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Abstract: To improve the numerical conditioning of a frequency domain subspace algorithm
(FSID) when identifying continuous time transfer functions a general Möbius transformation
can be employed. The Möbius transformation is a more general class of transformations which
include the bilinear transformation as a special case. For the state-space model class of MIMO
transfer functions we derive the relations describing how the state-space realization of a transfer
function is converted under a Möbius transformation. With an extensive numerical example
we illustrate that a particular choice of the Möbius transformation leads to transfer function
estimates with, in general, significantly improved accuracy.
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1. INTRODUCTION

Frequency domain identification refers to the estimation of
models of dynamic systems where the measured data is in
the form of Fourier transforms of the the input and output
signals Ljung (1999); Pintelon and Schoukens (2001). The
state-space model structure is a compact and convenient
parametrization of multi input and multi output (MIMO)
dynamic linear systems. The class of so called subspace
methods are today commonly used for the estimation of
MIMO systems both for time-domain Van Overschee and
De Moor (1995) as well as for frequency-domain data McK-
elvey et al. (1996). For discrete time (DT) systems, where
the frequency function argument is ejω the frequency do-
main subspace algorithm performs well, see eg. McKelvey
et al. (1996). For the continuous time (CT) case where
the argument is jΩ a direct (naive) implementation of the
subspace methods run into numerical problems due to ill-
conditioned steps in the algorithm McKelvey et al. (1996);
Van Overschee and De Moor (1996). Approaches which,
to some degree, circumvent this issue, are reported in Van
Overschee and De Moor (1996) where a re-parametrization
using Forsythe polynomials is used. In McKelvey et al.
(1996) the bilinear transformation is employed where the
CT problem is transformed to an equivalent DT estimation
problem which is solved by the standard DT algorithm and
the CT estimate is finally obtained by the inverse bilinear
transformation of the DT estimate. In Vakilzadeh et al.
(2015) it was illustrated how the numerical conditioning
for the method employing the bilinear transformation can
be improved by a suitable experiment design. In spite of
these methods the numerical conditioning in these CT
identification algorithms can still be an issue when the
CT data samples have certain structure. Particularly we
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have noticed this if we have data from a frequency band. In
this contribution we propose to employ the more general
Möbius transform to move an ill-conditioned rational ma-
trix function approximation problem to a more well condi-
tioned solution domain. For the CT system identification
problem we show that a particular Möbius transformation
in many cases vastly improves the result as compared to
employing the bilinear transformation.

In Section 2 we describe the identification problem and
give a short review of the subspace based algorithm
considered. In Section 3 we present results relating the
Möbius transformation and the state-space models which
form basis for the proposed method as well as a proposed
selection of the parameters of the transformation. In
Section 5 we illustrate the performance of the method
using a Monte-Carlo simulation. The paper is summarized
in the last section.

2. THE GENERAL ESTIMATION PROBLEM

In this paper we consider the estimation of matrix-valued
rational functions given numerical samples of the ratio-
nal function. The frequency-domain-system-identification
problem can be seen as a particular instance to this more
general class of problems.

We assume we are faced with data in a set of samples in
the form

Ds = {(sk, Yk, Uk)}Mk=1 (1)
where sk ∈ C, Yk ∈ Cp, Uk ∈ Cm and we seek a rational
function matrix Gs(s) ∈ Cp×m such that

M∑
k=1

‖Yk −Gs(sk)Uk‖22 (2)

is minimized. Here we focus on an algorithm which gen-
erates a state-space realization (As, Bs, Cs, Ds) of order n
and the estimated rational matrix function is given by
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Gs(s) = Ds + Cs(sI −As)
−1Bs. (3)

where I is the identity matrix of appropriate size, the
matrix As is of size n×n and the size of the other matrices
follows from the size of the rational matrix function, i.e.
the input and output dimensions. An alternative formu-
lation is obtained if samples of the transfer matrix, i.e.
Gk = Gs(sk) constitute the given data. However such a
problem formulation can be recast to the original prob-
lem (1)-(2) by associating each column from the transfer
function samples Gk as a sample of the output vector Yk

and where the input Uk is selected as the corresponding
column of an identity matrix of size m.

