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Abstract
With emerging technologies such as high-definition video, virtual reality, and cloud
computing, bandwidth demand in the access networks is ever-increasing. Passive
optical network (PON) has become the promising architecture thanks to its low
cost and easy management. IEEE and ITU-T standard organizations have been
standardizing the next-generation PON, targeting on increasing the single-channel
capacity from 10 Gb/s to 25, 50, and 100 Gb/s as the solution to address the dramatic
increase of bandwidth demand. However, since the access network is extremely cost-
sensitive, many research problems imposed in the physical layer of PON need to be
addressed in a cost-e�cient way, which is the primary focus of this thesis.

Utilizing the low-cost 10G optics to build up high-speed PON systems is a promis-
ing approach, where signal processing techniques are key of importance. Two cat-
egories of signal processing techniques have been extensively investigated, namely
optical signal processing (OSP) and digital signal processing (DSP). Dispersion-
supported equalization (DSE) as a novel OSP scheme is proposed to achieve bit-rate
enhancement from 10 Gb/s to 25 Gb/s based on the 10G-class optics. Thanks to
the bandwidth improved by DSE, the non-return-zero on-o� keying, which is the
simplest modulation format, is able to be adopted in the PON system without com-
plex modulation or DSP. Meanwhile, OSP is also proposed to work together with
DSP enabling 50G PON while simplifying the DSP complexity. Using both DSE
and simple feed-forward equalizer is able to support 50 Gb/s PAM-4 transmission
with 10G optics. For C-band 50 Gb/s transmission, injection locking techniques as
another OSP approach is proposed to compress the directly modulated laser chirp
and increase system bandwidth in the optical domain where a doubled capacity from
25 Gb/s to 50 Gb/s over 20 km fiber can be built on top of 10G optics. For DSP,
we investigate the advantages of neural network (NN) on the mitigation of the time-
varying nonlinear semiconductor optical amplifier pattern e�ect. In order to reduce
the expense caused by the high computation complexity of NN, a pre- equalizer is
introduced at the central o�ce that allows cost-sharing for all connected access users.
In order to push the PON system line rate to 100 Gb/s, a joint nonlinear Tomlinson-
Harashima precoding-Volterra algorithm is proposed to compensate for both linear
and nonlinear distortions where 100 Gb/s PAM-4 transmission over 20 km fiber with
15 GHz system bandwidth can be achieved.

Keywords: Optical access network, passive optical network, optical signal pro-
cessing, digital signal processing, dispersion supported equalization, semiconductor
optical amplifier, neural network.
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Overview
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CHAPTER 1

Introduction

The worldwide Internet tra�c volume is under exceptional growth in the last 20
years, and it is expected that this trend will continue in the future. The driving force
behind this trend can be attributed to the popularity of bandwidth-consuming Inter-
net services. Therefore, a higher network capacity is needed to satisfy the tremendous
growth in bandwidth requirements. The last-mile bottleneck of the Internet speed oc-
curs in the access network. Optical fiber communication with greater bandwidth and
higher capacity is gradually brought to the access network replacing the traditional
copper/cable-based technologies. After years of development, the optical access net-
work with a system capacity of 10 Gb/s is currently under deployment. Beyond 10
Gb/s optical access network is undoubtedly the next step to fulfill the bandwidth de-
mand. With this in mind, the thesis concentrates on the next-generation high-speed
optical access networks, and this chapter starts with the research background and
motivation.

1.1 Background and motivation
The era of the Internet began around 1968 with the invention of the Advanced Re-
search Projects Agency Network (ARPANET) [1], which enabled the communication
of four mainframe computers located at four universities. Since then, the Internet has
been evolving into a global network that connects more than 18 billion devices [2].
According to the Cisco statistics in 2020 [3], the total number of Internet users is 4.66
billion. Nearly 59.5% of the global population has access to the Internet through ei-
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Chapter 1 Introduction

ther wireless or wired technology. This number is increased to 90% in North America,
and 82% in Western Europe. The Internet has turned our lives upside down and it
is now the prioritized medium for our everyday communication. Especially in recent
years, the popularity of mobile Internet further accelerates this trend. Nowadays,
we can almost do everything by simply using a smartphone. For example, ordering
pizza on UberEATS, buying nearly everything on Amazon, sharing a beautiful mo-
ment with friends on Instagram, watching 4K/8K high-definition video on YouTube,
and sending instant voice or video calls on WhatsApp. Virtual reality (VR) and
augmented reality (AR) assisted entertainments are just around the corner.

The ever-growing number of online services are coming to the market, significantly
increasing users’ demand for higher bandwidth. Cisco predicts that the global In-
ternet Protocol (IP) tra�c is expected to grow at a compound annual growth rate
(CAGR) of 26% from 2018 to 2023 [3]. In order to satisfy the increasing demand
for online connections, the Internet is deployed on a physical network infrastructure
enabling global data transfer. This network architecture adopts three hierarchical
connections, namely the core network, metro network, and access network (shown
in Fig. 1.1). Each layer has a di�erent function and topology. The core network
known as the backbone of the Internet uses a mesh topology providing any-to-any
connections among various sub-networks. The core network links span up to several
thousands of kilometers, interconnecting large cities, countries, and even continents.
Then, the metro network is deployed using a ring topology providing connections
between cities or metropolitan areas with a typical coverage from 40 km to a few
hundreds of kilometers. Both core and metro network links are implemented with
fiber-based optics, enabling Terabit communications over a large distance. Finally,
access networks cover the last mile of the Internet, connecting the end users to the
closest central o�ce (CO) nodes with a few hundred meters to a few kilometers in
between. Since the access network needs to connect dispersed users, a capillary-like
network structure is needed to ensure enough geographic coverage. Compared to core
and metro networks, access networks usually su�ers from stricter cost constraints due
to the limited number of customers sharing the deployment cost of the network.

The physical links in access networks nowadays are still largely relying on copper
and coaxial cables, which are reaching their capacity limits. The explosive growth
of global Internet tra�c has made the access networks become the bottleneck in
providing higher capacity. The physical infrastructure in the next generation access
networks will bring optical communication closer to the user, and the optical access
network is extended to cover the last mile. FTTx (where x represents a particular
name or object, such as ‘home’ or ‘building’, see Fig. 1.1) is becoming a prevailing
trend to keep up with the ever-growing bandwidth demand.

The global number of fixed-broadband subscriptions is 1.2 billion at the end of Q1
2021 [4]. At the same time, the share of fiber-based high-speed FTTx connections
increases to 56.4%, while cable and copper-based digital subscriber line (DSL) con-
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1.1 Background and motivation

Figure 1.1: Architectures of telecommunication network. FTTH: Fiber to the home;
FTTB: Fiber to the building.

nections deteriorate to 18.4% and 12.2%. At the continent level, shown in Fig. 1.2,
FTTx is the dominant access technology in Asia and Oceania until Q1, 2021, whereas
copper connections still have the largest market share in Africa and cable is the most
popular technology in the Americas. The reason is that some developing counties in
Asia, such as China and Korea, leapfrog the cable and DSL technologies, and deploy
fiber infrastructure for the access networks directly. However, some counties in the
Americas and Europe are trying to reuse the legacy cable and DSL equipment to
avoid the large investments for new fiber implementation.
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Africa Americas Asia Europe Oceania

Cable Copper FTTx

Figure 1.2: Technology market share by region in Q1, 2021 [4].

In European countries, telecommunication is managed by hundreds of di�erent
operators, making it di�cult for all of them to upgrade infrastructure simultaneously.
To promote the deployment of FTTH in some European countries, the European
FTTH council was founded, promising to increase the access data rate to 1 Gbps per
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Chapter 1 Introduction

user by 2025 [5], [6]. Every year since 2007, the Europe FTTH Council publishes a
market panorama, showing the top-tier FTTH coverage in European countries. The
report for 2020 is shown in Fig. 1.3. For Sweden, fiber-based fixed-broadband access
coverage increases to 61.8%, absorbing the customers from all the other technologies
and making fiber the dominant access medium.

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00%
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Figure 1.3: Percentage of fiber based fixed-broadband in European countries on, Septem-
ber 2020 [7].

Nevertheless, the sheer fiber volume required to provide a dedicated fiber con-
nection to each customer makes it challenging to deploy FTTH. To overcome this
challenge, passive optical network (PON) is proposed as a cost-e�ective solution for
FTTH and FTTB deployment. Compared to other optical access technologies such
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1.2 Thesis overview

as active optical network (AON), the PON, with a point-to-multipoint architecture,
provides a connection from the metro node to multiple users allowing partial fiber
sharing and a reduction of active components in the field. After years of develop-
ment, PONs are becoming the most preferred system for optical access networks.
According to the latest PON market report in 2021 [8], the global PON equipment
market is USD 12.6 billion in 2020, which is projected to reach USD 37.6 billion in
2027, growing at a CAGR of 16.9% from 2020 to 2027. The predicted growth is
because of the increased demand for fixed broadband and the 5G mobile networks
where the PON is proposed to support high-speed fronthaul links [9]–[11].

Besides increasing the number of installed PON systems, it is also important to
upgrade the system capacity. Currently, the most widely deployed Gigabit-capable
PON (G-PON) system with a system rate of 2.5 Gb/s in downstream and 1.25 Gb/s
in upstream [12], and the following standards with either a single channel 10 Gb/s or
40 Gb/s after employing four wavelength multiplexing [13]. From 2015, the Institute
of Electrical Engineers (IEEE) task force starts to standardize the next-generation
Ethernet PON with a downstream speed of 100 Gb/s based on wavelength multi-
plexing of four 25 Gb/s channels [14]. Moreover, International Telecommunication
Union (ITU) hopes to directly upgrade the data rate from single-channel 10 Gb/s
to 50 Gb/s [15]. Many research institutes start to investigate the single-channel
100G PON in the downstream. To fulfill these increasing demands of higher capac-
ity, many technical issues in the physical link need to be addressed, e.g., bandwidth
limitation and nonlinear response from optoelectronics components, dispersion and
power attenuation from fiber. How to increase the data rate in a cost-e�ective way
is the research focus. A group of new signal processing technologies are required to
be investigated.

1.2 Thesis overview
The research content of this thesis follows the PON evolution roadmap. Both optical
and digital signal processing approaches are proposed to address the most challenging
technological problems for upgrading bit rate from 10 Gb/s to 25 Gb/s, 50 Gb/s, and
100 Gb/s. Table 1.1 shows the major impairments in PON addressed in this thesis.

In order to upgrade the data rate to 25 Gb/s, the simplest solution is to employ a
family of high-bandwidth optics with the non-return-zero on-o� keying (NRZ-OOK)
format. Nevertheless, the corresponding components’ cost is too high for access net-
works [16]. A cost-e�ective solution is to reuse the legacy 10G directly modulated
lasers (DMLs), available for high volume production at an a�ordable price [17]. Us-
ing DMLs, however, the signal quality degrades due to the bandwidth limitation and
the DML chirp e�ect, and it gets worse after fiber transmission [18]. Similar issues
occur when the transmission data rate increases up to 50 Gb/s and 100 Gb/s per
wavelength. Reusing the low bandwidth DML is still the cost-e�ective solution by
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Chapter 1 Introduction

the operators and vendors. Exploiting spectrum e�cient modulation formats, such
as pulse amplitude modulation 4-level (PAM-4) [19], electrical duobinary (EDB)
[20], discrete multi-tone (DMT) [21], can relieve the bandwidth limitation, but these
modulation formats have strict requirements on the linearity of optoelectronic compo-
nents. Hence, the nonlinear impairments induced by the nonlinear response from the
optics need to be addressed. From a di�erent perspective, with the increase of data
rate, the minimum optical power required at the receiver side could be higher. The
high bandwidth receiver with and high sensitivity is desired to ensure enough power
budget (>29 dB). Given that the commercial 25G avalanche photodiode (APD) is
still costly, a semiconductor optical amplifier (SOA) combined with a larger band-
width photodiode (PD) is a promising solution for PON [22]. However, the nonlinear
pattern e�ect caused by SOA gain saturation degrades the signal quality at high
reception power, resulting in a reduced receiving dynamic range [23]. Hence, com-
pensation strategies must be adopted to equalize the signal from these linear and
nonlinear impairments, as shown in Table 1.1.

