n+a+ (b—1)?)
N (b—1)(a+b—1)
5= a((b—2)n+2)+(b—1)b
a+b—1

Proof: Tt is well known that if ¢; has an F'(2a, 2b) distribu-
tion then its equivalent to ¢t; ~ 3’(a,b). Furthermore, the
Beta prime distribution is infinitely divisible; specifically,
this means that a sum of n i.i.d. Beta prime distributions
is also Beta prime distributed. The parameters v and § are
found by matching the first two moments. See e.g. Steutel
and van Harn (2003) p.415 and 508 for more information.
Since T7 ~ ['(~,d) we can use the above result and get
that T = 37" ~ F(27,20), where we use that a,b > 0
implies that v, > 0. [ |

., t, are ii.d. from

(A.5)

(A.6)

(A7)

Theorem 1. Let ¢ = % in (15). Then the test

statistic T in (15) has an F(v,¢) distribution. With n =
Qmp,a=1and b= Npg — 1, v and ¢ are given by (A.7).

Proof: The test statistic T' can be reformulated as
Q ~ A A ~ A~
T= cZ(vec G, — vecGy)* R (vec G, — vecGy)

=1 (A.8)

where Nr = Qmp, x; ~ CN(ui,0?) and fi; and 67 are
the sample mean and sample covariance estimates based
on Np ii.d. samples from CN(u;,02) according to the
formulation of Lemma 1. The result of Lemma 1 show

that N
Np =z — fuaf?
T=<¢
%%+1Z; 52

T/c" is hence a sum of Ny ii.d. random variables with
an F(2,2Np — 2) distribution. Finally by setting ¢/ = %

(A.9)

=5,

n=Nr =Kmp,a=1and b = Ng — 1 the result follows

by Lemma 2. [ ]
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