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We use a combination of extreme value statistics, survival
analysis and computer-intensive methods to analyse the
mortality of Italian and French semi-supercentenarians. After
accounting for the effects of the sampling frame, extreme-value
modelling leads to the conclusion that constant force of
mortality beyond 108 years describes the data well and there is
no evidence of differences between countries and cohorts.
These findings are consistent with use of a Gompertz model
and with previous analysis of the International Database on
Longevity and suggest that any physical upper bound for the
human lifespan is so large that it is unlikely to be approached.
Power calculations make it implausible that there is an upper
bound below 130 years. There is no evidence of differences in
survival between women and men after age 108 in the Italian
data and the International Database on Longevity, but survival
is lower for men in the French data.
1. Introduction
Solid empirical understanding of human mortality at extreme age
is important as one basis for research aimed at finding a cure for
ageing (described, e.g. in [1]), and is also an element in the hotly
debated and societally important question whether the current
increase in expected lifespan in developed countries, of about
three months per year since at least 1840 [2], can continue. The
limit to human lifespan, if any, also attracts considerable media
attention (e.g. [3–5]).

Einmahl et al. [6] analyse data on mortality in The Netherlands
and conclude that ‘there indeed is a finite upper limit to the
lifespan’ for both men and women. Their dataset, provided by
Statistics Netherlands and consisting of about 285 000 ‘Dutch
residents, born in the Netherlands, who died in the years 1986–
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Figure 1. Modified Lexis diagram of the ISTAT data, showing age and calendar time at death for men (red crosses) and women
(grey dot if only one woman, black dot if several). Each individual ages along a trajectory of unit slope (not shown for clarity) that
may enter the sampling frame either along its left side (if aged over 105 years on 1 January 2009, the start of the sampling frame)
or its lower edge (if they reach age 105 from 1 January 2009 to 31 December 2015) and then terminates either in their death or, if
they die after 31 December 2015, by censoring on that date. Thus the sample includes only persons aged at least 105 years and alive
on 1 January 2009, or whose 105th birthday occurred from 1 January 2009 to 31 December 2015. Censored observations are
displayed in the right margin; the ticks indicate the ages of women (black) and men (red) alive on 31 December 2015. The
death counts per sex for each calendar year are given at the top of the graph.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:202097
2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 O

ct
ob

er
 2

02
1 
2015 at a minimum age of 92 years’, had not undergone any validation procedure. As might be expected,
the vast majority died before their 100th birthdays: 99.5% lived 107 or fewer years, and 97% died at age
101 or younger. The cohorts for analysis were taken to be the calendar years of death, and truncation of
lifetimes was not taken into account. Hanayama & Sibuya [7] also find an upper lifespan limit of 123
years for Japanese persons aged 100 or more, by fitting a generalized Pareto distribution to 1-year and
4-year birth cohorts, taking into account the sampling scheme. In both cases, any plateauing of
mortality may be confounded with the increase in hazard between ages 100 and 105, and this would
invalidate the extrapolation to yet higher ages.

The validity of conclusions about mortality at extreme age depends crucially on the quality of the
data on which they are based [8], as age misrepresentation for the very old is common even in
countries with otherwise reliable statistical data [9]. Motivated by this, demographic researchers from
13 countries contribute to the International Database on Longevity (IDL), the third (August 2021)
release of which contained 1119 individually validated life lengths of supercentenarians, i.e. those
reaching age 110 or more; the data, which cover different time periods for different countries, can be
obtained from www.supercentenarians.org. For some countries, the IDL now also includes data on
semi-supercentenarians, i.e. people living to an age of at least 105. Since October 2019, IDL has
contained French data on 9571 semi-supercentenarians and 241 supercentenarians who died between
1 January 1987 and 31 December 2016. We call these the France 2019 data; all these supercentenarians
but only some of the semi-supercentenarians were validated.

An earlier release of the IDL was analysed by Gampe [10] and Rootzén & Zholud [11], the latter with
extensive discussion [12]. Both papers made allowance for the sampling scheme, and in particular for the
truncation of lifetimes that it entails. They concluded that there is no indication of an increase in mortality
for ages above 110 years, and hence no indication of a finite upper limit to the human lifespan. Rootzén &
Zholud [11] also found no differences in mortality between men and women or between populations
from regions and countries as varied as Japan, the USA or Europe. These conclusions are striking, but
the small size of that release of the IDL and the lack of balance between the subgroups limited the
statistical power available to detect such differences.

The Italian National Institute of Statistics (ISTAT) has recently produced an important new database
containing individually validated birth dates and survival times in days of all persons in Italy who were
at least 105 years old at some point from 1 January 2009 to 31 December 2015. Using advanced survival
analysis tools, Barbi et al. [13] found that death rates in this dataset ‘reach or closely approach a plateau
after age 105’ and found a small but statistically significant cohort effect.

Data analysis must take into account the sampling scheme underlying such data. The ISTAT lifetimes
are left-truncated because only individuals who attain an age of at least 105 years during the sampling
period are included, and they are right-censored because the date of death of persons still alive in
2016 is unknown; see figure 1. The right-censored lifetimes, shown by the tick marks at the right side

http://www.supercentenarians.org
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of the panel, include the oldest individual; ignoring either the truncation or the censoring could lead to
incorrect conclusions. The France 2019 lifetimes are left- and right-truncated: only individuals who are
observed to die during the sampling period appear in the dataset. The statistical consequences are
discussed in appendix A.2.