If the numerical conditioning when directly solving the
problem in (2) is unfavorable, we propose to employ
a Möbius transformation method where we introduce a
”transformed” problem by forming the alternative data
set

Dz = {(zk, Yk, Uk)}Mk=1 (4)

where zk = f−1(sk) and f(·) is a Möbius transforma-
tion with parameters selected such that the algorithm
employed to minimize

M∑
k=1

‖Yk −Gz(zk)Uk‖22 (5)

has an improved numerical conditioning. The rational
function solution to the original problem in (2) is then ob-
tained by the Möbius transformation applied to the state-
space realization (Az, Bz, Cz, Dz) obtained when minimiz-
ing (5). In Section 3 we give the details of this transfor-
mation step.

To use a transformation to move the problem to a more
well-conditioned space as outlined above has for CT fre-
quency domain estimation been suggested by McKelvey
et al. (1996). They used a bilinear transformation which
is a special case of the general Möbius transformation we
consider here. The bilinear transformation is often used in
control theory to convert theoretical results between DT
and CT domains Hitz and Anderson (1969); Doyle et al.
(1991) or in signal processing for DT filter design based
on CT filter structures Oppenheim and Schafer (1989);
Steiglitz (1965).

In this paper we will approach the minimization of (5)
by employing the well-known frequency-domain subspace
algorithm (FSID) described in McKelvey et al. (1996)
which is known to be well-conditioned for DT frequency
domain problems where zk = ejωk .

Below in Section 2.1 we summarize the key steps in
the (FSID) algorithm, before we proceed with the main
contributions of this paper in Section 3.

2.1 The FSID algorithm

The FSID algorithm can be summarized as a multi step
procedure:

(i) From the structured data matrices (see below) a low-
dimensional range space is approximated which form
an estimate of the observability matrix for a state-
space realization.

(ii) From the estimated observability matrix the Az and
Cz matrices in the state-space tuple are determined.

(iii) With Az and Cz fixed, the rational matrix func-
tion Gz is linear in Dz and Bz. Expression (5) is
minimized w.r.t. (Dz, Bz) with fixed (Az, Cz). This
minimization is a linear least-squares problem.

(iv) With Az and Bz fixed, the rational matrix function
Gz is linear inDz and Cz. Expression (5) is minimized
w.r.t. (Dz, Cz) with fixed (Az, Bz). This minimization
is a linear least-squares problem.

As demonstrated in Gumussoy et al. (2018) iterating
between step (iii) and step (iv) 3-4 times can reduce the
approximation error significantly for true MIMO systems.

The details of the step (i) are as follows. Let integer n
denote the desired model order. From the data set Dz we
define the block matrix with q > n block rows

Uq =




U1 U2 · · · UM

z1U1 z2U2 · · · zMUM

z21U1 z22U2 · · · z2MUM

...
...

...
...

zq−1
1 U1 zq−1

2 U2 · · · zq−1
M UM




(6)

which we assume has full rank mq. We define the projec-
tion matrix

Pq = IM −U∗
q(UqU

∗
q)

−1Uq (7)

which projects onto the nullspace of Uq so UqPq = 0.
Here, IM is an identity matrix of sizeM . From the samples
Yk in the data set Dz we define the block matrix

Yq =




Y1 Y2 · · · YM

z1Y1 z2Y2 · · · zMYM

z21Y1 z22Y2 · · · z2MYM

...
...

...
...

zq−1
1 Y1 zq−1

2 Y2 · · · zq−1
M YM



. (8)

If the data in the set Dz are related as

Yk = (Dz + Cz(zkI −Az)
−1Bz)Uk (9)

and (Az, Bz, Cz, Dz) is a minimal realization of order n,
q > n and M ≥ n+mq, then

range(YqPq) = range(Oq(Az, Cz)). (10)

Here,

Oq(Az, Cz) �




Cz

CzAz

...
CzA

q−1
z


 (11)

is the (extended) observability matrix and range(X) de-
note the range space of matrix X. See McKelvey et al.
(1996) for the details.