Table 1.1: Major impairments in high-speed PON
Major impairments Linear/Nonlinear

Transmitter
Limited bandwidth Linear
Nonlinear response Nonlinear

Chirp Nonlinear

Fiber Chromatic dispersion Linear
Power attenuation Linear

Receiver
Nonlinear response Nonlinear
Limited bandwidth Linear

SOA gain saturation Nonlinear

Various compensation schemes can be employed, either optically or electrically,
both at the transmitter or the receiver side. Optical signal processing (OSP) can
improve the signal performance directly in the optical domain without optical-to-
electrical (O/E) conversion. In Paper A, an OSP method named dispersion sup-
ported equalization (DSE) is proposed to increase the system bandwidth from 6 GHz
to 11 GHz, enabling real-time 25 Gb/s signal transmission with 10G DML and APD.
Moreover, the proposed method can support multi-channel equalization with a single
component. In Papers B and C, an experimental demonstration of symmetric 4◊25
Gb/s PON in both O-band and C-band based on DSE is presented, validating the
e�ectiveness of DSE.

The bandwidth improvement from DSE is not enough for error-free transmission
when the data rate increases up to 50 Gb/s. Electrical digital signal processing
(DSP) can help to compensate both linear and nonlinear distortions at the bit level,

8




































































































































1.3 Outline of this thesis

which is more flexible and powerful than the OSP. The costly high-speed analog-
to-digital converter (ADC) and application-specific integrated circuit (ASIC) chip
become the main obstacle for the practical deployment [24]. Putting the DSP module
at the transmitter side can be a cost-e�ective solution since the DSP cost are shared
by all users. Paper D proposes a joint nonlinear Tomlinson-Harashima Precoding
(NTHP)-Volterra algorithm to compensate system impairments for a single-channel
100G PON. The NTHP module is implemented at the transmitter side, enabling
cost-sharing among users. In Paper E, a neural network (NN)-based equalizer is
firstly proposed to compensate the SOA pattern e�ect for 50G PON. Considering the
high computation complexity of NN, it is used as a pre-equalizer so that the DSP
cost can be shared.

In addition, the computation complexity of DSP algorithms needs further consid-
eration for PON applications. Simplified DSP algorithms show great potentials to
reduce the complexity [25], [26], which usually comes with a compromise to the per-
formance. An alternative solution is to use OSP to improve the signal quality in the
optical domain partially. In this way, the required DSP complexity can be reduced.
Such a scheme is validated with experiments presented in Papers F and G. DSE is
employed to improve the system bandwidth in the optical domain, and then a simple
feed-forward equalizer (FFE) is used for 50 Gb/s signal transmission with 10G DML
and APD. Finally, Paper H presents another OSP method named injection locking,
which can increase the system bandwidth and compress DML chirp in the optical
domain. With the help of injection locking and DSP, 50G C-band signal transmission
over 20 km can be achieved.

1.3 Outline of this thesis
This thesis presents a set of signal processing technologies toward the realization
of 25G, 50G, and 100G PONs. Firstly, Chapter 2 introduces the basics of optical
access networks. Specifically, the types of multiplexing technologies and evolution
roadmap in PON are introduced together with the discussion of modulation formats
selection for the next-generation PONs. Following this, Chapter 3 is devoted to
discussing major impairments in high-speed PONs, including the linear and nonlinear
distortions from the optoelectronics and fiber. Also, the related impacts on the signal
are introduced and discussed. In Chapter 4, OSP technologies, dispersion-supported
equalization and injection locking, in particular, are introduced and discussed as
solutions to address PON system impairments. Chapter 5 is mainly about DSP with
the basics of the principle behind various linear and nonlinear algorithms introduced
and special attention to our proposed NTHP-Volterra algorithm and NN-based pre-
equalizer. Chapter 6 introduces hybrid OSP and DSP. Both DSE and injection
locking are employed to reduce the complexity requirements of DSP. Chapter 7 gives
an outlook of future work which is followed by a summary of appended papers in

9




































































































































Chapter 1 Introduction

Chapter 8.
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CHAPTER 2

Passive optical networks

The communication network is developing towards all-optical networks. Optical ac-
cess networks are expected to replace the copper wire access networks to meet the
ever-growing bandwidth requirements. In this chapter, an overview of optical access
networks is given with a focus on the PON technologies. The multiplexing technolo-
gies for high-speed transmission are introduced along with a historical review of PON
standards. We also discuss the basics of the modulation formats and their potential
application in the high-speed PON systems.

2.1 Optical access networks
There are several types of network topology for optical access networks, in particular
point-to-point (PtP), AON, and PON, respectively (see Fig. 2.1) [27], [28]. In the
PtP structure, each customer is connected to the central o�ce (CO) through a pair
of independent optical fibers, and the packet switching is performed in the CO.
Although high system bandwidth can be assured in this approach, the practical
deployment is expensive since there is no resource sharing leading to the fact that
each user needs to cover the full cost of the corresponding link. In the AON, the
packet switching is relocated from CO to a remote active node near the user side.
Partial fiber sharing and reduced complexity of the switch in the central station can
be achieved in this topology. Nevertheless, AONs require an additional power supply
to maintain the switching operation. The active switch is replaced by a passive
optical power splitter in PON. Thus, no additional power supply is required at the
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Chapter 2 Passive optical networks

PtP

AON

Active switch

PON

Passive splitter

Figure 2.1: Topology of optical access networks.

remote node. A single fiber connects the CO and the user side, and when it gets close
to areas with a dense number of subscribers, a passive splitter is used to connect the
subscriber side over a short distance. This point-to-multipoint (PtMP) architecture
enables the maximum resource sharing and the lowest installation, operation, and
management costs, making PON the most well-known technology for optical access
networks [29].

The architecture of PON consists of optical line terminal (OLT) located in the
CO, optical network units (ONUs) on the user side, and a passive optical distribution
network (ODN) connecting the OLT and ONUs as shown in Fig. 2.2. The OLT is used
to control the bidirectional data flow in the entire network. In the downlink direction,
the OLT broadcasts the service data from the metro and backbone networks to the
ONUs through the ODN. In the upstream direction, the OLT receives and separates
the data stream from each ONU and forwards it to the upper layer networks. On the
one hand, PON has an asymmetric structure so that the cost at the OLT side can
be shared by all ONUs. On the other hand, the cost of an ONU needs to be covered
by each customer. Therefore, it is necessary to ensure the cost-e�ectiveness in the
ONU when making upgrade strategies.
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2.2 Multiplexing technologies in PONs

Figure 2.2: PON architecture.

2.2 Multiplexing technologies in PONs
Since the access network of PON is a PtMP structure, downlink data is broadcast over
a single fiber to each ONU. Therefore, the data needs to be multiplexed and packaged
according to certain rules for transmission and demultiplexed at the user side. Simi-
larly, in the upstream direction, data from di�erent ONUs are multiplexed into the
same feeder cable and transmitted back to the OLT. The commonly used multiplex-
ing techniques in PONs are time-division multiplexing (TDM), wavelength division
multiplexing (WDM), and orthogonal frequency division multiplexing (OFDM).

TDM-PON
TDM-PON is the most widely adopted technology in optical access networks. In the
downlink, the OLT divides a frame with duration T into N time slots. Each slot
belongs to an ONU. The Downstream data is broadcast to all ONUs via the passive
splitters, and each ONU only receives the data from its own time slot and discards
other time slots. In the upstream, the user sends data in a burst mode during the
specific time slots that the OLT assigns to the ONU. Di�erent wavelengths are used
for the uplink and downlink. The uplink and downlink are separated by the circulator
in both the OLT and ONU. Currently established standards such as EPON, GPON,
10G EPON, and XG-PON belong to the TDM-PON category.

WDM-PON
The WDM-PON assigns a pair of independent wavelengths to each ONU for trans-
mitting and receiving data, respectively [30]. The maximum number of ONUs is
determined by the number of available wavelengths. The biggest challenge for WDM-
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Chapter 2 Passive optical networks

PON is how to achieve colorless ONU [31]. The colorless ONU means the transmitter
and receiver in each ONU have the flexibility on wavelength allocation so that they
can be tuned to any assigned wavelength for communication. It is beneficial for oper-
ation purposes. Employing tunable lasers and receivers (e.g., tunable optical filer) is
the simplest solution despite with a high cost. A seeded reflective transmitter is more
cost-e�ective, while a WDM filter is required in the ODN. To support more ONUs
connections, further compression of the wavelength spacing of transmission carriers
can yield dense wavelength division multiplexing (DWDM) [32] or even ultra-dense
wavelength division multiplexing (UDWDM) PONs [33]. The scaling in the num-
ber of carriers can also increase the capacity of PONs [34]. Time-and-wavelength-
division multiplexing (TWDM) which combines TDM and WDM technologies, is first
adopted in NG-PON2 standard [35]. By employing TWDM, technologies of 10 Gb/s
transceivers can be reused in NG-PON2. However, a tunable transceiver is required
in ONU to meet the requirements of colorless ONU.

OFDM-PON

Figure 2.3: (a) OFDM spectrum; (b) An OFDM frame for downstream broadcast.

The OFDM is a multi-carrier modulation format, as shown in Fig. 2.3(a). It is
widely used for high-speed optical transmission thanks to its superior physical layer
performance [36]–[39], e.g., high-spectral e�ciency and resilience to fiber dispersion.
The OFDM-PON combines OFDM and TDM so that each OFDM subcarrier can be
further split among di�erent users in di�erent time slots according to their demand,
as shown in Fig. 2.3(b). Therefore, the OFDM-PON can allow a two-dimensional
bandwidth allocation in terms of both time and frequency. Even with its flexibility
and dispersion tolerance capability, because of the complexity and the corresponding
cost of modulation and demodulation, it is mainly discussed in academia, and there
is still a big gap from academia to commercialization.
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2.3 PON evolution roadmap

2.3 PON evolution roadmap
The PON standard evolution has gone through several generations to satisfy the ever-
increasing bandwidth demands per user. The di�erent upgrade strategies are being
proposed by industry, academic research institutions and finalized by international or-
ganizations. There are mainly three organizations for PON standardizations, namely,
Full-Service Access Network (FSAN), ITU-T, and IEEE. The FSAN working group
[40] was established in 1995 and now consists of 70 organizations from leading opera-
tors, equipment vendors, and Internet service providers. It is not a standard-setting
body but helps to promote the development of ITU-T PON standards [41]. The
ITU-T is known as the telecommunication standardization sector. APON/BPON,
GPON, and NG-PON2 standards were all developed by FSAN and ITU-T [42]. The
IEEE is an ISO-certified standards development organization, and its working groups
have led the discussion of EPON and 10G EPON series of standards [43]. An es-
sential requirement for di�erent generations of PONs is compatibility, i.e., the new
generation of systems can be compatible with the previous ones that are sharing the
same fiber infrastructure. In addition to enabling the wholesale reuse of deployed
fiber infrastructure, individual users should be able to evolve smoothly from the old
system to the new one without the need to migrate all users forcibly all at once.

Figure 2.4: Roadmap of PON standardization [44].