In our analysis, we take the sampling frame into account, pinpoint the age, if any, at which mortality
attains a plateau, and disentangle the effects of age and of birth cohort. We also compare mortality in the
ISTAT, France 2019 and IDL data, and between men and women.

We use the generalized Pareto distribution from extreme value statistics in the main analysis,
supplemented by fits of the Gompertz distribution, which is standard in demography. We first outline
our main results and conclusions; the appendix gives a more detailed description of our methods.
rnal/rsos
R.Soc.Open

Sci.8:202097
2. Results for ISTAT data
Lifetimes beyond 105 years are highly unusual and the application of extreme value models [14] is
warranted. We use the generalized Pareto distribution,

FðxÞ ¼ 1� ð1þ gx=sÞ�1=g
þ , x � 0, g = 0,

expð�x=sÞ, x � 0, g ¼ 0,

�
ð2:1Þ

to model x, the excess lifetime above u years. In equation (2.1), a+ =max (a, 0) and σ > 0 and g [ R are
scale and shape parameters. For negative shape parameter γ, the random variable has a finite upper
endpoint at −σ/γ, whereas γ≥ 0 yields an infinite upper endpoint.

The corresponding hazard function, often called the ‘force of mortality’ in demography, is the density
evaluated at excess age x, conditional on survival to then, i.e.

hðxÞ ¼ f ðxÞ
1� FðxÞ ¼

1
ðsþ gxÞþ

, x � 0, ð2:2Þ

where f(x) = dF(x)/dx is the generalized Pareto density function. If γ < 0, the hazard function tends to
infinity at the finite upper limit for exceedances. When γ = 0, F is exponential and the hazard function
is constant, meaning that the likelihood that a living individual dies does not depend on age beyond
the threshold. If so, the force of mortality is said to have plateaued at age u.

The choice of a threshold u above which equation (2.1) models exceedances appropriately is a basic
problem in extreme value statistics and is surveyed by Scarrott & MacDonald [15]. If u is high enough for
equation (2.1) to provide an adequate approximation to the distribution of exceedances, then the shape
parameter γ is approximately unchanged if a higher threshold u0 is used, and the scale parameters for u
and u0 have a known relationship, so a simple and commonly used approach to the choice of threshold is
to plot the parameters of the fitted distributions for a range of thresholds [16] and to use the lowest
threshold above which parameter estimates stabilize. This choice balances the extrapolation bias
arising if the threshold is too low with the increased variance incurred when taking u too high to
retain an adequate number of observations.

Figure 2a shows that for age thresholds close to 105 years the estimated shape parameters for excess
life lengths are negative, with 95% confidence intervals barely touching zero, but there is no systematic
indication of non-zero shape above 107 years. Figure 2b displays the estimated scale parameter of the
exponential model fitted to life lengths exceeding the threshold. The scale parameters decrease for
ages 105–107 but show no indication of change after age 107, where the scale parameter estimate is
1.45. Parameter stability plots suggest an exponential model and hence a constant hazard after age
107 or so, where a mortality plateau seems to be attained. A more formal analysis supporting such a
threshold is given in appendix A.3.

The upper part of table 1 shows results from fitting equation (2.1) and the exponential distribution to
the ISTAT data for a range of thresholds. The exponential model provides an adequate fit to the
exceedances over a threshold at 108 years, above which the hypothesis that γ = 0, i.e. the exponential
model is an adequate simplification, is not rejected. Diagnostic plots are shown in figure 6 of the
appendix.

The estimated scale parameterobtainedby fitting an exponential distribution to the ISTATdata for people
older than 108 is 1.45 (years) with 95% confidence interval (1.29, 1.61). Hence the hazard is estimated to be
0.69 (years−1) with 95% confidence interval (0.62, 0.77); above 108 years the estimated probability of
surviving at least one more year at any given age is 0.5 with 95% confidence interval (0.46, 0.54).

We investigated effects of year of birth, but found none; see appendix A.4.
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Figure 2. Parameter stability plots for the ISTAT data (top) and for the France 2019 data (bottom), showing the shape γ of the
generalized Pareto distribution (left) and the scale σe of the exponential distribution (right) based on lifetimes that exceed the age
threshold on the x-axis. The plots give maximum likelihood estimates with 95% confidence intervals derived using a likelihood ratio
statistic. The horizontal lines in the right-hand panels correspond to the estimated scale for excess lifetimes over 108 years for the
ISTAT data.
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3. Results for France 2019 data
Estimation for the France 2019 data was performed as described by Rootzén & Zholud [11], taking into
account the left- and right-truncation of the lifetimes. The parameter stability plots in the lower panels of
figure 2 show a small increase in estimated shape with the threshold; table 1 shows that there is a
compensating decrease in the estimated scale parameters. This is due to the presence of Jeanne
Calment: her age at death, 44 724 days, exceeds the second highest French lifetime by more than
7 years, and as the threshold increases, the influence of her lifetime on the fitted model results in
larger shape estimates and increased uncertainty.

The lower part of table 1 indicates that the exponential and generalized Pareto models fit equally well
above 108 years, so we prefer the more parsimonious exponential fit; see appendices A.3 and A.5 and
figure 7 for more detail, including a formal check on the suitability of the chosen thresholds. For
French persons older than 108, the exponential scale parameter is estimated to be 1.41 (years) with
95% confidence interval (1.32, 1.51), the exponential hazard is estimated to be 0.71 (years−1) with 95%
confidence interval (0.66, 0.76) and the estimated probability of surviving at least one more year is
0.49 with 95% confidence interval (0.47, 0.52).