A matrix representing the range space is determined by
solving the structured matrix approximation problem

Ẑ, R̂ = arg min
Z∈Cpq×n,R∈Cn×M

‖ZR−YqPq‖2F , (12)

where ‖ · ‖F is the Frobenius norm. The solution to this
problem can be calculated by the singular value decompo-
sition of the matrix product YqPq. The matrix ẐR̂ is the
best rank n Frobenius norm matrix approximation to the
matrixYqPq. If, again, the data is related as in (9) we have

range Ẑ = rangeOq(Az, Cz) which imply that there exists

a non-singular matrix L such that ẐL = Oq(Az, Cz) and

hence Ẑ = Oq(Âz, Ĉz) where Cz = ĈzL and Lz = L−1ÂzL.
This yields the estimates
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best rank n Frobenius norm matrix approximation to the
matrixYqPq. If, again, the data is related as in (9) we have
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Ĉz = [Ip 0] Ẑ

Âz = argmin
X

‖
[
I(q−1)p 0

]
ẐX −

[
0 I(q−1)p

]
Ẑ‖2F

(13)

where the last problem is a standard linear least-squares
problem.

Step (iii) in the algorithm can be formulated as

D̂z, B̂z = argmin
D,B

M∑
k=1

‖Yk − (D + Ĉz(zkI − Âz)
−1B)Uk‖22

(14)
and step (iv) as

D̂z, Ĉz = argmin
D,C

M∑
k=1

‖Yk − (D + C(zkI − Âz)
−1B̂z)Uk‖22.

(15)
The FSID algorithm is available as an open source imple-
mentation for three software platforms; Python, Julia and
Matlab, see McKelvey (2019).

2.2 Numerical conditioning

The FSID algorithm provides a straightforward approach
to numerically determine a state-space representation
of any arbitrary matrix-valued proper rational function.
However, some of the steps involve data processing which
can result in numerical ill-conditioning of the performed
operations. The core of the algorithm is the construction
of the matrices Uq in (6) and Yq in (8). It is clear that if
the quotient

maxk |zk|q−1

mink |zk|q−1
(16)

is very large it will be numerically challenging to accu-
rately recover the desired subspace in (12). For the CT-
system-identification case the argument to the rational
matrix function is jΩk and in this case the quotient

maxk |Ωk|q−1

mink |Ωk|q−1
(17)

is large if the data set contains relatively wide frequency
range. The issue becomes more prominent for estimation of
models of high orders since q must be selected larger then
the model order n. On the other hand if the argument
is zk = ejωk , the magnitude is one and hence results in
a problem with better conditioned Uq and Yq matrices.
Note that Uq = (Wq ⊗ Im) diag(U1, . . . , UM ) where Wq

is a Vandermonde matrix defined by the scalars {zk}Mk=1.
Extensive experimentation has shown that the condition
number of the matrix Wq can be used as a proxy to a
priori determine if the set of complex numbers {zk}Mk=1
will result in a well-conditioned estimation problem.

In the next section we discuss the more general Möbius
transformation as a more flexible tool to improve the
numerical conditioning of the FSID algorithm when faced
with problems which are ill-conditioned in their original
formulation.

3. MÖBIUS TRANSFORMATIONS

Consider the scalar rational function f(z) = αz+β
γz+δ where z

is a complex variable and α, δ, γ, β are complex constants.
We will throughout the presentation use the following
assumption.

Assumption 1. The constants α, β, γ, δ satisfy γβ−αδ �= 0.

A function f(z) satisfying Assumption 1 is a Möbius trans-
formation, also called a Linear Fractional Transformation,
s = f(z) = αz+β

γz+δ Young (1984); Seppälä and Sorvali

(1992). The condition γβ − δα �= 0 ensures that the
function is a transformation and hence have an inverse.
The inverse function is given by z = f−1(s) = β−δs

γs−α . The

following result gives the details when applying the Möbius
transformation to the independent variable in a rational
matrix function

Theorem 1.