Fig. 2.4 shows the roadmap of PON standardization, developed by ITU-T and
IEEE, respectively. In the 1990s, the FSAN and ITU-T developed the first gener-
ation of APON standards based on asynchronous transfer technology (ATM) with
a symmetric 155 Mb/s system speed, which was renamed as BPON after adding
WDM technology [45], [46]. The APON and BPON standards are highly complex,
and the ATM protocols are ine�cient in supporting IP data services which could not
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Chapter 2 Passive optical networks

meet the growing demand for IP services. In 2004, IEEE completed the development
of the Ethernet PON (EPON) 802.3ah standard, which specifies an upstream and
downstream rate of 1.25 Gb/s [47]. The EPON replaces the ATM protocol with an
Ethernet protocol, making the network more suitable for the IP service environment
by supporting variable-length packet transmission. However, the EPON has low
bandwidth utilization and also lacks e�ective support for real-time services. Subse-
quently, the FSAN/ITU-T introduced the gigabit PON (GPON) standard G.984 [48],
which uses time-division multiplexing for upstream and downstream and supports
variable rates up to 2.5 Gb/s and 1.25 Gb/s. GPON proposes a new frame struc-
ture, GPON encapsulation method (GEM), which provides a high quality of service
for delay-sensitive voice, data, and video services. After that, the IEEE and ITU-T
released PON standards with a system capacity of 10 Gb/s from 2009 to 2011: 10G-
EPON [49], 10 Gb/s asymmetric XG-PON (X denotes 10) [50], and symmetric 10
Gb/s XGS-PON [51]. These standards also adopt the TDM-PON architecture and
support symmetric and asymmetric transmission rates, which can reach 300 Mbps-1
Gbps per user on average. Currently, 10G-EPON and XG(s)-PON technologies are
quite mature and will soon enter large-scale commercialization.

After the 10G PON, the route of the standard upgrade has been divided into two
major directions. Direction one is to enhance the system rate directly by using the
WDM technology. In 2015, ITU-T o�cially released the NG-PON2 standard [52],
which adopted the TWDM-PON system architecture, transmitting 10 Gb/s signals
per wavelength through four wavelength overlays, bringing the overall system rate
up to 40 Gb/s. However, due to the cost of tunable optical components and system
complexity, this standard has not been successful in actual commercial deployment
and may be abandoned directly [53]. Direction two is to increase the rate of a
single wavelength. Since 2015, the IEEE 802.3ca standards working group started a
standard discussion for 25, 50, and 100 Gb/s PON, intending to increase the single-
wavelength rate from 10 Gb/s to 25 Gb/s, and then to 50 Gb/s and 100 Gb/s
through 2- and 4-wavelength multiplexing [54]. In July 2020, the IEEE o�cially
announced the latest IEEE 802.3ca standard which removed the requirement for 100G
rates and retained the single-wavelength 25G and two-wavelength 50G configurations.
From 2018, the ITU-T also starts discussions for a single-wave rate 50 Gb/s higher-
speed PON, and the standardization is expected to be completed by 2025 [42]. This
thesis also follows this direction targeting on a low-cost solution for high-speed single-
wavelength transmission.

2.4 Modulation formats in high-speed PONs
Modulation format selection is an important topic in high-speed PONs. The candi-
date modulation formats can be roughly divided into two categories: Single-carrier
modulation and multi-carrier modulation. The single-carrier modulation is related
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2.4 Modulation formats in high-speed PONs

to the multilevel pulse amplitude modulation (PAM-M) formats such as NRZ-OOK,
EDB or partial response system, and PAM-4. The representative of the multi-carrier
modulation is DMT modulation, which is of higher spectrum e�ciency together with
higher complexity. In this section, the basics of these modulation formats and their
application in PONs are presented.

2.4.1 Multilevel pulse amplitude modulation
PAM-M is a modulation format using di�erent pulse amplitudes to represent data.
The number of pulse levels M determines the spectrum e�ciency and the decision
complexity.

Non-return-zero on-o� keying

The commonly used NRZ-OOK is a two-level PAM modulation. Each symbol rep-
resents only one-bit information. The time-domain waveform and eye diagram of
NRZ-OOK are shown in Fig. 2-5. The OOK is a binary modulation, and the NRZ
represents the signal amplitude would not drop into zero in the case of continuous high
amplitude symbols. The NRZ-OOK signal is a binary stream, so symbol mapping or
coding is unnecessary in the transmitter. In the receiver, a simple comparator can
make symbol decisions and recover the original bits. In addition, unlike PAM-4 and
DMT, the linearity of optoelectronic devices is not a big problem for the NRZ-OOK
format since two amplitude levels are easy to be distinguished. Simple transceiver
design and insensitive for the linearity are the reasons why the NRZ-OOK is the
preferred choice of the legacy PON standards. One major drawback of the NRZ-
OOK is the low spectrum e�ciency. The required system bandwidth is close to the
symbol rate. For the PON using 25 Gb/s NRZ-OOK, the costly 25G-class optics are
required [55]. As the data rate increases to 50 Gb/s, the optical or digital compensa-
tion strategies are needed as techniques for 50G-class optics are far from the mature
techniques [56]–[58].

PAM-4

The PAM-4 uses four di�erent amplitude levels to deliver information, e.g., (≠3, ≠1,
1, 3), where each symbol contains two bits of information. Compared to the NRZ-
OOK, the PAM-4 with doubled spectrum e�ciency can support the same bit-rate
modulation with electronic components working at half speed. Moreover, the PAM-4
has higher tolerance to the fiber dispersion thanks to the doubled symbol period.
However, the PAM-4 increases the linearity and signal-to-noise (SNR) requirements
on optoelectronics to ensure equal space between di�erent levels. It also requires a
bit-symbol mapping from binary streams to the PAM-4 symbols at the transmitter
side and a more complex decoder in the receiver. Despite the fact that increasing
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Chapter 2 Passive optical networks

(a) (b)

Figure 2.5: Time domain waveform of NRZ signal (a) and Eye diagram (b).

the number of amplitudes (e.g., PAM-8 or higher) leads to the improvement in band-
width utilization e�ciency, the di�culties on symbol decisions are also increased.
Nevertheless, the 200/400G Ethernet standard already adopts PAM-4 as the modu-
lation format [59], which is also preferred in 50G and 100G PON since the Ethernet
industry chain and the optics can be reused [60].

Partial response system

The principle of a partial response system is to compress the signal spectrum by
inducing controllable inter-symbol interference (ISI), letting one pulse spread to the
neighboring ones. In this way, the duration of the pulse and hence the spectral
e�ciency are increased, enabling high-speed transmission under limited bandwidth.
After transmission, the ISI can be removed by some techniques at the receiver side,
and the original signal can be recovered. For the NRZ-OOK modulation, after a
partial response system, the EDB with three amplitude levels can be obtained. Its
spectral e�ciency is similar to the PAM-4. Moreover, it is possible to use the partial
response system for PAM-4 such that a seven-level duobinary PAM-4 (DB-PAM-
4) could be generated, as can be seen in the eye diagram and spectrum of PAM-4
(Fig. 2.6 (a)(b)) and DB-PAM-4 (Fig. 2.6 (c)(d)).

Coding and decoding principle

Taking the PAM-4 as an example, the process of partial response operation can be
done at the transmitter side by passing the PAM-4 symbols s(k) œ {≠3, ≠1, 1, 3}
through a simple delay-and-add filter

r(k) = s(k) + s(k ≠ 1). (2.1)

This operation connects adjacent symbols and makes each symbol lasting two
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2.4 Modulation formats in high-speed PONs

Figure 2.6: Eye diagram and spectrum of PAM-4 (a) (b) and duobinary PAM-4 (c) (d).

symbol periods. In this way, the input four-level signal can be transferred to a seven-
level signal called DB-PAM-4 [61]. Also, in the receiver side, the easiest way to
decode the DB-PAM-4 is to reverse the operation by

s(k) = r(k) ≠ s(k ≠ 1). (2.2)

Here, the decision result of each symbol would influence adjacent symbol decisions,
resulting in error propagation. The pre-coding before the delay-and-add operation is
employed to solve this problem [62],

b(k) = [s(k) ≠ b(k ≠ 1)] mod 4, (2.3)

where b(k) is the pre-coded PAM-4 symbols. After the partial response system, b(k)
is changed to seven-level DB-PAM-4 c(k) following (2.4), and the original PAM-4
symbols can be recovered by

s(k) = c(k) mod 4. (2.4)

In the real applications, a partial response channel can be made by using the
filtering e�ect from bandwidth limited optics. In a system where the 3 dB end-to-
end bandwidth is around 25% of the signal baud rate, DB-PAM-4 can be generated.
Although the DB-PAM-4 reduces the system bandwidth requirement, it is more
sensitive to the nonlinearities and system noise.

2.4.2 DMT
The DMT modulation is widely investigated to increase the data rate in PONs in re-
cent years. It can adaptively adjust the bit and power allocation of each sub-channel
according to the channel quality. Then, the optimal modulation format and transmis-
sion rate can be applied accordingly. This section introduces the basic technologies
about the DMT modulation, including quadrature amplitude modulation (QAM),
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Chapter 2 Passive optical networks

bit-power loading technologies.

Quadrature amplitude modulation
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Figure 2.7: Constellation of 4 QAM, 16 QAM and 64 QAM.

DMT is a multi-carrier modulation technique, and each carrier is modulated with
multiple QAM (QAM) symbols. QAM uses two orthogonal subcarriers to do am-
plitude modulation, and each MQAM symbol contains log2(M) bit information, so
the spectrum utilization is doubled compared to the amplitude modulation. MQAM
signal can be expressed by

C(t) = Im cos wct + Qm sin wct (2.5)

where M is the modulation order (M = 2s, s is the information bits in each symbol),
Im and Qm œ {1, 2, 3 . . . M}, are the in-phase and quadrature components, respec-
tively, and MQAM symbols can be mapped to a constellation diagram, shown in
Fig. 2.7. In the constellation diagram, the minimum Euclidean distance indicates
the noise tolerance. The larger the Euclidean distance, the better the noise tolerance
can be.

Modulation and demodulation

Similar to the OFDM, the DMT is a multi-carrier modulation technique that di-
vides the channel into several orthogonal sub-channels using the fast Fourier trans-
form (FFT). The major di�erence between the DMT and OFDM is that the DMT
does Hermitian conjugate symmetry before performing inverse FFT (IFFT) [63],
[64], which transforms complex signal to real signal enabling amplitude modulation.
Therefore, the DMT is an attractive solution in the PON system as it possesses many
advantages of the OFDM without the need for coherent detection.

Fig. 2.8 shows the schematic diagram for DMT modulation and demodulation.
The IFFT is used to convert the MQAM symbols (c0, c1, . . . , cn≠1) into DMT signal
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2.4 Modulation formats in high-speed PONs
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Figure 2.8: DMT modulation and demodulation scheme.

(P = {Po, P1, . . . , Pn≠1}). Such a process can be expressed as

Pk =
N≠1ÿ

n=0
Cne

j2fik n
N =

N≠1ÿ

n=0
Cne

j2fifntk , (2.6)

with k = 0, 1, . . . N ≠1. Define fn = n
NT and tk = kT where N is the total number of

sub-carriers, T is the symbol period of the Pk. Eq. (2.6) represents the modulation of
MQAM symbols in di�erent subcarriers with frequency of fn = n

NT . In this way, the
frequency interval between sub-carriers is �f = 1

NT . The cross-correlation between
any two sub-carrier Sl, Sm over one symbol period can be calculated as

‡l,m = 1
T

⁄ T

0
SlS

ú
mdt = 1

T

⁄ T

0
e

j2fit(fl≠fm)
dt

= e
jfi(fk≠fl)T sin (fi (fl ≠ fm) T )

fi (fl ≠ fm) T
,

(2.7)

where fl and fm are the carrier frequency of Sl, Sm. Since fl = afm and a is an
integer, ‡l,m is always zero if a ”= 1. It means that all sub-carriers are orthogonal with
each other. The corresponding frequency spectrum of DMT signal is shown in Fig.
2.9 (a). The DMT waveform in the time domain is random and irregular (see Fig.
2.9 (b)). Especially when most subcarriers with similar phases are superimposed, a
DMT signal with a high peak- to-average power ratio (PAPR) a�ects the RF amplifier
performance and increases the linearity requirement on optoelectronics. Note that
the MQAM signals Cn with a length of N/2 are complex numbers at the beginning.
In order to obtain a real-valued signal for intensity modulation, Hermitian conjugate
CN≠n = C

ú
n is adopted, in which the length of IFFT is N . Hence, for a DMT based

transmission system with a baud-rate of Rs, the signal bandwidth B = N ú�f = Rs,
and the real-valued bandwidth would be Rs/2. In addition, to reduce inter-carrier
interference and increase CD tolerance, the cycle prefix (CP), a sequence at the end
of the symbols is copied and added to the beginning after the IFFT. In the receiver,
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Chapter 2 Passive optical networks

the reversed process with the FFT and MQAM de-mapping can be conducted for
the DMT demodulation.