Table 2 shows that estimates of the scale parameter for the exponential distribution for women and
men for the France 2019 data differ. If men are excluded, then the estimated scale parameter increases
from 1.41 to 1.46 years, and if Jeanne Calment is also excluded, the estimate for women drops to 1.45
years. Similarly to the ISTAT data, survival for ages 105–107 was lower in earlier cohorts.



Table 1. Estimates (s.e.) of scale and shape parameters (σ, γ) for the generalized Pareto model and of the scale parameter
(σe) for the exponential model for the ISTAT and France 2019 datasets as a function of threshold, with number of threshold
exceedances (nu), p-value for the likelihood ratio test of γ = 0 and for testing the null hypothesis γ≥ 0 (infinite upper
endpoint) against the alternative γ < 0 (finite upper endpoint) based on the profile likelihood ratio test under the generalized
Pareto model (p∞).

threshold 105 106 107 108 109 110 111

ISTAT

nu 3836 1874 947 415 198 88 34

σ 1.67 (0.04) 1.70 (0.06) 1.47 (0.08) 1.47 (0.11) 1.33 (0.15) 1.22 (0.23) 1.5 (0.47)

γ −0.05 (0.02) −0.07 (0.03) −0.02 (0.04) −0.01 (0.06) 0.03 (0.09) 0.12 (0.17) 0.06 (0.30)

σe 1.61 (0.03) 1.60 (0.04) 1.45 (0.05) 1.45 (0.08) 1.36 (0.11) 1.35 (0.17) 1.58 (0.32)

p-value 0.04 0.01 0.70 0.82 0.74 0.44 0.84

p∞ 0.02 0.01 0.35 0.41 0.63 0.78 0.58

France 2019

nu 9808 5026 2471 1208 548 241 106

σ 1.68 (0.02) 1.58 (0.03) 1.53 (0.04) 1.43 (0.06) 1.37 (0.08) 1.33 (0.13) 1.27 (0.18)

γ −0.06 (0.01) −0.04 (0.01) −0.04 (0.02) −0.02 (0.03) 0.01 (0.05) 0.05 (0.08) 0.09 (0.11)

σe 1.61 (0.02) 1.53 (0.03) 1.48 (0.03) 1.41 (0.05) 1.39 (0.07) 1.38 (0.11) 1.37 (0.16)

p-value 8 × 10−7 0.01 0.06 0.60 0.78 0.46 0.32

p∞ 4 × 10−7 4 × 10−3 0.03 0.30 0.61 0.77 0.84
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4. Power
Our analysis above suggests that constant hazard adequately models the lifetimes over 108 years, and
extrapolated indefinitely this would imply that there is no limit to the human lifespan. One might wonder
whether an increasing hazard would be detectable, however, as the number of persons attaining such ages is
relatively small. To assess this, we performed a simulation study described in appendix A.6, mimicking the
sampling schemes of the ISTAT, France 2019 and IDL (without the French data, to eliminate overlap) datasets
as closely as possible and generating samples from the generalized Pareto distribution with −0.25≤ γ≤ 0.

Any biological limit to their lifespan should be common for all humans, whereas differences in
mortality rates certainly arise due to social and medical environments and can be accommodated by
letting hazards vary by factors such as country or sex. With the overlap dropped we can treat the
datasets as independent and compute the power for a combined likelihood ratio test of γ = 0 (infinite
lifetime) against alternatives with γ < 0 (finite lifetime). For concreteness of interpretation, we express
the results in terms of the implied upper limit of lifetime, i.e. i ¼ u� s=g. Figure 3a shows the power
curves for the three datasets individually and pooled. The power of the likelihood ratio test for the
alternatives i [ f125, 130, 135g years, for example, is 0.45/0.32/0.24 for the ISTAT data above 108,
0.82/0.60/0.45 for the France 2019 data above 108, and 0.75/0.51/0.37 for the IDL data above 110.
The power for i ¼ 125=130=135 years based on all three datasets is 0.99/0.88/0.72, so it is implausible
that any upper limit to the human lifespan is below 130 years or so.

Similar calculations give the power for testing the null hypothesis γ = 0 against alternatives γ < 0.
Forcing all datasets to have the same shape parameter would allow them to have different endpoints
so we reject the overall null hypothesis if we reject the exponential hypothesis, γ = 0, for any of the
three datasets. The power of this procedure is also shown in figure 3. The resulting combined power
exceeds 0.8 for γ <−0.065 and equals 0.97 for the alternative γ =−0.09, giving strong evidence against
a sharp increase in the hazard function after 108 years.
5. Gompertz model
The hazard function of the generalized Pareto distribution cannot model situations in which the hazard
increases to infinity but the upper limit to lifetimes is infinite. This possibility is encompassed by the



Table 2. Estimates of the scale, σe, of the exponential distribution, with 95% Wald-based confidence intervals (CI). This
distribution is fitted to exceedances of 108 years in the ISTAT and France 2019 data and of 110 years in the IDL data.