(i) Let Gs(s) = Ds + Cs(sI − As)
−1Bs be a rational

matrix function and assume P � (αI − γAs) is non-
singular. Then

Gz(z) � Gs(
αz + β

γz + δ
) = Dz+Cz(zI −Az)

−1Bz (18)

where the state-space matrices are given by[
Az Bz

Cz Dz

]
=

[
(δAs − βI)P−1 (αδ − γβ)P−1Bs

CsP
−1 Ds + γCsP

−1Bs

]

(19)
(ii) Let Gz(z) = Dz + Cz(zI − Az)

−1Bz be a rational

matrix function and assume R � (δI + γAz) is non-

singular. Then Gs(s) � Gz(
β−δs
γs−α ) = Ds + Cs(sI −

As)
−1Bs where[
As Bs

Cs Ds

]
=

[
(αAz + βI)R−1 (γβ − δα)R−1Bz

−CzR
−1 Dz − γCzR

−1Bz

]

(20)

A proof of the result is given in Appendix A. From
the result we note that the order of a realization of a
rational transfer function is invariant under a Möbius
transformation. The following result clarify that the two
non-singular assumptions above are linked.

Theorem 2. Given Assumption 1 then

(i) (αI − γAs) is non-singular if and only if (δI + γAz)
is non-singular.

(ii) Let sk = αzk+β
γzk+δ then γzk + δ �= 0 if and only if

γsk − α �= 0

Proof: If λ is an eigenvalue to the matrix As with
corresponding eigenvector x, then x is also an eigenvector
to Az with corresponding eigenvalue λz =

δλ−β
α−γλ since

Az(αI − γAs)x = (δAs − βI)x

(α− γλ)Azx = (δλ− β)x

Azx =
δλ− β

α− γλ
x = λzx

(21)

The matrix (α−γAs) is non-singular iff for all eigenvalues
λ we have α−γλ �= 0. The matrix δI+γAz is non singular
iff, for all eigenvalues λz, we have δ + γλz �= 0. Thus

δ + γλz = δ +
γ(δλ− β)

α− γλ

=
δα− δγλ+ δγλ− γβ

α− γλ
=

δα− γβ

α− γλ
(22)

which is non-zero since, by Assumption 1, δα − γβ �= 0.
The converse is proved by similar arguments.
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If the parameters are selected such that Assumption 1
holds and (αI − γAs) is non-singular then the mappings
in (19) and (20) are hence each others inverses, i.e. they
form a transformation.

As outlined in Section 2 the properties above can be
used to improve the numerical conditioning in algorith-
mic procedures involved for example when estimating a
realization from numerical data. We note that if for a
given value zk the rational function evaluates to a matrix
Gz(zk) = Dz + Cz(zkI − Az)

−1Bz and for a given Uk we

have Yk � G(zk)Uk. Define sk = αzk+β
γzk+δ . Then it follows

from above that the rational function Gs(sk) = Ds +
Cs(skI − As)

−1Bs = Gz(zk) and hence Yk = Gs(sk)Uk,
i.e. Gs(s) interpolates that data. By employing the Möbius
transformation on the complex argument we can associate
the same sequence of vectors Yk, Uk with different rational
matrix functions which all preserve the order of the real-
ization. The following corollary forms the foundation on
how to use the transformations together with data.

Corollary 1. The following statements hold

(i) Assume the data set Ds = {(sk, Yk, Uk)}Mk=1 is inter-
polated by the realization (As, Bs, Cs, Ds), P = (αI−
γAs) is non-singular and ∀k, γsk − α �= 0. Then
the realization (Az, Bz, Cz, Dz) defined by (19) in-
terpolates the data set Dz = {(zk, Yk, Uk)}Mk=1 where

zk � β−δsk
γsk−α .

(ii) Assume the data set Dz = {(zk, Yk, Uk)}Mk=1 is inter-
polated by the realization (Az, Bz, Cz, Dz), R = (δI+
γAz) is non-singular and ∀k, γzk + δ �= 0. Then
the realization (As, Bs, Cs, Ds) defined by (20) inter-
polates the data set Ds = {(sk, Yk, Uk)}Mk=1 where

sk � αzk+β
γzk+δ .

The corollary gives a constructive alternative way to
generate a realization which approximates a given data
set Ds = {(sk, Yk, Uk)}Mk=1.