Figure 2.9: Frequency spectrum (a) and time domain waveform (b) of DMT signal.

Adaptive bit-power loading

Apart from the high spectrum e�ciency, another advantage of using DMT is that it
allows adaptive bit and power allocation according to the frequency response of the
channel. This can be extremely beneficial in a quasistatic and slow-varying channel
where the SNR of each subcarrier can be measured at the receiver side. Based on the
SNR estimation, it is possible to redistribute the power unequally among di�erent
carriers at the transmitter side [65]–[68]. For example, when allocating more power
to the high-frequency carriers with more power attenuation, the SNR profile response
can be flattened after the system transmission. It is also able to independently select
the QAM modulation order modulated on each sub-carrier. For example, the sub-
carriers with higher SNR are able to load more bits than those with lower SNR, as
can be seen in Fig. 2.10.
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Figure 2.10: Adaptive power allocation and bit allocation.
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2.4 Modulation formats in high-speed PONs

2.4.3 Modulation formats for high-speed PONs
The NRZ-OOK is the simplest multilevel modulation format with the lowest re-
quirements in pre-processing and post-processing among all discussed modulation
formats. If 25G optics is standardized for 25G PON, NRZ should be the optimal
choice. However, given that the upgrade plan is to reuse low-cost 10G optics, the
EDB and PAM-4 are more promising formats than the DMT to replace the NRZ-
OOK. It is because that the related technologies are more cost-e�ective and less
disruptive than the DMT, while they still o�er two times improvement in spectral
e�ciency compared to the NRZ-OOK. Sticking to the NRZ-OOK, requires external
signal processing technologies, including OSP and DSP with relatively low complex-
ity. In other words, the PAM-4 and EDB can provide capacity upgrade with minimal
changes to the transceiver design because the deployed optoelectronic components
do not need to be replaced.

Nevertheless, the DMT may become a good choice when the capacity increase to
50 Gb/s and beyond where the amount of the DSP required by the NRZ or PAM4
could be equivalent to the DMT requirements. The intensive DSP may include
pre-equalization, post-compensation, and decoding algorithms for higher data rate
transmission with PAM-4. While for the DMT, high-resolution ADCs, digital-to-
analog converters (DACs), and linear modulators may also be required to support
its strict linearity requirements. Therefore, if the main issue for the realization of 50
Gb/s is still the costly 25G optics, the simplified DSP may play a key role in future
optical access networks.
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CHAPTER 3

Impairments in PONs

The demand for the high-speed PONs puts new challenges on the physical layer de-
sign. System impairments need to be well addressed in a cost-e�ective way to meet
the desired performance. The impairments in an intensity modulation and direct
detection (IMDD) PON system are mainly coming from optoelectronics components
and fiber. This chapter presents impairments most relevant to PONs including band-
width limitation from transceivers, chirp e�ect from the directly modulated laser,
pattern e�ect from SOA, and fiber transmission impairments.

3.1 IMDD system model

Figure 3.1: A block diagram of the IMDD system. This image is taken from [69].

The IMDD is a promising solution for PONs due to its cost-e�ectiveness [70].

25




































































































































Chapter 3 Impairments in PONs

Fig. 3.1 shows a block diagram of an IMDD system. d[k] is the original discrete
symbols. The signal x̃(t) is generated from d[k] after going through a pulse shaping
filter hT(t) [71]

x̃(t) =
+Œÿ

k=≠Œ
d[k]hT (t ≠ ktb) , (3.1)

where tb is the symbol interval. Then x̃(t) combined with a direct current (DC) bias
enters the intensity modulator to realize the electro-optical conversion, the output
can be expressed as

s(t) = s̃(t) + sdc, (3.2)

where s̃(t) is the transmitted signal without DC, and sdc is the DC bias term. After
the fiber transmission, the output of the signal after the PD detection is

i(t) = y
2
dc(t) + |s̃(t) ¢ h(t)|2 + 2ydcs̃(t) ¢ F≠1{Re{H(f)}}, (3.3)

where ¢ denote the convolution operation, h(t) is the inverse Fourier transform of
the system response H(f), consisting of the transmitting filter response hT(t), the
fiber response hC(t), and the receiving filter response hR(t), denoted as

h(t) = hT(t) ¢ hC(t) ¢ hR(t). (3.4)

The first term in (3.3) is the DC component, which does not contain valid infor-
mation and can be completely filtered out by a DC blocker. The second term is
the nonlinear crosstalk introduced by the square detection, i.e., signal-signal beat
interference (SSBI) [72]. The third term is the target term for the signal recovery.

For simplicity, we ignore the SSBI and assume that the optical power launching
into the fiber is low that the overall system response can be considered as a linear
low-pass filter. In this way the original signal recovered from the third term can be
expressed as

i
Õ(t) =

+Œÿ

k=≠Œ
d̃[k]h (t ≠ ktb) . (3.5)

After sampling and decision, we can obtain the original symbols as

i
Õ (tm) = d̃[k] +

+Œÿ

k=≠Œ,k ”=m

d̃[k]h (tm ≠ ktb) . (3.6)

The first term in (3.6) is the mth symbol, and the second term is the ISI due to
the nonideal system response h(t). Considering the nonlinearity of modulators and
fiber, both linear and nonlinear ISI are included in (3.6). Sec. 3.2 will introduce the
major impairment sources resulting in the imperfect system response.
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3.2 Optoelectronics impairments

3.2 Optoelectronics impairments

3.2.1 Bandwidth limitation
The bandwidth of the optoelectronics components in the optical transmission system
determines the maximum transmission rate that the system can support. The fre-
quency response of a bandwidth-limited channel can be regarded as a linear low-pass
filter, as expressed in (3.5). When a high-speed signal passes through the filter, the
original symbols are broadened and overlap, causing ISI. According to the Nyquist
Theory, a signal with a symbol rate of 1/T requires a minimum system bandwidth
of 1/2T for an ISI-free transmission [73]. While in the practical applications, the
thermal noise limit in the system increases the the required bandwidth to 2/3T or
even 1/T to completely mitigate the influence of ISI [74].

As mentioned in Chapter 2, if the NRZ-OOK format is used, the high cost of
25G-class optical components is the most significant limitation to the NRZ-OOK
deployment for 25G PON [75]. A cost-e�ective solution is to reuse the o�-the-shelf
10G optoelectronic components [76]–[79]. Then, the OSP or DSP is needed for signal
distortion compensation due to the limited bandwidth. In [77], 10G optics is proposed
for 25 Gb/s NRZ transmission. The narrow optical filtering based on the delay
interferometer is employed for bandwidth improvement. The disadvantage of this
method is that it is sensitive to wavelength drifting. In [80], digital pre-distortion
and Faster-than-Nyquist algorithms are proposed to compensate for the bandwidth
limitation. Even these methods can help achieve good performance, the DSP cost
is the biggest disadvantage. An alternative solution is to use spectrum e�cient
modulation formats such as the EDB [81]–[84] and PAM-4 [85]–[87], but at the cost of
increased decision complexity and requirements on the system linearity. Bandwidth
limitation becomes more serious in 50G PON and 100G PON, in which the DSP
combined with the PAM-4/EDB/DMT is the normal solution [88]–[91].

3.2.2 Modulation nonlinearities
In an IMDD system, an optical modulator in the transmitter is used to modulate
the optical carrier with the electrical signal. The linearity of the modulator makes a
significant influence to the transmission performance. Fig. 3.2 (a) shows an example
of PAM-4 modulation with a Mach-Zehnder modulator (MZM). The linearity of the
modulation curve influences the interval between di�erent levels and determines the
quality of the eye diagram. To relieve the modulation nonlinearity, modulators with
good linearity is necessary.

There are two categories of modulators for intensity modulation: External-modulation
based external modulators and direct modulation-based DMLs [92], [93], as shown
in Fig. 3.2(b). External modulation is composed of a laser source and an external
modulator. The typical external modulators are electro-optical modulator (EOM)
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Chapter 3 Impairments in PONs

[94], electro-absorption modulator (EAM) [95], and MZM [96]. External modula-
tors have the advantages of large bandwidth, small modulation chirp, and better
linearity, which are suitable for high-speed, long-reach transmission with advanced
modulation formats. However, external modulators su�er from high insertion loss, so
that an optical amplifier is usually needed. For the direct modulation, it is conducted
by changing the driving current of the laser with the modulation signal. Compared
with the external modulation, the system complexity and cost of the direct modu-
lation scheme are much lower. The DML family includes a group of lasers such as
vertical cavity surface-emitting laser (VCSEL) [97], [98], Fabry-Perot (FP) laser [99],
[100], and distributed feedback (DFB) laser [101], [102]. Despite the lower cost, the
linearity of the DML is not as good as the external modulators.

Figure 3.2: An example of PAM-4 signal modulation with MZM (a) and the schematic
diagrams and modulation curve of DML, EOM and EAM (b). This image is
taken from [92].

3.2.3 DML chirp
With the advantages of single longitudinal mode, narrow linewidth, and high out-
put power, DFBs are used as an important light source in optical communications.
Directly modulated DFB lasers-based IMDD systems are widely discussed in optical
access networks since high-speed transmission can also be achieved by direct modu-
lation rather than using expensive external modulators. However, DMLs are directly
modulated by changing the injection currents, which also a�ects the carrier density
inside the laser, resulting in the change of the refractive index in the active region
and output wavelength drift. The wavelength drift is also known as frequency chirp,
which broadens the signal spectrum after propagation through dispersive fiber and
limits the transmission distance. The frequency chirp �V (t) can be derived from the
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3.2 Optoelectronics impairments

laser rate equations expressed as [103]

�V (t) = –

4fi

3
d

dt
ln(P (t)) + ŸP (t)

4
, (3.7)

where P (t) is the laser output power, Ÿ is the adiabatic chirp factor, and – denotes
the linewidth enhancement factor. The first term on the right side of (3.7) is called
transient chirp which leads to serious frequency modulation at the rising edge and
falling edge of the optical pulse. The second term is the adiabatic chirp which appears
with varied pulse power, i.e., ‘1’ bits with blue shift and ‘0’ bits with red shift.

When – is positive, the transient chirp is a monotonically increasing function with
the logarithm of P (t). Since P (t) increases with the time at the rising edge of the
pulse, the blue shift appears leading to the increase of the instantaneous frequency.
From another perspective, P (t) decreases with time at the falling edge, causing the
fact that the red shift is a result of reduced instantaneous frequency. When – is
negative, the opposite phenomenon can be observed, as shown in Fig. 3.3.

Figure 3.3: Optical pulse with positive chirp (a) and negative chirp (b).

For standard single-mode fiber (SMF), the dispersion at 1550 nm is positive. The
group velocity of an optical pulse decreases with the increase of instantaneous fre-
quency during the propagation along the fiber. For the optical pulse with positive
chirp, the falling edge transfers faster than the rising edge, leading to a broadened
pulse and ISI among adjacent symbols. This is why C-band DML is rarely used in
long-reach communications. Using optical filtering [104]–[106] or chirp-managed laser
[107] can help to compress the chirp in the optical domain but require a wavelength
alignment. Some research groups also propose to use DML chirp to achieve complex
modulation [108], [109], while this scheme is sensitive to temperature and coherent
detection is needed in the receiver.