ISTAT France 2019 IDL

n σe (95% CI) n σe (95% CI) n σe (95% CI)

women 375 1.45 (1.31, 1.60) 1110 1.46 (1.36, 1.56) 728 1.31 (1.21, 1.41)

men 40 1.41 (0.98, 1.85) 94 0.90 (0.70, 1.10) 72 1.49 (1.12, 1.86)

all 415 1.45 (1.31, 1.59) 1204 1.41 (1.32, 1.51) 800 1.33 (1.23, 1.42)
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Figure 3. Power functions based on the IDL (excluding French records), France 2019 and ISTAT databases and combined dataset, with
rugs showing the lifetimes above 115. (a) Power for testing the null hypothesis of infinite endpoint against the alternative of a finite
endpoint i, based on the likelihood ratio statistic. The endpoint cannot be below the largest lifetime in each database. (b) Power of the
Wald statistic for testing the null hypothesis γ = 0 against the one-sided alternative γ < 0, as a function of γ; the dashed line
represents the power obtained by rejecting exponentiality when any of the three one-sided tests rejects. The curves are obtained
by conditioning on the birthdates and left-truncated values in the databases, then simulating generalized Pareto data whose
parameters are the partial maximum likelihood estimates ðbsg, gÞ. The simulated records are censored if they fall outside the
sampling frame for the ISTAT data and are simulated from a left- and right-truncated generalized Pareto distribution for IDL and
France 2019. See appendix A.6 for more details.
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Gompertz distribution [17], which has long been used for modelling lifetimes and often provides a good
fit to data at lower ages (e.g. [18]). When the Gompertz model is expressed in the form

FðxÞ ¼ 1� exp½�fexpðbx=sÞ � 1g=b�, x . 0, s, b . 0,

σ is a scale parameter with the dimensions of x, and the dimensionless parameter β controls the shape of
the distribution. Letting β→ 0 yields the exponential distribution with mean σ; small values of β
correspond to small departures from the exponential model. The fact that β cannot be negative affects
statistical comparison of the Gompertz and exponential models; see appendix A.7.

The Gompertz distribution has infinite upper limit to its support, so it cannot be used to assess
whether there is a finite upper limit to the human lifespan. Its hazard function, σ−1 exp(βx/σ), is finite
but increasing for all x (β > 0) or constant (β = 0). The limiting distribution for threshold exceedances of
Gompertz variables is exponential, and this limit is attained rather rapidly, so a good fit of the
Gompertz distribution for lower x would be compatible with good fit of the exponential distribution
for threshold exceedances at higher values of x.

Computations summarized in appendix A.7 show that the exponential model, and hence also the
Gompertz model with very small β, give equally good fits to the Italian and the French datasets above
age 107, and that the Gompertz and generalized Pareto models fit equally well above age 105.
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6. Conclusion
Table 2 shows no differences between survival after age 108 in the ISTAT data and survival after age 110
in the IDL data for women, for men, or for women and men combined, so we obtained combined
estimates by pooling the two databases. The resulting estimates also show no significant differences in
survival between men and women, and we conclude that survival times in years after age 108 in the
ISTAT data and after age 110 in the IDL data are well described by an exponential distribution with
scale parameter 1.37 and 95% confidence interval (1.29, 1.45). The corresponding estimated probability
of surviving one more year is 0.48 with 95% confidence interval (0.46, 0.5).

There was no indication of differences in survival for women in the France 2019 data and in the
combined ISTAT and IDL data, but survival for men was lower in the France 2019 data. Pooling the
ISTAT data, the France 2019 data and the IDL data with France removed gives an exponential scale
parameter estimate of 1.39 years with 95% confidence interval (1.33, 1.45), and estimated probability 0.49
(0.47, 0.50) of surviving one more year. Deleting the men from the France 2019 data or dropping Jeanne
Calment changes estimates and confidence intervals based on these pooled exponential models by at
most two units in the second decimal place. Moreover, there is no evidence that the Gompertz model,
with increasing hazard, fits better than the exponential model, with constant hazard, above 108 years.

There is high power for detection of an upper limit to the human lifespan up to around 130 years,
based on fits of the generalized Pareto model to the three databases. This does not mean such ages
will be reached sometime soon, however, as the probability of surviving until 130 conditional on
reaching 110 years approximately equals that of seeing heads on 20 consecutive tosses of a fair coin.
This event has a probability of less than one in a million and is highly unlikely to occur in the near
future, though the increasing number of supercentenarians makes it possible that the maximum
reported age at death will rise to 130 years during the present century [19].
7. Discussion
The results of the analysis of the newly available ISTAT data agree strikingly well with those for the IDL
supercentenarians and for the women in the France 2019 data. Once the effects of the sampling frame are
taken into account by allowing for truncation and censoring of the ages at death, a model with constant
hazard after age 108 fits all three datasets well; it corresponds to a constant probability of 0.49 that a
living person will survive for one further year, with 95% confidence interval (0.47, 0.50). Power
calculations make it implausible that there is an upper limit to the human lifespan of 130 years or below.

Although many fewer men than women reach high ages, no difference in survival between the sexes
is discernible in the ISTAT and the IDL data. Survival of men after age 108 is lower in the France 2019
data, but it seems unlikely that this reflects a real difference. It seems more plausible that this is due
to gender imbalance, some form of age bias or is a false positive caused by multiple testing.