Algorithm 1.

(i) Generate a new data set Dz by transforming the
values of the samples of the free variable using a
suitable Möbius transformation (zk � β−δsk

γsk−α ) but

preserve the samples Yk, Uk.
(ii) Approximate a realization (Az, Bz, Cz, Dz) to the

modified data set Dz = {(zk, Yk, Uk)}Mk=1 using the
FSID algorithm.

(iii) Use (20) to generate a realization (As, Bs, Cs, Ds).

Since for any k in the data set we have

Dz + Cz(zkI −Az)
−1Bz = Ds + Cs(skI −As)

−1Bs (23)

the approximation error in the z-domain, where the ap-
proximation was performed, is preserved by the transfor-
mation to frequency function in the the s-domain.

4. DOMAIN TRANSFORMATION IN
FREQUENCY-DOMAIN SYSTEM IDENTIFICATION

In the following sections, we demonstrate how the domain-
transformation technique of Section 3 can be used to
improve the performance of the FSID algorithm for the
frequency-domain system identification. In the application
of the frequency-domain system identification, the samples

are taken on an imaginary axis, {sk = jΩk}Mk=1, where
Ωk ∈ R are referred as frequencies (in CT). Without loss
of generality we assume that the sequence of frequencies
{Ωk}Mk=1 is ordered, and hence the frequencies are con-
tained in a frequency interval Ωk ∈ [Ω1,ΩM ]. A transfor-
mation can be used to move this CT frequency interval,
located on an imaginary axis in the s-domain, to a DT
frequency interval, located on a unit circle in the z-domain
in a way that is numerically favorable for FSID algorithm.
The bilinear transformation is conventionally used for this
role, as proposed in McKelvey (1996); however, here we
show that a usage of a Möbius transformation further
improves the system-identification performance.

4.1 Bilinear Transformation

The bilinear transformation is obtained by selecting the
Möbius parameters as

α = 2, β = −2, γ = T, δ = T (24)

where T is a positive real valued scaling. For two realiza-
tions, Gs(s) and Gz(z), related by the bilinear transform
z = f−1(s) it holds that

Gz(e
jω) = Gs(jΩ) for Ω = 2 tan(ω/2)/T. (25)

The DT frequency function is hence identical to the CT
frequency function if the continuous frequency scale is
warped according to the right expression in (25). Our
numerical investigations (see below) indicate that the
system-identification using bilinear transformation signif-
icantly degrades in performance when Ω1 is not close to
0.

4.2 A Möbius transformation method

The inverse Möbius transformation f−1 is proposed here
as a map between CT and DT domains. We start with
excluding from consideration the transformations with
γ = 0, as these cannot map a straight line (subset of
the imaginary axis) to an arc (subset of the unit circle).
Without loss of generality we can set γ = 1 and hence the
transformation is defined by 3 complex-valued parameters.
These parameters can be defined from 3 unique complex-
valued equations of the form ejωi = f−1(jΩi), i ∈ {a, b, c},
where ωi ∈ R represent frequency points in DT domain.
Note that these three equations can be rewritten as linear
when the assumption γjΩ−α �= 0 of Corollary 1 holds. In
choosing the pairs (ωi,Ωi) we follow a heuristic approach
to minimize the condition number of the Vandermonde
matrix Wq formed from the transformed samples {zk =

f−1(sk)}Mk=1. We set Ωa = Ω1,Ωb = Ω1+ΩM

2 ,Ωc = ΩM

and ωa = 0, ωb = ωa+ωc

2 , where ωc is picked such that
the condition number associated with the transformed
samples is minimized. Note that besides of the parameters
of the transformation f−1, the condition number of Wq

is dependent on the number of block rows q in Uq, the
number of the frequency samples M and their distribution
within the interval. It can be computed a priori, without
knowledge of {Yk, Uk}.

5. NUMERICAL EXAMPLES

In this section, we investigate how the mapping between
CT and DT domain influences the numerical stability of
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If the parameters are selected such that Assumption 1
holds and (αI − γAs) is non-singular then the mappings
in (19) and (20) are hence each others inverses, i.e. they
form a transformation.