The phenomenon is opposite if the fiber link is with negative dispersion. The opti-
cal pulse with positive chirp can be compressed [110], [111]. Therefore, if there exists
an amount of negative dispersion in the system, the DML chirp can balance the total
dispersion and improve the transmission performance. By exploiting the interac-
tion between chirp and dispersion, it is possible to achieve bandwidth compensation
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Chapter 3 Impairments in PONs

for the system. Based on this idea, dispersion-supported equalization technology is
proposed and described in Chapter 5.

3.2.4 Pattern e�ect in SOA
Optoelectronics with large bandwidth and high receiving sensitivity are necessary
for 100G PON to ensure enough power budget (>29 dB). The commercial 25G APD
is not yet mature for massive production. An alternative is to use a pre-amplifier
combined with PIN-PD [112]. The PIN-PD with low sensitivity but large bandwidth
is widely used in data center application. With the high volumes in 100G data
center interconnects, 25G PIN-PD has become mature and cost e�ective enough
to be adopted for 100G PON [70]. For the pre-amplifier, the SOA with a simple
structure, low power consumption, and easy integrability with photonics circuit, is
preferable for PONs compared to costly erbium-doped fiber amplifier (only in C-
band) and Raman amplifier. The problem with SOA is the nonlinear pattern e�ect
induced by the gain saturation. Since PON is with a PtMP structure, the receiving
power for di�erent users is di�erent. The closest user with high receiving power leads
to SOA saturation which may degrade the overall receiving performance. Therefore,
the receiving power range is limited, known as receiving dynamic range [113].

The SOA gain G is the ratio between output power Pout and input power Pin.
With the increase of SOA input power, G could be saturated since carriers deplete
inside the active region [114]. The relationship between G and Pout can be denoted
as [115]

G = G0e
(≠ G≠1

G )ú Pout
Psat , (3.8)

where G0 is the small signal gain, and Psat is the saturation output power defined
as the output power at which G is 3 dB less than G0. Psat is the threshold between
linear and nonlinear regions. When Pin π Psat,

!
≠ G≠1

G

"
ú Pout

Psat
would get close to

0 by replacing Pout with GPin. Then we can get G ¥ G0 and the SOA works as a
linear amplifier. As the increase of Pin, G decays exponentially. Fig. 3.4 shows the
measured G ≠ Pout curve of the SOA. It can be observed that the SOA saturation
output power is 7 dBm and it begins to saturate when the input power is higher than
≠13 dBm.

After signal modulation, G becomes time-dependent due to the instantaneous
power of input pulse. Then, the SOA instantaneous gain G(t) can be denoted by

G(t) = G0
G0 ≠ (G0 ≠ 1) e(≠E(t)/ES) , (3.9)

E(t) is the energy of input pulse at the range of · < t and it can be expressed by

E(t) =
⁄ t

≠Œ
Pin(·)d· . (3.10)
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3.3 Fiber impairments

Figure 3.4: SOA gain versus output power. Insets (a) and (b): Eye diagrams of PAM-4
signal without and with SOA pattern e�ect, and Insets (c) and (d): PAM-4
signal symbols without and with SOA pattern e�ect. All eye diagrams are
captured at the input power of ≠13 dBm.

In (3.9), Es is the saturation energy. For an optical pulse with energy Eg > Es,
the SOA is not saturated at the leading-edge gain G(≠Œ) = G0. While for the
tailing-edge, the gain changes to G(Œ) = G0/[G0 ≠ (G0 ≠ 1)e(≠Eg/Es)]. Therefore,
the rectangle pulse evolves to jagged, and the gain decrease becomes worse with
higher input power. Also, for a sequence of symbols with di�erent power levels,
the power level of the former symbol could also influence SOA gain to the current
symbol, known as the SOA pattern e�ect. Insets (a)-(d) of Fig. 3.4 show the eye
diagrams and symbol levels distribution without and with SOA pattern e�ect for
PAM-4 signal, with an input power of ≠18 dBm and 0 dBm, respectively. It is
clear that the pattern e�ect distorts the eye diagram, especially on the higher levels.
Therefore, the SOA pattern e�ect needs to be compensated if it is employed as a pre-
amplifier in the ONU. Gain-clamped SOA is an e�ective solution [116], nevertheless,
it requires another laser source for external injection operating outside the signal
band. Optical filtering [117], digital backward propagation [118], pulse shaping and
probability shaping [119] can also help to alleviate this e�ect, but at the cost of high
complexity.

3.3 Fiber impairments
The propagation of optical pulses along the optical fiber is subject to various e�ects
that may change the original pulse shape and spectrum, thus a�ects the transmission
performance of the communication system. These e�ects can be roughly classified as
linear e�ects such as fiber attenuation, fiber dispersion, and nonlinear e�ects caused
by Raman and Brillouin scattering. For PONs, the linear e�ects are usually more
severe, especially with the increase of data rate and transmission distance. When the
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Chapter 3 Impairments in PONs

optical power is high enough, the nonlinear e�ects can also distort the signal to an
unrecognizable level. Both linear and nonlinear e�ects are discussed in this section.

3.3.1 Power attenuation
As the optical pulse propagates through the fiber, the optical power is reduced due to
material absorption, Rayleigh scattering, and material impurities induced extrinsic
absorption [120]. In the case of linear attenuation, the evolution of the optical power,
P (z), at the fiber length of z, is decided by Beer’s law expressed as

P (z) = P (0)e≠–z
, (3.11)

where P (0) is the initial optical power at the input and — is the linear attenuation co-
e�cient. As P (z) decreases exponentially with the factor e

≠–z, — is usually expressed
in dB per unit length by

—dB = 10
z

log
3

P (z)
P (0)

4
. (3.12)

The attenuation e�cient — varies with the wavelength since the impure hydroxide
ion that existed in the fiber has di�erent absorption peaks. Fig. 3.5 shows the SMF
attenuation profile for di�erent operating wavelengths. The three communication
windows for telecommunication applications are set to the wavelength range with
low power loss. During the past years, fiber fabrication techniques have improved a
lot. The value of — at 1550 nm can reach below 0.2 dB/km, which means that the
optical beam is transmitted in the fiber with less than 4% optical loss per kilometer.
For O-band at 1310 nm, this value increases to 0.3 dB/km.

Figure 3.5: SMF attenuation versus operating wavelength. This image is taken from [121].
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3.3 Fiber impairments

3.3.2 Dispersion
The velocity of the optical pulse depends on its frequency and mode during propa-
gating along the optical fiber. The optical pulse usually contains multiple frequency
and modes components, and these components transmit at di�erent speeds leading
to pulse broadening or compressing, which is so-called dispersion. There are various
types of dispersion that existed in the optical fiber.

Modal dispersion

Modal dispersion (MD) only exists in multimode optical fiber. Multiple modes with
di�erent speeds activated when the optical pulse is propagating in the multimode
fiber. The varying rates of these modes lead to the broadening of the optical pulse,
which is known as MD. The MD is the key issue that needs to be solved for long-
reach multimode transmission. Considering the low-cost and connection convenience,
multimode fiber is widely used in short-reach interconnections. In PON, SMF with
a small core diameter is used, which can only support the propagation of one funda-
mental mode, so MD can be neglected.

Chromatic dispersion

Chromatic dispersion (CD) can also broaden the transmitted optical pulse with
single-mode transmission. CD comes from the frequency-dependent fiber refractive
index making the di�erent frequency components of a signal propagating in di�er-
ent velocity, which may cause the original optical pulse to expand in time, and the
amount of expansion is determinate by the fiber length. Finally, ISI could be induced
if the symbol broadens beyond its symbol period. In optical communication, the fiber
CD is usually characterized by the parameter D [ps/(nm·km)] or —2 [ps2/km]:

D = ≠2fic

⁄2 —2 (3.13)

—2 = ≠ 1
v2

g

dvg
dw

(3.14)

vg is the group velocity and w is the angular frequency. The CD can be positive
and negative depending on the value of D or —2. From (3.14), it can be observed
that vg varies with the frequency if CD is non-zero. When —2 < 0, or D > 0, vg
monotonically increases with w, which means higher frequencies are faster than low
frequencies during fiber propagation. On the other hand, if —2 > 0, or D < 0, higher
frequencies have a lower propagation speed than lower frequency.

For SMF, D is approximately 17 ps/(nm·km) at 1550 nm (f = 193.4 THz). Dis-
persion is the major impairments for high-speed transmission, especially when the
transmitted signal with positive chirp (as introduced in Sec. 3.2.3). To reduce the
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Chapter 3 Impairments in PONs

Figure 3.6: Dispersion profile of di�erent fiber type.

CD e�ect, dispersion-shifted fiber (DSF) is designed to shift the zero-dispersion wave-
length from 1300 nm in SMF to the minimum-loss window at 1550 nm, as shown in
Fig. 3.6. An alternative solution is fiber Bragg grating (FBG) [122] or dispersion
compensation fiber [123], which can produce negative dispersion in the C-band. Elec-
trical dispersion compensation (EDC) is also an e�cient method for CD mitigation
[124]–[126], especially for coherent systems [127]–[129]. While for an IMDD system,
CD cannot be e�cient mitigated by EDC since the phase information is lost during
square law detection.

Polarisation mode dispersion

Polarization mode dispersion (PMD) caused by fiber birefringence is another source
of pulse broadening during optical pulse propagation along SMF [130]. There are
usually two orthogonal polarization modes propagation in the SMF. Ideally, these
two modes propagate in the x- and y-direction are with identical properties, making
them indistinguishable. However, the random birefringence influences the refractive
index experienced by two di�erent polarization modes in actual cases. Then the ve-
locity of these two modes would be di�erent and cause pulse broadening. Random
birefringence in optical fibers is caused by deformed core geometry during the imper-
fect manufacturing process, fiber stress, and bending, making it di�cult to analyze in
practice. Moreover, PMD becomes the major limitation for high-speed transmission
when the system operates at a near-zero dispersion window of the fiber over long
distances. The experiment results presented in this thesis with relatively low speed
and short transmission distance, which make the PMD less important compared with
other impairments such as CD.
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3.3 Fiber impairments

3.3.2 Nonlinearities
Besides linear dispersion distortions, the fiber nonlinearities become significant if
injected with high input optical power due to variation of the refractive index with
the optical intensity. There are mainly three types of nonlinear e�ects during fiber
transmission: Stimulated Brillouin scattering (SBS), stimulated Raman scattering
(SRS), and Kerr nonlinearities. When the intensity of input pump light reaches a
certain threshold, it would be partially converted into backscattered light due to the
significant enhancement of the acoustic field by the electrostriction e�ect, which is
known as SBS. The bandwidth of backscattered light is in the backward direction with
only a few tens of MHz, and the center frequency is about 10 GHz lower than that of
the input pump light. Therefore, SBS can be suppressed by broadening the optical
bandwidth. DML-based IMDD PONs are often with a broad emission spectrum due
to chirp, so the SBS e�ects are negligible during fiber transmission [105]. Then, for
SRS, it is caused by the interaction between the incident light and the vibrational
states of atoms in the fiber medium, which can also be neglected when the system
with a single wavelength and low optical power. Finally, Kerr e�ect is related to the
variation of fiber refractive index with optical power leading to the di�erent e�ects
according to the type of input signal, i.e., self-phase modulation (SPM), cross-phase
modulation (XPM), and four-wave mixing (FWM). SPM and XPM are a conversion
from intensity modulation to phase modulation when DML is used or launching
power is higher than 10 dBm. XPM appears when multiple channels are transmitted
in the fiber at the same time. The phase variation of a specific channel is dependent
on the power intensity from itself and other channels. FWM often occurs when the
wavelength of multiple channels is close to zero dispersion window of the fiber.
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CHAPTER 4

Optical signal processing

There are commonly two solutions to address the system impairments meeting the
performance requirement of 25G PON, employing 25G optoelectronics components
with simple NRZ-OOK format, and using low-cost 10G optics together with EDB
or PAM-4 format and DSP, as shown in Fig. 4.1 (a)(b). Using high-speed com-
ponents is relatively expensive, and the old generation of devices cannot be reused.
DSP requires high-speed DACs, ADCs, and complex multiplication circuits. Both
DSP and high-speed components can lead to increased costs, being a severe con-
cern for cost-sensitive subscribers. Alternatively, OSP can improve the signal quality
directly in the optical domain without the need for optical-to-electrical (O/E) and
electrical-to-optical (E/O) conversion (see Fig. 4.1 (c)). For example, use dispersion
compensation fiber [131] or FBG [132] for dispersion compensation, employ optical
filtering [133] or FWM e�ect [134] for chirp compression, and also make use of SBS
for narrowband optical filtering [135]. This chapter introduces two OSP schemes,
namely DSE and injection locking, for bandwidth improvement and chirp manage-
ment. The DSE principle and application in 25G PON underlying Paper A-C are
introduced and discussed.