If the ISTAT and France 2019 data are split by birth cohort, then we find roughly constant mortality
from age 105 for those born before the end of 1905, whereas those born in 1906 and later have lower
mortality for ages 105–107; this explains the cohort effects detected by [13]. Possibly the mortality
plateau is reached later for later cohorts. The plausibility of this hypothesis could be weighed if
further high-quality data become available.
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Appendix A
Here we describe the methods used to obtain our results, produce the figures and perform our inferences,
and add further information on goodness of fit and hazard estimates.
 ietypublishing.org/journal/rsos

R.Soc.Open
Sci.8
A.1. Reproducibility
R [20] was used for all of the analyses and to generate all the tables and figures. Code to reproduce the
analyses is provided in the online electronic supplementary material.

Alternative analyses may be performed using the R package longevity or the MATLAB toolbox for
life-length analysis LATool. The latter consists of three files that are available on GitHub, https://
github.com/OGCJN/Human-mortality-at-extreme-age.git.

The IDL data used in this article, extracted in August 2021, comprise the records of all French semi-
supercentenarians and supercentenarians who died after 31 December 1986, and the records of
supercentenarians from the third IDL release for Austria, Belgium, Canada (Quebec), Denmark,
England and Wales, Finland, Germany, Norway, Spain, Sweden and the USA. The online electronic
supplementary material also explains how to obtain these and the Italian data used in the paper, and
gives code to preprocess them prior to reproducing our analyses.
:202097
A.2. Truncation and censoring
Figure 1 shows that many persons in the ISTAT dataset were alive on 31 December 2016, when sampling
finished, so their lifetimes must be treated as right-censored. Lifetimes above 105 years on 1 January 2009
are left-truncated and individuals not aged at least 105 from 1 January 2009 to 31 December 2016 are not
included. Both censoring and truncation must be handled correctly to avoid biased inferences; the effect
of the truncation is that inferences must be conditioned on the event that an individual appears in the
database. Below we outline how this is achieved; see [11,21] for more details.

Consider a sampling interval C ¼ ðb, eÞ of calendar time during which individuals aged over a
threshold of u years were observed. Let x = age− u denote the excess age of an individual who dies
aged older than u, having reached age u at calendar time t. Assume that the excess ages x are
independent with cumulative distribution function F(x; θ), probability density function f (x; θ), and
survival function S(x, θ) = 1− F(x, θ), where θ is a vector of parameters to be estimated.

The likelihood contribution for someone who died in the interval C is then

f ðxÞ
Sfðb� tÞþg

, x . 0,

whereas that for someone who is known to be alive at the end of C, and thus whose lifetime is censored, is

Sðe� tÞ
Sfðb� tÞþg

, t , e:

The likelihood function L(θ) is the product of the likelihood contributions from all individuals included in
the data under study. Estimates for the generalized Pareto and Gompertz distributions were found by
numerical maximization of the log-likelihood, with standard errors obtained from the inverse
observed information matrix. Explicit expressions exist for the maximum-likelihood estimator of the
exponential distribution scale parameter and its standard error, i.e.

bse ¼
P

ifxi � ðb� tiÞþg
#deaths

, seðbseÞ ¼ bseffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#deaths

p : (A 1Þ

The IDL supercentenarian data are left- and right-truncated, and this was taken into account in our
analysis; the likelihood contribution for these individuals is

f ðxiÞ
Fðe� tiÞ � Ffðb� tiÞþg

, b� ti � xi � e� ti: (A 2Þ

Inappropriate analysis can lead to misleading results: for example, fitting an exponential distribution
to the ISTAT individuals who survive beyond age 107 without accounting for truncation or censoring
gives the estimate bse ¼ 1:25 with 95% confidence interval (1.17, 1.33), to be compared with bse ¼ 1:45

https://github.com/lbelzile/longevity
https://github.com/OGCJN/Human-mortality-at-extreme-age.git
https://github.com/OGCJN/Human-mortality-at-extreme-age.git
https://github.com/OGCJN/Human-mortality-at-extreme-age.git
https://github.com/OGCJN/Human-mortality-at-extreme-age.git
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Figure 4. Local hazard estimates with 95% pointwise confidence intervals for ISTAT individuals born in 1886–1905 (a) and 1906–
1910 (b), with horizontal lines at 0.7. The rightmost point includes all survivors beyond 111 years (respectively, 109 years).

Table 3. The p-values for the likelihood ratio test comparing the generalized Pareto and exponential models (null hypothesis)
with thresholds 108 (ISTAT, France 2019) and 110 years (IDL) against the piecewise generalized Pareto model of [22] with
equally spaced thresholds at the sample quintiles of the exceedances. The p-values are based on the asymptotic χ2 distribution.

gen. Pareto exponential

ISTAT 0.47 0.61

France 2019 0.44 0.55

IDL 0.77 0.77
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with 95% confidence interval (1.35, 1.56) once the truncation and censoring are accounted for; these
confidence intervals do not overlap.

A.3. Threshold stability
For a formal assessment of threshold stability, we fit a piecewise generalized Pareto model over the K
regions above the thresholds u1 < · · · < uK, each with its own shape parameter γk but with scale
parameters constrained to ensure that the density function is continuous at the thresholds [22]; this
reduces to the usual generalized Pareto model if γ1 = · · · = γK. The p-values for testing γ1 = · · · = γK against
the alternative of different values of γ with K = 4 thresholds at the 0, 0.2, … , 0.8 quantiles of the
exceedances over 108 or 110 years are shown in table 3. They cast no doubt on the chosen thresholds for
either the generalized Pareto model or with a similar test with a piecewise exponential model.