As outlined in Section 2 the properties above can be
used to improve the numerical conditioning in algorith-
mic procedures involved for example when estimating a
realization from numerical data. We note that if for a
given value zk the rational function evaluates to a matrix
Gz(zk) = Dz + Cz(zkI − Az)

−1Bz and for a given Uk we

have Yk � G(zk)Uk. Define sk = αzk+β
γzk+δ . Then it follows

from above that the rational function Gs(sk) = Ds +
Cs(skI − As)

−1Bs = Gz(zk) and hence Yk = Gs(sk)Uk,
i.e. Gs(s) interpolates that data. By employing the Möbius
transformation on the complex argument we can associate
the same sequence of vectors Yk, Uk with different rational
matrix functions which all preserve the order of the real-
ization. The following corollary forms the foundation on
how to use the transformations together with data.

Corollary 1. The following statements hold

(i) Assume the data set Ds = {(sk, Yk, Uk)}Mk=1 is inter-
polated by the realization (As, Bs, Cs, Ds), P = (αI−
γAs) is non-singular and ∀k, γsk − α �= 0. Then
the realization (Az, Bz, Cz, Dz) defined by (19) in-
terpolates the data set Dz = {(zk, Yk, Uk)}Mk=1 where

zk � β−δsk
γsk−α .

(ii) Assume the data set Dz = {(zk, Yk, Uk)}Mk=1 is inter-
polated by the realization (Az, Bz, Cz, Dz), R = (δI+
γAz) is non-singular and ∀k, γzk + δ �= 0. Then
the realization (As, Bs, Cs, Ds) defined by (20) inter-
polates the data set Ds = {(sk, Yk, Uk)}Mk=1 where

sk � αzk+β
γzk+δ .

The corollary gives a constructive alternative way to
generate a realization which approximates a given data
set Ds = {(sk, Yk, Uk)}Mk=1.

Algorithm 1.

(i) Generate a new data set Dz by transforming the
values of the samples of the free variable using a
suitable Möbius transformation (zk � β−δsk

γsk−α ) but

preserve the samples Yk, Uk.
(ii) Approximate a realization (Az, Bz, Cz, Dz) to the

modified data set Dz = {(zk, Yk, Uk)}Mk=1 using the
FSID algorithm.

(iii) Use (20) to generate a realization (As, Bs, Cs, Ds).

Since for any k in the data set we have

Dz + Cz(zkI −Az)
−1Bz = Ds + Cs(skI −As)

−1Bs (23)

the approximation error in the z-domain, where the ap-
proximation was performed, is preserved by the transfor-
mation to frequency function in the the s-domain.

4. DOMAIN TRANSFORMATION IN
FREQUENCY-DOMAIN SYSTEM IDENTIFICATION

In the following sections, we demonstrate how the domain-
transformation technique of Section 3 can be used to
improve the performance of the FSID algorithm for the
frequency-domain system identification. In the application
of the frequency-domain system identification, the samples

are taken on an imaginary axis, {sk = jΩk}Mk=1, where
Ωk ∈ R are referred as frequencies (in CT). Without loss
of generality we assume that the sequence of frequencies
{Ωk}Mk=1 is ordered, and hence the frequencies are con-
tained in a frequency interval Ωk ∈ [Ω1,ΩM ]. A transfor-
mation can be used to move this CT frequency interval,
located on an imaginary axis in the s-domain, to a DT
frequency interval, located on a unit circle in the z-domain
in a way that is numerically favorable for FSID algorithm.
The bilinear transformation is conventionally used for this
role, as proposed in McKelvey (1996); however, here we
show that a usage of a Möbius transformation further
improves the system-identification performance.

4.1 Bilinear Transformation

The bilinear transformation is obtained by selecting the
Möbius parameters as

α = 2, β = −2, γ = T, δ = T (24)

where T is a positive real valued scaling. For two realiza-
tions, Gs(s) and Gz(z), related by the bilinear transform
z = f−1(s) it holds that

Gz(e
jω) = Gs(jΩ) for Ω = 2 tan(ω/2)/T. (25)

The DT frequency function is hence identical to the CT
frequency function if the continuous frequency scale is
warped according to the right expression in (25). Our
numerical investigations (see below) indicate that the
system-identification using bilinear transformation signif-
icantly degrades in performance when Ω1 is not close to
0.