4.1 Dispersion supported equalization
The chirp signal interacts with dispersion during transmission along with the fiber,
shifting the chirp and dispersion-induced phase modulation to intensity modulation,
thus a�ecting the overall system’s frequency response. By exploiting this interaction
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Chapter 4 Optical signal processing

Figure 4.1: 25G PON based on (a) 25G optics, (b) 10G optics and DSP, and (c) 10G
optics with OSP.

between chirp and dispersion, DSE technology is proposed for bandwidth improve-
ment in the optical domain, and then electrical signal processing can be avoided.

4.1.1 Interplay between DML chirp and chromatic dispersion
Chapter 3 explains why the optical pulse from the DML can be compressed when
transmitting over fiber with accumulated negative dispersion. This section through
theoretical derivation further validates that the interaction between the DML chirp
and negative dispersion can increase the system bandwidth.

As described in (3.7), the DML chirp can be considered as frequency modulation
(FM) generated together with the amplitude modulation (AM) due to the complex
susceptibility of the gain medium in the DML. The conversion from AM to FM can
be described by [136]

Fin(jw) = –

2 (jw + �) 1
P0

Sin(jw), (4.1)

where P0 is the average output power without signal modulation, � being the damping
rate, – referring to the linewidth enhancement factor, and Sin(jw) and Fin(jw) are
the response function of amplitude and frequency modulation, respectively. When
transmission along the SMF, AM and FM convert to each other due to the interplay
e�ect between chirp and dispersion. The mutual conversion matrix can be expressed
as

3
Sout(jw)
Fout(jw)

4
=

Q

a cos
!
w

2
◊
" 2jP0 sin(w2◊)

w
jw sin(w2◊)

2P0
cos

!
w

2
◊
"

R

b ·
3

Sin(jw)
Fin(jw)

4
, (4.2)

where ◊ is defined as D⁄
2
w

2
l/4fic, D is the dispersion coe�cient, ⁄ refers to the

wavelength, l denotes the fiber length, and c is the vacuum light speed, Sout(jw) and
Fout(jw) express the output amplitude and frequency response function.

By substituting (4.1) into (4.2), the transfer function of fiber can be obtained
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4.1 Dispersion supported equalization

expressed as

G(jw) = Sout(jw)
Sin(jw)

=


1 + –2 cos(◊ + arctan(–)) + j
–ŸP0

w
sin(◊).

(4.3)

The first and the second term in (4.3) reflect the power fading e�ect induced by the
transient and adiabatic chirp of the DML, respectively. The power fading induced by
the zero points in the spectral can be calculated by setting ◊ + arctan(–) = fi/2 + nfi

in the first term, and ◊ = fi/2 + nfi in the second term considering the feature of the
cosine and sine function. The total frequency response can be expressed as

|G(jw)| =

Û

(1 + –2) cos2(◊ + arctan(–)) +
3

–ŸP0
w

42
sin2(◊). (4.4)

4.1.2 Enhanced bandwidth with negative dispersion

Figure 4.2: Theoretically calculated frequency response curves of SMF with (a) 320 ps/nm
and (b) -320 ps/nm dispersion at 1550 nm.

Based on (4.4), the frequency response curves of dispersive fiber considering three
di�erent chirp settings are drew: 1) With both transient and adiabatic chirp, 2) with
only transient chirp, and 3) without chirp. – and Ÿ are set to 3.5 and 13 GHz/mW
accordingly if chirp is considered. The accumulated dispersion is set to 320 ps/nm and
≠320 ps/nm by changing the sign of the CD coe�cient. The theoretically calculated
power fading curve of fiber under the parameter settings is shown in Fig. 4.2. It can
be observed that the transient chirp further moves the first power dip, induced by
the fiber dispersion, from 15 GHz to 6 GHz when the fiber is with positive dispersion.
The power notch can move up to 20 GHz if negative dispersion is applied, and the
power of high-frequency components can also be improved. Based on this result,
it can be concluded that the power of high-frequency components can be increased
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Chapter 4 Optical signal processing

by using an amount of negative dispersion when the high-speed signal is directly
modulated and detected by bandwidth-limited optical components, which is the so-
called DSE. An experimental demonstration of 4◊25 Gb/s NRZ-OOK signal with
10G optics in both O-band with DSE are presented in Papers A and B, proving
the e�ectiveness of DSE.

4.1.3 Demonstration of symmetric 4◊25 Gb/s PON with DSE

Figure 4.3: (a) Experiment setup for O-band symmetric 4◊25 Gb/s PON with 10G optics,
(b) eye diagrams of 25 Gb/s NRZ-OOK signals from four channels with and
without DSF.

The system schematic diagram of a symmetric 4◊25 Gb/s PON system with 10G
DMLs and APDs in the O-band based on DSE is illustrated in Fig. 4.3 (a). Four
commercial 10G DMLs operating at 1270 nm, 1290 nm, 1310 nm, and 1330 nm
are used for 25 Gb/s NRZ-OOK signal modulation. The same waveband but with
200 GHz wavelength deviation are selected for four upstream channels. A spool
of 10 km DSF with a total dispersion of ≠150 ps/nm at 1310 nm is employed for
DSE function for both downstream and upstream channels to compensate for the
bandwidth limitation. Considering DSF with an insertion loss of 10 dB, an SOA is
employed to increase the launching power downstream and the receiving sensitivity
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4.1 Dispersion supported equalization

upstream. The eye diagrams of 25 Gb/s NRZ-OOK signal reopen with the help of
DSF, enabling real-time detection without the need of DSP, shown in Fig. 4.3 (b).
The performance of 1270 nm and 1330 nm channels is a little worse than 1290 nm
and 1310 nm because the total negative dispersion value is not optimal for both of
them. Finally, the system power budget at 1310 nm can achieve 26 dB and 32 dB
for downstream and upstream, respectively.
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Figure 4.4: Experiment setup for C-band symmetric 4◊25 Gb/s PON with 10G optics.
Inset: (a) optical spectrum of four channels in downstream; (b) the measured
group delay curve of ODC module.

The result presented above is demonstrated in the O-band. DSE also works e�ec-
tively in the C-band, presented in Paper C. The experimental configuration is shown
in Fig. 4.4. For downstream, four DMLs operating at 1549.96≥1554.74 nm with
200 GHz wavelengths spacing are employed as transmitters, each carrying 25 Gb/s
NRZ-OOK signals. The spectral is shown in Fig. 4.4 (a). And the four upstream
wavelengths are operated at 1538.98≥1541.35 nm with 100 GHz channel spacing,
a red/blue filter separates the downstream and upstream signals. A multi-channel
tunable optical dispersion compensator (ODC) with a channel spacing of 100 GHz
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Chapter 4 Optical signal processing

(see Fig. 4.4 (b)) is employed to provide negative dispersion for all channels. Since
the SMF generates positive dispersion in C-band, the ODC needs to provide enough
negative dispersion, responsible for both the CD compensation and DSE function.
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Figure 4.5: (a) BER measurement of 25 Gb/s NRZ-OOK signal under di�erent negative
dispersion value, (b) downstream transmission performance at BtB and 20 km
SMF with DSE.

The system tolerance to the negative dispersion value in back-to-back configuration
is measured, shown in Fig. 4.5 (a). The BER performance improves gradually at the
beginning but degrades after the dispersion value exceeds ≠150 ps/nm. Compared
with the 0 ps/nm case, the BER performance is continuously optimized when the
negative dispersion value is within around ≠500 ps/nm. Since 20 km SMF in C-band
introduces around 340 ps/nm dispersion value, the compensation value of ODC is set
to ≠440 ps/nm considering the performance for users within the range from 0 to 20
km. The BER performance subject to di�erent fiber lengths with DSE is presented
in Fig. 4.5 (b). The sensitivity can achieve ≠21 dBm after 20 km SMF transmission
with DSE. Considering the launching power of each channel being 16 dBm, the power
budget could reach 37 dB. It is also observed that the receiver sensitivity at BtB is
≠15 dBm due to the over-compensated negative dispersion, corresponding to a power
budget of 31 dB.

4.2 Injection locking
The modulation bandwidth of a DML is limited by its relaxation oscillation frequency,
which can be partially improved by increasing the drive current. The relaxation
oscillation frequency WR can be obtained through the deduction from a three-rate
equation which can be expressed by [137]

WR =

Û
vgaS0

·p
, (4.5)
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4.2 Injection locking

where vg is the group velocity, a is a constant, S0 is the photon density, and ·p de-
notes the photon lifetime. From (4.5), it can be observed that the laser’s relaxation
oscillation frequency increases with the photons density in the active region. The
modulation bandwidth of the laser can be increased by external injection of photons,
known as injection locking [138]–[140]. Today, injection locking is extensively inves-
tigated in the optical communication field. By cascading multiple injection-locked
VCSELs, the modulation bandwidth can reach up to 100 GHz [141]. Thanks to the
injection locking, the DML chirp can be compressed [142] and even altered from pos-
itive to negative enabling long-reach transmission [143]. Besides, injection locked-FP
laser with larger wavelength tunability is a strong candidate for the colorless WDM-
PON transmitter [144]–[146]. Some research groups also employ injection locking for
radio over fiber transmission [147]–[149].

Figure 4.6: Experimental setup for frequency response measurement.

By taking advantage of injection locking for bandwidth improvement, it is possible
to use low-cost 10G optics to achieve high-speed PONs. We experimentally measured
the frequency response variation of the 10G DML in the presence of external light
injection. The configuration of the experiment is presented in Fig. 4.6. The injection
locking system consists of a master and slave laser (SL), where the master laser (ML)
provides the external light source, and the SL is the one being injected. Both SL
and ML are tunable DFB lasers. The wavelength interval between the ML and SL
should be kept within a certain range to achieve stable locking. After locking, the
operating wavelength of the SL follows the ML. An optical spectrum analyzer (OSA)
is employed to monitor the locking condition, and a vector network analyzer (VNA)
is used to measure the system bandwidth variation.

The SL can be locked when the wavelength interval is within 0.5 nm. The band-
width evolution with and without injection locking is shown in Fig. 4.7. When 10G
DML and 10G APD are used, the system bandwidth is about 10 GHz without in-
jection locking. While after injection locking, the system bandwidth is improved to
15 GHz thanks to the increase of relaxation oscillation frequency, which is close to
the bandwidth of a 20G-class device-based transmission system. With such higher
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Chapter 4 Optical signal processing
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Figure 4.7: Measured system frequency response (a) with and without injection locking
and (b) with di�erent injection power.

bandwidth, 50 Gb/s signal transmission with advanced format is possible. Moreover,
the relaxation oscillation frequency continues to increase with the increase of injec-
tion power, while the low-frequency response degrades. The optimal injection power
needs to be further verified based on transmission performance, which is presented
in Paper H. This part will be further introduced in Chapter 6.
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CHAPTER 5

Digital signal processing

The DSP can mitigate linear and nonlinear distortions by manipulating the signal
symbol by symbol in the electrical domain at both transmitter and receiver side,
which is more flexible than the OSP introduced in Chapter 4. With the advanced
development of complementary metal-oxide-semiconductor (CMOS), the cost of the
DSP gradually may become acceptable for the IMDD PON, especially when the
system capacity reaches up to 50 Gb/s or even 100 Gb/s [150].