A.4. ISTAT cohort effects
The local hazard estimates in figure 4 are obtained by splitting the likelihood contribution of individuals into
yearly blocks, using disjoint intervals with (b, e) = (a, a+ 1) years to avoid using the same individuals several
times. For the highest interval we set e=∞ and include all individuals who survived into that interval.

The parameter stability plots in figure 5 and the estimated hazard plots in figure 4 show roughly
constant mortality for those born in 1886–1905 for the entire age range. Mortality is lower for ages 105
and 106 for persons born in 1906–1910, but equals that for the earlier group at ages 107 and above.
This reduction in mortality for the later births implies that plateauing for the entire ISTAT dataset
does not start until approximately age 108 years.

A.5. Graphical diagnostics
A quantile-quantile (or QQ-) plot is a standard diagnostic of the fit of a specified distribution to data, but
it must be modified to accommodate censoring or truncation. Figure 6a graphs the ordered ages at death,
yi, of uncensored ISTAT individuals against plotting positions from bF�1feGðyiÞg [24], where bF�1 is the
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Figure 5. Parameter stability plots for ISTAT individuals born in 1896–1905 (a,b) and 1906–1910 (c,d ), for the parameters γ of the
generalized Pareto distribution (a,c) and for the scale σe of the exponential distribution (c,d ) obtained from exceedances of the age
threshold on the x-axis. The plots give maximum likelihood estimates with (profile) likelihood 95% confidence intervals. The
horizontal line on the right panels corresponds to the estimated scale for exceedances above 108 for the full ISTAT dataset.
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quantile function of the exponential distribution fitted to ages exceeding 108 years and eG is the non-
parametric maximum likelihood estimator of the distribution function, corrected for censoring and
truncation [25,26].

To assess the variability of the plot, we simulate new ages at death from the fitted model,
conditioning on the birth dates, truncation time and censoring indicator; this amounts to simulating
new lifetimes from a left- and right-truncated exponential distribution, since individuals whose death
is observed during the sampling frame cannot exceed the age they would reach at c2, i.e. 31 December
2015 for these data. Both bF and eG are re-estimated using the simulated samples and evaluated at a
grid of fixed values y0 ∈ {y1, …, ym}. The approximate 95% pointwise and simultaneous simulation
envelopes shown in the panel are obtained using bF�1

b feGbðy0Þg ([27], §4.2.4).
For left-truncated and right-censored data, we can also compare the non-parametric, Nelson–Aalen,

conditional cumulative hazard function estimate with its parametric counterparts; uncertainty
assessment for the former is discussed in ([23], p. 210). QQ-plotting for left- and right-truncated
observations is awkward, but the cumulative hazard can again be estimated fairly readily. Figure 6b
and figure 7 show conditional cumulative hazard plots for the ISTAT, France 2019 and IDL data. The
fits of the parametric models to the first and third of these datasets appear satisfactory, with the fit for
the France 2019 data perhaps somewhat less so, though the uncertainty in the upper tail is very large.

A.6. Power
To assess the statistical power of our procedures, we computed the maximum profile likelihood estimatesbsg for the original data with γ fixed at the values −0.25,… , 0 and simulated new excess lifetimes for each γ,
conditioning on the sampling frame. In the ISTAT data, for example, we calculated the ages of all
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Figure 6. Graphical goodness-of-fit assessment for the ISTAT data. (a) Exponential QQ-plot of individuals who lived beyond 108 years
and died before 2016, with pointwise (dashed) and simultaneous (dotted) 95% simulation envelopes. The circles contrast the ordered
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parametric estimate of the conditional cumulative hazard function for the ISTAT data (solid black), and approximate 95%
simultaneous equal precision confidence bands ([23], p. 210) (dashed black); the cumulative hazard is conditional because it
applies only to individuals older than 108 years. The coloured lines and shaded bands show the maximum likelihood cumulative
hazard estimates for the fitted exponential (blue) and generalized Pareto distributions (red) with pointwise 95% confidence intervals.
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Figure 7. Non-parametric conditional cumulative hazard function estimates [28] for the France 2019 data above age 108 (a) and IDL
supercentenarians (b) with approximate 95% equal-precision simultaneous confidence bands [29]. See caption to figure 6 for details.
The non-parametric estimate for the France 2019 data is constant from 115.1 years until Jeanne Calment’s death at around 122.4
years, which falls outside the pointwise envelopes for the two parametric models.
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individuals on 1 January 2009, retained the dates at which they reached 108 years and sampled new excess
lifetimes from the generalized Pareto distribution with parameters ðg, bsgÞ, right-censoring any simulated
lifetimes beyond the end of 2015. This ensures that the power calculations are as relevant as possible,
not only in terms of the sampling scheme but also in terms of the underlying parameters. For each
simulated dataset, we computed the directed likelihood ratio statistic r ¼ signðbg� gÞf2‘ðbg, bsÞ�
2‘ð0, eseÞg1=2 and the Wald statistic w ¼ bg=s:e:ðbgÞ for testing the null hypothesis γ = 0 against the
alternative γ < 0, which corresponds to testing for exponentiality against possible upper bounds to the
human lifespan. The asymptotic null distribution of the statistics r and w is standard normal and we
can assess the quality of this approximation by calculating the Wald statistics when γ = 0. These
simulations show that the estimator of the shape parameter is unbiased and normally distributed, but
the distribution of the Wald statistic is left-skewed, leading to inflated Type I error. For the power study,
we thus used the simulated null distribution for comparison.