4.2 A Möbius transformation method

The inverse Möbius transformation f−1 is proposed here
as a map between CT and DT domains. We start with
excluding from consideration the transformations with
γ = 0, as these cannot map a straight line (subset of
the imaginary axis) to an arc (subset of the unit circle).
Without loss of generality we can set γ = 1 and hence the
transformation is defined by 3 complex-valued parameters.
These parameters can be defined from 3 unique complex-
valued equations of the form ejωi = f−1(jΩi), i ∈ {a, b, c},
where ωi ∈ R represent frequency points in DT domain.
Note that these three equations can be rewritten as linear
when the assumption γjΩ−α �= 0 of Corollary 1 holds. In
choosing the pairs (ωi,Ωi) we follow a heuristic approach
to minimize the condition number of the Vandermonde
matrix Wq formed from the transformed samples {zk =

f−1(sk)}Mk=1. We set Ωa = Ω1,Ωb = Ω1+ΩM

2 ,Ωc = ΩM

and ωa = 0, ωb = ωa+ωc

2 , where ωc is picked such that
the condition number associated with the transformed
samples is minimized. Note that besides of the parameters
of the transformation f−1, the condition number of Wq

is dependent on the number of block rows q in Uq, the
number of the frequency samples M and their distribution
within the interval. It can be computed a priori, without
knowledge of {Yk, Uk}.

5. NUMERICAL EXAMPLES

In this section, we investigate how the mapping between
CT and DT domain influences the numerical stability of

the frequency-domain system identification by evaluating
the performance of Algorithm 1 with the two mappings:
the bilinear transformation and the Möbius transformation
as described in Sections 4.1 and 4.2 respectively. We can
point out that if the FSID algorithm is used without
the Möbius or bilinear transformation, significantly larger
modeling errors will be obtained.

For each Monte-Carlo iteration, a random state-space
realization (As, Bs, Cs, Ds) with 10 states, 3 inputs and
4 outputs is generated. For a given set of frequencies
{Ωk}Mk=1, the generated realization produces a CT fre-
quency response {Gk = Gs(jΩk)}Mk=1 according to (3). A
realization {nk}Mk=1 of white circular symmetric Complex
Gaussian noise with the variance 2σ2 is added to the
frequency response, which yields the noised data points
{G′

k = Gk + nk}Mk=1. Algorithm 1 with both the Möbius
and the bilinear transformations is then used to estimate
a rational matrix function of the form (3) from the noised
data {G′

k}Mk=1. The estimates are denoted as Gm and Gb

for when the Möbius and the bilinear transformations were
used respectively. The normalized approximation errors
are evaluated as

em/b =

∑M
k=1 ‖Gk −Gm/b(jΩk)‖2F∑M

k=1 ‖Gk‖2F
. (26)

In all the examples, M = 100 samples are uniformly
distributed on normalized angular frequency intervals
[Ω1,ΩM ], ΩM−Ω1

2π = 1.

The random state-space realization is generated by mod-
ified version of control.matlab.rss() function from
Python Control Systems Library (version 0.8.3 at
https://python-control.org/), which emulates the rss
command in Matlab, used in Input-Output measure-
ments benchmark generation, Chen et al. (2012). Our
modifications include setting the true probability of a
non-oscillating pole to 0.052 and changing the probabil-
ity distribution of the imaginary part to normal with
unit variance and mean Ω0 = Ω1+ΩM

2 . The rest of the
state-space-model statistical properties are retained from
control.matlab.rss().