Nevertheless, optimized DSP algorithms are still needed to reduce power consump-
tion and cost, for instance, piecewise linear filtering [151] and simplified Volterra [152],
[153]. Alternatively, the DSP cost can be reduced when moving the complex DSP
module from each ONU (post-equalization) to the OLT (pre-equalization). In this
way, the DSP cost is able to be shared by multiple ONUs. This chapter introduces
the DSP algorithms with a focus on our proposed neural network (NN) based pre-
equalizer and joint NTHP and Volterra equalization. The details of the work are
presented in Paper D and Paper E.

5.1 Linear impairments compensation

5.1.1 FFE and DFE
In order to compensate linear and nonlinear impairments in the signal, the equalizer
W (f) can theoretically be designed to enable a full-pass response, i.e., the system
frequency response after cascading is H(f) ·W (f) = C, as shown in Fig. 5.1(a) [154].

The most common type of equalizer is the forward feedback equalizer (FFE), shown
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Chapter 5 Digital signal processing
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Figure 5.1: Equalization principle (a) and FFE equalizer (b).

in Fig. 5.1(b), whose input consists of the current and the delay symbols. After
multiplying with the corresponding tap coe�cients wi, we can obtain the output
expressed as

y(k) =
Nÿ

m=0
x[k ≠ m]wm. (5.1)

Compared with the sending symbols, we can obtain the mean square error (MSE)

E
!
e

2(k)
"

= E
#
y

2(k) + d
2(k) + 2y(k)d(k)

$
. (5.2)

The coe�cients wm can be updated by the least mean square (LMS) or recursive least
squares (RLS) algorithm [155] until converging. From the structure point of view, the
FFE is a finite impulse response (FIR) filter, which can only provide spectral zeros,
and thus the FFE can e�ectively compensate when H(f) is an all-pole response [156].
When there are spectral zeros in H(f), the FFE not only fails to achieve e�ective
compensation but also amplifies the in-band noise [156]. To avoid this e�ect, the
decision feedback equalizer (DFE) is proposed with the structure shown in Fig. 5.2,
which introduces spectral poles by adding a feedback structure after the FFE, so the
spectral zeros and poles in H(f) can be e�ectively compensated.

The error e(k) can be expressed as

e(k) =
Nÿ

m=0
x[k ≠ m]wm ≠

Lÿ

j=0
d

Õ[k ≠ j]fj (5.3)

where d
Õ[k] is the decision output, wm is the tapped coe�cient of FFE, and fj is the

tapped coe�cient of DFE. wm and fj are also obtained by using LMS to minimize
the E(e2(k)).
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5.1 Linear impairments compensation
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Figure 5.2: The structure of linear FFE-DFE.

5.1.2 Linear Tomlinson-Harashima precoding
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Figure 5.3: The structure of LTHP-FFE equalizer.

The feedback structure of the DFE takes into account the linear ISI caused by the
decision symbols. However, when the output symbols are with the false decisions,
this error may propagate because of the feedback structure, a�ecting the decision of
the following symbols. To solve this problem, the feedback structure can be moved
to the transmitter side so that the error propagation can be avoided. Based on this
idea, the linear THP (LTHP)-FFE is proposed in [156]. The algorithm principle is
presented in Fig. 5.3.

The LTHP-FFE needs to be processed at the transmitter and receiver sides sepa-
rately, and its workflow is divided into three steps. For the first step, the FFE-DFE
is used at the receiver side for the post-equalization. When the equalizer converges,
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Chapter 5 Digital signal processing

the feedback coe�cients of DFE are retained as parameters of the LTHP. In the
second step, the original symbols are pre-coded with LTHP at the transmitter side.
To avoid instabilities induced by the feedback structure, the Modulo 2M operation is
introduced to limit the transmit signal amplitude to the range of ≠2M to 2M . Here,
M denotes the number of levels using the modulation code type, and for PAM-4, M

is 4. The output signal after LTHP is expressed as

x̃(k) = d(k) ≠
Nÿ

i=0
x̃(k ≠ i)wi ≠ 2Mbk (5.4)

where d(k) is the sending symbols, and bk is the integer that converts x̃(k) to the
range (≠2M, 2M). In the third step, the receiver uses FFE to equalize. Note that
the target symbols of the FFE equalizer are no longer the original PAM-4 sequence
d(k), but the computed 8-level signal x(k) during the training process, expressed as

x(k) = d(k) ≠ 2Mbk. (5.5)

After the FFE equalization, x(k) is then recovered to the original symbol d
Õ(k) by

the Modulo 2M operation. Although LTHP-FFE can mitigate the error propagation
of DFE, it is a linear superposition of symbols and thus can only compensate for
linear impairment.

5.2 Nonlinear impairments compensation

5.2.1 Volterra filter

FFE, DFE, and THP-FFE consider only linear superposition of the input symbols.
They cannot compensate for nonlinear impairments in the signal. To further miti-
gate the nonlinear impairments, the input symbols to the filter can be nonlinearly
superimposed to introduce nonlinear features, like Volterra nonlinear equalizer and
NN.

Fig. 5.4 shows a three-order Volterra filter. The output can be denoted by

y(n) =
k1ÿ

i1=≠k1

wi1x (n + i1)

+
k2ÿ

i1=≠k2

k2ÿ

i2=i1

wi1,i2x (n + i1) x (n + i2)

+
k3ÿ

i1=≠k3

k3ÿ

i2=i1

k3ÿ

i3=i2

wi1,i2,i3x (n + i1) x (n + i2) x (n + i3) ,

(5.6)
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5.2 Nonlinear impairments compensation

where k1, k2, k3 are the lengths of the first-, second-, and third-order kernels, respec-
tively. (5.6) contains all the higher-order terms in the length range of each order.
It introduces su�cient nonlinear features, so it has a strong nonlinear fitting ability
and good equalization ability for communication channels with strong nonlinearities.
However, as the length of the Volterra filter kernel increases, the number of filter
taps increases sharply, and the computation complexity increases. Moreover, a large
number of linear and nonlinear terms make little contribution to the equalization per-
formance. Thus, the complexity of the Volterra filter can be simplified by pruning
operations [153].

Volterra has a similar structure as FFE. Therefore, a decision feedback structure
can be added to decrease the in-band noise. In Paper D, a joint NTHP-Volterra
equalizer is proposed to further improve the performance of Volterra by combining
the advantages of Volterra and THP, shown in Fig. 5.5.

Figure 5.4: Structure of Volterra filter.
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Figure 5.5: Block diagram of NTHP-Volterra equalizer.
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Chapter 5 Digital signal processing

The structure of NTHP-Volterra is similar to the LTHP-FFE except for replacing
the linear FFE and DFE with the Volterra filter, addressing both linear and nonlinear
impairments of the input and decision symbols. To show the e�ectiveness of NTHP-
Volterra, the BER performance of 100G PAM-4 signal in an IMDD PON system with
a 3 dB bandwidth of 15 GHz is evaluated. The BER result is shown in Fig. 5.6.
Compared with the traditional FFE-DFE filter, LTHP-FFE can improve the receiver
sensitivity by 1 dB since the error propagation is mitigated. Moreover, thanks to the
nonlinearity compensation, 2 dB sensitivity improvement can be obtained by NTHP-
Volterra compared with LTHP-FFE.

Figure 5.6: BER comparison of 100G PAM-4 signal with di�erent equalizers after 20 km
SMF.

5.2.2 Neural network
Compared with Volterra, NN has a more powerful nonlinear fitting capability. It
has been proved that a NN consisting of two hidden layers can accurately represent
arbitrary functions [157]. Accurate model estimation can be achieved by training the
NN with the data sampled at the receiver side to compensate for linear and nonlinear
distortions from the optical components and fibers during system transmission [158].

Fig. 5.7 shows a four-layer fully connected NN consisting of one input layer, two
hidden layers, and one output layer, where the number of hidden layers can be
adjusted according to the performance. For the input layer, the input signal is the
same as FFE with the current and delayed symbols, while the hidden layer induces
nonlinearity by using nonlinear activation function f . For each node at the hidden
layer, its output can be expressed by

Y = f

A
Nÿ

i=1
wixi + b

B
, (5.7)
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5.2 Nonlinear impairments compensation

Figure 5.7: Architecture of neural network-based equalizer.

where x = (x0, x1, · · · , xN ) is the output value from nodes in the upper layer, and
each of them has a coe�cient wi, and b is the bias. The commonly used nonlinear
activation functions are Tanh, Sigmoid, Relu, etc., which satisfy the properties of
continuous di�erentiable, nonlinear, and constant mapping [159].

In the output layer, the activation function is di�erent from the hidden layer.
When the purpose of NN is to complete the regression task, there is only one output
node and no additional excitation functions. The linear weighting of the previous
layer is the final output. If a classification task is preferred, the number of output
nodes depends on the total number of categories. The activation function should be
Softmax [160] which gives the probability of each category. Finally, gradient descent
and back propagation are employed to minimize the loss function, i.e., MSE, and the
coe�cients are updated.

Figure 5.8: Architecture of NN based pre-equalizer.

However, NN’s computational complexity is much higher than Volterra, which
increases deployment costs if directly used at the ONU side. In Paper E, NN is
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Chapter 5 Digital signal processing

swapped to the OLT to compensate the SOA pattern e�ect for 50G PON so that the
costs can be shared equally by multiple users and facilitate practical deployment. The
architecture of the NN-based pre-equalizer is shown in Fig.5.8. To enable this swap,
the NN at the receiving side needs to achieve accurate model estimation, ensuring
the error d(n) is close to 0. Also, the input signals of the pre- and post- NN need to
be in the same power range, so the quantization factor G needs to be set reasonably.

Figure 5.9: BER of 50 Gb/s PAM-4 signal with 20 km SMF at O-band with and without
SOA.

As introduced in Chapter 3, the SOA pattern e�ect is a time-varying distortion.
In order to obtain an accurate estimation of the SOA model, the post-NN is trained
by doubled training data sampled at the two-time slots. In addition, the amplitude
of the received signal should be normalized to ≠3 to 3 before being sent to the NN.
When these two conditions are satisfied, the NN exchange from the ONU to the OLT
works e�ciently. The BER performance of 50 Gb/s PAM-4 signal with and without
pre-NN is shown in Fig. 5.9. Without pre-NN, the BER starts to degrade when
the received power exceeds ≠10 dBm, leading to a limited power receiving range.
After employing pre-NN for pattern e�ect mitigation, the receiving dynamic range
is significantly improved.
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CHAPTER 6

Hybrid optical and digital signal processing

OSP and DSP schemes are introduced for impairments compensation in Chapter 4
and Chapter 5, respectively. This chapter introduces two hybrid optical and digi-
tal signal processing schemes for 50G PON with further performance improvement,
compared with deploying DSP or OSP only. In Paper F and Paper G, DSE is
employed at the OLT to pre-equalize the frequency response of bandwidth-limited
directly modulated signal in the optical domain, so that the required DSP complex-
ity in ONU is reduced. Similarly, in Paper H, by using injection locking in the
transmitter side for bandwidth improvement and chirp compression, the transmis-
sion performance can be significantly improved combined with DSP at the receiver
side.

6.1 Optics simplified DSP for 50G PAM-4 PON
In order to meet the performance requirement of 50G PON with low-cost 10G optics,
complex DSP algorithms are required for impairments compensation, even in O-band
[161]. Volterra can compensate for both linear and nonlinear distortions, but its
complexity is too high for PON applications. Linear FFE and DFE with a simpler
structure and lower complexity are preferable for 50G PON [162].