We proceeded similarly for the endpoint i. In order to simulate from generalized Pareto distributions
with i fixed at a given value, we reparametrized the log-likelihood function in terms of i and σ and
estimated the scale parameters bsi for each of the original three datasets with i fixed, then used the



Table 4. Estimates (s.e.) of Gompertz parameters (σ, β) for the ISTAT data (top) and the France 2019 data (bottom) for
different thresholds, with the number of threshold exceedances (nu). The bootstrap p-values are for the likelihood ratio test of
β = 0 against β > 0. Estimates of β reported as zero are smaller than 10−7.

threshold 105 106 107 108 109 110

ISTAT

nu 3836 1874 946 415 198 88

σ 1.67 (0.05) 1.71 (0.07) 1.48 (0.08) 1.47 (0.12) 1.36 (0.1) 1.35 (0.2)

β 0.05 (0.02) 0.09 (0.04) 0.02 (0.05) 0.02 (0.07) 0 0

p-value 0.02 0.01 0.37 0.45 1 1

France 2019

nu 9808 5026 2471 1208 548 241

σ 1.7 (0.03) 1.59 (0.03) 1.54 (0.05) 1.43 (0.06) 1.39 (0.1) 1.38 (0.1)

β 0.07 (0.01) 0.05 (0.02) 0.05 (0.03) 0.02 (0.04) 0 0

p-value 0 0 0.02 0.31 1 1
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relation i ¼ u� s=g to obtain the three implied shape parameters bgi. We then simulated new datasets
with the sampling scheme described above, but using the three sets of parameter pairs ðbgi, bsiÞ. For
the joint test of the null hypothesis of an exponential distribution, i ¼ 1, against the alternative of a
common but finite i, we reparametrized the likelihood in terms of i and allowed the three datasets to
have different values of σ.

Figure 3a shows how the empirical proportion of rejections for a test of nominal size 5% based on the
directed likelihood root statistic r ¼ �f2‘gpðbi, bsÞ � 2‘expðeseÞg1=2 varies with i ¼ u� s=g for γ < 0, for
the ISTAT, France 2019 and the rest of the IDL data. Here ðbi, bsÞ are the maximum likelihood estimates
for the generalized Pareto distribution parametrized in terms of a common finite i and three scale
parameters and ese are the maximum likelihood estimates of the three exponential scale parameters
under the null hypothesis.
A.7. Gompertz model
The reciprocal hazard function of the Gompertz distribution r(x) = σ exp(− βx/σ) encodes the speed of
convergence to the limiting extreme value distribution [30]; even if β > 0, r0(x) = β exp(− βx/σ)→ 0
exponentially fast as x→∞. Any improvement in the fit of the Gompertz model for exceedances over
some threshold would be shown by evidence that β > 0. This distribution places a point mass of
exp(1/β) at x =∞ when β < 0, so we allow only β≥ 0.

Table 4 summarizes the fit of this model for various thresholds and the ISTAT data, without sex
or cohort effects. The hypothesis that the Gompertz distribution (β > 0) reduces to an exponential
distribution (β = 0) is a boundary hypothesis, so the likelihood ratio statistic to test β = 0 does not
have the usual approximate x21 distribution; its large-sample distribution is a 50 : 50 mixture of a
point mass at 0 and a x21 distribution, sometimes written as 1

2 x
2
0 þ 1

2 x
2
1 [31]. Barbi et al. [13] do not

notice this, leading them to mis-state the significance of the difference of log-likelihoods in their
table 2—the likelihood ratio statistic for testing β = 0 against β > 0 is w = 2 × 0.292 = 0.584, and
Prðx21 . 0:584Þ � 0:44, which is the significance level quoted in [13]. In fact, the correct (asymptotic)
level would be 1

2 Prðx21 . 0:584Þ � 0:22. Here the conclusion does not change, but it might in
other contexts.

In general, p-values obtained using a parametric bootstrap are more reliable than asymptotic
approximations such as 1

2 x
2
0 þ 1

2 x
2
1 and are preferable for such comparisons. In the present case, this

entails simulating independent datasets like the original data from the boundary exponential
distribution (the null hypothesis, β = 0), and estimating the p-value by the empirical proportion of
these simulated datasets in which the likelihood ratio statistics w� are no smaller than the original
value w, i.e. bPr�0ðw� � wÞ, where the asterisk indicates a parametric bootstrap simulation and the
subscript indicates that the simulation is under the null hypothesis; see ch. 4 of [27]. This approach
was used to obtain the p-values in table 4, which show that the exponential model is statistically



Table 5. Deviances for comparison of extended generalized Pareto (GP) and the exponential, GP and Gompertz sub-models for
different thresholds for the ISTAT data. The rows show the likelihood ratio statistic, i.e. twice the difference in log-likelihood
between the specified model and an encompassing extended generalized Pareto model.

threshold 105 106 107 108 109 110

Gompertz 0.01 1.65 2.21 0.22 0.68 1.65

GP 0.00 2.17 2.21 0.23 0.56 1.05

exponential 4.16 8.21 2.36 0.28 0.68 1.65
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indistinguishable from the Gompertz model from 108 years onwards, though the Gompertz model fits
better at 106 years and below for the ISTAT data and at 107 years and below for the France 2019 data.