Fig. 1 depicts normalized approximation errors sorted in
ascending order for individual realizations for the sys-
tems observed in the frequency interval Ω

2π ∈ [5, 6]. For
each value of noise variance, a pair of curves represents
the performance of the FSID algorithm with the Möbius
(solid) and the bilinear (dashed) transformations as maps
between CT and DT domains. In each curve pair, both
approaches are applied to the same set of data, the as-
cending sorting is however individual for each curve. The
Möbius-transformation parameters are calculated accord-
ing to the scheme in Section 4.2 using the knowledge
of the frequency-samples set only. For each value of the
noise variance, the bilinear-transformation parameter T
giving the lowest median approximation error is picked,
that is, the a posteriori (oracle) knowledge is used. The
search is performed in the range T ∈ [10−3, 103]. The
FSID algorithm with q = 20 was used, and ωc = 1.835π,
minimizing the condition number for all frequency inter-
vals, was chosen to calculate the Möbius transformation
parameters. For each pair of curves, 1001 Monte-Carlo
iterations were performed. All the curves behave similarly
in logarithmic scale relative to their medians, and hence
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Fig. 1. The normalized approximation errors eb and em
sorted in ascending order for individual realizations.
The samples are taken uniformly in a range of nor-
malized frequencies Ω

2π ∈ [5, 6]

the median values can be used to describe the performance
of the approaches under different standard deviation of
noise and frequency intervals.

Fig. 2 shows the median relative error as a function of
the left endpoint Ω1

2π in the frequency interval. The experi-
ments are conducted as in the previous example for Fig. 1
and in fact each curve of Fig. 1 corresponds to a single
point on a curve in Fig. 2. While at the low-frequency
cases the a-posteriori-informed (oracle) bilinear transfor-
mation slightly outperforms the Möbius transformation,
the median relative error for the bilinear transformation
grows drastically and saturates when we shift to higher
frequencies. At the same time the median relative error
for Möbius transformation is mostly unaffected by the shift
of the frequency interval. To interpret this, note that any
shift ∆Ω ∈ R of the frequency interval can be compen-
sated by the Möbius transformation via simple change of
parameter β → β−jα∆Ω, an operation unavailable for the
bilinear transformation which parameters are real-valued.
For frequency intervals with Ω1

2π ≥ 0.25, the median rela-
tive error is more than an order of magnitude lower when
the Möbius transformation used instead of the bilinear in
the low-noise scenarios. The difference in the performance
gets less pronounced with the increase of the noise level,
but is still noticeable even at σ = 1. The smaller difference
in the performance for the high-noise scenarios is related to
the fact that the error is evaluated by comparison with the
noise-free data samples, while the calculations on functions
Gm and Gb is performed on the noised data.

To conclude, a Möbius transformation can be used to
provide a numerically more favorable mapping between the
CT and DT domains than the bilinear transformation.

Appendix A. PROOF OF THEOREM 1

Proof: We start from

Gz(z) = Gs(
αz + β

γz + δ
) = Ds + Cs(

αz + β

γz + δ
I −As)

−1Bs.

(A.1)
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First we focus on the matrix inverse in the expression
above[

αz + β

γz + δ
I −As

]−1

= [(αzI + βI − (γz + δ)As)]
−1

(γz + δ)

= P−1
[
(zP − (δAs − βI))P−1

]−1
(γz + δ)

= P−1
[
zI − (δAs − βI)P−1

]−1
(γzI + δI)

= P−1
[
zI − (δAs − βI)P−1

]−1
γ [zI−

(δAs − βI)P−1 + (δAs − βI)P−1 + δ/γI
]

= P−1γ+

P−1
[
zI − (δAs − βI)P−1

]−1
γ
[
(δAs − βI)P−1 + δ/γI

]

= P−1γ+

P−1
[
zI − (δAs − βI)P−1

]−1
[γ(δAs − βI) + Pδ]P−1

= P−1γ + P−1
[
zI − (δAs − βI)P−1

]−1
(αδ − γβ)P−1

(A.2)
Now the result follows by inserting (A.2) into (A.1) viz

Gz(z) = Ds + Cs(
αz + β

γz + δ
I −As)

−1Bs

= Ds + γCsP
−1Bs+

CsP
−1

[
zI − (δAs − βI)P−1

]−1
(αδ − γβ)P−1Bs

(A.3)
The proof of the inverse transformation is analogous by
considering

Gs(s) = Gz(
β − δs

γs− α
) = Dz + Cz(

β − δs

γs− α
I −Az)

−1Bz.

(A.4)
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