In Paper F and G, we experimentally illustrate 50G PAM-4 transmission using
10G optics. The experimental setup is shown in Fig. 6.1. A 10G O-band DML
operating at 1310 nm is used for 50 Gb/s PAM-4 modulation. A spool of DSF with
a dispersion of ≠150 ps/nm is followed for the DSE function. To compensate for
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Chapter 6 Hybrid optical and digital signal processing

Figure 6.1: Experimental setup of 50G PON. Insets: (a) Electrical eye diagram at the
input of the DML and eye diagrams after 20 km SMF transmission without
(b) and with (c) DSP.

the insertion loss of DSF and also increase the launching power, an O-band SOA
with a noise figure of 6.8 dB is used as a booster amplifier in the OLT. After fiber
transmission, the signal is received by a 10G APD. Even with DSE, the eye diagram
of 50 Gb/s PAM-4 signal is completely closed due to severe bandwidth limitation.
Therefore, o�ine DSP is added for further compensation.

Figure 6.2: BER performances of 50-Gb/s PAM4 signal transmission over 20 km SMF for
di�erent equalization configurations.

Fig. 6.2 shows the BER performance of 50 Gb/s PAM4 signal transmission over 20
km SMF under three di�erent equalization configurations in the O-band. Without
DSE for pre-equalization, a three-order Volterra (30 15 5) filter can only achieve
≠16 dBm receiver sensitivity at the BER of 2 ◊ 10≠2. After employing DSE, 3
dB sensitivity improvement can be obtained with the same Volterra, proving the
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6.2 50 Gb/s DMT transmission enabled by injection locking

e�ectiveness of hybrid signal processing. In addition, with the help of DSE, 30-taps
FFE filter is also able to achieve ≠18 dBm receiver sensitivity with 2 dB sensitivity
improvement. For the three-order Volterra (30 15 5) filter, the required multiplier
for each symbol is 185, while the 30-taps FFE filter only requires 30 multipliers [163].
Therefore, 2 dB sensitivity improvement are obtained after employing DSE, as well
as reduced computation complexity is obtained.

6.2 50 Gb/s DMT transmission enabled by injection
locking

For C-band 50G transmission with 10G DML, the signal quality is further degraded
by DML chirp and CD. In Chapter 4, injection locking is introduced with the po-
tential to compress the chirp and increase the bandwidth. In Paper H, we experi-
mentally demonstrate 50 Gb/s DMT signal transmission over 20 km SMF with 10G
DML in the C-band. The system configuration is illustrated in Fig. 6.3. The DMT
signal is first generated in Matlab and then sent into a 50 GSa/s AWG. The output
signal from the AWG is amplified to 1.5 Vpp and then loaded onto the 10G C-band
DML, which is injection-locked by another DFB laser through an optical circulator.
A polarization controller is used to match the polarization between two lasers. The
spectra before and after injection locking is shown as inset. It can be observed that
chirp-induced broaden spectra is compensated, leading to an improved dispersion
tolerance of the system. After 20 km SMF transmission, the signal is detected by a
20G PD. Then the electrical signal is sampled and o�ine processed with DSP.

Figure 6.3: Experimental setup for 50G DMT transmission.

Fig. 6.4 shows SNR versus frequency with and without injection locking. It can be
observed that the average SNR from di�erent sub-carriers is improved from 11.62 dB
to 15.61 dB after injection locking. The SNR dip due to the interaction between the
fiber dispersion and DML chirp is moved from 5 GHz to 7 GHz due to the improved
bandwidth. The BER performance is evaluated shown in Fig. 6.4(b). Without
injection locking, only 25-Gb/s DMT transmission with free-running DML can be
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Chapter 6 Hybrid optical and digital signal processing
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Figure 6.4: SNR versus frequency with and without injection locking (a) and BER versus
received optical power after 20-km SMF transmission (b).

achieved at a BER of 4.52e≠3 (BCH (CIBCH) FEC) [164]. After external injection,
50 Gb/s DMT signal transmission with a BER lower than the CI-BCH FEC limit
is achieved, demonstrating that the system capacity can be doubled when optical
injection locking is adopted.
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CHAPTER 7

Future outlook

This thesis focuses on the key signal processing technologies in 25G, 50G, and 100G
PONs. Some research progress has been made to provide some feasible and low-cost
upgrade solutions for the next-generation PON standards. In this chapter, some
interesting topics for further research are discussed.

Signal processing technologies in upstream

The work on single-wavelength 50G and 100G PONs in the paper mainly focus on
the downlink direction, while there is less relevant research on the uplink direction.
When the data rate in the uplink direct is upgraded to 100 Gb/s, DSP is also re-
quired. Since ONU and OLT have di�erent cost sensitivity, the technology used in
the uplink direction will also be di�erent, so how to achieve uplink high-speed signal
transmission needs further research.

Especially, unlike the downlink direction, the uplink user data is not sent in con-
tinuous mode, and there is a bursting mechanism. Burst mechanisms are sensitive to
the system latency, and how to achieve fast equalization of high-speed uplink signals
may need further research.

Machine learning in the PONs

Machine learning (ML) is a promising technology for nonlinearities compensation
due to its powerful ability in nonlinear modeling. If the system with strong non-
linearities that are di�cult to be described in mathematics, the ML methods often
outperform traditional DSP algorithms in signal equalization. Recently, a group of

57




































































































































Chapter 7 Future outlook

new ML methods like reinforcement learning, federated learning, and transfer learn-
ing are under comprehensive discussion in academia and industry. Their applications
in PONs for specific transmission problems may need further investigation. Besides,
most ML methods are based on supervised learning, which requires redundant data
for training. Unsupervised ML can achieve full blind nonlinear equalization with
only the received signal rather than original symbols, and it may also be beneficial
for the un-cooling PONs with varying system status, e.g., wavelength shift. From
another perspective, the computation complexity and the power consumption of ma-
chine learning algorithms are the biggest challenges for its application in the cost-
sensitive PONs. Therefore, simplifying the computation complexity and speeding up
the training process is also an interesting topic for the next step.

Low-cost coherent receiver design for future PONs

The demonstrations presented in this thesis are all based on low-cost IMDD technol-
ogy. DSP and higher bandwidth optics are needed to address systems impairments
and meet the power budget requirement. For the future of PONs (single-wavelength
200-400G PON), IMDD technology runs out of steam, and coherent technology seems
the most logical technological choice. Coherent detection enables complex modula-
tion in di�erent dimensions, including phase, amplitude, and polarization. It also has
the potential to provide a higher receiver sensitivity by simply increasing the local
oscillator power. However, the traditional coherent receiver is costly, and the com-
plex optics may add additional insertion losses to the system, leading to a degraded
power budget. A Low-cost coherent receiver design will be a possible solution to
improve the capacity and the power budget in future higher-speed PONs. Moreover,
with the help of a coherent receiver, both the intensity and phase information can be
recovered at the receiver side. Therefore, the signal processing technologies from the
coherent optical communication field can be further investigated for their application
in PONs.
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CHAPTER 8

Summary of papers

In this chapter, a short summary of the publications included in this thesis is pre-
sented as well as the author’s contribution.

Paper A

“First demonstration of symmetric 100G-PON in O-band with 10G-class
optical devices enabled by dispersion-supported equalization,” Optical Fiber
Communication Conference and Exhibition (OFC), paper M3H.1, Los Angeles, USA,
2017.

This paper presents an O-band demonstration of symmetric 100 Gb/s TWDM-
PON with 10G optics. A spool of 10km dispersion-shifted fiber is employed to achieve
multi-channel equalization in the optical domain. Symmetrical 4◊25 Gb/s NRZ-
OOK signal transmission can be achieved requiring no digital signal processing. A
power budget of 26 dB downstream and 32 dB upstream are obtained.

My contribution: Original idea, built the experimental setup, conduct all mea-
surements and analysis data, and wrote the manuscript.

Paper B

“Symmetric 100-Gb/s TWDM-PON based on 10G-class optical devices
enabled by dispersion-supported equalization,” Journal of Lightwave Tech-
nology, vol. 36, no. 2, pp. 580-586, 2018.
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Chapter 8 Summary of papers

As an extension of Paper A, an SOA is added to compensate for the insertion loss
of DSF and used as a pre-amplifier in upstream to increase the power budget. The in-
fluence of modulation voltage and drive current on the final equalization performance
is also presented in detail.

My contribution: Original idea, built the experimental setup, conduct all mea-
surements and analysis data, and wrote the manuscript.

Paper C

“First real-time demonstration of symmetric 100G-PON,” Asia Communi-
cations and Photonics Conference and Exhibition (ACP), paper AS4A.3, Wuhan,
China, 2016.

This paper presents a C-band real-time demonstration of symmetric 100 Gb/s
TWDM-PON using NRZ format based on 10G-class DML and photo-detectors. All
optical and electrical components are integrated into a single OLT and an ONU
line card. A multi-channel tunable dispersion compensator is employed for both
downstream and upstream equalization. Finally, a power budget of 31 dB at BtB
and 37 dB after 20 km fiber transmission are obtained.

My contribution: The OLT and ONU line board are fabricated by Fiber home. I
built the experimental setup, perform all measurements and analysis data, and wrote
the manuscript.

Paper D

“100G PAM-4 PON with 34 dB power budget using joint nonlinear Tomlinson-
Harashima precoding and Volterra equalization," European Conference and
Exhibition on Optical Communication (ECOC), paper We4F.5, Bordeaux, France,
2021.

This paper presents a joint nonlinear equalization algorithm enabling single channel
100 Gb/s PAM-4 PON. The nonlinear THP and booster amplifier are employed in
the OLT, and 34 dB power budget can be achieved.

My contribution: Original idea, built the experimental setup in IDLab imec-
Ghent university, conduct all measurements and analysis data, and wrote the manuscript.

Paper E

“SOA pattern e�ect mitigation by neural network based pre-equalizer for
50G PON," Optics Express, vol. 16, no. 16, 2021.
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In this paper, SOA pattern e�ect mitigation in a PAM-4 based 50G PON system
is investigated. A neural network is employed to learn the nonlinear features of SOA
by using two time-slots data for training. Moreover, the neural network is moved to
OLT used as a pre-equalizer whose cost can be shared by all ONUs. Thanks to the
pre-NN, the limited receiving dynamic range due to SOA pattern e�ect is significantly
improved.

My contribution: Original idea, built the experimental setup, conduct all mea-
surements and analysis data, and wrote the manuscript.

Paper F

“50-Gb/s TDM-PON based on 10g-class devices by optics-simplified DSP,”
Optical Fiber Communication Conference and Exhibition (OFC), paper M2B.4, San
Diego, USA, 2018.

This paper presents a demonstration of downstream 50 Gb/s PAM-4 PON with
10G DML and 10G APD. DSE is employed in the OLT to improve the signal quality
partially in the optical domain, then only simple FFE in the ONU is needed. The
DSE combined with FFE scheme shows 2 dB improvement than the complex Volterra
algorithm, indicating its potential to reduce the complexity of DSP.

My contribution: Original idea, built the experimental setup, conduct all mea-
surements and analysis data, and wrote the manuscript.

Paper G

“Optics-simplified DSP for 50 Gb/s PON downstream transmission using
10 Gb/s optical devices,” Journal of Lightwave Technology, vol. 38, no. 3, pp.
583-589, 2020.

As an extension of Paper E, this paper adds the theoretical analysis and simulation
of DSE performance in a 10G DML-based transmission system. The simulation result
shows that the DSE can improve the 3-dB system bandwidth from 6 GHz to 11 GHz,
which is consistent with the experiment result. On the other hand, a performance and
computation complexity comparison among DSE+Volterra, DSE+FFE, and Volterra
are presented. Finally, SOA is added to improve the system power budget.

My contribution: Original idea, built the experimental setup, conduct all mea-
surements and analysis data, and wrote the manuscript.
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Chapter 8 Summary of papers

Paper H

“50-Gb/s dispersion-unmanaged dmt transmission with injection locked
10G-class 1.55-µm DML,” Conference on Lasers and Electro-Optics (CLEO),
paper SW4O.2, San Jose, USA, 2019.

In this paper, injection locking enabled C-band 50 Gb/s DMT transmission over 20
km SMF was presented. Thanks to the bandwidth improvement and chirp depression
e�ect from injection locking, only 10G DML is required.

My contribution: Original idea, built the experimental setup, conduct all mea-
surements and analysis data, and wrote the manuscript.
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