Table 5 compares the fits of the Gompertz, generalized Pareto and exponential models to the ISTAT
data, with the baseline taken to be an extended generalized Pareto distribution that encompasses all three
other models; the details will be reported elsewhere. The generalized Pareto and Gompertz models fit
equally well for all thresholds, since the differences between their respective deviances are minimal.
Both are better than the exponential model below 107 years, but not above, in agreement with table 4.
 .8:202097
A.8. Differences between men and women
The imbalance in the number of men and women limits our ability to detect any effects of gender on
mortality at great age. To illustrate this, we conducted a simulation study based on the ISTAT data to
assess the power of a likelihood ratio test for lifetime exceedances above 108 years, for which we have
375 women and 40 men; the lifetimes of 79 women and 15 men are censored. We condition on the
sampling frame and the sex of individuals and simulate new life trajectories for both men and women
based on an exponential distribution with relative scale differing by a ratio λ > 1, corresponding to lower
hazard for women. Thus individuals who were older than 108 in 2009 survive at least beyond that age,
but a simulated lifetime that extends beyond 2016 is censored. For each of 10 000 simulated samples, we
computed the likelihood ratio statistic for comparison of fits to men and women separately and a
combined fit; the statistic has an asymptotic x21 distribution. We also considered conditioning only on
the birth dates and the beginning of the sampling period to assess whether the right-censoring leads to
loss of power, but the difference is negligible. Power of 80% is achieved if λ≈ 1.61, corresponding to an
average survival, σe, of 1.85 years for women and 1.14 years for men, with the corresponding differences
for powers 20% and 50% being 0.28 years and 0.50 years. The power of the corresponding test for the
IDL data is expected to be similar, and, if so, the combined power of the tests in the ISTAT and IDL
data for detecting this ratio would be approximately 0.96.

For the France 2019 data, a likelihood ratio test strongly rejects the hypothesis of equal hazard for
women and men; this is perhaps unsurprising given that the oldest Frenchman in the database died
aged 111 years and 318 days, more than a decade less than Jeanne Calment. The ratio of the estimated
hazards for men and women in this dataset is approximately 1.61.
A.9. Hazard estimates
To construct a local hazard estimate based on the limiting generalized Pareto distribution, we note that
this distribution has reciprocal hazard function r(x) = (σ + γx)+, where a+ =max (a, 0) for real a. A more
flexible functional form is r(x) = {σ + γx + g(x)}+, where g(x) is a smooth function of x that tends to zero
as x increases. For exploratory purposes, we take gðxÞ ¼ PK

k¼1 bkbkðxÞ, where

bkðxÞ ¼ ðkk � xÞ3þ, k1 , � � � , kK;

here the κk are fixed knots, and bk (x) = 0 for x≥ κk. The resulting cubic spline function g(x) has two
continuous derivatives. This model has K + 2 parameters and corresponds to the generalized Pareto
distribution for x > κK, but allows r(x) to depart from linearity for x≤ κK.

Lifetime data are recorded to the nearest day and often there are ties for small x, so we use a discrete
version of the model, with x∈ {1, … , xmax} days, where xmax corresponds to 16 years after age 105. We let
h(x) = 1/r(x) denote the hazard function, set HðxÞ ¼ Px

z¼1 hðzÞ=365 for compatibility with the continuous
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Figure 8. Local hazard estimates for the ISTAT data using a spline approach with five random knots centred at 106 , …, 110 years.
(a) Original estimate (heavy solid line) with pointwise (dotted) and overall (dashed) 95% envelopes obtained from 5000 bootstrap
replicates, of which 100 are displayed (grey solid lines). The mean positions of the knots are shown by the dashed vertical lines. The
black rug shows ( jittered) times of deaths, and the red rug shows ( jittered) censored survival times; the rugs are suppressed for the
lower ages, as there too many points to be informative. (b) The same output for the best-fitting exponential model, for which γ = 0.
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case, and obtain survivor and probability mass functions PrðX . xÞ ¼ expf�HðxÞg and
PrðX ¼ xÞ ¼ hðxÞ expf�HðxÞg for x∈ {1, …, xmax}.

Let X denote a survival time (days) beyond 105 years. For each individual, the available data are of
the form (s, d, x), where s = 0 if observation of X began at 105 years and, if not, s > 0 is the age in days
above 105 at which observation of X began, d = 1 indicates death, X = x, and d = 0 indicates right-
censoring, X > x. The likelihood is then a product of terms of the form

PrðX ¼ xÞd 	 PrðX . xÞ1�d

PrðX . sÞ , x . s,

and depends on the parameters σ, γ, β1,…, βK, which are readily estimated by numerical maximization of
the log-likelihood function. The resulting fit depends on the knots κ1, …, κK, but to reduce this
dependence we generate knots at random, roughly evenly spaced in an interval (0, xmax), where xmax

is chosen large enough that r(x) should be linear for x > xmax, i.e. the generalized Pareto model is
fitted when x > xmax.

Figure 8a shows a local estimate of the hazard function for the ISTAT data, constrained to have the
form of (2.2) above 110 years. The hazard dips up to 108 years or so, then rises and declines slowly.
To assess the significance of this decline, we performed a bootstrap analysis [27,32], generating 5000
replicate datasets, the hazard function estimates for 100 of which are shown in the panel. These
suggest that the slow decrease after age 110 is not significant, and this is confirmed by the pointwise
and overall 95% confidence bands. The initial dip seems to be a genuine feature, but above 108 years
the confidence bands cover a wide range of possible functions, including a constant hazard.
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